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1. Introduction

Determining the degree to which two shapes differ from one another is a central problem in pattern
recognition and machine vision. Recently a number of papers in computational geometry have
investigated various aspects of the problem of measuring the difference between shapes (e.g., [ABB,
AMWW, AST, ACHKM, HK, HKS]). In general, two geometric objects A and B are considered
to have the same shape if there exists a transformation g € i such that g(A) = B, where G is a
given transformation group. The difference between shapes is then measured using some function
D(A, B) > 0, where a value of zero is attained exactly when A and B have the same shape.

In this paper we consider the problem of comparing point sets under the group of planar Eu-
clidean motions (i.e., the composition of translation and rotation in the plane). Such transformations
are often also referred to as ‘rigid body’ motion. We measure the difference between two point sets
A and B by minimizing the Hausdorff distance under all relative Euclidean motions of the two sets.
(The Hausdorff distance is a max-min distance, and is defined below.) We then show that the min-
imum Hausdorfl distance under Euclidean motion can be computed in time O((m + n)®log(mn)),
where the sets A and B contain m and n points respectively.

The minimum Hausdorff distance has been used to compare a number of different kinds of shapes.
The minimum distance between sets of points under translation in the plane can be computed in
time O(mn(m + n)a(mn)log(mn)) where m and n are, as above, the numbers of points in the
two sets being compared [HK, HKS]. If the sets contain line segments as well as points, then the
difference between two sets under translation can be computed in time O(m?n?log®(mn)) [AST] for
L as the underlying metric, and in time O(m*n*a(mn)) [HKS], for L; and L., as the underlying
metrics (where a(n) is the extremely slowly growing inverse Ackermann function). Under rigid
body motion, the minimum Hausdorff distance between two polygons can be computed in time
O((mn)*(m + n)log(m +n)) [ABB].

In [HKS] the problem of computing the minimum Hausdorff distance under translation between
sets A and B with m and n points respectively, is reduced to that of computing the upper envelope
of m + n Voronoi surfaces of O(m + n) source points each. This upper envelope problem can be
solved by computing the unions of certain cells in pairwise Voronoi diagrams. In this paper we
also show a relation between computing the minimum Hausdorff distance and problems concerning
Voronoi diagrams. In particular, we show how the minimum Hausdorff distance under Fuclidean
motion can be solved using the dynamic Voronoi diagram of a special point set, in which subsets of
the points move rigidly.

To obtain our results on the minimum Hausdorff distance under Euclidean motion, we improve
a known bound on the complexity of the following dynamic Voronoi diagram problem. Consider k
sets of points, 11, ..., Tk, where each set consists of n points in the plane, and each set is allowed
to move rigidly in some constrained motion. We show that the complexity of the dynamic Voronoi
diagram of T' = U™, T; is O(n*k*\,(k)) for some fixed s, where \;(n) is the maximum length of a
(n,s) Davenport-Schinzel sequence [ASS, HS]). This improves a result by Aonuma, Imai, Imai and
Tokuyama [AIIT] who show an upper bound of O(n®k*log™ k) for the complexity of such Voronoi
diagrams. When £ is bounded by a constant then we get a bound of O(n?), whereas [AIIT] get



O(n?). If there are n sets each with one point (which corresponds to the general dynamic Voronoi
diagram problem) then our bound becomes O(n*)\s(n)), which is the same as that attained by
[FL, GMR]. Our results on dynamic Voronoi diagrams depend on a new bound on the length of a
special Davenport-Schinzel sequence (see Lemma 1 below), a result which is interesting in itself.

This paper is organized as follows. In the following section we define the minimum Hausdorff
distance under FEuclidean motion, and show its relation to dynamic Voronoi diagrams. In Section
3 we provide bounds on the above-described dynamic Voronoi diagram of k£ sets moving rigidly. In
Section 4 we show that the minimum Hausdorff distance under Euclidean motion can be determined
by considering the combinatorial changes to certain unions of Voronoi cells. We use our results on
dynamic Voronoi diagrams to bound the number of such changes. Section 5 then presents an
algorithm for computing the minimum Hausdorft distance under Euclidean motion, and analyzes
its run time and storage requirements.

2. The Minimum Hausdorff Distance

The Hausdorff distance between two sets, A = {a1,...,a,} and B = {by,...,b,}, where each a;, b,
is a point, is given by

H(A,B) = max(h(A, B),h(B, A)) (1)
where
h(A, B) = Iglefg(rbréiélp(a,b), (2)

and p(a,b) is some underlying metric. The function h(A, B) is the directed Hausdorff distance from
A to B, and measures the distance of the point of A that is farthest from any point of B (under p).
It is well known that the function H(A, B) is a metric over the set of all closed, bounded sets. The
Hausdorff distance, H(A, B), can be trivially computed in time O(mn) for two point sets of size m
and n respectively; with some care, this can be improved to O((m + n)log(m + n)) [ABB].

Given two point sets A and B in the plane, we note that all relative configurations of these two
sets under rigid motion can be obtained by the composition of a rotation about the origin and a
translation. Hence without loss of generality we let the set A just rotate about the origin, while the
set B just translates. We then define the minimum Hausdorff distance under Fuclidean motion,

D(A, B), between the sets A and B as

D(A,B) = r%ienH(Te(A), B& x) (3)

where rg(A) = {Rga; | a; € A} (and Rga,; denotes the product of the rotation matrix Ry with a;),
B®ax={bj+a]|b; € B} (and + denotes vector sum), and H is the Hausdorff distance as defined
in equation (1).

For applications in pattern matching and model-based recognition, it is important that a shape
comparison function obey the metric properties (non-negativity, identity, symmetry and the tri-
angle inequality) [ACHKM, Mu]. These properties correspond to our intuitive notions of shape
resemblance. than they are to one another. For example, without the triangle inequality two highly



dissimilar ‘model’ shapes can both be judged similar to some unknown shape, which is highly
counter-intuitive. We note that D(A, B) obeys the metric properties, and this can be shown by
straightforward substitution arguments analogous to those in [HKS] where it is shown that the
minimum Hausdorff distance under translation obeys metric properties.

A problem closely related to computing D(A, B) is that of determining whether there exists an
approximate congruence between two sets of points under rigid body motion [AMWW]. Formally,
the problem is to determine whether there is a Euclidean motion F of B, a bijection [ : B — A,
and a distance

d = max p(E(b), (b)), (4)

beB

such that the distance d is less than some specified value e. It is assumed that p(.,.) is either L,
or L.,. For two point sets in the plane with p points each, it can be determined in time O(p®)
whether there exists a motion £ and a bijection [ such that d < ¢ [AMWW]. In our method we
measure the difference between two sets by minimizing the maximal mismatch between two point
sets under Euclidean motion. The key difference is that the distance computation is not concerned
with matching pairs of points. It can be argued for each measure which one fits a given application
better, however, we compute the minimum Hausdorfl distance in time O(p°logp) as opposed to
O(p®) for the approximate congruence. Moreover, our measure is a metric whereas the approximate
congruence is not.

Computing D(A, B)

We now describe how to compute the minimum Hausdorff distance D(A, B) = min, g H(r¢(A), B&
x) for A and B, where A = {ay,...,a,,} and B = {b,...,b,} are two sets of points in the plane.
First we define a function f(x,#) that specifies the value of H(ry(A), B & ), and then we outline
how the minimum value of this function can be computed. In order to compute the minimum
efficiently, we require some additional tools which are developed in the following sections.

The distance between a pair of points a; € A and b; € B, where ¢; undergoes a rotation by 6
and b; undergoes a translation by z, is simply

6ii(z,0) = p(Rga;, b; + ) = p(Rea; — b;, x).

The function d;(x, ) is then defined to be the (pointwise) minimum of the functions é; ;(x,9)
for a given point a; € A and over all b; € B:

di(w,0) = min &(x,0). (5)

This function gives the distance from a given point a; € A to the closest point of B (the distance
between a; and the set B), as a function of the motion parameters @ and 6.
The directed Hausdorff distance as a function of Euclidean motion, h(rg(A), B & x), which we
denote also by fa(x,8), is then given by the upper envelope of the d; functions,
fa(z,0) = maxd;(x,0). (6)

a;EA
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The analogous definitions of

dj(x,0) = min éi(x.,0),

and
JR— /4
Te(w,0) = maxdj(x,0),
specify the directed distance h(B & x,rg(A)) as a function of Euclidean motion. Then the distance
is simply

D(A, B) = minmax(fa(x,8), fe(x,0)). (7)

Ty

To simplify the discussion, we concentrate on the case of minimizing the directed distance as
given by fa(x,0) in equation (6), rather than the Hausdorff distance as given by equation (7). We
note that f4 is the maximum of m functions d;, where each d; is the minimum of n functions ¢; ;.
Similarly fp is the maximum of n functions d’, each of which is the minimum of m functions ¢; ;.
Equation (7), which maximizes f4 and fg, is then just the maximum of m + n functions. Hence
the bounds that we obtain for the directed distance, f4, will be simple to generalize to fg and also
to the distance D(A, B).

In order to determine the minimum value of f4(x,8) over all &, 8, we first consider the restricted
case in which @ is fixed. That is, the set A is (temporarily) at some fixed orientation, and the
set B is allowed to translate. This is thus the problem of computing the Hausdorff distance under
translation, as considered by [HK, HKS]. Following [HKS], we note that if the set Rga; © B is
denoted by S; 4 (i.e., S;9 = {Rga; — b;|b; € B}) then

dig(x) = min p(p, o),

where we use the notation d; g(«) rather than d;(x,8) to stress the fact that 4 is fixed. The graph
of this function, {(z,d;¢(z))|z € R?}, is by definition the Voronoi surface of the set of source points
Sie. That is, the function d; ¢(x) specifies for each location x the distance to the nearest point of
the set S; 4. The local maxima of this surface (where x is equidistant from two or more points of
Si6) occur by definition for values of @ that lie along the edges of the Voronoi diagram of 5, g.

The basic observation of [HKS] was that the upper envelope of a set of d;4(x) functions could
be completely described by the pairwise Voronoi diagrams Vor(S;s U S;4) for all ¢ # j. Consider
a given diagram Vor(S;4), and let F' be the Voronoi cell of a given source point s € S, 4. Further
consider all the Voronoi diagrams Vor(S;,US;4), for all j # ¢. Clearly ¢ is a source in each of these

diagrams. Denote by @); the Voronoi cell of ¢ in Vor(.S; U S;4) (see Figure 1). It is easy to see that
Q; C F for each j. Let Q = ;4 (5, and denote the boundary of () by 0Q).

Fact 1 Using the above notation, the upper envelope, max; d; ¢(x) is equal to d; g(x) for x € F if
and only if v € F — Q. Moreover, the minima of the upper envelope are all attained along 0Q).
[HKS].



Figure 1: The cells (); in the Voronoi cell I of a given source s € 5;.

Thus for any fixed 4, the local minima of f4(x,0) (and hence the global minimum) can be
determined by simply computing the pairwise Voronoi diagrams of the sets S5;¢ for all ¢ # j, and
then computing 9@ (the boundary of the union) for each source point ¢ in each set S;4. In [HKS]
it was shown that the total complexity of 9@ over all the source points is O(m?*na(mn)), where
there are m sets \5; 4 each with n points. Moreover, the computation of the minimum can be done
in time O(m?*na(mn)log(mn)).

As 0 changes we can view the functions d;(x, ) as the evolution across ‘time’ (the parameter 0)
of the Voronoi surface d;(x). That is, the points of each set S; can be viewed as moving according
to a circular motion parameterized by 6. (For notational simplicity we write S; rather than S;(6).)
As the points move in this way, the edges of each Q); change continuously (in size and position) and
some edges of the @);’s are created and destroyed. This causes changes to the set of edges visible
on 0Q).

FEach edge e on 0Q) is a portion of a bisector b,,, for some p in some S5; (and ¢ € S;, the source
of each ;). Moreover the left (right) endpoint of e is caused by the intersection of b,, with another
bisector b,, (bs,). Thus, the triples pgr and pgs induce the endpoints of e. We label each edge
by (p,q,r,s,00), where e first appears on 9Q) at 6. The inclusion of , ensures that e is uniquely
labeled. Thus e has an epoch of visibility, [0g, ;] where 0] is the value of  for which the edge ceases
to be visible on 9Q).

In Section 4 we show that over each edge, the minimum value of f4(x,0) can be computed in



constant time. Thus, we are able to bound the total complexity of minimizing f4(x,#) in terms
of the number of edges that ever appear on the boundary of each cell @) (one for each point ¢ in
each S;). In order to bound this total number of edges we show a correspondence between the
appearance of edges on J@Q) and topological events in certain dynamic Voronoi diagrams. These
dynamic Voronoi diagrams are of a restricted form, because they are composed of unions of sets .5,
where each set S; moves rigidly (in a circular motion as S; = { Rga; — b;|b; € B}). First, however,
we develop some new tools for bounding the number of such topological events.

Thus, in summary, we have the following plan. First we develop some general tools for analyzing
the complexity (number of topological changes) of dynamic Voronoi diagrams of a set T' = U, T},
where each set T; moves rigidly. Then we apply these results in order to bound the number of
edges that can ever become visible on all dQ). Finally we show that the minimum of f4(x,8) can be
computed in constant time for each edge on Q) (over its epoch of visibility). By Fact 1, minimizing
over all the edges that become visible on every d@Q) yields the global minimum of f4(z,0).

3. The Dynamic Voronoi Diagram of t Sets Moving Rigidly

The dynamic Voronoi diagram problem involves a set T' of n points in the plane where each point
moves according to some continuous function of time, and the motions are restricted in some fashion
(e.g., to be fixed-degree polynomials). The problem is to bound the number of topological changes
in the Voronoi diagram of T" over all time. A topological change in the Voronoi diagram occurs
when either a Voronoi edge ceases to exist or a new edge appears, due to changes in proximity
relations among the points of T'. We restrict ourselves to the case where T'= UX_, T}, and each T; is
a set of n points in the plane. We assume the points of each T; are in general position (i.e. no four
points cocircular). The points of each set T; move rigidly in a motion described by the function
{f;}, where f; : [ — R? is a continuous function of time ¢ € I C R', and I is a finite closed interval.
In what follows we take I to be [0, 1], without loss of generality. As in [FL, GMR] the motion is
constrained by the following property,

Property 1 Four points can become cocircular or collinear at most s times, where s is a constant.

This property is achieved, for example, by motions that are low-degree polynomials.

The creation or destruction of a bounded edge of Vor(1'), which we also call an event, corresponds
to four points of T' becoming cocircular on an empty circle (i.e., a circle that does not contain any
other points of T'). The creation or destruction of an unbounded edge corresponds to three points
becoming collinear on the convex hull of T'. As in [FL, GMR], we discuss only the changes in the
bounded edges of the Voronoi diagram. The analysis of the unbounded edges follows analogously.

First we consider two special cases, where T' consists of either two or three subsets, each of which
moves rigidly as just described. In each of these cases we show that the complexity of the dynamic
Voronoi diagram is O(n?). (The same bounds for these cases were obtained by [AIIT]; however,
we present our proofs because they are helpful in understanding the general case of £ > 4 moving
sets.)



Claim 1 Given two sets of points in the plane Ty and Ty, |T1|, |15 = n, each set moving rigidly in
a motion that has Property 1, let T' =T UTy. Then the complezity of the dynamic Voronot diagram
of T over time is O(n?).

Proof. Denote the four points that become cocircular on an empty circle by py, p2, ps and py. We
are only interested in the cases where these four points do not all come from the same set. Thus
there are two cases: three points come from one set and one from the other, or two points come
from each set.

(i) Assume py,p2,ps € Ti, ps € Ty. Since py1, pe and ps are cocircular on an empty circle they
define a vertex in Vor(7}), and since Vor(T}) does not change over time this is true for all .
There are O(n) vertices in Vor(7T}), and hence O(n) such point triples. Each of these triples
can become cocircular with each of the n points of T,. By Property 1, each such cocircularity
can only happen O(1) times, and thus there are O(n?) events of this type.

(ii) Assume py,p2 € Th, ps,ps € Tz Since p; and py are cocircular on an empty circle they
determine an edge in Vor(7}), and since Vor(T) does not change as a function of ¢ this is true
for all ¢. Similarly ps and py define an edge in Vor(7T,). Vor(71) and Vor(Ts) have O(n) edges
each, hence there are O(n?) such sets of four points. By Property 1, a given set of four points
can be cocircular O(1) times, and thus there are O(n?) events of this type.

Claim 2 Given three sets Ty, Ty and Ts, |Th], |Ta|, |15 = n, let T =Ty U Ty U T3. The complexity
of the dynamic Voronoi diagram of T over time is O(n?).

Proof. Asin Claim 1, we count the number of times four points py, p2, ps, ps € 1" become cocircular
on an empty circle. Clearly two of these points must come from the same set, T;. Assume without
loss of generality that py,ps € T1. Then p; and py determine a bounded edge e in Vor(7}), with the
endpoints of ¢ due respectively to the points pg, p; € T7.

We define the configuration of p; and py at time ¢ to be the triple ((p1,p2), (¢1,¢2), (r1,72)) (see
Figure 2). The points ¢; and ¢y are those points of Ty U T, inducing the endpoints of the visible
portion of e in Vor(7Ty U Ty) at time t. If e is not visible in Vor(7; U T3), then we use the notation
(¢1,92) = (&, ¢). Thus (¢1,¢2) € (T U{pr}) x (T U{pi})) U {(¢,#)}. Similarly, ry and ry are the
points causing the endpoints of e in Vor(T1UT3), and (r1,72) € (TsU{pr}) x (T5U{pm}))U{(¢,d)}.

For a given configuration, p; and py can only become cocircular with ¢, ¢z, 71, 72. We charge
all of these cocircularities to this configuration; note that there are only O(1) of these charges.
Define a change to the configuration of p; and py to be a change to one of the ¢; or r; (¢ = 1,2).
Thus by bounding the number of changes to all configurations over time, we bound the number of
cocircularities. Specifically, we show how to charge each configuration change for py,ps € 17 to a
cocircularity event in Vor(7Ty U Ty) or in Vor(Ty U T5).

Initially (for ¢ = 0) there are O(n) configurations, one for each edge e € Vor(7}). Consider a
given configuration ((p1,p2),(¢1,¢2),(r1,72)). The pair (¢1,¢2) can only change in three different
ways (and analogously the pair (r1,72) which we do not consider explicitly):
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Figure 2: The configuration of p; and p,

(i) The point ¢1 € Ty (or alternatively ¢2) is replaced by another point ¢; € T, (alternatively
¢, € Ty). In this case the four points p1, p2, ¢1 and ¢} become cocircular. This is a cocircularity
event in 77 U T5.

(ii) The point ¢; (or alternatively ¢q) is replaced by py (or alternatively p;). The reverse situation,
of pi being replaced by ¢; (or p; by ¢2), is analogous. This is a cocircularity of p1, ps, pr and
q1 in Ty U Ty, (in the alternative case the cocircularity involves gs, pr, p1, p2).

(iii) The pair (g1, ¢2) is replaced by (¢, @) or vice versa, which corresponds to the edge e becoming
invisible or visible in Vor(7Ty UTy). This is a cocircularity involving p1, pa, ¢1 and gq in T7 U T5.

We have thus shown that each way in which a configuration can change involves a cocircularity
event in a pairwise diagram Vor(Ty U T,), (or analogously Vor(T; U T5)), and thus we can charge
e configuration change to such an event. Note that there are only O(1) charges to each event in

can only happen s times. There are

total of O(n?).

a pairwise diagram, because each charfe involves a specific four points becoming cocircular, which

i) such pairwise diagrams, each of complexity O(n?), for a

We now proceed to the case of k£ point sets moving rigidly for arbitrary k&. We first prove a
general lemma which is interesting in itself. We denote by DS(n,s) the (n,s) Davenport-Schinzel
sequence with n symbols, a4, ..., a,, where each pair of symbols can interchange at most s times
(see [ASS, HS] for an overview of these sequences including bounds on their lengths). We note that
the length of a DS(n,s) sequence is As(n). Let g be a DS(n,s) sequence and let u(j) denote the

9



Jth entry in the sequence p. We call the symbol a; active at entry j if u(j’) = a; for some 3’ < j
and u(3") = a, for some j” > j. Define v(j) to be the number of active symbols at entry j. We call
pa DSA(n, s, m) sequence if p is a DS(n, s) sequence and for each j, v(j) < m. Let us denote by
As,m(n) the maximum length of DSA(n, s, m) sequence.

Lemma 1 ), .(n) is O(ZA(m)).

Proof. Let u be an arbitrary DSA(n, s, m) sequence. We partition it into disjoint blocks in the
following manner. We scan u from its beginning until we have the shortest subsequence of p that
has 2m distinct symbols. Call this block By, remove it from p, and denote the remainder of u by
p1. We now repeat this process on pq: regardless of the symbols that have appeared in By we scan
w1 from its beginning for the shortest leading subsequence, B, that has 2m distinct symbols. We
iterate this process. Since p is of finite length, the process ends when we have produced L blocks
By, ..., By, for some value of L.

We claim that each block B;, © < L, contains at least m symbols that do not appear in u;. We
prove this by contradiction; since there are 2m distinct symbols in B; we assume that m —+ 1 of these
symbols appear in the remainder p;. Let us denote by ¢ the index in g of the last element of the
block B;. Then there are m + 1 symbols that appear both at or before entry ¢, and after entry ¢ in
w; i.e. v(e) > m+1>m, which contradicts the property that v(j) < m for each j.

It is immediate from this claim that L < (2 41). Each block is a DS(2m, s) sequence; therefore
its length is As(2m). Multiplying by L we get that A, (n) is O(ZA,(m)). B

We now turn to the main result of this section. As above, we restrict the discussion to cases
where the Voronoi edges are bounded. We define a k-configuration by analogy with the configuration
of Claim 2. However, in this case, we form a configuration for each possible bisector between any
pair of points in 7' = U¥_|T;. For the moment we assume that the points come from two distinct
sets, let p € T}, ¢ € T}, © # j be the two points. Denote the k-configuration of the bisector b,, by
Kpg = ((py @)y (Liysriy)s ooy (linys Ty ))e A pair (L, 1y ) i Ky is the the pair of points from the union
T,UT;UT,,, m # 4,7, that induce the left and right endpoints of the edge e C b,, in Vor(T; UT;UT,,).
(By left and right endpoints of e, we mean the leftmost endpoint on e and the rightmost one with
respect to the vector pq.) Hence (I, 1) € (I;UT;UT,,) x (T;UT; UT,)U{(¢,d)}, (where (¢, ¢)
indicates that the bisector b,, does not show up as a Voronoi edge in Vor(T; UT; UT,,)).

A change to k,, is defined to be a change to any one of the [, or r,,, e.g., a new [/, € T; U
T; UT,, U{¢} replaces [, in the k-configuration. By our definitions this is a topological event in
Vor(T; UT; UT,,): point I, induced the endpoint on the edge e before the change, and point I/,
induces the endpoint on e after the change, and at the time of the change, points p, ¢, [, and [/,
are cocircular. (In the case where [, is replaced by ¢, the points p, ¢, l,, and r,, become cocircular,
which is analogous to Claim 2 case (iii).)

Let e,y C by, be the (possibly empty) Voronoi edge of p and ¢ in Vor(T'). Let N,, denote the
number of topological events over all time that involve e,,. We define €, to be the total number
of changes to k,,, plus k — 2. The bulk of the proof consists of bounding the number of topological

events, Npg, by O\ k_2)(Cg)) (ie. O(S22A(K))).
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Theorem 1 The combinatorial complexity of the dynamic Voronoi diagram for k rigid sets of n

points each is O(k*n? X (k)).

Proof. Consider k,, between two consecutive changes to it. Clearly if any of the (,,,r.,) are equal
to (¢, ¢), then the edge e,, is not visible in Vor(T'). Call x,, full if no (I,,,r.,) is equal to (¢, @).
When &, is full, e,, will be visible if and only if all the left endpoints induced by the points [, lie
to the left of all the right endpoints induced by the points r,,. More specifically, for x,, full, call the
rightmost left endpoint induced by one of the points [, the leading left endpoint; analogously, call
the leftmost right endpoint induced by one of the points r,, the leading right endpoint. Then e¢,,
is visible if and only if the leading left endpoint lies to the left of the leading right endpoint; these
are in fact the endpoints of e,, in this case. Thus, a topological event involving e,, is precisely the
crossing of a leading left endpoint and a leading right endpoint; i.e. a cocircularity of p, ¢, and the
points [, and r,,, that induce these endpoints.

Since any four such points can become cocircular only s times, we can bound N,, by bounding
the number of distinct leading endpoints that appear on the bisector b,, over all time. We show how
to bound the length of the sequence of leading left endpoints; the bound for right leading endpoints
is the same, and merging these two sequences yields a sequence of at most twice this length.

For notational clarity, we actually bound the length of the sequence of [,, that induce leading
left endpoints. We do this by representing it as an appropriate Davenport-Schinzel sequence .
The alphabet for our DS sequence is constructed as follows. At t = 0 we start with a symbol for
each I, (1 < m <k —2)in £, that is not equal to ¢. Then, at each change to £,,, where [, is
replaced by a non—¢ I/ | we add [/, to the alphabet. The following point is important: even if [/
has appeared in &,, at some earlier time, we still add a new symbol to represent it.

[y 18 defined to be the sequence of symbols that represent the leading left endpoints over all time.
Observe the following: no two symbols of y,, can interchange more than s times, by Property 1.
Also, the size of the alphabet of this sequence is bounded by & — 2 plus the total number of changes
to Kpq; 1€, it is bounded by C,,. Thus f,, is a DS(C),, s) sequence.

In fact, g, is @ DSA(Cly, s, k — 2) sequence. This is clear from the construction of the alphabet.
But as argued above, the number of topological events, V,,, involving bisector b,, is bounded by
a constant multiple of the length of this sequence (and the strictly analogous one constructed for
leading right endpoints). Thus we have shown that

Nyy = 00\ icy (o)) = 0220, (b)) (8)

For fixed ¢ and j, the sum of (), is bounded by the total number of topological events in all

Vor(T; UT; UT,,), for all m # ¢, 7, plus the original k& — 2 values at ¢ = 0 for each p, ¢. The second

of these terms is clearly bounded by O(kn?), since there are O(n?) pairs p,q. To bound the first of

the terms, we note that the total number of k-configuration changes due to T, for fixed m is O(n?)
(Claim 2); summing for all k¥ — 2 possible values of m yields O(kn?). Thus we get

Z Chpg = O(knz).

p,q
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Figure 3: An Q(n?) construction

Summing up €, over all sets ¢, 7 and points in 7; and T} we get

C= Z Z Chpyg = O(k?’nz). (9)

1,7 Psq

We substitute €' instead of C,, in equation 8 and get the complexity of the dynamic Voronoi

diagram of k£ sets moving rigidly:
c 2 2
N = O(?)\S(k)) = O(k*n”Xs(k)).

We also need to consider the case where p and ¢ come from the same set T;. In this case the
length of the k configuration increases by one, and crossings of leading endpoints correspond to four
points from three sets becoming cocircular. It is easy to see that the number of distinct leading
endpoints (and hence the number of topological events) on these bisectors b,, is O(k*n?), and thus
this case does not increase the above bound. (It is bounded by the total number of topological

events in unions of three sets, which is at most (g)O(nz), by Claim 2.) i

This improves the bound of O(n*k*log™n) given in [AIIT]. Moreover, if k£ is bounded by a
constant then we get a bound of O(n?), whereas [AIIT] get O(n?). For constant k, this bound is
tight, in the sense that a lower bound of Q(n?) can be demonstrated with just two rigidly moving
point sets. See Figure 3: the vertically arranged pairs of points move rigidly to the right, so the
Voronoi edge between each pair is destroyed and created n times. Summing over the n pairs gives the
lower bound. Observe that we can slightly perturb the points in the figure so that they are in general
position. Also, in our application, the point sets move in circular rather than linear trajectories;
we note that the above construction can be modified without much difficulty to demonstrate the
Q(n?) lower bound in this case as well.

4. Bounding the Changes to 0¢)

Now we return to the problem of bounding the number of edges that can appear on the boundaries
of each Q) = U;Q;. Each edge e = (p,q,r,s,0) of dQ is a portion of an edge € of some @);. (Recall,
g € 5; 1s the common source of the ();’s, p is the point in some 5; that induces ¢, r and s induce
the two endpoints of € on 9Q, and 6 is the orientation at which e first appeared on 9@Q).) In order
to avoid confusion we reserve the term edge for e and call € a ();-edge.
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Q;
0Q
Q;

(1) Pairwise

(ii) Triplewise

e

)

Q
Qk

Q;

(iii) Quadruplewise

Figure 4: The types of changes on 9@

Clearly if a new ();-edge is created and is visible on 9@, then this is a new edge e on 9@). The
appearance of any other edge e involves a portion of an already existing ();-edge becoming visible
on 0Q. Such a change must involve a ();-edge crossing a vertex of d¢). This vertex can either
be convex (a vertex of another Qi) or concave (the intersection of some @ and ;). Thus in the
natural way we associate the appearance of each edge e¢ on 9@ with one of these three types of
changes (see Figure 4 and also Figure 1):

(i) A new ();-edge appears and is visible. When this occurs, three new edges are created: the new
edge corresponding to the ();-edge, and the neighboring edges whose endpoints have changed.
(Analogously, when a visible ();-edge disappears two new edges are created.)

(ii) A convex vertex of (); pierces the boundary to become visible. When this occurs, four new
edges are created: the two that induce the convex vertex, and the one edge on 9@ that is now
split into two. (When a convex vertex becomes invisible one new edge is created.)

(iii) A hidden crossing of a @);-edge and Q;-edge becomes visible. When this occurs, two new edges
are created: the two edges that intersect at the crossing. (When a hidden crossing becomes

invisible three new edges are created.)

We consider each case in turn.

13

Recall that the boundaries of a given cell (); are edges of
Vor(.S; U S;), and involve a given point ¢ € S;. Thus by definition a change of type (i), where some
() j-edge changes, involves a change in the dynamic Voronoi diagram Vor(.S; U 5;).




A change of type (ii), where some vertex of (); becomes visible on J@) or vice versa, involves a
crossing of a vertex of (); with a (Jy-edge. The two ();-edges that meet at the given vertex are due
to g € S; and two points in S;; call them p; and p;. The Qi-edge that is being crossed is due to ¢
and to a point of Si; call it ps. Thus at the time that the vertex pierces the edge, the four points
q, p1, p2, and p3 become cocircular. This is a topological event in the dynamic Voronoi diagram
VOI’(SZ' U S]‘ U Sk)

A change of type (iii), where a crossing of a () ;-edge and a @)-edge becomes visible or vice versa,
involves a crossing of three edges from three different cells. Each of the three edges is due to ¢ and
a point py € 5, pa € Sk, and ps € ), respectively. Thus at the time that the three edges cross, the
four points ¢, py, p2, and p3 become cocircular. This is a topological event in the dynamic Voronoi
diagram Vor(.S; U S; U S U S)).

Hence, we can bound the number of edges that ever appear on 9@ (summed over all sources
q) by bounding the number of topological changes to the pairwise, triplewise and quadruplewise
dynamic Voronoi diagrams. This brings us to:

Claim 3 The number of edges that can appear on all the boundaries of the cells Q is O(m*n?).

Proof. 1In the previous section we showed that for a dynamic Voronoi diagram with a total of n
points that move on some constant number of different trajectories, the total number of changes
to the Voronoi diagram is O(n?). We have just shown an equivalence, up to a constant factor,
between the appearance of an edge on 9¢) and a topological event in a pairwise, triplewise, or
quadruplewise Voronoi diagram involving the sets S;, 1 < ¢ < m. There are (T) quadruplewise
diagrams (which dominates the number of pairwise and triplewise diagrams) each for O(n) points,

which yields O(m*n?). i

Remarks. Note that not all the changes to the pairwise, triplewise and quadruplewise dynamic
Voronoi diagrams get to be visible on the boundary of some 9. In fact many of these changes
may occur within the cells () and not be seen on any of the boundaries. Note also that one
topological change to any of the above dynamic Voronoi diagrams can affect up to four different
boundaries 9@, since only up to four different points take part in the cocircularity event causing
this topological change, hence only the boundaries of @) for each one of these points as sources
might be affected. In each of the topological changes, detailed in (i), (ii) and (iii) above, some edges
of 0Q) are destroyed and some are created. In type (i) two d(Q) edges are destroyed, in type (ii) one
edge is destroyed and in (iii) three edges are destroyed. Summing up the number of d@) changes for
each type (adding/deleting 0Q) edges) we get up to five such updates for each type.

Our plan for computing the minimum value of f4(x, ) was first to bound the number of edges
that can appear on the dQ)’s, which we have just done, and then to compute the minimum over
each edge of each boundary. Thus we now turn to the problem of computing the minimum value
of fa(x,0) over the domain specified by an edge e = (p,q,r,s,00) of 9Q over its epoch [6y, 6]
(recall that the epoch is the continuous interval over which e is visible on dQ)). We show that this
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Figure 5: The minimum of f4(x,0) on e

minimum can be computed in constant time. Note that the points p, ¢, r and s are moving on
circular trajectories; however as above we do not explicitly parameterize the points by 4.

The function f4(x,8) is the upper envelope of a set of functions, and from Fact 1 we know
that d;(x, ) is the maximum of these functions along 9Q (that is fa(x,0) = d;(x,0) for values of
(x,0) along 0Q). Thus we minimize the value of d;(x,0) over each edge e of Q) (where d;(x,0)
corresponds to the set S;4, ¢ € S;, as in Figure 1).

Along the entire bisector b,, (rather than just the edge e), the minimum value of d;(x,8) for
fixed 0 is clearly obtained where b,, intersects the segment pg. We call this location 4. The value
of d; at v is simply one half the distance between the points p and ¢. For a fixed value of 8, if e
contains v, the minimum value of d;(x,6) on e is attained at v. If e does not contain v, then the
minimum is attained at the endpoint of e closer to v. We therefore identify the values of 6 in the
epoch of e when ~ enters or leaves the edge e, and divide the epoch into the subintervals between
these values. (See Figure 5, where the endpoints of e are denoted by [,] and 7 is denoted by a dot).

We observe that it leads to simpler expressions to consider the task of minimizing the square
of d;. Consider a subinterval in which e contains ~. Over this subinterval, the minimum value of
di(x,0)* is miny(1/2||p—q||)?. This is a fixed degree polynomial in sin § and cos 8, as is its derivative,
so its minimum can be computed in constant time, by virtue of the following fact:

Fact 2 A degree d polynomial in sinx and cosx has at most 4d roots x € [0,27).

Proof.  Let f(x) be a degree d polynomial in sinx and cosz. f(x) = g(x) + h(x), where the
terms of ¢ contain only odd powers of sinz and the terms of h contain only even powers of sin x.
If # € [0,27) is a zero of f, it is also a zero of g(x)? — h(x)?, which can be written as a degree d
polynomial in cos®*(z). Thus cos*(Z) is one of d values.

Since the equation cos?(z) = y has at most 4 solutions over [0,27), we have the stated bound
on the number of roots of f over [0,27). B
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Over a subinterval in which e does not contain =, we observe that e lies always to one side of
~ or the other; assume that r is the point inducing the endpoint of e closer to ~ throughout the
subinterval. Then the minimum value of d;(z,8)* over this subinterval is the minimum squared
radius of the circle through p,¢,r. This (and its derivative) can be represented as the quotient of
two fixed degree polynomials in sin§ and cos 8, so its minimum can be computed in constant time.

Finally, we observe that we have divided the epoch into only a constant number of subintervals.
The end of a subinterval occurs when + enters or leaves e; this will happen when the center of the
circle through p,q,r (or p, ¢, s) is equal to 7. But when this happens, p, ¢, r lie on the vertices of
a right triangle; i.e. (r — p)(r — ¢) = 0. Since this is a fixed degree polynomial in sin§ and cos#,
there are only a constant number of subintervals. Thus, we are performing a constant amount of
work over each of a constant number of subintervals, in order to compute the minimum value of
d;(x,0) over the epoch of e in constant time.

5. The Algorithm

In this section we give the algorithm and describe the data structures for computing the directed
Hausdorff distance h(RgA, B & x). The algorithm consists of two stages.

The first stage is an initialization step, in which we compute the boundaries of the cells ) for
the initial orientation § = 0 and sort the edges of each boundary 9@ in a clockwise order. This part
of the initialization was done in [HKS] and we use their algorithm for it. For each source point ¢ we
maintain the boundary 9@ as a clockwise ordered list of edges. Each edge is labeled by a quintuple
(p,q,r,s,0) as described in Section 4. It is clear that each boundary d@) is star-shaped with respect
to its source ¢, at any given orientation 6 (cf. [HKS]). Hence, maintaining the edges of 9Q in a
clockwise order, gives also an angularly sorted list of the vertices of d¢) around ¢. This is crucial
for the updating stage of the algorithm where we will need a fast (logarithmic time) insertion and
deletion of edges of Q). As 8 varies, before a topological change occurs, the vertices and edges
of dQ move in the plane but the angular order of the vertices of 9Q), with respect to ¢, does not
change. The only time that the order changes is at a topological change that affects 9Q).

We also prepare at this stage the topological changes that occur in all of the pairwise, triplewise
and quadruplewise dynamic Voronoi diagrams as 6 varies from 0 to 2m. We sort these events
according to increasing # and maintain, for each topological change, the orientation  at which the
change occurs, the four sources that become cocircular at this event and the indices of the sets to
which these sources belong. Let us denote the event by another quintuple (p1, p2, ps, ps, 0), where
p1, p2 induce the Voronoi edge just before the cocircularity event (for 8" < 6 and close to 8), and ps
and p, induce the Voronoi edge just after the cocircularity (for 8 > 6), in the Voronoi diagram of
the sets to whom these points belong.

In the second stage we update the boundaries of the cells by considering each topological change
in order of increasing 6. We do it in the following manner. Assume we have maintained all the
boundaries of the cells (), for each point ¢ in each one of the sets S;, ordered clockwise. Let the next
topological change occur at § and assume that it occurred due to the cocircularity of the sources
P1, P2, P3, P4- We check whether there is an update to the boundary 9@) of the cells () corresponding
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to each of the four points py, pa, p3, ps. Consider the boundary 9@ of the cell () around p;. We
compute the center ¢ of the circle on which the four points are cocircular and locate the point on the
boundary dQ). Locating the point on d) can now be done fast; we compute the angle that the line
p1c makes with the x-axis and start a binary search on the list of vertices of d(). For each vertex
v € JQ) which is encountered during the search we compute in O(1) time the angle between the line
prv and the z-axis, thus locating ¢ on d@) in logarithmic time. (Note that if ¢ was not found on
dQ) then it is a topological change that occurs within the cell ) and does not affect @), hence no
update is required.) We perform the updates to dQ) and proceed to computing the minimum value
of fa(xz,0) for the edges that were destroyed in this update. For each such edge e = (p,q,r,s,80'),
we compute the minimum value of f4(x,8) over e over its epoch [, 6], as described in the previous
section. We keep track of the minimum such value over all edges that appear on the boundary. We
outline the algorithm schematically:

Stage 1: Initialization.

1. Compute the boundary of () = U;Q); for each source ¢ in each set S; at § = 0, using the
method of [HKS]. For each source, store the boundary as a clockwise ordered list of edges and
vertices. Each edge is stored as the quintuple (p, ¢, r, s,6), where 6 = 0 for these initial edges.

2. Compute the topological changes (cocircularity events) to all the pairwise, triplewise, and
quadruplewise dynamic Voronoi diagrams. For each orientation # at which there is a cocir-
cularity event, store the ordered cocircularity quintuple (p1, p2, p3, pa, 8), and keep pointers to
the sets 5; to which the points belong.

3. Sort all the cocircularity events by increasing 6.
Stage 2: Update and Minimization.

1. For each cocircularity event (p1, p2, ps, ps, 0) in the ordered list of cocircularity events, update
the at most five edges on the boundary 9@ of the cell around each of each of the points p;,
it =1,...,4. For each destroyed edge, get the beginning of its epoch, &', from the labeling of
the edge, compute the minimum value of f4(x,8) over its epoch [0, 0], and keep track of the
minimum such value.

2. For each remaining edge on 9@ (i.e., that has not been destroyed at § = 27), compute the
minimum value of f4(x,0) over the § range that begins at the beginning of the epoch of the
edge and ends at § = 27; again keeping track of the minimum such value.

Data structures.

The first data structure maintains 9¢) for each source point ¢ at the current . For each source ¢
we keep a list of the edges of Q) in a clockwise order. The second data structure is the corresponding
list of all the vertices of 9Q), which are angularly sorted around ¢. We described above that each
edge is labeled by a quintuple which points to all of the sources that induce it. In the same manner
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each vertex of 9@ is labeled by the triple of points that induces the vertex and keeps pointers to
the two edges it is adjacent to. The third data structure is the list of cocircularity events, ordered

by 4.

Time and Space Complexity Analysis.

Recall that we are computing the directed Hausdorft distance h(RsA, B & «), where |A| = m
and |B| = n. The initialization stage is straightforward to analyze. In step 1 we use the method
of [HKS] to compute the initial cell boundaries 9@ of the cells around all the points ¢ (for all the
points ¢ € S;, where S; =a; & B, i =1,...,m) in time O(m*na(mn)log(mn)).

Step 2 involves computing dynamic Voronoi diagrams, for all the pairs, triples and quadruples
of the sets S;. Each diagram can be computed in O(n*logn) time by using the method of [GMR],
which computes the dynamic Voronoi diagram of k points in time O(k log k) plus O(log k) time per
a topological change. The topological changes (cocircularity events) are computed on the fly. Since
the number of source points for each of the pairwise, triplewise and quadruplewise dynamic Voronoi
diagrams that we compute here is less than, or equal, 4n, and we know from the Section 3 that the
number of topological changes in each dynamic Voronoi diagram is O(n?), computing one dynamic
Voronoi diagram and reporting all its topological changes takes O(n?logn) time.

The number of the dynamic Voronoi diagrams that we compute in step 2 is dominated by the
number of quadruples of sets S; (clearly this dominates the number of pairs and triples of sets).
There are (TZ) quadruples of sets, hence the overall time complexity of this step is O(m*n?logn).

Step 3 simply sorts the O(m*n?) cocircularity events, which requires O(m*n?log(mn)) time.

In the update and minimization stage we consider each cocircularity event (p1, p2, ps, ps, 0). As
we discussed above, for each event we compute in constant time the center ¢ of the circle on which
p1, P2, p3 and py are cocircular. We then find, in time logarithmic in n, the location of ¢ on the
boundary 9@ of the cell around each point p; (i = 1,...,4). Finally, we perform in constant time,
up to five updates on each o the four boundaries 9¢). Then for each edge that we remove rom
0Q) we must compute the minimum of fa(x,6) over that edge in constant time by the method of
Section 4.

Hence the overall algorithm for computing the directed Hausdorff distance is dominated by the
sorting in step 3 of the Initialization stage and is O(m*n?log(mn)).

The storage requirements are as follows. For a fixed 6 the total space needed to store the
boundaries of 9@ for all the mn points in US; is O(m?na(mn)). Hence this is the storage requirement
for the first and the second data structures. Trivially, the data structure for the topological changes
needs O(m?*n?) space, and this size dominates the space needed for the algorithm.

As noted above, to simplify the discussion, we have been considering the case of minimizing the
directed distance as given by fa(x,0) in equation (6), rather than the Hausdorff distance as given
by equation (7). The function f4 is the maximum of m functions d;, each of which is in turn the
minimum of n functions é; ;. Similarly fp is the maximum of n functions d’, each of which is the
minimum of m functions ¢; ;. Equation (7), which maximizes f4 and fg, is then just the maximum
of m 4+ n functions.

Therefore in order to modify the above algorithm to compute the bidirectional distance, we seek
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the maximum of m + n functions rather than m functions. That is, we consider the m sets S; each
with n points, and the n sets S} each with m points. The cell @ = U;Q; is then computed for each
of the points in each S; and for each of the points in each S} (rather than just for the points in
each S;). Thus all the steps of the algorithm remain the same, only now there are O(m + n) sets
each with O(m +n) points, rather than m sets each with n points, yielding O((m + n)®) topological
events (as opposed to O(m*n?)). Hence we get to the main result,

Theorem 2 The minimum Hausdorff distance under Euclidean motion, D(A, B) = min, g H(r¢(A), B&
z), can be computed in time O((m + n)®log(mn)), where the sets A and B contain m and n points
respectively.

6. Concluding remarks and open problems

We have shown that the minimum Hausdorff distance between point sets in the plane can be
computed in time O((m + n)°log(mn)) for sets with m and n points respectively. The algorithm
that computes the distance is based on computing the topological changes in certain dynamic
Voronoi diagrams. Thus in order to obtain our bounds for computing the Hausdorff distance we
investigated the complexity of the dynamic Voronoi diagram of k£ sets of points in the plane, where
each set consists of n points moving rigidly. We showed that the number of topological changes
to such a diagram is O(n?k*Xs(k)) for some fixed s, improving on the previous known bound of
O(n’k*log™ k) [AIIT]. This involved proving a Lemma that is interesting in itself, on the complexity
of Davenport-Schinzel sequences in which the alphabet is divided into ‘active’ and ‘inactive’ subsets.

Our method for computing the minimum Hausdorff distance under rigid motion does not gener-
alize easily to sets of segments in the plane. One interesting question is thus whether the parametric
search methods of [AST] that were used for solving the minimum Hausdorff distance for segments
under translation will be useful for solving this problem as well.
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