Some Definition and Example of Markov Chain

Bowen Dai

The Ohio State University
April $5^{\text {th }} 2016$

Introduction

- Definition and Notation
- Simple example of Markov Chain

Aim

Have some taste of Markov Chain and how it relate to some applications

Definition

A sequence of random variables $\left(X_{0}, X_{1}, \ldots\right)$ is a Markov Chain with state space Ω and transition matrix P if for all $x, y \in \Omega$, all $t \geq 1$, and all events $H_{t-1}=\cap_{s=0}^{t-1}\left\{X_{s}=x_{s}\right\}$ satisfying $P\left(H_{t-1} \cap\left\{X_{t}=x\right\}\right)>0$, we have:

$$
P\left\{X_{t+1}=y \mid H_{t-1} \cap\left\{X_{t}=x\right\}\right\}=P\left\{X_{t+1}=y \mid X_{t}=x\right\}=P(x, y)
$$

We store distribution information in a row vector μ_{t}, we have:

$$
\mu_{t}=\mu_{t-1} P \text { for all } t \geq 1
$$

μ_{t} has a limit π (whose value depend on p and 1), as $t \rightarrow 0$, satisfying:

$$
\pi=\pi P
$$

Definition

if we multiply a column vector f by P on the left and f is a function on the state space Ω :

$$
\operatorname{Pf}(x)=\sum_{y} P(x, y) f(y)=\sum_{y} f(y) P_{x}\left\{X_{1}=y\right\}=E_{x}\left(f\left(X_{1}\right)\right)
$$

That is, the x - th entry of Pf tells us the expected value of the function f at tomorrow's state, given that we are at state x today. Multiplying a column vector by P on the left takes us from a function on the state space to the expected value of that function tomorrow.

Definition

A random mapping representation of a transition matrix P on state space Ω is a function $f: \Omega \times \Lambda \Rightarrow \Omega$, along with a Λ-valued random variable Z, satisfying:

$$
P\{f(x, Z)=y\}=P(x, y)
$$

Irreducibility and Aperiodicity

A chain P is called irreducible if for any two states $x, y \in \Omega$ there exists an integer t (possibly depending on x and y) such that $P^{t}(x, y)>0$.
let $\Gamma(x):=\left\{t \geq 1 \mid P^{t}(x, x)>0\right\}$ be the set of times when it is possible for the chain to return to starting position x. The period of state x is define to be the greatest common divisor of $\Gamma(x)$.

LEMMA

If P is irreducible, then $\operatorname{gcd} \Gamma(x)=\operatorname{gcd} \Gamma(y)$ for all $x, y \in \Omega$.

Irreducibility and Aperiodicity

The chain will be called aperiodic if all states have period 1. If a chain is not aperiodic, we call it periodic.

Given an arbitrary transition matrix P, let $Q=\frac{I+P}{2}(I$ is the $|\Omega| \times|\Omega|$ identity matrix), we call Q a lazy version of P

Random Walks on Graph

Given a graph $G=(V, E)$, we can define simple random walk on G to be the Markov chain with state space V and transition matrix $P(x, y)=\frac{1}{\operatorname{deg}(x)}$ if $x y, 0$ otherwise.

Stationary Distribution

Recall that a distribution π on Ω satisfying

$$
\pi=\pi P
$$

We cal π satisfying a stationary distribution of the Markov Chain. In the simple random walk example:

$$
\pi(y)=\sum_{x \in \Omega} \pi(x) P(x, y)=\frac{\operatorname{deg}(y)}{2|E|}
$$

Stationary Distribution

We define a hitting time for $x \in \Omega$ to be

$$
\Gamma_{x}:=\min \left\{t \geq 0: X_{t}=x\right\}
$$

and first return time

$$
\Gamma_{x}^{+}:=\min \left\{t \geq 1: X_{t}=x\right\} \text { when } X_{0}=x
$$

LEMMA
For any x, y of an irreducible chain, $E_{x}\left(\Gamma_{y}^{+}\right)<\infty$

Classifying States

Given $x, y \in \Omega$, we say that y is accessible from x and write $x \rightarrow y$ if there exists an $r>0$ such that $P^{r}(x, y)>0$.

A state $x \in \Omega$ is called essential if for all y such that $x \rightarrow y$ it is also true that $y \rightarrow x$.

We say that x communicates with y and write $x \leftrightarrow y$ if and only if $x \rightarrow y$ and $y \rightarrow x$. The equivalence classes under \leftrightarrow are called communicating classes. For $x \in \Omega$, the communicating class of x is denoted by $[\mathrm{x}]$.

If $[x]=\{x\}$, such state is called absorbing.

LEMMA

If x is an essential state and $x \rightarrow y$, then y is essential

Examples

Gambler

Assume that a gambler making fair unit bets on coin flips will abandon the game when her fortune falls to 0 or rises to n. Let X_{t} be gambler's fortune at time t and let τ be the time required to be absorbed at one of 0 or n. Assume that $X_{0}=k$, where $0 \leq k \leq n$.
Then

$$
P_{k}\left\{X_{\tau}=n\right\}=k / n
$$

and

$$
E_{k}(\tau)=k(n-k)
$$

Examples

Coupon Collecting

Consider a collector attempting to collect a complete set of coupons. Assume that each new coupon is chosen uniformly and independently from the set of n possible types, and let τ be the (random) number of coupons collected when the set first contains every type. Then

$$
E(\tau)=n \sum_{k=1}^{n} \frac{1}{k}
$$

Examples

Random walk on Group
Given a probability distribution μ on a group (G, Δ), we define the random walk on G with increment distribution μ as follows: it is a Markov chain with state space G and which moves by multiplying the current state on the left by a random element of G selected according to μ. Equivalently, the transition matrix P of this chain has entries

$$
P(g, h g)=\mu(h) \text { for all } g, h \in G
$$

