
Analysis Algorithms for
Large-Scale Networks

Dan Meehan
meehan.49@osu.edu

● Algorithm analysis overview
● Degree distribution
● Characteristic path length
● Betweenness centrality

○ Exact
○ Approximate

Table of Contents

Algorithm Analysis Overview

Asymptotic Complexity

● Algorithms measured on time complexity and space complexity
○ Time complexity - how long an algorithm takes to complete

○ Space complexity - how much memory is needed for computation

O(n)

Run time grows at
least as fast as n

Ω(n)

Run time grows at
most as fast as n

Θ(n)

Run time grows
exactly as fast as n

Graph Representations

● Adjacency matrix
○ Space: Θ(V2)
○ Element query: Θ(1)

● Adjacency list
○ Space: Θ(V + E)
○ Element query: Θ(degree(V))

0 0 0 1 0

0 0 1 1 0

0 1 0 1 1

1 1 1 0 1

0 0 1 1 0

0 3

1 2 3

2 1 3 4

3 0 1 2 4

4 2 3

Degree Distribution

Degree Distribution

● Set of all degrees in a network [5]
○ Mean degree used as a measure of density of the network

Degree Distribution

● Intuitively, will need to visit each vertex v and count edges incident on v
○ Can be performed in O(V + E) with an adjacency list

■ Loop through adjacency list

■ At each vertex, count the number of edges

● Alternatively, use a variant of breadth-first or depth-first search, both of which
are O(V + E)

● Intuitive approach

Degree Distribution

0 3 1

1 2 3 2

2 1 3 4 3

3 0 1 2 4 4

4 2 3 2

Characteristic Path Length

Characteristic Path Length

● Average length of shortest paths between all pairs of vertices in a graph [7]
● Can also look at diameter - longest shortest path

V 0 1 2 3 4

0 0 2 2 1 2

1 2 0 1 1 2

2 2 1 0 1 1

3 1 1 1 0 1

4 2 2 1 1 0

L = 1.12

Characteristic Path Length

● Need to solve all-pairs-shortest-path problem with an unweighted graph
○ Given a graph G, find the minimum distance dG(s, t) for all s, t ∈ V

0 → 3 → 1 1 → 3 → 0 2 → 3 → 0 3 → 0 4 → 3 → 0

0 → 3 → 2 1 → 2 2 → 1 3 → 1 4 → 2 → 1

0 → 3 1 → 3 2 → 3 3 → 2 4 → 3 → 1

0 → 3 → 4 1 → 2 → 4 2 → 4 3 → 4 4 → 2

1 → 3 → 4 4 → 3

Characteristic Path Length

● Naive approach
○ Breadth-first search repeated for each vertex
○ BFS runs in O(E + V) for one source node, so overall runtime is O(EV + V2)

○ If graph is dense, this approaches O(V3)

● Faster method
○ Reduce to matrix multiplication [6]

○ Runtime: O(V2.376logV)

● Even better method
○ dynamic programming - iteratively optimize a V*V matrix of shortest path lengths [3]
○ Runtime: O(V2logV)
○ Space: O(V2)

Betweenness Centrality

Betweenness Centrality

● Probability that a given vertex falls on a randomly-selected shortest path
between two other vertices in the network [2]

CB(3) = 4 / 7

0 → 3 → 1 1 → 3 → 4

0 → 3 → 2 1 → 2 → 4

0 → 3 → 4 2 → 4

1 → 2

Betweenness Centrality - exact

● Basic approach [1]
1. Compute length and number of shortest paths between all pairs

○ Variation of all-pairs-shortest-path problem
2. Sum all pair-dependencies

○ Pair-dependency - ratio of shortest paths between s and t containing v

● Takes O(V3) time to sum all pair-dependencies, and O(V2) space to store
shortest paths

Betweenness Centrality - exact

● Faster method [1]
○ Runtime: O(VE) on unweighted graphs

 O(VE + V2logV) on weighted graphs
○ Space: O(V + E)

○ Based on BFS for unweighted graphs or Djikstra’s

algorithm for weighted graphs

○ Use the fact that v is a predecessor of w to

calculate a partial sum for dependency of s on v

○ Adding these partial sums together over all

predecessors of w yields the pair-dependencies

needed to calculate betweenness centrality

Betweenness Centrality - exact

● Run modified BFS from source s
1. Compute shortest path lengths and predecessor

lists from s to v ∈ V
2. Update betweenness centrality values for all v

∈ V based on dependency of s on v

● Repeat for all s ∈ V

Betweenness Centrality - exact

● Results on random,
undirected, unweighted
graphs for size 100-2000
vertices and density 10%-90%
of all possible edges

Betweenness Centrality - approximate

● LINERANK algorithm [4]
○ Measure the importance of a node by summing the importance score of its incident edges

○ Importance score of an edge is the probability that a random walker traversing edges via nodes

(with random restarts) will stay at the edge
■ Defined using a directed line graph

Original graph Directed line graph

Betweenness Centrality - approximate

● LINERANK runtime: O(kE)
○ Run for k iterations

○ Each iteration improves the accuracy of the estimate, but reasonable accuracy can be achieved

after only a few iterations

● LINERANK space: O(E)
○ Algorithm uses two incidence matrices, which hold only non-zero elements of the directed line

graph, of which there are E elements

Questions?

Bibliography
1. Brandes, U. (2001). A faster algorithm for betweenness centrality*. Journal of mathematical sociology, 25(2), 163-177.

2. Freeman, L. C. (1977). A set of measures of centrality based on betweenness. Sociometry, 35-41.

3. Iyer, K. V. All-Pairs Shortest-Paths Problem for Unweighted Graphs in O (n2 log n) Time. World Academy of Science,
Engineering and Technology, International Journal of Computer, Electrical, Automation, Control and Information
Engineering, 3(2), 320-326.

4. Kang, U., Papadimitriou, S., Sun, J., & Tong, H. (2011, April). Centralities in Large Networks: Algorithms and
Observations. In SDM (Vol. 2011, pp. 119-130).

5. Rubinov, M., & Sporns, O. (2010). Complex network measures of brain connectivity: uses and interpretations.
Neuroimage, 52(3), 1059-1069.

6. Seidel, R. (1995). On the all-pairs-shortest-path problem in unweighted undirected graphs. Journal of computer and
system sciences, 51(3), 400-403.

7. Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of ‘small-world’ networks. nature, 393(6684), 440-442.

