Random Graphs

Random Graphs 1/19



Generative Models

@ Could hope to understand networks in the real world if we had
descriptions of the processes that generate them.

@ Describe such processes via random algorithms.

@ The likelihood of generating a given graph via algorithm induces a
probability distribution.

@ Examine the properties of generated graphs; try to find models whose
properties match those of the networks we see.

Random Graphs 2 /19



Generative Models as Hypotheses

@ Given many graph samples, can test the empirical distribution against
our model distribution.

@ Similarly, can test empirical distribution of an induced statistic
against our model distribution.

@ Given a single empirical sample can use ordered/centered statistics to
reject a model (if our observed statistic is extreme).

Random Graphs 3/19



Erdos-Renyi random graphs

The most studied and well-known random graph model.

The algorithm

@ Choose a number of vertices n.

@ Choose a probability p.
@ For each possible edge, add it with probability p (and thus omit it

with probability 1 — p.)

The associated probability distribution is often denoted G(n, p).

Random Graphs 4 /19



Movie - Generating a G(n,p) random graph (n=12, p=0.5)

Random Graphs 5/19



Properties of Erdos-Renyi Random Graphs

@ A lot more is know about G(n, p) than we'll discuss here.
o Average degree: (n—1)p
@ Degree distribution example (n=300, p=0.5):

20
15+

10

@ Clearly not a good model for sparse networks, or those with fat-tailed

degree distributions.



Properties of Erdos-Renyi Random Graphs

@ Famous result by Erdos and Renyi: the connectivity of random graphs
is strongly controlled by np.

o We'll say a property holds almost surely for a sequence of
distributions depending on n if the probability of it holding goes to 1
as n — o0.

@ Note that a property holding almost surely is a statement about the
sequence of models as we vary n.

Theorem
In the G(n, p), holding np fixed:

e I/f np < 1, components are small: for fixed o > 0, there are almost
surely no connected components of size greater than «log(n).

e I/fnp > 1, a giant component emerges: there exists § > 0 such
that almost surely there exists a component of size at least Bn.

v

Random Graphs 7 /19




Properties of Erdos-Renyi Random Graphs

In applications, would often also care about the speed of convergence:

average max density (50 trials)
0.8

--n=100
-+n=1000
0.7 --n=2000

0.6 ¢
05|
04l
03l . F
02|

0.1

L np

Random Graphs 8 /19



Zero-One Law for G(n,p) (Fagin)

@ Use first-order logic to write down potential properties of graphs,
using adjacency and equality as predicates.

e Example 1: to express the property of having an edge: Ju3v(u ~ v).

@ Example 2: to express the property of having minimum degree 2:
Yudvaw((u ~ v) A (u~w)A(v#w))

Given a fixed first-order sentence S and fixed p ¢ {0,1}, as n — oo either
S or =S holds almost surely for G(n, p).

FACT: There exists an infinite graph R, called the Rado graph, for which
S holds iff it holds almost surely in G(n, p) as above.

Random Graphs 9 /19



The Regularity Lemma (Szemeredi)

e Even if our real life networks are far from the G(n, p) model, we might
hope to find modules in these networks such that the interconnections
between modules appear random with a given density.

@ Szemeredi's regularity lemma says roughly that by taking large
enough graphs, we can find lots of modules such that almost all
module pairs have close-to-random interconnections.

@ Unfortunately, to get reasonable bounds the graphs must be taken to
be impractically large.

Random Graphs 10 / 19



G(n,m) vs G(n, p)

If m < nis a natural number, we have a closely related model G(n, m):

G(n, p) algorithm

Start with n vertices and no edges. Select a missing edge uniformly at
random and add it. Repeat m times.

@ The number of edges in G(n, m) is always m, whereas the number of
edges in G(n, p) varies, but is tightly clustered around (3)p.

e G(n, p) is usually easier to reason about, since each edge choice is
independent. Given m ~ (g)p the models have similar properties.

Random Graphs 1 /19



Configuration Model

@ One of the basic properties of real-world networks we want to
replicate is degree distribution.

@ Given a listing of the desired degrees of all vertices in a network, we
can randomly select a graph with exactly those degrees.

@ Here's a naive random algorithm: sample uniformly from the space of
all networks with n vertices (i.e. G(n,0.5)), and throw away any
sample not having exactly the right degrees. (This is impractical.)

@ The configuration model does better, but sacrifices being an exactly
uniform sample:

Random Graphs 12 /19



Configuration Model

Configuration model algorithm
Given desired degrees df, ..., d, (which must sum to an even number):
@ Take n vertices, where vertex / has d; "stubs” attached.

@ Choose 2 distinct stubs uniformly at random. Remove the stubs, and
replace them with an edge between those vertices.

@ Repeat until all stubs are gone.

Note: This pairing process might create multiedges or loops; if these are
not desirable, we can resample until we find a graph without those
properties.

Random Graphs 13 /19



Movie? - Configuration model (1,1,2,2,2,3,3)

Random Graphs 14 /19



Watts-Strogatz Model

This model attempts to create graphs with high clustering coefficients and
low path lengths.

Watts-Strogatz algorithm

Given a desired number of vertices N, average degree K (assumed even),
and probability p:
@ Construct a circle of N vertices where each vertex is connected to it's
K closest neighbors.
@ lterate through the nodes in circular fashion, and for each node /
iterate through its edges (/,/) such that / < j in increasing fashion.
@ As each edge (i, /) iterated through, replace it with probability p by
another edge (i, k) chosen uniformly at random from all missing
edges.

Walts-Strogatz model N=20, k=4, B=0.2

Random Graphs



Barabasi-Albert Model

This model attempts to replicate real-world power-law degree distributions
via a simple mechanism. It also has relatively low path lengths.

Barabasi-Albert algorithm

Given an initial graph size M, a connection number m, and a stopping
time T:

o Start with M fully connected nodes.
@ Add a new node and iteratively connect it m times to existing nodes.

@ Each time, choose the node to connect to weighted by the ratio of its
degree to the total degree of the graph (?7)

@ Repeat T times.

Random Graphs 16 / 19



Movie - Barabasi-Albert Model (M =5, m =2, T = 100)

Random Graphs 17 /19



Other Ideas

@ Directed versions of the models we've discussed also exist.

@ Weighted random graphs can be generated by, for instance, choosing
a distribution besides Bernoulli for each edge independently.

@ Instead of probabilistically choosing edges from G(n, p), we could
choose from some geometric lattice or the graph induced by a
triangulation.

@ Flow sampling: given a vector field on a compact space, we can cut
the space into small elements, take each element as vertex, and add
weighted directed edges by sampling flow lines starting at a random
location and continuing for time T. We can do discretized flow
sampling even if our vector field/walk process is random.

Random Graphs 18 /19



End

Random Graphs 19 /19



	Intro
	Additional Models

