
Graphons and Cut Distance

Graphons and Cut Distance 1 / 14



Graph Schemas

We want to understand the properties not just of individual graphs,
but of general graph schemas; often given by a constructive process
or a sequence of distributions for each potential graph size n.

For instance, we don’t usually care about the properties of a given
individual sample from G (n, p), we care about understanding what
properties we should expect asymptotically as n→∞.

Have a sense that graphs of radically different sizes sampled from a
fixed schema should be similar; how do we formalize this?
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Testing by Sampling

Lets say we have two graphs, G and H, and we want to say they are
”similar” even though they’re of radically different sizes.

One idea is to compare whether the two have certain statistics that
are close.

Number of subgraphs is a basic statistic, although the bigger of the
two should a priori have more subgraphs of any given type, so we
should normalize somehow.
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Distribution of Subgraphs

k-Sample Distribution

Given a graph G , and |G | ≥ k ≥ 2, define a probability distribution σG ,k
on all graphs of size k by:

For each ordered length k subset of vertices:

Count which subgraph is induced by restricting to those k vertices.

When done, normalize to probability 1.

In the case k > |G |, we trivially extend the definition by putting all the
probability mass on the graph with no vertices.

If k = 2, we are just calculating the density of edges.

(Example on board)

σ·,k gives us a way to compare between graphs of wildly different
sizes.
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Sampling Distance

We can compare distributions σG ,k and σH,k by examining the
maximum amount they differ on any subgraph. Formally, we define
the variation distance:

dvar(σG ,k , σH,k) = sup
Xa graph of size k

|σG ,k(X )− σH,k(X )|

The selection of k was arbitrary, so we encode examining all k
simultaneously by adding together the variation distances for each k
in a convergent sum; this is the sampling distance:

δsamp(G ,G ′) = Σ∞k=1

1

2k
dvar(σG ,k , σG ′,k)

Sampling distance provides provides a way to compare two graphs of
different scales; if they are close enough in the sampling distance,
they should be close in any statistic that depends continuously on
subgraph densities.

(Example on board)
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Limits in the Sampling Distance

Let’s imagine sampling from G (n, p) as n→∞: with high probability,
their subgraph densities will converge for any fixed k.

This means that with high probability, this sequence is Cauchy in the
sampling distance.

Clearly there is no finite graph this converges to, since the subgraph
distributions would differ for large k. What does the completion of
this space look like?
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Graphons

Definition

A graphon is a symmetric, measurable function [0, 1]2 → [0, 1].

Every graph is a graphon: turn the adjacency matrix into a
pixel-picture (example on board.)
We can think of graphons as edge-weighted graphs on a Continuum
of vertices.
Measurability allows us to calculate graph properties via integration;
for instance, the ”density of triangles” in a graphon W is given by∫

[0,1]3
W (x , y)W (y , z)W (z , x)dxdydz

This allows us to extend sampling distance to graphons in the natural
way.
Sampling distance becomes only a pseudometric in the space of
graphons. We can mod out by equivalence (known as weak
isomorphism) if we want.

We can now provide an object that our G (n, p) sequence from early
converges to – it’s the uniform function W (x , y) = p on [0, 1]2.
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Graphons as Random Graph Schemas

We can sample a graph of arbitrary size from a graphon as follows:

Uniformly sample points X = {x1, . . . , xn} from [0, 1].

Restrict your graphon to X × X to get a [0, 1]-edge-weighted graph.

Sample a simple graph from your weighted graph by including each
edge with probability equal to its weight.

You can show that by taking n→∞, with high probability this creates a
sequence converging to the original graphon in the sampling distance.

Graphons and Cut Distance 8 / 14



Cut Distance of Finite Graphs

Definition

Let G ,G ′ be two graphs with node set {1, . . . , n}. For subsets S ,T of
{1, . . . , n}, let eG (S ,T ) be the number of edges starting in S and ending
in T (edges in S ∩ T counted twice.) Define their cut distance as

dcut(G ,G
′) = max

S,T⊆V (G)

|eG (S ,T )− eG ′(S ,T )|
n2

This is an equivalent (pseudo)metric that’s often easier to calculate or
work with.

(Example on board.)

We usually don’t care about labels, so can generalize the cut distance
by minimizing over relabelings. We can also extend it to graphs of
different sizes by blowing up the number of vertices of each to their
least common multiple.
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Cut Distance of Graphons

Definition

Let W ,W ′ be graphons. Their cut distance is defined as

dcut(W ,W ′) = inf
φ

sup
S ,T⊆[0,1]

∣∣∣∣∫
S×T

W (x , y)−W ′(φ(x), φ(y))dxdy

∣∣∣∣
where φ is taken over all measure preserving transformations of [0, 1]
(which plays the role of a relabeling.)

This is a strict translation of cut distance for finite graphs to the
continuous case, except the addition of measurability.
FACT: The inf and sup in the above computation are actually achieved.
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Grab-bag

The space of graphons in either the cut or sampling distance is
compact; this implies that it is totally bounded. This turns out to be
closely related to the Szemeredi Regularity Lemma

Total boundedness implies that for any fixed cut distance, there exists
a finite sample of representatives whose Voronoi cells are smaller than
that size. The Regularity Lemma is a result about approximating
graphs by ”nearby” quasirandom graphs.

Graphons are also useful in problems in extremal graph theory. A
classic extremal graph theory problem: what is the largest
edge-density of a graph that includes no triangle?

Just like moving from rationals to reals allows us to apply limiting
techniques to optimization problems over the rationals, moving from
finite graphs to graphons allows us to do the same with optimizing
over subgraph density related properties.
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...There’s a catch

This entire discussion is not very useful unless the graph sequences
involved have edge density > 0.

Sampling doesn’t tell us much in the non-dense case, since almost all
sampled graphs will be trivial. Non-dense graph sequences converge to the
trivial graphon.

There are notions of distance and limit-representing objects in the case of
bounded degree, but it’s an active area of research.

Some of the real-world graphs that we care about seem closer to the
bounded degree case than the dense case, so this isn’t the whole story.
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Summary

We can meaningfully complete the space of graphs with respect to
subgraph sampling.

Graphons provide representing objects for certain graph generation
algorithms and extremal graph property solutions.

Working in the space of graphons makes things easier?

This whole story is a bit different if we don’t assume non-zero edge
density.
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End
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