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Problem Statement 

In DA problem, we study two different (but related) distributions       and      on           . The DA task consists of the 

transfer of knowledge from the      to      . The objective is to learn f (from labeled or unlabeled samples of two 

domains) such that it commits as small error as possible on the target domain      .

SD TD X Y×

SD TD
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Assumption and Notations

Assumption: there exists a nonlinear transformation between the label space distributions of the two domain

PS and PT that can be estimated with optimal transport.

Notations:
A set of data from sample domain
A set of data from target domain
A set of class label information associated with Xs
A set of class label information associated with XT

Compact input measureable space with dimension d

Label space

All probability over 

Joint probability distributions in DS

Joint probability distributions in DT

1{ } sNs
S i iX x ==

1{ } tNt
T i iX x ==

1{ } sNs
S i iY y ==

1{ } tNt
T i iY y ==

dΩ∈
1C∈

( )P Ω Ω

( ),sP X Y

( ),TP X Y
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Joint Distribution Optimal Transport

Optimal transport in domain adaptation

Seek for a transport plan (or equivalently a joint probability distribution) such that:( )Pγ ∈ Ω×Ω

where                                                                              and      and denotes the two marginal projections of              

to      , and          the image measure of γ by p.

( ) ( ){ }, # , #s t s tP p pµ µ γ γ µ γ µ+ −Π = ∈ Ω×Ω = = Ω×Ωp+ p−

Ω #p γ

Joint distribution optimal transport loss in DA
To handle a change in both marginal and conditional distributions.

where                                                               is a joint cost measure combining both distance and a loss function 

measuring the discrepancy between y1 and y2

( ) ( ) ( )1 1 2 2 1 2 1 2x , ; x , d x , x ,D y y y yα= +
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Joint Distribution Optimal Transport

Joint distribution optimal transport loss in DA
To handle a change in both marginal and conditional distributions.

In the unsupervised DA problem, one does not have access to labels in the target domain, and as such it is 

not possible to find the optimal coupling. Since our goal is to find a function on the target domain :f Ω→ 
Define the following joint distribution that uses a given function f as a proxy for y  in target domain:

( )( )x
x, x

t

f
tP f

µ
=



In practice we consider empirical versions of  and ,  i.e. f
tPsP

( ), ,
1 1

1 1ˆ ˆ,
s s

s s t t
i i i i

N N
f

s tx y x f x
i is t

P P
N N

δ δ
= =

= =∑ ∑
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Joint Distribution Optimal Transport

Joint distribution optimal transport loss in DA
to handle a change in both marginal and conditional distributions.

:f Ω→ 

( ), ,
1 1

1 1ˆ ˆ,
s s

s s t t
i i i i

N N
f

s tx y x f x
i is s

P P
N N

δ δ
= =

= =∑ ∑

where W1 is the 1-Wasserstein distance for the loss D. 
Remark: The function f we retrieve is theoretically bound with respect to the target error.

JDOT:

( )( )x
x, x

t

f
tP f

µ
=


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A Bound on the Target Error

Define the expected loss in the target domain errT ( f ) 

( ) ( ) ( )( )x, ~ , x
tT y Perr f y fE 

( ) ( ) ( )( )x, ~ , x
sS y Perr f y fE 

Similarly,

Assume the loss function to be bounded, symmetric, k-Lipschitz and satisfying the triangle inequality.

Symmetric:



k-Lipschitz: there exists  k such that

Triangle inequality

( ) ( )1 2 2 1 1 2, , , ,y y y y y y= ∈  

( ) ( ) ( )1 3 1 2 1 3 1 2 3, , , , , ,y y y y y y y y y≤ + ∈   

( ) ( )1 2 1 3 2 3 1 2 3, , , , ,y y y y k y y y y y− ≤ − ∈  
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A Bound on the Target Error

Note: Given a deterministic labeling functions f and a coupling Π , it bounds the probability of finding pairs 

of source-target instances labelled differently in a (1/λ)-ball with respect to Π .

PTL:
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A Bound on the Target Error

Correspond to the objective function

Assesses the probability under which the PTL does not hold

Correspond to the joint error minimizer illustrating that domain adaptation can work only if we can 
predict well in both domains
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A Bound on the Target Error

( ) ( ) ( ) ( ) ( ) ( )
1 2 1 2 1 2x ,x ~ ,Pr x x d x , x

s t
f fµ µ λ φ λ∗ ∗

∏
 − > ≤ 
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A Bound on the Target Error

( ) ( ) ( ) ( ) ( )1 '

2 2 1ˆ ˆ, logf
T s t S T

s t

err f W P P err f err f kM
c N N

φ λ
δ

∗ ∗
  ≤ + + + +    +   

Proof: 

Triangle inequality

Definition errT( f )  , Symmetric 

Since                                                                                                                        ,   then
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A Bound on the Target Error

( ) ( ) ( ) ( ) ( )1 '

2 2 1ˆ ˆ, logf
T s t S T

s t

err f W P P err f err f kM
c N N

φ λ
δ

∗ ∗
  ≤ + + + +    +   

Proof: 

Conditional probability definition

Duality form of Kantorovitch-
Rubinstein theorem

Triangle inequality
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A Bound on the Target Error

( ) ( ) ( ) ( ) ( )1 '

2 2 1ˆ ˆ, logf
T s t S T

s t

err f W P P err f err f kM
c N N

φ λ
δ

∗ ∗
  ≤ + + + +    +   

Proof: 

k-Lipchitz inequality 

PTL

Triangle, α = kλ
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A Bound on the Target Error

( ) ( ) ( ) ( ) ( )1 '

2 2 1ˆ ˆ, logf
T s t S T

s t

err f W P P err f err f kM
c N N

φ λ
δ

∗ ∗
  ≤ + + + +    +   

Proof: 

Using triangle inequality of W1 distance:

Using a result from 
Bolley’s paper
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A Bound on the Target Error

( ) ( ) ( ) ( ) ( )1 '

2 2 1ˆ ˆ, logf
T s t S T

s t

err f W P P err f err f kM
c N N

φ λ
δ
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Proof: 

Using a result from 
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A Bound on the Target Error

( ) ( ) ( ) ( ) ( )1 '

2 2 1ˆ ˆ, logf
T s t S T

s t

err f W P P err f err f kM
c N N

φ λ
δ

∗ ∗
  ≤ + + + +    +   

Proof: 

( )

( )

2
1

2
1

ˆPr , exp ,
2 2

ˆPr , exp ,
2 2

s s s

f f
t f t

cW P P N

cW P P N

δε ε

δε ε

′  > ≤ −    
′  > ≤ −    





( ) ( )1 1
2 2 1 1ˆ ˆ, , logf f

s s t f
s t

W P P W P P
c N Nδ

  + ≤ +    ′    
with at least1-δ probability. 
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Learning with Joint Distribution OT

Optimization using BCD

where the loss function       is continuous and differentiable with respects to its second variable. is the 

regularization term either a non-decreasing function of the squared-norm or a squared-norm on the vector parameter.

 ( )fΩ

The optimization problem with fixed  leads to a new learning problem expressed as

Assume that the function space to which  f belongs is either a RKHS or a function space parametrized by some 
parameters              . RKHS: Reproducing kernel Hilbert space


p∈w 

is continuously differentiable.( )fΩ
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Learning with Joint Distribution OT

Optimization using BCD

( )1
2 2

ky f x−=

( )fΩ
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Examples

Source domain samples: drawn from three different 2D Gaussian distributions with different centers and 
standard deviations. (+)
Target domain: obtained by rotating the source distribution by 𝜋𝜋/4 radian.(º)

Two types of kernel are considered: linear and RBF

3-class toy example
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QUESTION

•Thank you!
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Problem Statement 

Distinction between usual machine learning setting and 
transfer learning, and positioning of domain adaptation.

The different types of domain adaptation:
Unsupervised domain adaptation:

the learning sample contains a set of 

labeled source examples, a set of unlabeled 

source examples and an unlabeled set of 

target examples.

Semi-supervised domain adaptation:

consider a "small" set of labeled target 

examples.

Supervised domain adaptation:

all the examples considered are 

supposed to be labeled.
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