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For the off-line model, the graph under consideration has a fixed
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e.g. The uniform distribution on the set of all graphs on n vertices

Erdos-Renyi model G (n, p)

The probability distribution of the random graph depends upon the
choice of the model.
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models where the random graph model at time t may depend on
all the earlier decisions.
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Graph property

A graph property P can be viewed as a set of graphs.

We say a graph G satisfies property P if G ∈ P.

A graph property is said monotone if whenever a graph H satisfies
property A, then any graph containing H must also satisfy property
A.

Examples

The property of containing the complete graph K3

The property of being connected (Non-example)



Introduction Preliminary Knowledge Coupling on-line and off-line random graph models

Comparing random graphs

Graph property

A graph property P can be viewed as a set of graphs.

We say a graph G satisfies property P if G ∈ P.

A graph property is said monotone if whenever a graph H satisfies
property A, then any graph containing H must also satisfy property
A.

Examples

The property of containing the complete graph K3

The property of being connected (Non-example)



Introduction Preliminary Knowledge Coupling on-line and off-line random graph models

Comparing random graphs

Graph property

A graph property P can be viewed as a set of graphs.

We say a graph G satisfies property P if G ∈ P.

A graph property is said monotone if whenever a graph H satisfies
property A, then any graph containing H must also satisfy property
A.

Examples

The property of containing the complete graph K3

The property of being connected (Non-example)



Introduction Preliminary Knowledge Coupling on-line and off-line random graph models

Comparing random graphs

Graph property

A graph property P can be viewed as a set of graphs.

We say a graph G satisfies property P if G ∈ P.

A graph property is said monotone if whenever a graph H satisfies
property A, then any graph containing H must also satisfy property
A.

Examples

The property of containing the complete graph K3

The property of being connected (Non-example)



Introduction Preliminary Knowledge Coupling on-line and off-line random graph models

Comparing random graphs

Graph property

A graph property P can be viewed as a set of graphs.

We say a graph G satisfies property P if G ∈ P.

A graph property is said monotone if whenever a graph H satisfies
property A, then any graph containing H must also satisfy property
A.

Examples

The property of containing the complete graph K3

The property of being connected

(Non-example)



Introduction Preliminary Knowledge Coupling on-line and off-line random graph models

Comparing random graphs

Graph property

A graph property P can be viewed as a set of graphs.

We say a graph G satisfies property P if G ∈ P.

A graph property is said monotone if whenever a graph H satisfies
property A, then any graph containing H must also satisfy property
A.

Examples

The property of containing the complete graph K3

The property of being connected (Non-example)



Introduction Preliminary Knowledge Coupling on-line and off-line random graph models

Comparing random graphs

Dominance

Definition

Given two random graphs G1 and G2 on n vertices.

We say G1

dominates G2, if
For any monotone graph property A,

Pr(G1 satisfies A) ≥ Pr(G2 satisfies A).

In this case, we write
G1 ≥ G2.



Introduction Preliminary Knowledge Coupling on-line and off-line random graph models

Comparing random graphs

Dominance

Definition

Given two random graphs G1 and G2 on n vertices. We say G1

dominates G2, if

For any monotone graph property A,

Pr(G1 satisfies A) ≥ Pr(G2 satisfies A).

In this case, we write
G1 ≥ G2.



Introduction Preliminary Knowledge Coupling on-line and off-line random graph models

Comparing random graphs

Dominance

Definition

Given two random graphs G1 and G2 on n vertices. We say G1

dominates G2, if
For any monotone graph property A,

Pr(G1 satisfies A) ≥ Pr(G2 satisfies A).

In this case, we write
G1 ≥ G2.



Introduction Preliminary Knowledge Coupling on-line and off-line random graph models

Comparing random graphs

Dominance

Definition

Given two random graphs G1 and G2 on n vertices. We say G1

dominates G2, if
For any monotone graph property A,

Pr(G1 satisfies A) ≥ Pr(G2 satisfies A).

In this case, we write
G1 ≥ G2.



Introduction Preliminary Knowledge Coupling on-line and off-line random graph models

Comparing random graphs

Dominance

e.g. For any p1 ≤ p2, G (n, p1) ≤ G (n, p2)



Introduction Preliminary Knowledge Coupling on-line and off-line random graph models

Comparing random graphs

Dominance

Definition

For any ε > 0, we say G1 dominates G2 with an error estimate ε
if

Pr(G1 satisfies A) + ε ≥ Pr(G2 satisfies A)



Introduction Preliminary Knowledge Coupling on-line and off-line random graph models

Comparing random graphs

Dominance

Definition(Almost surely dominate)

If G1 dominates G2 with an error estimate ε = εn, which goes to
zero as n approaches infinity,

We say G1 almost surely dominates
G2. In this case, we write

Almost surely G1 � G2

e.g. For any δ > 0, we have almost surely

G (n, (1− δ)
m(n
2

)) � F (n,m) � G (n, (1 + δ)
m(n
2

))



Introduction Preliminary Knowledge Coupling on-line and off-line random graph models

Comparing random graphs

Dominance

Definition(Almost surely dominate)

If G1 dominates G2 with an error estimate ε = εn, which goes to
zero as n approaches infinity, We say G1 almost surely dominates
G2. In this case, we write

Almost surely G1 � G2

e.g. For any δ > 0, we have almost surely

G (n, (1− δ)
m(n
2

)) � F (n,m) � G (n, (1 + δ)
m(n
2

))



Introduction Preliminary Knowledge Coupling on-line and off-line random graph models

Comparing random graphs

Dominance

Definition(Almost surely dominate)

If G1 dominates G2 with an error estimate ε = εn, which goes to
zero as n approaches infinity, We say G1 almost surely dominates
G2. In this case, we write

Almost surely G1 � G2

e.g. For any δ > 0, we have almost surely

G (n, (1− δ)
m(n
2

)) � F (n,m) � G (n, (1 + δ)
m(n
2

))



Introduction Preliminary Knowledge Coupling on-line and off-line random graph models

Comparing random graphs

Edge-independent

Definition

A random graphs G is called edge-independent if there is an
edge-weighted function p : E (Kn)→ [0, 1] satisfying

Pr(G = H) =
∏
e∈H

pe ×
∏
e /∈H

(1− pe)

For any given random graph model, it would be advantageous if
we can establish some comparisons with edge-independent
random graph
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Growth-Deletion Models for power law graphs

A Growth-Deletion Model for Random Power Law Graphs

Here we consider a general on-line model that combines deletion
steps with the preferential attachment model.

Vertex-growth step: Add a new vertex v and form a new edge
from v to an existing vertex u chosen with probability proportional
to an existing vertex u chosen with probability proportional to du

Edge-growth step: Add a new edge with endpoints to be chosen
among existing vertices with probability proportional to the
degrees. If it already exists in the current graph, the generated
edge is discarded. The edge-growth step is repeated until a new
edge is successfully added.
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A Growth-Deletion Model for Random Power Law Graphs

Vertex-deletion step: Delete a vertex and all incident edges
randomly.

Edge-deletion step: Delete an edge randomly.
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A Growth-Deletion Model for Random Power Law Graphs

For non-negative values p1, p2, p3, p4 summing to 1, we consider
the following growth-deletion model G (p1, p2, p3, p4):

At each step, with probability p1, take a vertex-growth step;

With probability p2, take an edge-growth step;

With probability p3, take a vertex-deletion step;

Otherwise, with probability p4 = 1− p1 − p2 − p3, take an
edge-deletion step.
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A Growth-Deletion Model for Random Power Law Graphs

G (p1, p2, p3, p4)

We assume p3 < p1 and p4 < p2 so that the number of
vertices and edge grows as t goes to infinity.

If p3 = p4 = 0, the model is the usual preferential attachment
model which generates power law graphs with exponent
β = 2 + p1

p1+2p2
.
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A Growth-Deletion Model for Random Power Law Graphs

Facts:

G (p1, p2, p3, p4)

Suppose p3 < p1 and p4 < p2. Then almost surely the degree
sequence of the growth-deletion model G (p1, p2, p3, p4) follows the
power law distribution with the exponent

β = 2 +
p1 + p3

p1 + 2p2 − p3 − 2p4
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Growth-Deletion Models for power law graphs

A Growth-Deletion Model for Random Power Law Graphs

A random graph in G (p1, p2, p3, p4) almost surely has

expected average degree
p1 + p2 − p4

p1 + p3
.

For pi ’s in certain ranges, this value can be below 1 and the
random graph is not connected.

=⇒ We consider the modified model G (p1, p2, p3, p4,m) for some
integer m which will generate random graphs which have

expected degree m
(p1 + p2 − p4)

(p1 + p3)
.
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Growth-Deletion Models for power law graphs

A Modified Growth-Deletion Model

G (p1, p2, p3, p4,m):

At each step, with probability p1, add a new vertex and form m
new edges from v to existing u chosen with probability
proportional to du

With probability p2, take m edge-growth steps;

With probability p3, take a vertex-deletion step;

Otherwise, with probability p4 = 1− p1 − p2 − p3, take m
edge-deletion step.
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Growth-Deletion Models for power law graphs

A Modified Growth-Deletion Model

Suppose p3 < p1 and p4 < p2.

Then almost surely the degree sequence of the
growth-deletion model G (p1, p2, p3, p4,m) follows the power
law distribution with the exponent β being the same as the
exponent for the model G (p1, p2, p3, p4).

Many results for G (p1, p2, p3, p4,m) can be derived in the
same fashion as for G (p1, p2, p3, p4)
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Definition: Almost surely edge-independent

A random graph G is ”almost surely edge-independent”

if there are
two edge-independent random graphs G1 and G2 on the same
vertex set satisfying:

G1 ≤ G ≤ G2

and

For any two vertices u and v , let p
(i)
uv be the probability of edge uv

in Gi for i = 1, 2. We have

p
(1)
uv = (1− o(1))p

(2)
uv
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two edge-independent random graphs G1 and G2 on the same
vertex set satisfying:

G1 ≤ G ≤ G2

and

For any two vertices u and v , let p
(i)
uv be the probability of edge uv

in Gi for i = 1, 2. We have

p
(1)
uv = (1− o(1))p

(2)
uv
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The main theorem 1: Fan Chung and Linyuan Lu, 2004

Suppose p3 < p1, p4 < p2 and log n� m < t
p1

2(p1+p2) . Then,

(1) Almost surely the degree sequence of the growth-deletion
model G (p1, p2, p3, p4,m) follows the power law distribution
with the exponent

β = 2 +
p1 + p3

p1 + 2p2 − p3 − 2p4
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The main theorem 1: Fan Chung and Linyuan Lu, 2004

Suppose p3 < p1, p4 < p2 and log n� m < t
p1

2(p1+p2) . Then,

(1) Almost surely the degree sequence of the growth-deletion
model G (p1, p2, p3, p4,m) follows the power law distribution
with the exponent

β = 2 +
p1 + p3

p1 + 2p2 − p3 − 2p4
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The Main theorem 1: Fan Chung and Linyuan Lu, 2004

Suppose p3 < p1, p4 < p2 and log n� m < t
p1

2(p1+p2) . Then,

(2) G (p1, p2, p3, p4,m) is almost surely edge-independent. It
dominates and is dominated by an edge-independent graph

with probability p
(t)
ij of having an edge between vertices i and

j , i < j , at time t, satisfying:

p
(t)
ij ≈

{
p2m

2p4τ(2p2−p4)
t2α−1

iαjα (1 + (1− p4
p2

)( j
t )

1
2r

+2α−1), if iαjα � p2mt2α−1

4τ2p4

1− (1 + o(1)) 2p4τ
p2m

iαjαt1−2α, if iαjα � p2mt2α−1

4τ2p4

where α = p1(p1+2p2−p3−2p4)
2(p1+p2−p4)(p1−p3) and τ = (p1+p2−p4)(p1−p3)

p1+p3
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The Main theorem 1: Fan Chung and Linyuan Lu, 2004

Suppose p3 < p1, p4 < p2 and log n� m < t
p1

2(p1+p2) . Then,

(2) G (p1, p2, p3, p4,m) is almost surely edge-independent. It
dominates and is dominated by an edge-independent graph

with probability p
(t)
ij of having an edge between vertices i and

j , i < j , at time t, satisfying:

p
(t)
ij ≈

{
p2m

2p4τ(2p2−p4)
t2α−1

iαjα (1 + (1− p4
p2

)( j
t )

1
2r

+2α−1), if iαjα � p2mt2α−1

4τ2p4

1− (1 + o(1)) 2p4τ
p2m

iαjαt1−2α, if iαjα � p2mt2α−1

4τ2p4

where α = p1(p1+2p2−p3−2p4)
2(p1+p2−p4)(p1−p3) and τ = (p1+p2−p4)(p1−p3)

p1+p3
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The Main theorem 2: Fan Chung and Linyuan Lu, 2004

Without the assumption on m, we have the following general but
weaker result. We say the index of a vertex u is i if u is generated
at time i .
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Without the assumption on m, we have the following general but
weaker result. We say the index of a vertex u is i if u is generated
at time i .
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The Main theorem 2: Fan Chung and Linyuan Lu, 2004

In G (p1, p2, p3, p4,m) with p3 < p1, p4 < p2, let S be the set of
vertices with index i satisfying

i � m
1
α t1− 1

2α .

Let GS be the induced subgraph of G (p1, p2, p3, p4,m) on S . Then
we have

(1) GS dominates a random power law graph G1, in which the
expected degrees are given by

wi ≈
p2m

2p4τ(2p2 − p4)( p1
p1−p3

− α)

tα

iα
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The Main theorem 2: Fan Chung and Linyuan Lu, 2004

(2) GS is dominated by a random power law graph G2, in which
the expected degrees are given by

wi ≈
m

2p4τ( p1
p1−p3

− α)

tα

iα
.
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The Main theorem 3: Fan Chung and Linyuan Lu, 2004

In G (p1, p2, p3, p4,m) with p3 < p1, p4 < p1, let T be the set of
vertices with index i satisfying

i � m
1
α t1− 1

2α .

Then the induced subgraph GT of G (p1, p2, p3, p4,m) is almost a
complete graph. Namely, GT dominates an edge-independent an
edge-independent graph with pij = 1− o(1)
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Ingredient of Proof for the Main Theorems

The basic idea : the martingale method

But with substantial difference

A martingale involves a sequence of functions with
consecutive functions having small bounded differences, each
function is defined on a fixed probability space Ω.

For the on-line model, the probability space for the random
graph generated at each time instance is different in general.
(We have a sequence of probability spaces where two
consecutive ones have ”small” difference.)
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