
PREFERENCE NETWORKS IN MATCHING MARKETS

SAMIR CHOWDHURY

Abstract. This is a short note to sketch out the ideas for a talk given in CSE 5339: Network
Data Analysis.

Market interactions between buyers and sellers form an interesting class of problems in network
data analysis. To illustrate some of the major results in this field, we will consider three different
models in which resources/objects are allocated to users. The three models correspond to three
types of preferences: (1) binary (want/do not want), (2) weighted and visible, and (3) weighted
and hidden. Here “weighted and visible” means that the users openly state their true valuations
for the different objects, and “weighted and hidden” means that the users have a valuation that
they internally decide, but what they state openly might be different.

The main ideas in this note are presented in [1].

1. Networks with binary preferences

Definition. A graph G � pV,Eq is bipartite if there exist X,Y � V such that X \ Y � V and all
e P E have the form e � px, yq, where x P X and y P Y . We will occasionally denote such graphs
by G � pX,Y,Eq.

We adopt the convention that two edges in a graph are disjoint if they do not have a common
endpoint.

Definition. A matching in a bipartite graph G � pX,Y,Eq is a set M � E consisting of disjoint
edges. In the case where |X| � |Y |, a perfect matching is a matching M such that πXpMq � X
and πY pMq � Y . Here πX : X � Y Ñ X and πY : X � Y Ñ Y are the natural projections.

These minimal definitions allow us to ask the following question:

Question 1. For what conditions does a bipartite graph admit a perfect matching?

The preceding question admits a result known as Hall’s Matching Theorem. This result is not
just interesting from a combinatorial perspective; we now describe an application of this theorem
to wireless sensor networks. Such a network consists of sensor nodes that are able to communicate
with other nodes within a certain distance, and a sink node that acts as a hub. A sensor node can
transmit information directly to the sink if it is close enough, but otherwise, it needs to transmit
to another sensor node that is ideally closer to the sink. The objective of a routing protocol is to
relay information from a sensor node to the sink node in as few hops as possible. The constraint
of having a minimal number of hops is used to minimize the latency in the network.

In graph theoretical terms, this problem now becomes equivalent to finding a spanning tree
rooted at the sink node. A further constraint would be to minimize the maximum degree of any
node in this tree—this consideration is to minimize the energy usage of any node. Thus the problem
can now be formulated as follows:

Question 2. Given a graph and a sink node, find a spanning tree rooted at the sink node such that:
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(1) The maximum degree of any node in the tree is minimized, and
(2) Each edge connects a node to another node that is closer to the sink than itself.

Bokal et al solved this problem via a generalization of Hall’s theorem [2]. The idea is that because
one does not want to traverse between nodes at the same distance from the sink, these nodes can
be viewed as belonging to one partition of a bipartite graph, whereas the other partition consists of
nodes that are closer to the sink node. Finding a perfect matching thus allows one to satisfy both
conditions in Question 2.

Before formally stating Hall’s theorem, we need one more definition:

Definition. Let G � pX,Y,Eq be a bipartite graph. A set S � X (resp. S � Y ) is constricted if
|πY pπ

�1
X pSqq|   |S|. Alternatively, S is constricted if its neighbor set NpSq satisfies |NpSq|   |S|.

Here NpSq is defined as:

NpSq � ty P Y : x P S, px, yq P Eu .

Theorem 1 (Hall’s Matching Theorem, 1935). Let G � pX,Y,Eq be a bipartite graph such that
|X| � |Y |. Then there exists a perfect matching M � E if and only if G does not contain any
constricted sets.

Hall’s theorem is equivalent to another theorem attributed to König and Egerváry. Berge and
Tutte also have related theorems. We do not discuss those results here, but point the reader towards
notes by Wildstrom on the subject [3].

Finally, we remark that a preference network is any bipartite graph where one partition consists
of users, the other to products/services, and the edges correspond to preferences.

2. Networks with visible weighted preferences

Suppose we now have a bipartite graph consisting of buyers and sellers, where each seller has
an item for which they wish to obtain a particular price. We view this as a weighted graph
G � pB,S,E, ωq, where |B| � |S|, and the weights ω are defined as follows:


 ωpbi, sjq � vij , the valuation of seller j’s item by buyer i,

 ωpbi, biq � 0 for all i, and

 ωpsi, siq � pi, the price of seller i’s item.

Occasionally, a buyer may be willing to pay more for a seller’s item than the price set by the
seller. The payoff of buyer i for seller j’s item is given by vij � pi. The preferred seller of buyer bi
is the seller j for whom bi’s payoff is maximized. Note that a buyer may have multiple preferred
sellers. We also stipulate that if a buyer is unable to obtain a nonnegative payoff for any seller, then
the buyer will simply be better off not transacting. Finally, given a set of valuations and prices,
the preferred seller graph is simply the graph of buyers and sellers consisting of edges connecting a
buyer to their preferred seller(s).

In an ideal situation, each buyer would have a unique preferred seller, and no two buyers would
prefer the same seller. Then the buyers would walk away with the items that maximize their payoffs,
without having any conflicts with each other. It may also be the case that some buyers have multiple
overlapping preferred sellers—in this case, the tie could be broken with some coordination between
the buyers, and they would still be able to maximize their payoffs. A set of prices for which
either of these two situations holds is called a set of market clearing prices. With the definitions
we have already introduced, we can equivalently say that a set of prices is market clearing if the
corresponding preferred seller graph contains a perfect matching. We illustrate this situation in
Figure 1.

One may ask what the conditions on the valuations and prices needs to be for a set of market
clearing prices to exist. A result of Egerváry, also known as the Hungarian method, gives an answer
to this problem.
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Theorem 2 (Egerváry, 1918). Given a graph pB,S,E, ωq and a set of buyer valuations, there
always exists a set of market clearing prices.

This theorem allows for the following simple way of assigning items to buyers: given a set of
buyer valuations, check for a constricted set in the preferred seller graph. If there is none, then a
perfect matching can be found, and we are done. If there is a constricted set S � B, then raise the
prices of the items in NpSq by one unit, and repeat the preceding steps. Egerváry proved that this
process always terminates, i.e. we can obtain a preferred seller graph containing a perfect matching
by successively increasing prices.

Remark 3. Market-clearing prices are beneficial to buyers by construction, because they allow the
buyers to maximize their individual payoffs. But they are also beneficial to the sellers, in the sense
that they maximize the amount of money that is changing hands. To see why this is true, let M
be a perfect matching in a preferred seller graph corresponding to a set of market clearing prices.
Then we have:

Total payoff to buyers �
¸

pi,jqPM

pvij � pjq

�
¸

pi,jqPM

vij �
¸

j

pj .

Since the prices are fixed, it follows that the total payoff is maximized whenever the total valuation
is maximized. Since we know that the total payoff is being maximized, it follows that the total
valuation, i.e. the total amount of money in the market, is also maximized.
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Figure 1. In the figure on the left, a set of buyers propose valuations for a set of
items. On the right, a perfect matching in the preferred seller graph is displayed.

3. Networks with hidden weighted preferences

We now analyze a related situation which can be modeled by a preference network. Internet
search engines generate a significant portion of their revenue by auctioning off advertisement slots.
Such an interaction can be modeled by a bipartite graph pA,S,E, ωq where A consists of advertisers,
S consists of advertising slots, and we assume |A| � |S| for convenience. The advertising slots are
simply positions on a search result page where ads are displayed, with the top position being the
most desirable.
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Note that if the search engine knows the valuations of all the advertisers for each of the slots it
offers, then it can simply set up market clearing prices (via Egerváry’s theorem). However, if the
true valuations of the advertisers are not known, then the search engine needs to devise a method
that encourages the advertisers to employ “truthful bidding”, i.e. bidding precisely the amount of
their internal valuations.

One might ask what the consequences of false bidding might be. In this situation, an advertiser
ai has a particular valuation vij for slot sj , but he bids a price vij � ε. If nobody else bids for this
slot, then ai wins and makes a profit, whereas the search engine loses some of its potential revenue.
But what typically happens is that ai starts off with a bid vij � ε for large ε, hoping to make more
of a profit. Seeing this low bid, other advertisers are encouraged to bid slightly higher. This process
runs continuously—and in the worst case, can lead to a highly unstable market where the bids are
updated constantly and both the advertisers and the search engine are forced to expend resources
unnecessarily to update their prices continuously.

It turns out that there exists a method, known as the Vickrey-Clarke-Groves (VCG) principle,
which enforces a situation where the best strategy for an advertiser is to bid their true valuation for
each slot. The VCG principle is a generalization of a certain auction method known as second-price
auction. We will not go into details on how the VCG principle is applied to matching markets;
instead, we’ll look at its original application to second price auctions.

3.1. First price and second price auctions. In a first price auction, the highest bidder wins,
and has to pay the winner’s bid. Suppose a bidder b has an internal valuation v for an item s.
Then b has three bidding options:


 Bid less than v: this leads to a possibility of making some profit, with the caveat that
another bidder will win


 Bid greater than v: this is a lose-lose case, because b would have to pay a value greater
than v even for a win


 Bid exactly equal to v: then b will not lose or gain any value.

In a first price auction, the optimal strategy for b is always to bid a value slightly lower than v,
as this potentially leads to a profit.

In a second price auction, the highest bidder wins, but has to pay only the second-place bid.
Suppose now there are bidders bi, bj with internal valuations vi   vj for an item s. Then the
following cases can occur:


 bj bids a value v1j � vj � ε. Then bj still has to pay only what bi bids; in case bi bids a

value v1i ¡ vj , then bj can still win, but will have to pay more than intended.

 bj bids vj . Then bj has to pay at most vi (note that bi would not rationally bid higher than
vi), and profits by vj � vi.


 bj bids a value v2j � vj � ε. Then bj can only make a profit if bi bids a value v2i   v2j , but
otherwise will lose the auction whereas a win was possible with a non-negative payoff.

By analyzing the different cases, it is possible to see that truthful bidding is indeed the optimal
strategy in a second price auction.

The VCG principle generalizes the second price auction to include multiple items. Once the
VCG principle has guaranteed that the buyers/advertisers are placing truthful bids, the problem
of finding market clearing prices can be solved using the methods described in the previous section.

Remark 4. In practice, Google uses an auction method called Generalized Second Price (GSP)
auction. This differs from the VCG method in that bidding true values is no longer an optimal
strategy, and it is also thought to be better at increasing revenue for the search engine than VCG.
However, there are trade-offs between both methods, and fully exploring the connections between
the two, along with revenue comparison, seems to be an open problem for now.
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