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Algorithm Analysis Overview



Asymptotic Complexity

® Algorithms measured on time complexity and space complexity
o Time complexity - how long an algorithm takes to complete

o  Space complexity - how much memory is needed for computation

O(n)

Run time grows at
least as fast as n

Q(n)

Run time grows at
most as fast as n

O(n)

Run time grows
exactly as fast as n




Graph Representations

® Adjacency matrix ® Adjacency list
o Space: O(V?) o Space: O(V +E)
o Element query: ©(1) o Element query: ©(degree(V))
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Degree Distribution



Degree Distribution

® Set of all degrees in a network [5]
o Mean degree used as a measure of density of the network
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Degree Distribution

® Intuitively, will need to visit each vertex v and count edges incident on v
o Can be performed in O(V + E) with an adjacency list
B Loop through adjacency list

B At each vertex, count the number of edges

® Alternatively, use a variant of breadth-first or depth-first search, both of which
are O(V + E)



Degree Distribution

® Intuitive approach




Characteristic Path Length



Characteristic Path Length

® Average length of shortest paths between all pairs of vertices in a graph [7]
® Can also look at diameter - longest shortest path
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Characteristic Path Length

® Need to solve all-pairs-shortest-path problem with an unweighted graph
o Given a graph G, find the minimum distance d (s, t) for alls,t € V

0=3=>1 130 2+3-0 3-0 4+3-0
0=»3=2 12 21 31 421
0=3 1+3 2-3 32 431
O0=>3=4 124 2=+4 3=4 42
1>3=4 43




Characteristic Path Length

® Naive approach

o Breadth-first search repeated for each vertex
o BFSruns in O(E + V) for one source node, so overall runtime is O(EV + V?)

o If graph is dense, this approaches O(V3)

® Faster method
o Reduce to matrix multiplication [6]

o Runtime: O(V?3"%logV)

® Even better method

o dynamic programming - iteratively optimize a V*V matrix of shortest path lengths [3]
o Runtime: O(V2logV)
o Space: O(V?)



Betweenness Centrality



Betweenness Centrality

® Probability that a given vertex falls on a randomly-selected shortest path
between two other vertices in the network [2]
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Betweenness Centrality - exact

® Basic approach [1]
1.  Compute length and number of shortest paths between all pairs
o Variation of all-pairs-shortest-path problem
2.  Sum all pair-dependencies

o Pair-dependency - ratio of shortest paths between s and t containing v

® Takes O(V3) time to sum all pair-dependencies, and O(V?) space to store
shortest paths



Betweenness Centrality - exact

® Faster method [1]

(@)

Runtime: O(VE) on unweighted graphs

O(VE + V?logV) on weighted graphs
Space: O(V + E)
Based on BFS for unweighted graphs or Djikstra’s
algorithm for weighted graphs
Use the fact that v is a predecessor of w to

calculate a partial sum for dependency of s on v

Adding these partial sums together over all

predecessors of w yields the pair-dependencies
needed to calculate betweenness centrality
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Betweenness Centrality - exact

Algorithm 1: Betweenness centrality in unweighted graphs

Cav] < 0,veEV; . pe

for 3¢ V do ® Run modified BFS from source s
S« empty stack;
Plw] « empty list, w € V; 1
alt) —0,teV; ofs] —1;
dlt] «— —1,teV; d[s]—0;

Compute shortest path lengths and predecessor

Q@ « empty qéeue; |IStS from S tO V (= V

enqueue § — Q;

i 2. Update betweenness centrality values for all v
push v — S;

foreach neighbor w of v do (= V based on dependency Of sonyv

// w found for the first time?

if d[w] < 0 then

enqueue w — @

dlw] — dv] + 1;

end

// shortest path to w via v? . Repeat for a” S E V
if dfw] = d[v] + 1 then

olw] — ofw] + ofv];

append v — Plw];

end

end

end

8] —0,veV;

// S returns vertices in order of non-increasing distance from s
while S not empty do

pop w + S

for v € Plw] do 8[v] « 6[v] + gﬂr (1 + d[w]);
if w # s then Cglw] — Cplw] + d[w];

end

end




Betweenness Centrality - exact
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Betweenness Centrality - approximate

® LINERANK algorithm [4]

o Measure the importance of a node by summing the importance score of its incident edges

o Importance score of an edge is the probability that a random walker traversing edges via nodes
(with random restarts) will stay at the edge
B Defined using a directed line graph
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Betweenness Centrality - approximate

® LINERANK runtime: O(KE)

o  Run for k iterations
o Each iteration improves the accuracy of the estimate, but reasonable accuracy can be achieved

after only a few iterations

® LINERANK space: O(E)

o  Algorithm uses two incidence matrices, which hold only non-zero elements of the directed line
graph, of which there are E elements



Questions?
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