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1. IntroductionDetermining the degree to which two shapes di�er from one another is a central problem in patternrecognition and machine vision. Recently a number of papers in computational geometry haveinvestigated various aspects of the problem of measuring the di�erence between shapes (e.g., [ABB,AMWW, AST, ACHKM, HK, HKS]). In general, two geometric objects A and B are consideredto have the same shape if there exists a transformation g 2 G such that g(A) = B, where G is agiven transformation group. The di�erence between shapes is then measured using some functionD(A;B) � 0, where a value of zero is attained exactly when A and B have the same shape.In this paper we consider the problem of comparing point sets under the group of planar Eu-clideanmotions (i.e., the composition of translation and rotation in the plane). Such transformationsare often also referred to as `rigid body' motion. We measure the di�erence between two point setsA and B by minimizing the Hausdor� distance under all relative Euclidean motions of the two sets.(The Hausdor� distance is a max-min distance, and is de�ned below.) We then show that the min-imum Hausdor� distance under Euclidean motion can be computed in time O((m + n)6 log(mn)),where the sets A and B contain m and n points respectively.The minimumHausdor� distance has been used to compare a number of di�erent kinds of shapes.The minimum distance between sets of points under translation in the plane can be computed intime O(mn(m + n)�(mn) log(mn)) where m and n are, as above, the numbers of points in thetwo sets being compared [HK, HKS]. If the sets contain line segments as well as points, then thedi�erence between two sets under translation can be computed in time O(m2n2 log3(mn)) [AST] forL2 as the underlying metric, and in time O(m2n2�(mn)) [HKS], for L1 and L1 as the underlyingmetrics (where �(n) is the extremely slowly growing inverse Ackermann function). Under rigidbody motion, the minimum Hausdor� distance between two polygons can be computed in timeO((mn)4(m+ n) log(m+ n)) [ABB].In [HKS] the problem of computing the minimum Hausdor� distance under translation betweensets A and B with m and n points respectively, is reduced to that of computing the upper envelopeof m + n Voronoi surfaces of O(m + n) source points each. This upper envelope problem can besolved by computing the unions of certain cells in pairwise Voronoi diagrams. In this paper wealso show a relation between computing the minimum Hausdor� distance and problems concerningVoronoi diagrams. In particular, we show how the minimum Hausdor� distance under Euclideanmotion can be solved using the dynamic Voronoi diagram of a special point set, in which subsets ofthe points move rigidly.To obtain our results on the minimum Hausdor� distance under Euclidean motion, we improvea known bound on the complexity of the following dynamic Voronoi diagram problem. Consider ksets of points, T1; : : : ; Tk, where each set consists of n points in the plane, and each set is allowedto move rigidly in some constrained motion. We show that the complexity of the dynamic Voronoidiagram of T = [ki=1Ti is O(n2k2�s(k)) for some �xed s, where �s(n) is the maximum length of a(n; s) Davenport-Schinzel sequence [ASS, HS]). This improves a result by Aonuma, Imai, Imai andTokuyama [AIIT] who show an upper bound of O(n3k4 log� k) for the complexity of such Voronoidiagrams. When k is bounded by a constant then we get a bound of O(n2), whereas [AIIT] get2



O(n3). If there are n sets each with one point (which corresponds to the general dynamic Voronoidiagram problem) then our bound becomes O(n2�s(n)), which is the same as that attained by[FL, GMR]. Our results on dynamic Voronoi diagrams depend on a new bound on the length of aspecial Davenport-Schinzel sequence (see Lemma 1 below), a result which is interesting in itself.This paper is organized as follows. In the following section we de�ne the minimum Hausdor�distance under Euclidean motion, and show its relation to dynamic Voronoi diagrams. In Section3 we provide bounds on the above-described dynamic Voronoi diagram of k sets moving rigidly. InSection 4 we show that the minimumHausdor� distance under Euclidean motion can be determinedby considering the combinatorial changes to certain unions of Voronoi cells. We use our results ondynamic Voronoi diagrams to bound the number of such changes. Section 5 then presents analgorithm for computing the minimum Hausdor� distance under Euclidean motion, and analyzesits run time and storage requirements.2. The Minimum Hausdor� DistanceThe Hausdor� distance between two sets, A = fa1; : : : ; amg and B = fb1; : : : ; bng, where each ai, bjis a point, is given by H(A;B) = max(h(A;B); h(B;A)) (1)where h(A;B) = maxa2A minb2B �(a; b); (2)and �(a; b) is some underlying metric. The function h(A;B) is the directed Hausdor� distance fromA to B, and measures the distance of the point of A that is farthest from any point of B (under �).It is well known that the function H(A;B) is a metric over the set of all closed, bounded sets. TheHausdor� distance, H(A;B), can be trivially computed in time O(mn) for two point sets of size mand n respectively; with some care, this can be improved to O((m+ n) log(m+ n)) [ABB].Given two point sets A and B in the plane, we note that all relative con�gurations of these twosets under rigid motion can be obtained by the composition of a rotation about the origin and atranslation. Hence without loss of generality we let the set A just rotate about the origin, while theset B just translates. We then de�ne the minimum Hausdor� distance under Euclidean motion,D(A;B), between the sets A and B asD(A;B) = minx;� H(r�(A); B � x) (3)where r�(A) = fR�ai j ai 2 Ag (and R�ai denotes the product of the rotation matrix R� with ai),B � x = fbj + x j bj 2 Bg (and + denotes vector sum), and H is the Hausdor� distance as de�nedin equation (1).For applications in pattern matching and model-based recognition, it is important that a shapecomparison function obey the metric properties (non-negativity, identity, symmetry and the tri-angle inequality) [ACHKM, Mu]. These properties correspond to our intuitive notions of shaperesemblance. than they are to one another. For example, without the triangle inequality two highly3



dissimilar `model' shapes can both be judged similar to some unknown shape, which is highlycounter-intuitive. We note that D(A;B) obeys the metric properties, and this can be shown bystraightforward substitution arguments analogous to those in [HKS] where it is shown that theminimum Hausdor� distance under translation obeys metric properties.A problem closely related to computing D(A;B) is that of determining whether there exists anapproximate congruence between two sets of points under rigid body motion [AMWW]. Formally,the problem is to determine whether there is a Euclidean motion E of B, a bijection l : B ! A,and a distance d = maxb2B �(E(b); l(b)); (4)such that the distance d is less than some speci�ed value �. It is assumed that �(:; :) is either L2or L1. For two point sets in the plane with p points each, it can be determined in time O(p8)whether there exists a motion E and a bijection l such that d < � [AMWW]. In our method wemeasure the di�erence between two sets by minimizing the maximal mismatch between two pointsets under Euclidean motion. The key di�erence is that the distance computation is not concernedwith matching pairs of points. It can be argued for each measure which one �ts a given applicationbetter, however, we compute the minimum Hausdor� distance in time O(p6 log p) as opposed toO(p8) for the approximate congruence. Moreover, our measure is a metric whereas the approximatecongruence is not.Computing D(A;B)We now describe how to compute the minimumHausdor� distance D(A;B) = minx;�H(r�(A); B�x) for A and B, where A = fa1; : : : ; amg and B = fb1; : : : ; bng are two sets of points in the plane.First we de�ne a function f(x; �) that speci�es the value of H(r�(A); B � x), and then we outlinehow the minimum value of this function can be computed. In order to compute the minimume�ciently, we require some additional tools which are developed in the following sections.The distance between a pair of points ai 2 A and bj 2 B, where ai undergoes a rotation by �and bj undergoes a translation by x, is simply�i;j(x; �) = �(R�ai; bj + x) = �(R�ai � bj; x):The function di(x; �) is then de�ned to be the (pointwise) minimum of the functions �i;j(x; �)for a given point ai 2 A and over all bj 2 B:di(x; �) = minbj2B �i;j(x; �): (5)This function gives the distance from a given point ai 2 A to the closest point of B (the distancebetween ai and the set B), as a function of the motion parameters x and �.The directed Hausdor� distance as a function of Euclidean motion, h(r�(A); B � x), which wedenote also by fA(x; �), is then given by the upper envelope of the di functions,fA(x; �) = maxai2A di(x; �): (6)4



The analogous de�nitions of d0j(x; �) = minai2A �i;j(x; �);and fB(x; �) = maxbj2B d0j(x; �);specify the directed distance h(B � x; r�(A)) as a function of Euclidean motion. Then the distanceis simply D(A;B) = minx;� max(fA(x; �); fB(x; �)): (7)To simplify the discussion, we concentrate on the case of minimizing the directed distance asgiven by fA(x; �) in equation (6), rather than the Hausdor� distance as given by equation (7). Wenote that fA is the maximum of m functions di, where each di is the minimum of n functions �i;j.Similarly fB is the maximum of n functions d0j , each of which is the minimum of m functions �i;j.Equation (7), which maximizes fA and fB, is then just the maximum of m + n functions. Hencethe bounds that we obtain for the directed distance, fA, will be simple to generalize to fB and alsoto the distance D(A;B).In order to determine the minimumvalue of fA(x; �) over all x; �, we �rst consider the restrictedcase in which � is �xed. That is, the set A is (temporarily) at some �xed orientation, and theset B is allowed to translate. This is thus the problem of computing the Hausdor� distance undertranslation, as considered by [HK, HKS]. Following [HKS], we note that if the set R�ai 	 B isdenoted by Si;� (i.e., Si;� = fR�ai � bjjbj 2 Bg) thendi;�(x) = minp2Si;� �(p; x);where we use the notation di;�(x) rather than di(x; �) to stress the fact that � is �xed. The graphof this function, f(x; di;�(x))jx 2 R2g, is by de�nition the Voronoi surface of the set of source pointsSi;�. That is, the function di;�(x) speci�es for each location x the distance to the nearest point ofthe set Si;�. The local maxima of this surface (where x is equidistant from two or more points ofSi;�) occur by de�nition for values of x that lie along the edges of the Voronoi diagram of Si;�.The basic observation of [HKS] was that the upper envelope of a set of di;�(x) functions couldbe completely described by the pairwise Voronoi diagrams Vor(Si;� [ Sj;�) for all i 6= j. Considera given diagram Vor(Si;�), and let F be the Voronoi cell of a given source point s 2 Si;�. Furtherconsider all the Voronoi diagrams Vor(Si;� [Sj;�), for all j 6= i. Clearly q is a source in each of thesediagrams. Denote by Qj the Voronoi cell of q in Vor(Si;� [Sj;�) (see Figure 1). It is easy to see thatQj � F for each j. Let Q = Sj 6=iQj, and denote the boundary of Q by @Q.Fact 1 Using the above notation, the upper envelope, maxi di;�(x) is equal to di;�(x) for x 2 F ifand only if x 2 F � Q. Moreover, the minima of the upper envelope are all attained along @Q.[HKS]. 5



qF QjQk Ql
Figure 1: The cells Qj in the Voronoi cell F of a given source s 2 Si.Thus for any �xed �, the local minima of fA(x; �) (and hence the global minimum) can bedetermined by simply computing the pairwise Voronoi diagrams of the sets Si;� for all i 6= j, andthen computing @Q (the boundary of the union) for each source point q in each set Si;�. In [HKS]it was shown that the total complexity of @Q over all the source points is O(m2n�(mn)), wherethere are m sets Si;� each with n points. Moreover, the computation of the minimum can be donein time O(m2n�(mn) log(mn)).As � changes we can view the functions di(x; �) as the evolution across `time' (the parameter �)of the Voronoi surface di(x). That is, the points of each set Si can be viewed as moving accordingto a circular motion parameterized by �. (For notational simplicity we write Si rather than Si(�).)As the points move in this way, the edges of each Qj change continuously (in size and position) andsome edges of the Qj's are created and destroyed. This causes changes to the set of edges visibleon @Q.Each edge e on @Q is a portion of a bisector bpq, for some p in some Sj (and q 2 Si, the sourceof each Qj). Moreover the left (right) endpoint of e is caused by the intersection of bpq with anotherbisector brq (bsq). Thus, the triples pqr and pqs induce the endpoints of e. We label each edgeby (p; q; r; s; �0), where e �rst appears on @Q at �0. The inclusion of �0 ensures that e is uniquelylabeled. Thus e has an epoch of visibility, [�0; �00] where �00 is the value of � for which the edge ceasesto be visible on @Q.In Section 4 we show that over each edge, the minimum value of fA(x; �) can be computed in6



constant time. Thus, we are able to bound the total complexity of minimizing fA(x; �) in termsof the number of edges that ever appear on the boundary of each cell Q (one for each point q ineach Si). In order to bound this total number of edges we show a correspondence between theappearance of edges on @Q and topological events in certain dynamic Voronoi diagrams. Thesedynamic Voronoi diagrams are of a restricted form, because they are composed of unions of sets Si,where each set Si moves rigidly (in a circular motion as Si = fR�ai � bjjbj 2 Bg). First, however,we develop some new tools for bounding the number of such topological events.Thus, in summary, we have the following plan. First we develop some general tools for analyzingthe complexity (number of topological changes) of dynamic Voronoi diagrams of a set T = [iTi,where each set Ti moves rigidly. Then we apply these results in order to bound the number ofedges that can ever become visible on all @Q. Finally we show that the minimum of fA(x; �) can becomputed in constant time for each edge on @Q (over its epoch of visibility). By Fact 1, minimizingover all the edges that become visible on every @Q yields the global minimum of fA(x; �).3. The Dynamic Voronoi Diagram of k Sets Moving RigidlyThe dynamic Voronoi diagram problem involves a set T of n points in the plane where each pointmoves according to some continuous function of time, and the motions are restricted in some fashion(e.g., to be �xed-degree polynomials). The problem is to bound the number of topological changesin the Voronoi diagram of T over all time. A topological change in the Voronoi diagram occurswhen either a Voronoi edge ceases to exist or a new edge appears, due to changes in proximityrelations among the points of T . We restrict ourselves to the case where T = [ki=1Ti, and each Ti isa set of n points in the plane. We assume the points of each Ti are in general position (i.e. no fourpoints cocircular). The points of each set Ti move rigidly in a motion described by the functionffig, where fi : I ! <2 is a continuous function of time t 2 I � <1, and I is a �nite closed interval.In what follows we take I to be [0; 1], without loss of generality. As in [FL, GMR] the motion isconstrained by the following property,Property 1 Four points can become cocircular or collinear at most s times, where s is a constant.This property is achieved, for example, by motions that are low-degree polynomials.The creation or destruction of a bounded edge of Vor(T ), which we also call an event, correspondsto four points of T becoming cocircular on an empty circle (i.e., a circle that does not contain anyother points of T ). The creation or destruction of an unbounded edge corresponds to three pointsbecoming collinear on the convex hull of T . As in [FL, GMR], we discuss only the changes in thebounded edges of the Voronoi diagram. The analysis of the unbounded edges follows analogously.First we consider two special cases, where T consists of either two or three subsets, each of whichmoves rigidly as just described. In each of these cases we show that the complexity of the dynamicVoronoi diagram is O(n2). (The same bounds for these cases were obtained by [AIIT]; however,we present our proofs because they are helpful in understanding the general case of k � 4 movingsets.) 7



Claim 1 Given two sets of points in the plane T1 and T2, jT1j; jT2j = n, each set moving rigidly ina motion that has Property 1, let T = T1[T2. Then the complexity of the dynamic Voronoi diagramof T over time is O(n2).Proof. Denote the four points that become cocircular on an empty circle by p1; p2; p3 and p4. Weare only interested in the cases where these four points do not all come from the same set. Thusthere are two cases: three points come from one set and one from the other, or two points comefrom each set.(i) Assume p1; p2; p3 2 T1, p4 2 T2. Since p1, p2 and p3 are cocircular on an empty circle theyde�ne a vertex in Vor(T1), and since V or(T1) does not change over time this is true for all t.There are O(n) vertices in Vor(T1), and hence O(n) such point triples. Each of these triplescan become cocircular with each of the n points of T2. By Property 1, each such cocircularitycan only happen O(1) times, and thus there are O(n2) events of this type.(ii) Assume p1; p2 2 T1, p3; p4 2 T2. Since p1 and p2 are cocircular on an empty circle theydetermine an edge in Vor(T1), and since Vor(T1) does not change as a function of t this is truefor all t. Similarly p3 and p4 de�ne an edge in Vor(T2). Vor(T1) and Vor(T2) have O(n) edgeseach, hence there are O(n2) such sets of four points. By Property 1, a given set of four pointscan be cocircular O(1) times, and thus there are O(n2) events of this type.Claim 2 Given three sets T1, T2 and T3, jT1j; jT2j; jT3j = n, let T = T1 [ T2 [ T3. The complexityof the dynamic Voronoi diagram of T over time is O(n2).Proof. As in Claim 1, we count the number of times four points p1; p2; p3; p4 2 T become cocircularon an empty circle. Clearly two of these points must come from the same set, Ti. Assume withoutloss of generality that p1; p2 2 T1. Then p1 and p2 determine a bounded edge e in Vor(T1), with theendpoints of e due respectively to the points pk; pl 2 T1.We de�ne the con�guration of p1 and p2 at time t to be the triple ((p1; p2); (q1; q2); (r1; r2)) (seeFigure 2). The points q1 and q2 are those points of T1 [ T2 inducing the endpoints of the visibleportion of e in Vor(T1 [ T2) at time t. If e is not visible in Vor(T1 [ T2), then we use the notation(q1; q2) = (�; �). Thus (q1; q2) 2 ((T2 [ fpkg) � (T2 [ fplg)) [ f(�; �)g. Similarly, r1 and r2 are thepoints causing the endpoints of e in Vor(T1[T3), and (r1; r2) 2 ((T3[fpkg)� (T3[fplg))[f(�; �)g.For a given con�guration, p1 and p2 can only become cocircular with q1, q2, r1, r2. We chargeall of these cocircularities to this con�guration; note that there are only O(1) of these charges.De�ne a change to the con�guration of p1 and p2 to be a change to one of the qi or ri (i = 1; 2).Thus by bounding the number of changes to all con�gurations over time, we bound the number ofcocircularities. Speci�cally, we show how to charge each con�guration change for p1; p2 2 T1 to acocircularity event in Vor(T1 [ T2) or in Vor(T1 [ T3).Initially (for t = 0) there are O(n) con�gurations, one for each edge e 2 Vor(T1). Consider agiven con�guration ((p1; p2); (q1; q2); (r1; r2)). The pair (q1; q2) can only change in three di�erentways (and analogously the pair (r1; r2) which we do not consider explicitly):8



eVor(S1 [ S2)Vor(S1) q1 q2r2r1 plpk p2p1Vor(S1 [ S3) 2 S12 S22 S3Figure 2: The con�guration of p1 and p2(i) The point q1 2 T2 (or alternatively q2) is replaced by another point q01 2 T2 (alternativelyq02 2 T2). In this case the four points p1, p2, q1 and q01 become cocircular. This is a cocircularityevent in T1 [ T2.(ii) The point q1 (or alternatively q2) is replaced by pk (or alternatively pl). The reverse situation,of pk being replaced by q1 (or pl by q2), is analogous. This is a cocircularity of p1, p2, pk andq1 in T1 [ T2, (in the alternative case the cocircularity involves q2; pl; p1; p2).(iii) The pair (q1; q2) is replaced by (�; �) or vice versa, which corresponds to the edge e becominginvisible or visible in Vor(T1[T2). This is a cocircularity involving p1, p2, q1 and q2 in T1[T2.We have thus shown that each way in which a con�guration can change involves a cocircularityevent in a pairwise diagram Vor(T1 [ T2), (or analogously Vor(T1 [ T3)), and thus we can chargee con�guration change to such an event. Note that there are only O(1) charges to each event ina pairwise diagram, because each charge involves a speci�c four points becoming cocircular, whichcan only happen s times. There are �32� such pairwise diagrams, each of complexity O(n2), for atotal of O(n2).We now proceed to the case of k point sets moving rigidly for arbitrary k. We �rst prove ageneral lemma which is interesting in itself. We denote by DS(n; s) the (n; s) Davenport-Schinzelsequence with n symbols, a1; : : : ; an, where each pair of symbols can interchange at most s times(see [ASS, HS] for an overview of these sequences including bounds on their lengths). We note thatthe length of a DS(n; s) sequence is �s(n). Let � be a DS(n; s) sequence and let �(j) denote the9



jth entry in the sequence �. We call the symbol ai active at entry j if �(j 0) = ai for some j 0 � jand �(j00) = ai for some j 00 > j. De�ne �(j) to be the number of active symbols at entry j. We call� a DSA(n; s;m) sequence if � is a DS(n; s) sequence and for each j, �(j) � m. Let us denote by�s;m(n) the maximum length of DSA(n; s;m) sequence.Lemma 1 �s;m(n) is O( nm�s(m)).Proof. Let � be an arbitrary DSA(n; s;m) sequence. We partition it into disjoint blocks in thefollowing manner. We scan � from its beginning until we have the shortest subsequence of � thathas 2m distinct symbols. Call this block B1, remove it from �, and denote the remainder of � by�1. We now repeat this process on �1: regardless of the symbols that have appeared in B1 we scan�1 from its beginning for the shortest leading subsequence, B2, that has 2m distinct symbols. Weiterate this process. Since � is of �nite length, the process ends when we have produced L blocksB1; : : : ; BL for some value of L.We claim that each block Bi, i < L, contains at least m symbols that do not appear in �i. Weprove this by contradiction; since there are 2m distinct symbols in Bi we assume that m+1 of thesesymbols appear in the remainder �i. Let us denote by c the index in � of the last element of theblock Bi. Then there are m+1 symbols that appear both at or before entry c, and after entry c in�; i.e. �(c) � m+ 1 > m, which contradicts the property that �(j) � m for each j.It is immediate from this claim that L � ( nm +1). Each block is a DS(2m; s) sequence; thereforeits length is �s(2m). Multiplying by L we get that �s;m(n) is O( nm�s(m)).We now turn to the main result of this section. As above, we restrict the discussion to caseswhere the Voronoi edges are bounded. We de�ne a k-con�guration by analogy with the con�gurationof Claim 2. However, in this case, we form a con�guration for each possible bisector between anypair of points in T = [ki=1Ti. For the moment we assume that the points come from two distinctsets, let p 2 Ti, q 2 Tj, i 6= j be the two points. Denote the k-con�guration of the bisector bpq by�pq = ((p; q); (li1; ri1); : : : ; (lik�2; rik�2)). A pair (lm; rm) in �pq is the the pair of points from the unionTi[Tj[Tm, m 6= i; j, that induce the left and right endpoints of the edge e � bpq in Vor(Ti[Tj[Tm).(By left and right endpoints of e, we mean the leftmost endpoint on e and the rightmost one withrespect to the vector pq.) Hence (lm; rm) 2 ((Ti[Tj [Tm)� (Ti[Tj [Tm))[f(�; �)g, (where (�; �)indicates that the bisector bpq does not show up as a Voronoi edge in Vor(Ti [ Tj [ Tm)).A change to �pq is de�ned to be a change to any one of the lm or rm, e.g., a new l0m 2 Ti [Tj [ Tm [ f�g replaces lm in the k-con�guration. By our de�nitions this is a topological event inVor(Ti [ Tj [ Tm): point lm induced the endpoint on the edge e before the change, and point l0minduces the endpoint on e after the change, and at the time of the change, points p, q, lm and l0mare cocircular. (In the case where lm is replaced by �, the points p; q; lm and rm become cocircular,which is analogous to Claim 2 case (iii).)Let epq � bpq be the (possibly empty) Voronoi edge of p and q in Vor(T ). Let Npq denote thenumber of topological events over all time that involve epq. We de�ne Cpq to be the total numberof changes to �pq, plus k � 2. The bulk of the proof consists of bounding the number of topologicalevents, Npq, by O(�s;(k�2)(Cpq)) (i.e. O(Cpqk �s(k))).10



Theorem 1 The combinatorial complexity of the dynamic Voronoi diagram for k rigid sets of npoints each is O(k2n2�s(k)).Proof. Consider �pq between two consecutive changes to it. Clearly if any of the (lm; rm) are equalto (�; �), then the edge epq is not visible in Vor(T ). Call �pq full if no (lm; rm) is equal to (�; �).When �pq is full, epq will be visible if and only if all the left endpoints induced by the points lm lieto the left of all the right endpoints induced by the points rm. More speci�cally, for �pq full, call therightmost left endpoint induced by one of the points lm the leading left endpoint; analogously, callthe leftmost right endpoint induced by one of the points rm the leading right endpoint. Then epqis visible if and only if the leading left endpoint lies to the left of the leading right endpoint; theseare in fact the endpoints of epq in this case. Thus, a topological event involving epq is precisely thecrossing of a leading left endpoint and a leading right endpoint; i.e. a cocircularity of p, q, and thepoints lm and rm0 that induce these endpoints.Since any four such points can become cocircular only s times, we can bound Npq by boundingthe number of distinct leading endpoints that appear on the bisector bpq over all time. We show howto bound the length of the sequence of leading left endpoints; the bound for right leading endpointsis the same, and merging these two sequences yields a sequence of at most twice this length.For notational clarity, we actually bound the length of the sequence of lm that induce leadingleft endpoints. We do this by representing it as an appropriate Davenport-Schinzel sequence �pq.The alphabet for our DS sequence is constructed as follows. At t = 0 we start with a symbol foreach lm (1 � m � k � 2) in �pq that is not equal to �. Then, at each change to �pq, where lm isreplaced by a non�� l0m, we add l0m to the alphabet. The following point is important: even if l0mhas appeared in �pq at some earlier time, we still add a new symbol to represent it.�pq is de�ned to be the sequence of symbols that represent the leading left endpoints over all time.Observe the following: no two symbols of �pq can interchange more than s times, by Property 1.Also, the size of the alphabet of this sequence is bounded by k�2 plus the total number of changesto �pq; i.e. it is bounded by Cpq. Thus �pq is a DS(Cpq; s) sequence.In fact, �pq is a DSA(Cpq; s; k � 2) sequence. This is clear from the construction of the alphabet.But as argued above, the number of topological events, Npq, involving bisector bpq is bounded bya constant multiple of the length of this sequence (and the strictly analogous one constructed forleading right endpoints). Thus we have shown thatNpq = O(�s;(k�2)(Cpq)) = O(Cpqk �s(k)): (8)For �xed i and j, the sum of Cpq is bounded by the total number of topological events in allVor(Ti [ Tj [ Tm), for all m 6= i; j, plus the original k � 2 values at t = 0 for each p; q. The secondof these terms is clearly bounded by O(kn2), since there are O(n2) pairs p; q. To bound the �rst ofthe terms, we note that the total number of k-con�guration changes due to Tm for �xed m is O(n2)(Claim 2); summing for all k � 2 possible values of m yields O(kn2). Thus we getXp;q Cpq = O(kn2):11



Figure 3: An 
(n2) constructionSumming up Cpq over all sets i; j and points in Ti and Tj we getC =Xi;j Xp;q Cpq = O(k3n2): (9)We substitute C instead of Cpq in equation 8 and get the complexity of the dynamic Voronoidiagram of k sets moving rigidly:N = O(Ck �s(k)) = O(k2n2�s(k)):We also need to consider the case where p and q come from the same set Ti. In this case thelength of the k con�guration increases by one, and crossings of leading endpoints correspond to fourpoints from three sets becoming cocircular. It is easy to see that the number of distinct leadingendpoints (and hence the number of topological events) on these bisectors bpq is O(k3n2), and thusthis case does not increase the above bound. (It is bounded by the total number of topologicalevents in unions of three sets, which is at most �k3�O(n2), by Claim 2.)This improves the bound of O(n3k4 log� n) given in [AIIT]. Moreover, if k is bounded by aconstant then we get a bound of O(n2), whereas [AIIT] get O(n3). For constant k, this bound istight, in the sense that a lower bound of 
(n2) can be demonstrated with just two rigidly movingpoint sets. See Figure 3: the vertically arranged pairs of points move rigidly to the right, so theVoronoi edge between each pair is destroyed and created n times. Summing over the n pairs gives thelower bound. Observe that we can slightly perturb the points in the �gure so that they are in generalposition. Also, in our application, the point sets move in circular rather than linear trajectories;we note that the above construction can be modi�ed without much di�culty to demonstrate the
(n2) lower bound in this case as well.4. Bounding the Changes to @QNow we return to the problem of bounding the number of edges that can appear on the boundariesof each Q = [jQj. Each edge e = (p; q; r; s; �) of @Q is a portion of an edge � of some Qj. (Recall,q 2 Si is the common source of the Qj's, p is the point in some Sj that induces �, r and s inducethe two endpoints of e on @Q, and � is the orientation at which e �rst appeared on @Q.) In orderto avoid confusion we reserve the term edge for e and call � a Qj-edge.12
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Figure 4: The types of changes on @QClearly if a new Qj-edge is created and is visible on @Q, then this is a new edge e on @Q. Theappearance of any other edge e involves a portion of an already existing Qj-edge becoming visibleon @Q. Such a change must involve a Qj-edge crossing a vertex of @Q. This vertex can eitherbe convex (a vertex of another Qk) or concave (the intersection of some Qk and Ql). Thus in thenatural way we associate the appearance of each edge e on @Q with one of these three types ofchanges (see Figure 4 and also Figure 1):(i) A new Qj-edge appears and is visible. When this occurs, three new edges are created: the newedge corresponding to the Qj-edge, and the neighboring edges whose endpoints have changed.(Analogously, when a visible Qj-edge disappears two new edges are created.)(ii) A convex vertex of Qj pierces the boundary to become visible. When this occurs, four newedges are created: the two that induce the convex vertex, and the one edge on @Q that is nowsplit into two. (When a convex vertex becomes invisible one new edge is created.)(iii) A hidden crossing of a Qj-edge and Qk-edge becomes visible. When this occurs, two new edgesare created: the two edges that intersect at the crossing. (When a hidden crossing becomesinvisible three new edges are created.)We consider each case in turn. Recall that the boundaries of a given cell Qj are edges ofVor(Si [ Sj), and involve a given point q 2 Si. Thus by de�nition a change of type (i), where someQj-edge changes, involves a change in the dynamic Voronoi diagram Vor(Si [ Sj).13



A change of type (ii), where some vertex of Qj becomes visible on @Q or vice versa, involves acrossing of a vertex of Qj with a Qk-edge. The two Qj-edges that meet at the given vertex are dueto q 2 Si and two points in Sj; call them p1 and p2. The Qk-edge that is being crossed is due to qand to a point of Sk; call it p3. Thus at the time that the vertex pierces the edge, the four pointsq, p1, p2, and p3 become cocircular. This is a topological event in the dynamic Voronoi diagramVor(Si [ Sj [ Sk).A change of type (iii), where a crossing of a Qj-edge and a Qk-edge becomes visible or vice versa,involves a crossing of three edges from three di�erent cells. Each of the three edges is due to q anda point p1 2 Sj, p2 2 Sk, and p3 2 Sl, respectively. Thus at the time that the three edges cross, thefour points q, p1, p2, and p3 become cocircular. This is a topological event in the dynamic Voronoidiagram Vor(Si [ Sj [ Sk [ Sl).Hence, we can bound the number of edges that ever appear on @Q (summed over all sourcesq) by bounding the number of topological changes to the pairwise, triplewise and quadruplewisedynamic Voronoi diagrams. This brings us to:Claim 3 The number of edges that can appear on all the boundaries of the cells Q is O(m4n2).Proof. In the previous section we showed that for a dynamic Voronoi diagram with a total of npoints that move on some constant number of di�erent trajectories, the total number of changesto the Voronoi diagram is O(n2). We have just shown an equivalence, up to a constant factor,between the appearance of an edge on @Q and a topological event in a pairwise, triplewise, orquadruplewise Voronoi diagram involving the sets Si, 1 � i � m. There are �m4� quadruplewisediagrams (which dominates the number of pairwise and triplewise diagrams) each for O(n) points,which yields O(m4n2).Remarks. Note that not all the changes to the pairwise, triplewise and quadruplewise dynamicVoronoi diagrams get to be visible on the boundary of some @Q. In fact many of these changesmay occur within the cells Q and not be seen on any of the boundaries. Note also that onetopological change to any of the above dynamic Voronoi diagrams can a�ect up to four di�erentboundaries @Q, since only up to four di�erent points take part in the cocircularity event causingthis topological change, hence only the boundaries of @Q for each one of these points as sourcesmight be a�ected. In each of the topological changes, detailed in (i), (ii) and (iii) above, some edgesof @Q are destroyed and some are created. In type (i) two @Q edges are destroyed, in type (ii) oneedge is destroyed and in (iii) three edges are destroyed. Summing up the number of @Q changes foreach type (adding/deleting @Q edges) we get up to �ve such updates for each type.Our plan for computing the minimum value of fA(x; �) was �rst to bound the number of edgesthat can appear on the @Q's, which we have just done, and then to compute the minimum overeach edge of each boundary. Thus we now turn to the problem of computing the minimum valueof fA(x; �) over the domain speci�ed by an edge e = (p; q; r; s; �0) of @Q over its epoch [�0; �00](recall that the epoch is the continuous interval over which e is visible on @Q). We show that this14



p
r [ ]q eFigure 5: The minimum of fA(x; �) on eminimum can be computed in constant time. Note that the points p, q, r and s are moving oncircular trajectories; however as above we do not explicitly parameterize the points by �.The function fA(x; �) is the upper envelope of a set of functions, and from Fact 1 we knowthat di(x; �) is the maximum of these functions along @Q (that is fA(x; �) = di(x; �) for values of(x; �) along @Q). Thus we minimize the value of di(x; �) over each edge e of @Q (where di(x; �)corresponds to the set Si;�, q 2 Si, as in Figure 1).Along the entire bisector bpq (rather than just the edge e), the minimum value of di(x; �) for�xed � is clearly obtained where bpq intersects the segment pq. We call this location 
. The valueof di at 
 is simply one half the distance between the points p and q. For a �xed value of �, if econtains 
, the minimum value of di(x; �) on e is attained at 
. If e does not contain 
, then theminimum is attained at the endpoint of e closer to 
. We therefore identify the values of � in theepoch of e when 
 enters or leaves the edge e, and divide the epoch into the subintervals betweenthese values. (See Figure 5, where the endpoints of e are denoted by [; ] and 
 is denoted by a dot).We observe that it leads to simpler expressions to consider the task of minimizing the squareof di. Consider a subinterval in which e contains 
. Over this subinterval, the minimum value ofdi(x; �)2 is mint(1=2kp�qk)2. This is a �xed degree polynomial in sin � and cos �, as is its derivative,so its minimum can be computed in constant time, by virtue of the following fact:Fact 2 A degree d polynomial in sinx and cos x has at most 4d roots x 2 [0; 2�).Proof. Let f(x) be a degree d polynomial in sinx and cos x. f(x) = g(x) + h(x), where theterms of g contain only odd powers of sin x and the terms of h contain only even powers of sinx.If x̂ 2 [0; 2�) is a zero of f , it is also a zero of g(x)2 � h(x)2, which can be written as a degree dpolynomial in cos2(x). Thus cos2(x̂) is one of d values.Since the equation cos2(x) = y has at most 4 solutions over [0; 2�), we have the stated boundon the number of roots of f over [0; 2�). 15



Over a subinterval in which e does not contain 
, we observe that e lies always to one side of
 or the other; assume that r is the point inducing the endpoint of e closer to 
 throughout thesubinterval. Then the minimum value of di(x; �)2 over this subinterval is the minimum squaredradius of the circle through p; q; r. This (and its derivative) can be represented as the quotient oftwo �xed degree polynomials in sin � and cos �, so its minimum can be computed in constant time.Finally, we observe that we have divided the epoch into only a constant number of subintervals.The end of a subinterval occurs when 
 enters or leaves e; this will happen when the center of thecircle through p; q; r (or p, q, s) is equal to 
. But when this happens, p, q, r lie on the vertices ofa right triangle; i.e. (r � p)(r � q) = 0. Since this is a �xed degree polynomial in sin � and cos �,there are only a constant number of subintervals. Thus, we are performing a constant amount ofwork over each of a constant number of subintervals, in order to compute the minimum value ofdi(x; �) over the epoch of e in constant time.5. The AlgorithmIn this section we give the algorithm and describe the data structures for computing the directedHausdor� distance h(R�A;B � x). The algorithm consists of two stages.The �rst stage is an initialization step, in which we compute the boundaries of the cells Q forthe initial orientation � = 0 and sort the edges of each boundary @Q in a clockwise order. This partof the initialization was done in [HKS] and we use their algorithm for it. For each source point q wemaintain the boundary @Q as a clockwise ordered list of edges. Each edge is labeled by a quintuple(p; q; r; s; 0) as described in Section 4. It is clear that each boundary @Q is star-shaped with respectto its source q, at any given orientation � (cf. [HKS]). Hence, maintaining the edges of @Q in aclockwise order, gives also an angularly sorted list of the vertices of @Q around q. This is crucialfor the updating stage of the algorithm where we will need a fast (logarithmic time) insertion anddeletion of edges of @Q. As � varies, before a topological change occurs, the vertices and edgesof @Q move in the plane but the angular order of the vertices of @Q, with respect to q, does notchange. The only time that the order changes is at a topological change that a�ects @Q.We also prepare at this stage the topological changes that occur in all of the pairwise, triplewiseand quadruplewise dynamic Voronoi diagrams as � varies from 0 to 2�. We sort these eventsaccording to increasing � and maintain, for each topological change, the orientation � at which thechange occurs, the four sources that become cocircular at this event and the indices of the sets towhich these sources belong. Let us denote the event by another quintuple (p1; p2; p3; p4; �), wherep1, p2 induce the Voronoi edge just before the cocircularity event (for �0 < � and close to �), and p3and p4 induce the Voronoi edge just after the cocircularity (for �0 > �), in the Voronoi diagram ofthe sets to whom these points belong.In the second stage we update the boundaries of the cells by considering each topological changein order of increasing �. We do it in the following manner. Assume we have maintained all theboundaries of the cells Q, for each point q in each one of the sets Si, ordered clockwise. Let the nexttopological change occur at � and assume that it occurred due to the cocircularity of the sourcesp1; p2; p3; p4. We check whether there is an update to the boundary @Q of the cells Q corresponding16



to each of the four points p1; p2; p3; p4. Consider the boundary @Q of the cell Q around p1. Wecompute the center c of the circle on which the four points are cocircular and locate the point on theboundary @Q. Locating the point on @Q can now be done fast; we compute the angle that the linep1c makes with the x-axis and start a binary search on the list of vertices of @Q. For each vertexv 2 @Q which is encountered during the search we compute in O(1) time the angle between the linep1v and the x-axis, thus locating c on @Q in logarithmic time. (Note that if c was not found on@Q then it is a topological change that occurs within the cell Q and does not a�ect @Q, hence noupdate is required.) We perform the updates to @Q and proceed to computing the minimum valueof fA(x; �) for the edges that were destroyed in this update. For each such edge e = (p; q; r; s; �0),we compute the minimum value of fA(x; �) over e over its epoch [�0; �], as described in the previoussection. We keep track of the minimum such value over all edges that appear on the boundary. Weoutline the algorithm schematically:Stage 1: Initialization.1. Compute the boundary of Q = [jQj for each source q in each set Si at � = 0, using themethod of [HKS]. For each source, store the boundary as a clockwise ordered list of edges andvertices. Each edge is stored as the quintuple (p; q; r; s; �), where � = 0 for these initial edges.2. Compute the topological changes (cocircularity events) to all the pairwise, triplewise, andquadruplewise dynamic Voronoi diagrams. For each orientation � at which there is a cocir-cularity event, store the ordered cocircularity quintuple (p1; p2; p3; p4; �), and keep pointers tothe sets Si to which the points belong.3. Sort all the cocircularity events by increasing �.Stage 2: Update and Minimization.1. For each cocircularity event (p1; p2; p3; p4; �) in the ordered list of cocircularity events, updatethe at most �ve edges on the boundary @Q of the cell around each of each of the points pi,i = 1; : : : ; 4. For each destroyed edge, get the beginning of its epoch, �0, from the labeling ofthe edge, compute the minimum value of fA(x; �) over its epoch [�0; �], and keep track of theminimum such value.2. For each remaining edge on @Q (i.e., that has not been destroyed at � = 2�), compute theminimum value of fA(x; �) over the � range that begins at the beginning of the epoch of theedge and ends at � = 2�; again keeping track of the minimum such value.Data structures.The �rst data structure maintains @Q for each source point q at the current �. For each source qwe keep a list of the edges of @Q in a clockwise order. The second data structure is the correspondinglist of all the vertices of @Q, which are angularly sorted around q. We described above that eachedge is labeled by a quintuple which points to all of the sources that induce it. In the same manner17



each vertex of @Q is labeled by the triple of points that induces the vertex and keeps pointers tothe two edges it is adjacent to. The third data structure is the list of cocircularity events, orderedby �.Time and Space Complexity Analysis.Recall that we are computing the directed Hausdor� distance h(R�A;B � x), where jAj = mand jBj = n. The initialization stage is straightforward to analyze. In step 1 we use the methodof [HKS] to compute the initial cell boundaries @Q of the cells around all the points q (for all thepoints q 2 Si, where Si = ai 	B, i = 1; : : : ;m) in time O(m2n�(mn) log(mn)).Step 2 involves computing dynamic Voronoi diagrams, for all the pairs, triples and quadruplesof the sets Si. Each diagram can be computed in O(n2 log n) time by using the method of [GMR],which computes the dynamic Voronoi diagram of k points in time O(k log k) plus O(log k) time pera topological change. The topological changes (cocircularity events) are computed on the 
y. Sincethe number of source points for each of the pairwise, triplewise and quadruplewise dynamic Voronoidiagrams that we compute here is less than, or equal, 4n, and we know from the Section 3 that thenumber of topological changes in each dynamic Voronoi diagram is O(n2), computing one dynamicVoronoi diagram and reporting all its topological changes takes O(n2 log n) time.The number of the dynamic Voronoi diagrams that we compute in step 2 is dominated by thenumber of quadruples of sets Si (clearly this dominates the number of pairs and triples of sets).There are �m4� quadruples of sets, hence the overall time complexity of this step is O(m4n2 log n).Step 3 simply sorts the O(m4n2) cocircularity events, which requires O(m4n2 log(mn)) time.In the update and minimization stage we consider each cocircularity event (p1; p2; p3; p4; �). Aswe discussed above, for each event we compute in constant time the center c of the circle on whichp1; p2; p3 and p4 are cocircular. We then �nd, in time logarithmic in n, the location of c on theboundary @Q of the cell around each point pi (i = 1; : : : ; 4). Finally, we perform in constant time,up to �ve updates on each o the four boundaries @Q. Then for each edge that we remove rom@Q we must compute the minimum of fA(x; �) over that edge in constant time by the method ofSection 4.Hence the overall algorithm for computing the directed Hausdor� distance is dominated by thesorting in step 3 of the Initialization stage and is O(m4n2 log(mn)).The storage requirements are as follows. For a �xed � the total space needed to store theboundaries of @Q for all themn points in [Si isO(m2n�(mn)). Hence this is the storage requirementfor the �rst and the second data structures. Trivially, the data structure for the topological changesneeds O(m4n2) space, and this size dominates the space needed for the algorithm.As noted above, to simplify the discussion, we have been considering the case of minimizing thedirected distance as given by fA(x; �) in equation (6), rather than the Hausdor� distance as givenby equation (7). The function fA is the maximum of m functions di, each of which is in turn theminimum of n functions �i;j. Similarly fB is the maximum of n functions d0j , each of which is theminimum of m functions �i;j. Equation (7), which maximizes fA and fB, is then just the maximumof m+ n functions.Therefore in order to modify the above algorithm to compute the bidirectional distance, we seek18



the maximum of m+ n functions rather than m functions. That is, we consider the m sets Si eachwith n points, and the n sets S 0j each with m points. The cell Q = [jQj is then computed for eachof the points in each Si and for each of the points in each S 0j (rather than just for the points ineach Si). Thus all the steps of the algorithm remain the same, only now there are O(m + n) setseach with O(m+n) points, rather than m sets each with n points, yielding O((m+n)6) topologicalevents (as opposed to O(m4n2)). Hence we get to the main result,Theorem 2 The minimum Hausdor� distance under Euclidean motion, D(A;B) = minx;�H(r�(A); B�x), can be computed in time O((m+ n)6 log(mn)), where the sets A and B contain m and n pointsrespectively.6. Concluding remarks and open problemsWe have shown that the minimum Hausdor� distance between point sets in the plane can becomputed in time O((m + n)6 log(mn)) for sets with m and n points respectively. The algorithmthat computes the distance is based on computing the topological changes in certain dynamicVoronoi diagrams. Thus in order to obtain our bounds for computing the Hausdor� distance weinvestigated the complexity of the dynamic Voronoi diagram of k sets of points in the plane, whereeach set consists of n points moving rigidly. We showed that the number of topological changesto such a diagram is O(n2k2�s(k)) for some �xed s, improving on the previous known bound ofO(n3k4 log� k) [AIIT]. This involved proving a Lemma that is interesting in itself, on the complexityof Davenport-Schinzel sequences in which the alphabet is divided into `active' and `inactive' subsets.Our method for computing the minimumHausdor� distance under rigid motion does not gener-alize easily to sets of segments in the plane. One interesting question is thus whether the parametricsearch methods of [AST] that were used for solving the minimum Hausdor� distance for segmentsunder translation will be useful for solving this problem as well.References[AIIT] Aonuma, H., Imai, H., Imai, K., and Tokuyama, T., \Maximin location of convex objectsin a polygon and related dynamic Voronoi diagrams", Sixth ACM Symposium on ComputationalGeometry, 1990, pp. 225{234.[ASS] Agarwal, P.K., Sharir, M., and Shor, P., \Sharp upper and lower bounds for the length ofgeneral Davenport-Schinzel sequences", J. Combinatorial Theory, Series A, 52(1989), pp. 228{274.[AST] Agarwal, P.K., Sharir, M., and Toledo, S., \Applications of parametric searching in geometricoptimization", to appear in Third ACM-SIAM Symposium on Discrete Algorithms, 1992.[ABB] Alt, H., Behrends, B. and Blomer, J., \Measuring the resemblance of polygonal shapes",manuscript. 19
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