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Preference Networks in Matching Markets

Market interactions between buyers and sellers form an interesting class
of problems in network data analysis. To illustrate some of the major
results in this field, we will consider three different models in which
resources/objects are allocated to users. The three models correspond to
three types of preferences:

I binary (want/do not want),

I weighted and visible, and

I weighted and hidden.

Here “weighted and visible” means that the users openly state their true
valuations for the different objects, and “weighted and hidden” means
that the users have a valuation that they internally decide, but what they
state openly might be different.
The main ideas in this note are presented in [1].
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Networks with binary preferences

Definition
A graph G = (V ,E ) is bipartite if there exist X ,Y ⊆ V such that
X t Y = V and all e ∈ E have the form e = (x , y), where x ∈ X and
y ∈ Y . We will occasionally denote such graphs by G = (X ,Y ,E ).

We adopt the convention that two edges in a graph are disjoint if they do
not have a common endpoint.

Definition
A matching in a bipartite graph G = (X ,Y ,E ) is a set M ⊆ E consisting
of disjoint edges. In the case where |X | = |Y |, a perfect matching is a
matching M such that πX (M) = X and πY (M) = Y . Here
πX : X × Y → X and πY : X × Y → Y are the natural projections.

These minimal definitions allow us to ask the following question:

Question
For what conditions does a bipartite graph admit a perfect matching?
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The preceding question admits a result known as Hall’s Matching
Theorem.
Before formally stating Hall’s theorem, we need one more definition:

Definition
Let G = (X ,Y ,E ) be a bipartite graph. A set S ⊆ X (resp. S ⊆ Y ) is
constricted if |πY (π−1X (S))| < |S |. Alternatively, S is constricted if its
neighbor set N(S) satisfies |N(S)| < |S |. Here N(S) is defined as:

N(S) = {y ∈ Y : x ∈ S , (x , y) ∈ E} .

Theorem (Hall’s Matching Theorem, 1935)
Let G = (X ,Y ,E ) be a bipartite graph such that |X | = |Y |. Then there
exists a perfect matching M ⊆ E if and only if G does not contain any
constricted sets.
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Hall’s theorem is equivalent to a theorem attributed to König and
Egerváry. Berge and Tutte also have related theorems. We do not discuss
those results here, but point the reader towards notes by Wildstrom on
the subject [2].

Finally, we say that a preference network is any bipartite graph where one
partition consists of users/buyers, the other to products/services, and the
edges correspond to preferences.

Sample Applications of Hall’s Theorem:

I Wireless Sensor Networks

I Search engine advertisements
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Networks with visible weighted preferences
Suppose we now have a bipartite graph consisting of buyers and sellers,
where each seller has an item for which they wish to obtain a particular
price. We view this as a weighted graph G = (B,S ,E , ω), where
|B| = |S |, and the weights ω are defined as follows:

I ω(bi , sj) = vij , the valuation of seller j ’s item by buyer i ,

I ω(bi , bi ) = 0 for all i , and

I ω(si , si ) = pi , the price of seller i ’s item.

Occasionally, a buyer may be willing to pay more for a seller’s item than
the price set by the seller. The payoff of buyer i for seller j ’s item is given
by vij − pi . The preferred seller of buyer bi is the seller j for whom bi ’s
payoff is maximized. Note that a buyer may have multiple preferred
sellers. We also stipulate that if a buyer is unable to obtain a
nonnegative payoff for any seller, then the buyer will simply be better off
not transacting. Finally, given a set of valuations and prices, the
preferred seller graph is simply the graph of buyers and sellers consisting
of edges connecting a buyer to their preferred seller(s).
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Figure: In the figure on the left, a set of buyers propose valuations for a set of items.
On the right, a perfect matching in the preferred seller graph is displayed.
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In an ideal situation, each buyer would have a unique preferred seller, and
no two buyers would prefer the same seller. Then the buyers would walk
away with the items that maximize their payoffs, without having any
conflicts with each other. It may also be the case that some buyers have
multiple overlapping preferred sellers—in this case, the tie could be
broken with some coordination between the buyers, and they would still
be able to maximize their payoffs. A set of prices for which either of
these two situations holds is called a set of market clearing prices. With
the definitions we have already introduced, we can equivalently say that a
set of prices is market clearing if the corresponding preferred seller graph
contains a perfect matching. We illustrate this situation in Figure 1.

One may ask what the conditions on the valuations and prices needs to
be for a set of market clearing prices to exist. A result of Egerváry, also
known as the Hungarian method, gives an answer to this problem.
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Theorem (Egerváry, 1918)
Given a graph (B,S ,E , ω) and a set of buyer valuations, there always
exists a set of market clearing prices.

This theorem allows for the following simple way of assigning items to
buyers: given a set of buyer valuations, check for a constricted set in the
preferred seller graph. If there is none, then a perfect matching can be
found, and we are done. If there is a constricted set S ⊆ B, then raise
the prices of the items in N(S) by one unit, and repeat the preceding
steps. Egerváry proved that this process always terminates, i.e. we can
obtain a preferred seller graph containing a perfect matching by
successively increasing prices.

Remark
This is related to the idea of an ascending (English) auction: bidders
keep bidding on an item, and the price of the item increases until all but
one of the bidders drops out.
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Remark
Market-clearing prices are beneficial to buyers by construction, because
they allow the buyers to maximize their individual payoffs. But they are
also beneficial to the sellers, in the sense that they maximize the amount
of money that is changing hands. To see why this is true, let M be a
perfect matching in a preferred seller graph corresponding to a set of
market clearing prices. Then we have:

Total payoff to buyers =
∑

(i,j)∈M

(vij − pj)

=
∑

(i,j)∈M

vij −
∑
j

pj .

Since the prices are fixed, it follows that the total payoff is maximized
whenever the total valuation is maximized. Since we know that the total
payoff is being maximized, it follows that the total valuation, i.e. the
total amount of money in the market, is also maximized.
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Networks with hidden, weighted preferences
We now analyze a related situation which can be modeled by a preference
network.

I Internet search engines generate a significant portion of their
revenue by auctioning off advertisement slots.

I Such an interaction can be modeled by a bipartite graph (A,S ,E , ω)
where A consists of advertisers, S consists of advertising slots, and
we assume |A| = |S | for convenience.

I The advertising slots are simply positions on a search result page
where ads are displayed, with the top position being the most
desirable.

Note that if the search engine knows the valuations of all the advertisers
for each of the slots it offers, then it can simply set up market clearing
prices (via Egerváry’s theorem). However, if the true valuations of the
advertisers are not known, then the search engine needs to devise a
method that encourages the advertisers to employ “truthful bidding”, i.e.
bidding precisely the amount of their internal valuations.
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One might ask what the consequences of false bidding might be. In this
situation, an advertiser ai has a particular valuation vij for slot sj , but he
bids a price vij − ε.

I If nobody else bids for this slot, then ai wins and makes a profit,
whereas the search engine loses some of its potential revenue.

I But what typically happens is that ai starts off with a bid vij − ε for
large ε, hoping to make more of a profit. Seeing this low bid, other
advertisers are encouraged to bid slightly higher.

I This process runs continuously—and in the worst case, can lead to a
highly unstable market where the bids are updated constantly and
both the advertisers and the search engine are forced to expend
resources unnecessarily to update their prices continuously.

It turns out that there exists a method, known as the
Vickrey-Clarke-Groves (VCG) principle, which enforces a situation where
the best strategy for an advertiser is to bid their true valuation for each
slot. The VCG principle is a generalization of a certain auction method
known as second-price auction. We will not go into details on how the
VCG principle is applied to matching markets; instead, we’ll look at its
original application to second price auctions.
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First price auctions

In a first price auction, the highest bidder wins, and has to pay the
winner’s bid. Suppose a bidder b has an internal valuation v for an item
s. Then b has three bidding options:

I Bid less than v : this leads to a possibility of making some profit,
with the caveat that another bidder will win

I Bid greater than v : this is a lose-lose case, because b would have to
pay a value greater than v even for a win

I Bid exactly equal to v : then b will not lose or gain any value.

In a first price auction, the optimal strategy for b is always to bid a value
slightly lower than v , as this potentially leads to a profit.
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Second price auctions

In a second price auction, the highest bidder wins, but has to pay only
the second-place bid. Suppose now there are bidders bi , bj with internal
valuations vi < vj for an item s. Then the following cases can occur:

I bj bids a value v ′j = vj + ε. Then bj still has to pay only what bi
bids; in case bi bids a value v ′i > vj , then bj can still win, but will
have to pay more than intended.

I bj bids vj . If bj wins, then bj has to pay only the second place bid,
leading to a potentially positive payoff.

I bj bids a value v ′′j = vj − ε. Then bj can only make a profit if bi
bids a value v ′′i < v ′′j , but otherwise will lose the auction whereas a
win was possible with a non-negative payoff.

By analyzing the different cases, it is possible to see that truthful bidding
is indeed the optimal strategy in a second price auction.
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The VCG principle generalizes the second price auction to include
multiple items. Once the VCG principle has guaranteed that the
buyers/advertisers are placing truthful bids, the problem of finding
market clearing prices can be solved using the methods described in the
previous section.

Remark
In practice, Google uses an auction method called Generalized Second
Price (GSP) auction. This differs from the VCG method in that bidding
true values is no longer an optimal strategy, and it is also thought to be
better at increasing revenue for the search engine than VCG. However,
there are trade-offs between both methods, and fully exploring the
connections between the two, along with revenue comparison, seems to
be an open problem for now.
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