Analysis Algorithms for Large-Scale Networks

Dan Meehan
meehan.49@osu.edu

Table of Contents

- Algorithm analysis overview
- Degree distribution
- Characteristic path length
- Betweenness centrality
- Exact
- Approximate

Algorithm Analysis Overview

Asymptotic Complexity

- Algorithms measured on time complexity and space complexity
- Time complexity - how long an algorithm takes to complete
- Space complexity - how much memory is needed for computation

$O(n)$	$\Omega(n)$	$\Theta(n)$
Run time grows at least as fast as n	Run time grows at most as fast as n	Run time grows exactly as fast as n

Graph Representations

- Adjacency matrix
- Space: $\Theta\left(V^{2}\right)$
- Element query: $\Theta(1)$

0	0	0	1	0
0	0	1	1	0
0	1	0	1	1
1	1	1	0	1
0	0	1	1	0

- Adjacency list
- Space: $\Theta(V+E)$
- Element query: Θ (degree(V))

0	3			
1	2	3		
2	1	3	4	
3	0	1	2	

Degree Distribution

Degree Distribution

- Set of all degrees in a network [5]
- Mean degree used as a measure of density of the network

Degree Distribution

- Intuitively, will need to visit each vertex vand count edges incident on v
- Can be performed in $\mathrm{O}(\mathrm{V}+\mathrm{E})$ with an adjacency list
- Loop through adjacency list
- At each vertex, count the number of edges
- Alternatively, use a variant of breadth-first or depth-first search, both of which are $\mathrm{O}(\mathrm{V}+\mathrm{E})$

Degree Distribution

- Intuitive approach

Characteristic Path Length

Characteristic Path Length

- Average length of shortest paths between all pairs of vertices in a graph [7]
- Can also look at diameter - longest shortest path

V	0	1	2	3	4
0	0	2	2	1	2
1	2	0	1	1	2
2	2	1	0	1	1
3	1	1	1	0	1
4	2	2	1	1	0

$L=1.12$

Characteristic Path Length

- Need to solve all-pairs-shortest-path problem with an unweighted graph
- Given a graph G, find the minimum distance $d_{G}(s, t)$ for all $s, t \in V$

1
4
:---
$0 \rightarrow 3 \rightarrow 2$
$0 \rightarrow 3$
$0 \rightarrow 3 \rightarrow 4$

Characteristic Path Length

- Naive approach
- Breadth-first search repeated for each vertex
- BFS runs in $O(E+V)$ for one source node, so overall runtime is $O\left(E V+V^{2}\right)$
- If graph is dense, this approaches $\mathrm{O}\left(\mathrm{V}^{3}\right)$
- Faster method
- Reduce to matrix multiplication [6]
- Runtime: $\mathrm{O}\left(\mathrm{V}^{2.376} \mathrm{log} \mathrm{V}\right)$
- Even better method
- dynamic programming - iteratively optimize a $\mathrm{V}^{*} \mathrm{~V}$ matrix of shortest path lengths [3]
- Runtime: $\mathrm{O}\left(\mathrm{V}^{2} \log \mathrm{~V}\right)$
- Space: $O\left(V^{2}\right)$

Betweenness Centrality

Betweenness Centrality

- Probability that a given vertex falls on a randomly-selected shortest path between two other vertices in the network [2]

$$
C_{B}(3)=4 / 7
$$

Betweenness Centrality - exact

- Basic approach [1]

1. Compute length and number of shortest paths between all pairs

- Variation of all-pairs-shortest-path problem

2. Sum all pair-dependencies

- Pair-dependency - ratio of shortest paths between s and t containing v
- Takes $\mathrm{O}\left(\mathrm{V}^{3}\right)$ time to sum all pair-dependencies, and $\mathrm{O}\left(\mathrm{V}^{2}\right)$ space to store shortest paths

Betweenness Centrality - exact

- Faster method [1]
- Runtime: O(VE) on unweighted graphs

$$
\mathrm{O}\left(\mathrm{VE}+\mathrm{V}^{2} \log \mathrm{~V}\right) \text { on weighted graphs }
$$

- Space: O(V + E)
- Based on BFS for unweighted graphs or Djikstra's algorithm for weighted graphs
- Use the fact that v is a predecessor of w to calculate a partial sum for dependency of s on v
- Adding these partial sums together over all predecessors of w yields the pair-dependencies needed to calculate betweenness centrality

Betweenness Centrality - exact

Algorithm 1: Betweenness centrality in unweighted graphs
$C_{B}[v] \leftarrow 0, v \in V$
for $s \in V$ do
$S \leftarrow$ empty stack;
$S \leftarrow$ empty stack;
$P[w] \leftarrow$ empty list, $w \in V ;$
$P[w] \leftarrow$ empty list, $w \in V ;$
$\sigma[t] \leftarrow 0, t \in V ; \quad \sigma[s] \leftarrow 1 ;$
$\sigma[t] \leftarrow 0, t \in V ; \quad \sigma[s] \leftarrow 1 ;$
$d[t] \leftarrow-1, t \in V ; \quad d[s] \leftarrow 0 ;$
$d[t] \leftarrow-1, t \in V ;$
$Q \leftarrow$ empty queue;
enqueue $s \rightarrow Q$;
while Q not empty do
dequeue $v \leftarrow Q$;
push $v \rightarrow S$;
foreach neighbor w of v do
// w found for the first time?
if $d[w]<0$ then
enqueue $w \rightarrow Q ;$
$d[w] \leftarrow d[v]+1$;
end
// shortest path to w via v ?
if $d[w]=d[v]+1$ then
$\begin{aligned} & \text { f } \\ & d[w]=d[v]+1 \text { then } \\ & \sigma[w] \leftarrow \sigma[w]+\sigma[v] ;\end{aligned}$
append $v \rightarrow P[w]$; end
end
end
$\delta[v] \leftarrow 0, v \in V ;$
// S returns vertices in order of non-increasing distance from s while S not empty do
pop $w \leftarrow S$;
for $v \in P[w]$ do $\delta[v] \leftarrow \delta[v]+\frac{\sigma[v]}{\sigma(w)} \cdot(1+\delta[w])$;
if $w \neq s$ then $C_{B}[w] \leftarrow C_{B}[w]+\delta[w]$;
end

- Run modified BFS from source s

1. Compute shortest path lengths and predecessor lists from s to $v \in V$
2. Update betweenness centrality values for all v $\in \mathrm{V}$ based on dependency of s on V

- Repeat for all $s \in V$

Betweenness Centrality - exact

- Results on random, undirected, unweighted graphs for size 100-2000 vertices and density 10\%-90\% of all possible edges

Betweenness Centrality - approximate

- LINERANK algorithm [4]
- Measure the importance of a node by summing the importance score of its incident edges
- Importance score of an edge is the probability that a random walker traversing edges via nodes (with random restarts) will stay at the edge
- Defined using a directed line graph

Original graph

Directed line graph

Betweenness Centrality - approximate

- LINERANK runtime: $\mathrm{O}(\mathrm{kE})$
- Run for kiterations
- Each iteration improves the accuracy of the estimate, but reasonable accuracy can be achieved after only a few iterations
- LINERANK space: O(E)
- Algorithm uses two incidence matrices, which hold only non-zero elements of the directed line graph, of which there are E elements

Questions?

Bibliography

1. Brandes, U. (2001). A faster algorithm for betweenness centrality*. Journal of mathematical sociology, 25(2), 163-177.
2. Freeman, L. C. (1977). A set of measures of centrality based on betweenness. Sociometry, 35-41.
3. Iyer, K. V. All-Pairs Shortest-Paths Problem for Unweighted Graphs in O (n2 log n) Time. World Academy of Science, Engineering and Technology, International Journal of Computer, Electrical, Automation, Control and Information Engineering, 3(2), 320-326.
4. Kang, U., Papadimitriou, S., Sun, J., \& Tong, H. (2011, April). Centralities in Large Networks: Algorithms and Observations. In SDM (Vol. 2011, pp. 119-130).
5. Rubinov, M., \& Sporns, O. (2010). Complex network measures of brain connectivity: uses and interpretations. Neuroimage, 52(3), 1059-1069.
6. Seidel, R. (1995). On the all-pairs-shortest-path problem in unweighted undirected graphs. Journal of computer and system sciences, 51(3), 400-403.
7. Watts, D. J., \& Strogatz, S. H. (1998). Collective dynamics of 'small-world' networks. nature, 393(6684), 440-442.
