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Problem Statement

Dataset Optimal transport Classification on transported samples
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In DA problem, we study two different (but related) distributions Dy and D; on X xY . The DA task consists of the
transfer of knowledge from the D to D, . The objective is to learn f (from labeled or unlabeled samples of two

domains) such that it commits as small error as possible on the target domain D; .
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Assumption and Notations

Assumption: there exists a nonlinear transformation between the label space distributions of the two domain

P and P that can be estimated with optimal transport.

Notations:
X, ={x'} Asetof data from sample domain

X: ={x}% A setof data from target domain
Y, :{yf}iN:s1 A set of class label information associated with Xs

Y, ={y;} Asetof class label information associated with X;
QeR* Compact input measureable space with dimension d
C eR Label space
P(Q) All probability over 0

P.(X,Y)  Joint probability distributions in Dg
P-(X.Y)  Joint probability distributions in D;
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Joint Distribution Optimal Transport

Optimal transport in domain adaptation

Seek for a transport plan (or equivalently a joint probability distribution) » € P(QxQ) such that:

Yo = argmin / d(x1,X9)dvy(x1,X2),
YEM(ps,pe) JQAXQ

where H(,us,,ut)z{ye P(QxQ)

Py =pu,p #y= ﬂt} and p* and p denotes the two marginal projections of {2x 2
to Q, and P# ) the image measure of y by p.

Joint distribution optimal transport loss in DA

To handle a change in both marginal and conditional distributions.

Yo = argmin / D(x1,y1:X2. Y2 )d~y(X1,Y1;X2,Y2).
TEH(’PS,’Pr)_ (ﬂ_x(_:)? . _ _
where D(X,, ¥;;X,,Y,)=ad(X,,X,)+L(y,,Y,) is ajoint cost measure combining both distance and a loss function

measuring the discrepancy betweeny, and y,
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Joint Distribution Optimal Transport

Joint distribution optimal transport loss in DA

To handle a chanae in both marainal and conditional distributions.

Yo = argmin / D(x1,y1: X2, y2)dy(X1, y1; X2, Y2).
~YEIL(P:,Pr) J(2xC)?
In the unsupervised DA problem, one does not have access to labels in the target domain, and as such it is

not possible to find the optimal coupling. Since our goal is to find a function on the target domain f :QQ — C
Define the following joint distribution that uses a given function f as a proxy for y in target domain:

RE=(x 1 (%),

In practice we consider empirical versions of F’S and P' ie.
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Joint Distribution Optimal Transport

Joint distribution optimal transport loss in DA
to handle a chanae in both marainal and conditional distributions.

Yo = argmin / D(x1, y1: X2, y2)dy (X1, y1; X2, y2),
~YEIL(P:,Pr) J(2xC)?

f:Q-C

JDOT: min 3 DLy [(x)yy; = minW(PeP))
ij

-
I

fyel

where W.is the 1-Wasserstein distance for the loss D.
Remark: The function f we retrieve is theoretically bound with respect to the target error.
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A Bound on the Target Error

Define the expected loss in the target domain err; (f)

err, (f)2E,, . L(Y f (%))

Similarly,
erry (f)2E,, o L(V. (X))

Assume the loss function £ to be bounded, symmetric, k-Lipschitz and satisfying the triangle inequality.
symmetric: £(Y,,Y,)=L(Y2 Y1), Y1 ¥, €C

k-Lipschitz: there exists k such that ‘,C(yl, Y,)—L( Yy, y3)‘ <k|Y, = Vs, V1. ¥, Vs €C

Triangle inequality £(y,, ;)< L(Y,,Y,)+L (Y1, Y5): Y1 Yo, Y5 €C
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A Bound on the Target Error

Definition (Probabilistic Transfer Lipschitzness) Let 11, and p; be respectively the source and
target distributions. Let ¢ : R — [0, 1]. A labeling function f : @ — R and a joint distribution
IT(2s, p1s) Over g and gy are ¢-Lipschitz transferable if for all A > 0:

PTL: Pr(x, xo) (e o) 1 (X1) = f(x2)| > Ad(x1,%x2)] < @(N).

Note: Given a deterministic labeling functions f and a coupling IT , it bounds the probability of finding pairs

of source-target instances labelled differently in a (1/1)-ball with respect to IT .
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A Bound on the Target Error

Theorem 3.1 Ler [ be any labeling function of € H. Let II* =

argminnemps P f(nxc)2 ad(xe,X¢) + L(ys, ye)dI(Xs, ys;X¢, ye) and Wi (Ps, 'Pf) the as-
sociated 1-Wasserstein distance. Let f* € H be a Lipschitz labeling function that verifies the
o-probabilistic transfer Lipschitzness (PTL) assumption w.r.t. IT* and that minimizes the joint error
errs(f*) + errp(f*) w.rt all PTL functions compatible with 11*. We assume the input instances
are bounded s.t. |f*(x1) — f*(x2)| < M for all x1,X2. Let L be any symmetric loss function,
k-Lipschitz and satisfying the triangle inequality. Consider a sample of N4 labeled source instances
drawn from Ps and Ny unlabeled instances drawn from [i;, and then for all A > 0, with o = kA, we
have with probability at least 1 — o that:

2 2 1 1
— log(~ )( . )—I—e-rrg( )+ errp(f*) + EMo(N).

errr(f) < Wa(Pa )+ /Ns VN

'
Correspond to the objective function

A 4

Correspond to the joint error minimizer illustrating that domain adaptation can work only if we can
predict well in both domains

Assesses the probability under which the PTL does not hold
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A Bound on the Target Error

Theorem 3.1 Ler [ be any labeling function of € H. Let II* =

argminnemps P f(nxc)2 ad(xe,X¢) + L(ys, ye)dI(Xs, ys;X¢, ye) and Wi (Ps, 'Pf) the as-
sociated 1-Wasserstein distance. Let f* € H be a Lipschitz labeling function that verifies the
o-probabilistic transfer Lipschitzness (PTL) assumption w.r.t. IT* and that minimizes the joint error
errs(f*) + errp(f*) w.rt all PTL functions compatible with 11*. We assume the input instances
are bounded s.t. |f*(x1) — f*(x2)| < M for all x1,X2. Let L be any symmetric loss function,
k-Lipschitz and satisfying the triangle inequality. Consider a sample of N4 labeled source instances
drawn from Ps and Ny unlabeled instances drawn from [i;, and then for all A > 0, with o = kA, we
have with probability at least 1 — o that:

Pl || T (%)= 706 )|> 4d(x0,%,) [ < (2)
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A Bound on the Target Error

errT(f)gwl(FA’s,I%f)Jr\/zlog( j(r \/7]+err( “)rerr (f7)+kMg(A)

Proof:
errr (f) = Ewxy)~pr Ly, f(X)) } Triangle inequality
< E{x,y}mpzﬁ(yv f*(}{)) T ‘C(f*(}{) f(X))
:E{x,y}maﬁ(f(}i}a f*(x)) +errp(f*) — Definition err-(f) , Symmetric
Bt LS 0001 () = B g mpy LS 001 (00) 5 errrs (£ ()
Since , then

EEI'I'T(f) — E{x,y)mPtﬁ(y! f(}{))
=errps (f7) —errs(f7) +errs(f*) + errr(f7)
lerrrs (1) — errs(F)]  errs(£*) + errr(f*)
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A Bound on the Target Error

errT(f)swl(Fz,Féf) \/Elog[zj(\/l\l N j+errs(f*)+errT(f*)+kI\/I¢(/1)

Proof: lerrps (f*) — errg(f*)]

= / Ly, f*(x)(PHX =x.Y =y) — Po(X =x.Y =y))dxdy|—— Conditional probability definition
QxC

- / L(y. f*(x)d(P! —P,)
QxcC

Duality form of Kantorovitch-
Rubinstein theorem

((Xsys)s (x6.91))

< / Lyl , [*(xt) = £(ys, £*(x5)
(xC)?2

— f Lyl f*(xe)) — L), F*(x0))+
(2xC)2

*((Xsy Us), (%6, 9]))

Lyl ¥ (xs)) — L(ys. f*(x5))
/ Llud 17 (x0) = L(u s 1 (x4)
(Q2xC)2

™ "C{UtJr~f*(X5)) - ‘C(ys‘ f*(XS))

IA

— Triangle inequality

' (Xs-. ys)*- (Xf‘ yg))
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A Bound on the Target Error

errT(f)swl(Fz,FEf) \/Elog[zj(\/l\l N j+errs(f*)+errT(f*)+kI\/I¢(/1)

Proof:

erres (f7) —errs(f) < [
+ ’ﬁ(ug*f*(xs)) _ ‘C{ys‘f*(xsn

“C’(y%f"f*(xf)) - E’(y%ff*(xs))

((Xs-. ys)- (Xf- },"f))

< / FIff(xe) — fH(xs)] + — k-Lipchitz inequality
(Q2xC)2
£ £ (x2)) = £, £ (60)) | dIT (%, ), (%2 3)
< kx M xo(A) +/ EAd(x,x5) + — PTL
(QxC)?

L0 17 (x0)) = £ £ ()| dIT (%, ), (%2, 5)

< / ad(xe.x;) + Lyl ys) AT ((xs. ys). (x¢. 9] ) + k% M # (X)) — Triangle, a = ki
(Q2xC)

< / ad(x,,%¢) + L(ys, y] )AIT* (X4, y5), (X6, 47 ) + k% M % (N)
(xC)? AEROSPACE




A Bound on the Target Error

errT(f)swl(Fz,Féf) \/Elog[zj(\/l\l N j+errs(f*)+errT(f*)+kI\/I¢(/1)
Proof:
|e-r-rTf(f*) —errg(fT)] < /mxc)z ad(Xs, X¢) + L(ys, y )T (X, Ys ), (e, 4] ) + k% M+ ()
= Wi(Ps,P]) 4+ kx M x o(N).
Using triangle inequality of W1 distance:

Wi(Po.P{) < Wi(PoPu)+ Wi(Po.Pf) + Wi(P{.P])
X 2

<

)( ,—1 ! ) —— Using a result from
VN Bolley’s paper
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A Bound on the Target Error

1 1 — Using a result from
) (\/T \/\T) Bolley’s paper

Theorem E.1 (from [35], Theorem 1.1.) Ler v be a probability measure in Z so that for some
. f 2 - N - . . .
a > 0 we have for any z' fR e dist(2:2)" 1y < 00 and [i = ,{ EN 0., be the associated empirical

measure defined ::m a sample of independent variables {z;}Y_, dmun from p. Then, for any
d" > dim(Z) and ¢" < ¢, there exists some constant Ny d(’pﬂh’hﬂg on d" and some square exponential

moments of i such that for any € > 0 and N > Ngmax (e~ (4 +2) 1),

o
PWi(p, jt) > €] < exp (—;—NEQ)

where ¢’ can be calculated explicitly.
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A Bound on the Target Error

errT(f)swl(AS,Istf)+\/§Iog£§j(\/wiw]+erg(f*)+errT(f*)+kM¢(/1)
S t
Proof:
Wi(P,PH) < Wi(P,.P
< Wi(Ps,P/)+
y Pr
PIWi(p, 1) > €] < exp (;NEQ) =)
Pr
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Learning with Joint Distribution OT

Optimization using BCD

Assume that the function space’H to which f belongs is either a RKHS or a function space parametrized by some
parameters w e R” . RKHS: Reproducing kernel Hilbert space

. S f r 8 i -
pomin > i (ad(xd,xg) + L(yi, [(x5))) + M)
by

where the loss function £ is continuous and differentiable with respects to its second variable. Q( f) is the
regularization term either a non-decreasing function of the squared-norm or a squared-norm on the vector parameter.
Q(f) is continuously differentiable.

The optimization problem with fixed leads to a new learning problem expressed as

min Z ¥ L5 f(X;)) + AQ( )

feH
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Learning with Joint Distribution OT

Optimization using BCD

Algorithm 1 Optimization with Block Coordinate Descent

Initialize function fY and set k& = 1

Set v and A

while not converged do
~* < Solve OT problem #fin paper) with fixed f*~1
f* < Solve learning problem (@in paper) with fixed ~*

k+ k+1
end while
Yo o= argmin f D(x1.y1: X2, y2)dy(X1.y1: X2, Y2). Y, = 7 (x,)
~YEL(P:.Pt) J(2xC)?

N min Z ’yijjﬁ(yf. f(X;)) —+ }‘Q(f)

THE OHIO STATE UNIVERSITY AEROSPACE
- - ENGINEERING



Joint distribution optimal transportation for domain adaptation

OUTLINE

¢ <+ Examples

UNIVERSITY

ENGINEERING



Examples

3-class toy example
Source domain samples: drawn from three different 2D Gaussian distributions with different centers and

standard deviations. (+)
Target domain: obtained by rotating the source distribution by /4 radian.(°)

Two types of kernel are considered: linear and RBF

1.0

No adapt.

SRty

0.8}

DGE

Linear Kernel

0.4t

0.2t

RBF Kernel

0.0 L L
a o 2 4 7] B 10 12 14 16 b

Figure 2: Illustration on a toy example. (a): Decision boundaries for linear and RBF kernels on
selected iterations. The source domain is depicted with crosses, while the target domain samples are
class-colored circles. (b): Evolution of the accuracy along 15 iterations of the method for different

values of the o parameter; SN\ EERING
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Problem Statement
Marginal Distributions on X

YES

YES

Same Tasks on Source
and Target Domains

NO

YES

Same Tasks on Source
and Target Domains

NO

1
"Usual" ' Inductive Transductive Unsupervised
Learning Setting | 1| Transfer Learning Transfer Learning Transfer Learning
|
N -
| AN Transfer Learning

(Domain Hﬁaptation)

Distinction between usual machine learning setting and
transfer learning, and positioning of domain adaptation.

The different types of domain adaptation:

Unsupervised domain adaptation:
the learning sample contains a set of

labeled source examples, a set of unlabeled
source examples and an unlabeled set of
target examples.
Semi-supervised domain adaptation:

consider a "small" set of labeled target
examples.
Supervised domain adaptation:

all the examples considered are

supposed to be labeled.

AEROSPACE
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