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Algorithm Analysis Overview



Asymptotic Complexity

● Algorithms measured on time complexity and space complexity
○ Time complexity - how long an algorithm takes to complete

○ Space complexity - how much memory is needed for computation

O(n)

Run time grows at 
least as fast as n

Ω(n)

Run time grows at 
most as fast as n

Θ(n)

Run time grows 
exactly as fast as n



Graph Representations

● Adjacency matrix
○ Space: Θ(V2)
○ Element query: Θ(1)

● Adjacency list
○ Space: Θ(V + E)
○ Element query: Θ(degree(V))

0 0 0 1 0

0 0 1 1 0

0 1 0 1 1

1 1 1 0 1

0 0 1 1 0

0 3

1 2 3

2 1 3 4

3 0 1 2 4

4 2 3



Degree Distribution



Degree Distribution

● Set of all degrees in a network [5]
○ Mean degree used as a measure of density of the network



Degree Distribution

● Intuitively, will need to visit each vertex v and count edges incident on v
○ Can be performed in O(V + E) with an adjacency list

■ Loop through adjacency list

■ At each vertex, count the number of edges

● Alternatively, use a variant of breadth-first or depth-first search, both of which 
are O(V + E)



● Intuitive approach

Degree Distribution

0 3 1

1 2 3 2

2 1 3 4 3

3 0 1 2 4 4

4 2 3 2
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Characteristic Path Length

● Average length of shortest paths between all pairs of vertices in a graph [7]
● Can also look at diameter - longest shortest path

V 0 1 2 3 4

0 0 2 2 1 2

1 2 0 1 1 2

2 2 1 0 1 1

3 1 1 1 0 1

4 2 2 1 1 0

L = 1.12



Characteristic Path Length

● Need to solve all-pairs-shortest-path problem with an unweighted graph
○ Given a graph G, find the minimum distance dG(s, t) for all s, t ∈ V

0 → 3 → 1 1 → 3 → 0 2 → 3 → 0 3 → 0 4 → 3 → 0

0 → 3 → 2 1 → 2 2 → 1 3 → 1 4 → 2 → 1

0 → 3 1 → 3 2 → 3 3 → 2 4 → 3 → 1

0 → 3 → 4 1 → 2 → 4 2 → 4 3 → 4 4 → 2

1 → 3 → 4 4 → 3



Characteristic Path Length

● Naive approach
○ Breadth-first search repeated for each vertex
○ BFS runs in O(E + V) for one source node, so overall runtime is O(EV + V2)

○ If graph is dense, this approaches O(V3)

● Faster method
○ Reduce to matrix multiplication [6]

○ Runtime: O(V2.376logV)

● Even better method
○ dynamic programming - iteratively optimize a V*V matrix of shortest path lengths [3]
○ Runtime: O(V2logV)
○ Space: O(V2)



Betweenness Centrality



Betweenness Centrality

● Probability that a given vertex falls on a randomly-selected shortest path 
between two other vertices in the network [2]

CB(3) = 4 / 7

0 → 3 → 1 1 → 3 → 4

0 → 3 → 2 1 → 2 → 4

0 → 3 → 4 2 → 4

1 → 2



Betweenness Centrality - exact

● Basic approach [1]
1. Compute length and number of shortest paths between all pairs

○ Variation of all-pairs-shortest-path problem
2. Sum all pair-dependencies

○ Pair-dependency - ratio of shortest paths between s and t containing v

● Takes O(V3) time to sum all pair-dependencies, and O(V2) space to store 
shortest paths



Betweenness Centrality - exact

● Faster method [1]
○ Runtime: O(VE) on unweighted graphs

                O(VE + V2logV) on weighted graphs
○ Space: O(V + E)

○ Based on BFS for unweighted graphs or Djikstra’s 

algorithm for weighted graphs

○ Use the fact that v is a predecessor of w to 

calculate a partial sum for dependency of s on v

○ Adding these partial sums together over all 

predecessors of w yields the pair-dependencies 

needed to calculate betweenness centrality



Betweenness Centrality - exact

● Run modified BFS from source s
1. Compute shortest path lengths and predecessor 

lists from s to v ∈ V
2. Update betweenness centrality values for all v 

∈ V based on dependency of s on v

● Repeat for all s ∈ V



Betweenness Centrality - exact

● Results on random, 
undirected, unweighted 
graphs for size 100-2000 
vertices and density 10%-90% 
of all possible edges



Betweenness Centrality - approximate

● LINERANK algorithm [4]
○ Measure the importance of a node by summing the importance score of its incident edges

○ Importance score of an edge is the probability that a random walker traversing edges via nodes 

(with random restarts) will stay at the edge
■ Defined using a directed line graph

Original graph Directed line graph



Betweenness Centrality - approximate

● LINERANK runtime: O(kE)
○ Run for k iterations

○ Each iteration improves the accuracy of the estimate, but reasonable accuracy can be achieved 

after only a few iterations

● LINERANK space: O(E)
○ Algorithm uses two incidence matrices, which hold only non-zero elements of the directed line 

graph, of which there are E elements



Questions?
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