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Abstract

Point clouds are one of the most primitive and fundamental surface representations. A popular source of point
clouds are three dimensional shape acquisition devices such as laser range scanners. Another important field
where point clouds are found is in the representation of high-dimensional manifolds by samples. With the increas-
ing popularity and very broad applications of this source of data, it is natural and important to work directly
with this representation, without having to go to the intermediate and sometimes impossible and distorting steps
of surface reconstruction. A geometric framework for comparing manifolds given by point clouds is presented
in this paper. The underlying theory is based on Gromov-Hausdorff distances, leading to isometry invariant and
completely geometric comparisons. This theory is embedded in a probabilistic setting as derived from random
sampling of manifolds, and then combined with results on matrices of pairwise geodesic distances to lead to a
computational implementation of the framework. The theoretical and computational results here presented are
complemented with experiments for real three dimensional shapes.

1. Introduction

Point clouds are one of the most primitive and fundamental
manifold representations. One of the most popular sources of
point clouds are 3D shapes acquisition devices, such as laser
range scanners, with applications in many disciplines. These
scanners provide in general raw data in the form of (noisy)
unorganized point clouds representing surface samples. With
the increasing popularity and very broad applications of this
source of data, it is natural and important to work directly
with this representation, without having to go to the inter-
mediate step of fitting a surface to it (step that can add com-
putational complexity and introduce errors). See for example
[3, 10, 12, 19, 28, 29, 35] for a few of the recent works with
this type of data, as well as all the papers in the recent June
2004 meeting on point clouds at ETH. Point clouds can also
be used as primitives for visualization, e.g., [4, 19, 38], as
well as for editing [43].

Another important field where point clouds are found
is in the representation of high-dimensional manifolds by
samples (see for example [2, 23, 39]). This type of high-
dimensional and general co-dimension data appears in al-
most all disciplines, from computational biology to image
analysis to financial data. Due to the extremely high dimen-

sionality in this case, it is impossible to perform manifold
reconstruction, and the task needs to be performed directly
on the raw data, meaning the point cloud.

The importance of this type of shape representation is
leading to a recent increase in the fundamental study of point
clouds [1, 2, 8, 11, 15, 31, 32, 39] (see also the papers men-
tioned in the first paragraph and references therein). The goal
of this work, inspired in part by [13] and the tools devel-
oped in [31, 39], is to develop a theoretical and computa-
tional framework to compare shapes (sub-manifolds of IRd)
represented as point clouds.

As we have mentioned, a variety of objects can be repre-
sented as point clouds in IRd . One is often presented with the
problem of deciding whether two of those point clouds, and
their corresponding underlying objects or manifolds, repre-
sent the same geometric structure or not (object recognition
and classification). We are concerned with questions about
the underlying unknown structures (objects), which need to
be answered based on discrete and finite measures taken be-
tween their respective point clouds. In greater generality,
we wonder what is the structural information we can gather
about the object itself by exploring the point cloud which
represents it.
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Multidimensional scaling (MDS) for example has been
used to approach in part this general problem of object
recognition. Procedures based on MDS require that one
first computes the interpoint distance matrix for all the
members of the point cloud (or for a representative selected
sub-set of them). If one is interested in comparing two
different objects, the problem is reduced to a comparison
between the corresponding interpoint distance matrices. If
the distance we use is the Euclidean one, these matrices
only provide information about their rigid similarity, and
(assuming they have the same size) if they are equal (up
to a permutations of the indices of all elements), we can
only conclude that there exists a rigid isometry (rotation,
reflection, translation) from one point cloud to the other.
After adding compactness considerations, we can also say
something about the true underlying (sampled) objects.
Being a bit more rigorous, let the point clouds Pi ⊂ Si be
εi-coverings of the surfaces Si in IR3, for i = 1,2 (this will be
formally defined below). Then assuming there exists a rigid
isometry τ : IR3 → IR3 such that τ(P1) = P2, we can bound
the Hausdorff distance (which we will also formally define
below) between τ(S1) and S2 as follows: dH(τ(S1),S2) ≤
dH(τ(S1),τ(P1)) + dH(τ(P1),P2) + dH(P2,S2) =
dH(S1,P1) + dH(τ(P1),P2) + dH(P2,S2) ≤ ε1 + 0 + ε2.
And of course the same kind of bound holds for the Haus-
dorff distance between the points clouds once we assume
the underlying continuous objects are rigidly isometric, see
§2.1 below, where we show that rigid isometries are also
addressed with our approach.

If S1 and S2 happen to be isometric, thereby allowing
for bends and not just rigid transformations, we wonder
whether we will be able to detect this by looking at (finite)
point clouds Pi sampled from each Si. This problem is much
harder to tackle. We approach this problem through a proba-
bilistic model, in part because in principle, there might exist
even for the same object, two different samplings that look
quite dissimilar (under the discrete measures we can cope
with computationally), for arbitrarily fine scales (see below).

With the help of the theory presented here we recast these
considerations in a rigorous framework and address the case
where the distances considered to characterize each point
cloud (object) are more general. We concentrate on the sit-
uation when we know the existence of an intrinsic notion
of distance for each object we sample. For the applications
of isometric invariant shape (surfaces) recognition, one must
consider the distance as measured by paths constrained to
travel on the surface of the objects, better referred to as
geodesic distance. These have been used in [13] for bend-
ing invariant recognition in 3D (the theoretical foundations
here developed include a justification of their work) and in
[15, 39] to detect intrinsic surface dimensionality. This in-
trinsic framework not only has applications for the recogni-
tion of articulated objects for example, but also leads to com-
paring manifolds in a complete geometric way and without
being influenced by the embedding space (and being as men-

tioned above, rigid isometrics just a particular case covered
by our results).

In this paper, the fundamental approach used for isomet-
ric invariant recognition is derived then from the Gromov-
Hausdorff distance [17], which we now present. If two sets
(objects) X and Y are subsets of a common bigger metric
space (Z,dZ), and we want to compare X to Y in order to de-
cide whether they are/represent the same object or not, then
an idea one might come up with very early on is that of com-
puting the Hausdorff distance between them (see for exam-
ple [9, 21] for an extensive use of this for shape statistics and
image comparison):

dZ
H(X ,Y ) := max(sup

x∈X
dZ(x,Y ), sup

y∈Y
dZ(y,X))

But, what happens if we want to allow for certain defor-
mations to occur and still decide that the manifolds are the
same? More precisely, we are interested in being able to find
a distance between metric spaces that is blind to isomet-
ric transformations (“bends”). This will permit a truly ge-
ometric comparison between the manifolds, independently
of their embedding and bending position. Following [17],
we introduce the Gromov-Hausdorff distance between Met-
ric Spaces

dGH(X ,Y ) := inf
Z, f ,g

dZ
H(X ,Y )

where f : X → Z and g : Y → Z are isometric embeddings
(distance preserving) into the metric space Z. It turns out that
this measure of metric proximity between metric spaces is
well suited for our problem at hand and will allow us to give
a formal framework to address the isometric shape recogni-
tion problem (for point cloud data). However, this notion of
distance between metric spaces encodes the “metric” dispar-
ity between the metric spaces, at first glance, in a computa-
tionally impractical way. We derive below new results that
connect this notion of disparity with other more computa-
tionally appealing expressions.

Since we have in mind specific applications and scenar-
ios such as those described above, and in particular surfaces
and submanifolds of some Euclidean space IRd , we assume
that we are given as input points densely sampled from the
metric space (surface, manifold). This will manifest itself in
many places in the theory described below. We will present
a way of computing a discrete approximation (or bound) to
dGH(,) based on the metric information provided by these
point clouds. Due to space limitations, the proofs are omitted
and are reported elsewhere (www.ima.umn.edu, June/July
2004 reports).

2. Theoretical Foundations

This section covers the fundamental theory behind the bend-
ing invariant recognition framework we develop. We use ba-
sic concepts of metric spaces, see for example [24] for a de-
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tailed treatment of this and [5, 17, 20, 25, 36, 37] for proofs
of Proposition 1 below.

Definition 1 (Metric Space) A set M is a metric space if for
every pair of points x, y ∈ M there is a well defined function
dM(x,y) whose values are non-negative real numbers, such
that (a) dM(x,y) = 0 ⇔ x = y, and (b) dM(x,y) ≤ dM(y,z)+
dM(z,x) for any x,y,z ∈ M. We call dM : M×M → IR+∪{0}
the metric or distance. For clarity we will specify a metric
space as the pair (M,dM).

Definition 2 (Covering) For a point x in the metric space
(X ,dX ) and r > 0, we will denote by BX (x,r) the set {z ∈
X : dX (x,z) < r}. For a subset A of X , we use the notation
BX (A,r) = ∪a∈ABX (a,r). We say that a set C ⊂ X is an R-
covering of X if BX (C,R) = X . We will also frequently say
that the set A is a n-covering of X if A constitutes, for some
r > 0, a covering of X by n-balls with centers in points of A.

Definition 3 (Isometry) We say the metric spaces (X ,dX )
and (Y,dY ) are isometric when there exists a bijective map-
ping φ : X → Y such that dX (x1,x2) = dY (φ(x1),φ(x2)) for
all x1,x2 ∈ X . Such a φ is an isometry between (X ,dX ) and
(Y,dY ).

Proposition 1

1. Let (X ,dX ), (Y,dY ) and (Z,dZ) be metric spaces then

dGH(X ,Y ) ≤ dGH(X ,Z)+dGH(Z,Y ).

2. If dGH(X ,Y ) = 0 and (X ,dX ), (Y,dY ) are compact metric
spaces, then (X ,dX ) and (Y,dY ) are isometric.

3. Let {x1, . . . ,xn}⊂ X be a R-covering of the compact met-
ric space (X ,dX ), then dGH(X ,{x1, . . . ,xn}) ≤ R.

4. For compact metric spaces (X ,dX ) and (Y,dY ),
1
2 |R(X)−R(Y )| ≤ dGH(X ,Y ) ≤ 1

2 max(D(X) ,D(Y )),
where R(X) := minx∈X maxx′∈X dX (x,x′) and
D(X) := maxx,x′∈X dX (x,x′) stand for the Circum-
radius and Diameter of the metric space X , respectively.

5. For bounded metric spaces (X ,dX ) and (Y,dY ) (x ∈
X , y ∈ Y ),

dGH(X ,Y ) = inf
φ : X → Y
ψ : Y → X

sup
x,y

1
2
|dX (x,ψ(y))−dY (y,φ(x))|

From these properties, we can easily prove the following im-
portant result:

Corollary 1 Let X and Y be compact metric spaces. Let
moreover Xm be a r-covering of X (consisting of m points)
and Ym′ be a r′-covering of Y (consisting of m′ points). Then

|dGH(X ,Y )−dGH(Xm,Ym′)| ≤ r + r′

We can then say that if we could compute dGH(,) for dis-
crete metric spaces which are dense enough samplings of
the continuous underlying ones, that number would be a
good approximation to what happens between the continu-
ous spaces. Currently, there is no computationally efficient
way to directly compute dGH(,) between discrete metric

spaces in general. This forces us to develop a roundabout
path, see §2.2 ahead. Before going into the general case, we
discuss next the application of our framework to a simpler
but important case.

2.1. Intermezzo: The Rigid Isometries Case

When we are trying to compare two subsets X and Y of
a larger metric space Z, the situation is less complex. The
Gromov-Hausdorff distance boils down to a somewhat sim-
pler Hausdorff distance between the sets. In more detail, one
must compute dZ,rigid

GH
(X ,Y ) := infΦ dZ

H(X ,φ(Y )), where Φ :
Z → Z ranges over all self-isometries of Z. If we know
an efficient way of computing infΦ dZ

H(X ,Φ(Y )), then this
particular shape recognition problem is well posed for Z,
in view of Corollary 1, as soon as we can give guaran-
tees of coverage. This can be done in the case of sub-
manifolds of IRd by imposing a probabilistic model on the
samplings Xm of the manifolds, and a bound on the cur-
vatures of the family of manifolds. In more detail we can
show that P

(
dIRd

H
(X ,Xm) > δm

)
' 1

ln m as m ↑∞, for δm ?

(
ln m
m

)1/k
, where k is the dimension of X , see Section §3.2.

In the case of surfaces in Z = IR3, Φ sweeps all rigid
isometries, and there exist good algorithms which can ac-
tually solve the problem approximately. For example, in
[16] the authors report an algorithm which for any given
0 < α < 1 can find Φ̂α such that dIR3

H (Xm, Φ̂α(Ym′)) ≤

(8 + α) infΦ dIR3

H (Xm,Φ(Ym′)), with complexity O(s4 logs)
where s = max(m,m′). This computational result, together
with our theory, makes the problem of surface recognition
(under rigid motions) well posed and well justified. In fact,
just using (an appropriate version of) Corollary 1 and the
triangle inequality, we obtain a bound between the distance

we want to estimate dIR3,rigid
H

(X ,Y ) and the observed (com-

putable) value dIR3

H
(Xm, Φ̂α(Ym′ )), having dIR3 ,rigid

H
(X ,Y )− (r +

r′)≤ dIR3

H
(Xm, Φ̂α(Ym′ )) ≤ 10

(
dIR3 ,rigid

H
(X ,Y )+ (r + r′)

)
. This

bound gives a formal justification for the surface recogni-
tion problem from point samples, showing that it is well
possed. To the best of our knowledge, this is the first time
that such formality is shown for this very important prob-
lem, both in the particular case just shown and in the general
one addressed next.

2.2. The General Recognition Case

The theory introduced by Gromov permits to address the
concept of (metric) proximity between metric spaces. When
dealing with discrete metric spaces, as those arising from
samplings or coverings of continuous ones, it is conve-
nient to introduce a distance between them, which ulti-
mately is the one we compute for point clouds, see §3.4
ahead. For discrete metric spaces (both of cardinality n)
(X = {x1, . . . ,xn},dX) and (Y = {y1, . . . ,yn},dY) we define
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the distance:

dI(X,Y) := min
π∈Pn

max
1≤i, j≤n

1
2
|dX(xi,x j)−dY(yπi ,yπ j )| (1)

where Pn stands for the set of all n × n permutations
of {1, . . . ,n}. A permutation π provides the correspon-
dence between the points in the sets, and |dX(xi,x j) −
dY(yπi ,yπ j )| gives the pairwise distance/disparity once this
correspondence has been assumed. It is evident that one has
dGH(X,Y)≤ dI(X,Y), by virtue of Property 5 from Propo-
sition 1. Moreover, we easily derive the following easy re-
sult, whose usefulness will be made evident in §3.

Corollary 2 Let (X ,dX ) and (Y,dY ) be compact metric
spaces. Let X = {x1, . . . ,xn} ⊂ X and Y = {y1, . . . ,yn} ⊂Y ,
such that BX (X,RX ) = X and BY (Y,RY ) = Y (the point
clouds provide RX and RY coverings respectively). Then

dGH(X ,Y ) ≤ RX +RY +dI(X,Y) (2)

with the understanding that dX = dX |
X×X

and dY =
dY |

Y×Y
.

Remark 1 This result tells us that if we manage to find cov-
erings of X and Y for which the distance dI is small, then
if the radii defining those coverings are also small, the un-
derlying manifolds X and Y sampled by these point clouds
must be close in a metric sense. Another way of interpret-
ing this is that we will never see a small value of dI(X,Y)
whenever dGH(X ,Y ) is big, a simple statement with prac-
tical value, since we will be looking at values of dI, which
depend on the point clouds. This is because, in contrast with
dGH(,), the distance dI is (approximately) computable from
the point clouds, see §3.4.

regarding coverings of metric spaces. Given a metric space
(X ,dX ), the discrete subset N(r,s)

X ,n denotes a set of points
{x1, . . . ,xn} ⊂ X such that (1) BX (N(r,s)

X ,n , r) = X , and (2)
dX (xi,x j) ≥ s whenever i 6= j. In other words, the set pro-
vides a coverage and the points in the set are not too close
to each other (the coverage is efficient). (Similar sampling
conditions are common in the computational geometry liter-
ature, e.g., works by Amenta, Dey, Boissonnat, and others.)

Remark 2 For each r > 0 denote by N(r,X) the mini-
mum number of closed balls of radii r needed to cover X .
Then, ([36], Chapter 10), one can actually show that the
class (M,dGH(,)) of all compact metric spaces X whose
covering number N(r,X) are bounded for all (small) posi-
tive r by a function on the interval, N : (0,C1) → (0,∞),
is totally bounded. This means that given ρ > 0, there ex-
ist a finite positive integer k(ρ) and compact metric spaces
X1, . . . ,Xk(ρ) ∈ M such that for any X ∈ M one can find
i ∈ {1, . . . ,k(ρ)} such that dGH(X ,Xi) ≤ ρ. This is very in-
teresting from the point of view of applications since it al-
lows to make the classification problem of metric spaces in
a well possed and justified way. For example, in a system
of storage/retrieval of faces/information manifolds, this con-
cept permits the design of a clustering procedure for the ob-
jects.

The following Proposition will also be fundamental for our
computational framework in §3, leading us to work with
point clouds.

Proposition 2 ([17]) Let (X ,dX ) and (Y,dY ) be any pair of
given compact metric spaces and let η = dGH(X ,Y ). Also,

let N(r,s)
X ,n = {x1, . . . ,xn} be given. Then, given α > 0 there

exist points {yα
1 , . . . ,yα

n } ⊂ Y such that

1. dI(N(r,s)
X ,n ,{yα

1 , . . . ,yα
n }) ≤ (η+α)

2. BY
(
{yα

1 , . . . ,yα
n },r +2(η+α)

)
= Y

3. dY (yα
i ,yα

j ) ≥ s−2(η+α) for i 6= j.

Remark 3 This proposition first tells us that if the metric
spaces happen to be sufficiently close in a metric sense, then
given a s-separated covering on one of them, one can find a
(s′-separated) covering in the other metric space such that dI

between those coverings (point clouds) is also small. This,
in conjunction with Remark 1, proves that in fact our goal
of trying to determine the metric similarity of metric spaces
based on discrete observations of them is, so far, a (theoreti-
cally) well posed problem.
Since by Tychonoff’s Theorem the n-fold product space
Y × . . .×Y is compact, if s − 2η ≥ c > 0 for some con-
stant c, by passing to the limit along the subsequences of{

yα
1 , . . . ,yα

n
}
{α>0} as α ↓ 0 (if needed) above one can assume

the existence of a set of different points {ȳ1, . . . , ȳn} ⊂ Y such
that dI({ȳ1, . . . , ȳn},N

(r,s)
X ,n )≤ η, mini6= j dY (ȳi, ȳ j)≥ s−2η > 0,

and BY ({ȳ1, . . . , ȳn}, r + 2η) = Y .

Since we are given the finite sets of points sampled from
each metric space, the existence of {ȳ1, . . . , ȳn} guaranteed
by Proposition 2 doesn’t seem to make our life a lot easier,
those points could very well not be contained in our given fi-
nite datasets Xm and Ym′ . The simple idea of using a triangle
inequality (with metric dI) to deal with this does not work in
principle, since one can find, for the same underlying space,
two nets whose dI distance is not small, see [6, 30]. Let us
explain this in more detail. Assume that as input we are given
two finite sets of points Xm and Ym on two metric spaces,
X and Y , respectively, which we assume to be isometric.
Then the results above ensure that for any given N(r,s)

X ,n ⊂ Xm

there exists a N(r,s)
Y,n ⊂Y such that dI(N(r,s)

X ,n ,N(r,s)
Y,n ) = 0. How-

ever, it is clear that this N(r,s)
Y,n has no reason to be con-

tained in the given point cloud Ym. The obvious idea would
be try to rely on some kind of independence property on
the sample which represents a given metric space, namely
that for any two different covering nets N1 and N2 (of the
same cardinality and with small covering radii) of X the dis-
tance dI(N1,N2) is also small. If this were granted, we could
proceed as follows: dI(N(r,s)

X ,n ,N(r̂,ŝ)
Y,n ) ≤ dI(N(r,s)

X ,n ,N(r,s)
Y,n ) +

dI(N(r̂,ŝ)
Y,n ,N(r,s)

Y,n ) = 0 + small(r, r̂,s, ŝ), where small(r, r̂,s, ŝ)
is small number depending only on r, r̂, s and ŝ. The property
we fancy to rely upon was a conjecture proposed by Gromov
in [18] (see also [40]) and disproved [6, 30]. Their coun-
terexamples are for separated nets in ZZ2. It is not known
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whether we can construct counterexamples for compact met-
ric spaces, or if there exists a characterization of a family of
n-points separated nets of a given compact metric space such
that any two of them are at a small dI-distance which can be
somehow controlled with n. A first step towards this is the
density condition introduced in [7].

If counterexamples do not exist for compact metric
spaces, then the above inequality should be sufficient. With-
out assuming this, we give below an argument which tackles
the problem in a probabilistic way. In other words, we use
a probabilistic approach to bound dI for two different sam-
ples from a given metric space. For this, we pay the price,
for some applications, of assuming the existence of a mea-
sure which comes with our metric space. On the other hand,
probabilistic frameworks are natural for noisy random sam-
ples of manifolds as obtained in real applications.

2.3. A Probabilistic Setting for Submanifolds of IRd

We now limit ourself to smooth submanifolds of any IRd ,
although the work can be extended to more general metric
spaces (once a notion of uniform probability measure is in-
troduced).

Let Z be a smooth and compact submanifold of IRd with
intrinsic (geodesic) distance function dZ(·, ·). We can now
speak more freely about points {zi}

m
i=1 sampled uniformly

from X . For any measurable C ⊂ Z, P(zi ∈C) =
a(C)
a(Z)

, where
a(B) denotes the area of the measurable set B ⊂ Z. This uni-
form distribution can be replaced by other distributions, e.g.,
that adapt to the geometry of the underlying surface, and the
framework here developed can be extended to those as well.

Let Z = {z1, . . . ,zn} and Z
′ = {z′1, . . . ,z

′
n} be two discrete

subsets of Z (two point clouds). For any permutation π ∈ Pn
and i, j ∈ {1, . . . ,n}, |dZ(zi,z j)−dZ(z′πi ,z

′
π j )| ≤ dZ(zi,z′πi)+

dZ(z j,z′π j ) and therefore we have

dZ
B(Z,Z′) := min

π∈Pn
max

k
dZ(zk,z

′
πk ) ≥ dI(Z,Z′) (3)

This is known as the Bottleneck Distance between Z and Z
′,

both being subsets of Z. This is a possible way of measuring
distance between two different samples of the same metric
space, see the work [34]. For its application in Point Match-
ing see [22] and references therein.

Instead of dealing with (3) deterministically, after impos-
ing conditions on the underlying metric space Z, we derive
probabilistic bounds for the left hand side. We also make
evident that by suitable choices of the relations among the
different parameters in the sampling process, this probabil-
ity can be chosen at will. This result is then used to bound
the distance dI between two point cloud samples of a given
metric space, thereby leading to the bound for (a quantity
related to) dI(N(r,s)

X ,n ,N(r̂,ŝ)
Y,n ) without assuming any kind of

proximity of the nets (and from this, the bounds on the origi-
nal Gromov-Hausdorff distance). We consider Z to be fixed,

and we assume Z
′ = {z′1, . . . ,z

′
n} to be chosen from a set

Zm ⊂ Z consisting of m � n i.i.d. points sampled uniformly
from Z. We introduce the Voronoi diagram V(Z) on Z, de-
termined by the points in Z (see for example [27]).

The i-th Voronoi cell of the Voronoi diagram defined by
Z = {z1, . . . ,zn} ⊂ Z is given by Ai := {z ∈ Z : dZ(zi,z) <
min j 6=i dZ(z j,z)}. We then have Z =

⋃n
k=1 Ak.

We first want to find, amongst points in Zm, n different
points {zi1 , . . . ,zin} such that each of them falls inside one
Voronoi cell, {zik ∈ Ak for k = 1, . . . ,n}. We provide lower
bounds for P(#(Ak ∩Zm) ≥ 1, 1 ≤ k ≤ n), the probability
of this happening. We can see the event as if we collected
points inside all the Voronoi cells, a case of the Coupon Col-
lecting Problem, see [14]: we buy merchandise at a coupon-
giving store until we have collected all possible types of
coupons. The next Lemma presents the basic results we need
about this concept [41].

Lemma 1 (Coupon Collecting) If there are n different
coupons one wishes to collect, such that the probability of
seeing the k-th coupon is pk (let ~p = (p1, . . . , pn)), and one
obtains samples of all of them in an independent way then:
The probability P~p(n,r) of having collected all n coupons
after r trials is given by

P~p(n,r) = 1−Sn

(
n

∑
j=2

(−1) j

(
n

∑
k= j

pk

)n)
(4)

where the symbol Sn means that we consider all possible
combinations of the n indices in the expression being eval-
uated. (For example S3((p1 + p2)

r) = (p1 + p2)
r + (p1 +

p3)
r +(p2 + p3)

r.)

This result is used to prove the following fundamental
probability bounds:

Theorem 1 Let (Z,dZ) be a smooth compact submani-
fold of IRd . Given a covering N(r,s)

Z,n of Z and a number
p ∈ (0,1), there exists a positive integer m = mn(p) such
that if Zm = {zk}

m
k=1 is a sequence of i.i.d. points sam-

pled uniformly from Z, with probability p one can find
a set of n different indices {i1, . . . , in} ⊂ {1, . . . ,m} with
dZ
B(N(r,s)

Z,n ,{zi1 , . . . ,zin}) ≤ r.

This result can also be seen the other way around: for
a given m, the probability of finding the aforementioned
subset in Zm is given by (4), for ~pZ defined as follows:
pi

Z = a(Ai)/a(Z), where Ai is the i-th Voronoi cell corre-
sponding to N(r,s)

Z,n , 1 ≤ i ≤ n. Moreover, since for ẑk ∈ N(r,s)
Z,n

BZ(ẑk,
s
2 ) ⊂ Ak then one can lower bound all components of

~pZ . In practise one could use as a rule of thumb m ' n lnn
which is the mean waiting time (in the equiprobable case)
until all “coupons” are collected, [14].

Corollary 3 Let X and Y compact submanifolds of IRd . Let
N(r,s)

X ,n be a covering of X with separation s such that for some
positive constant c, s − 2dGH(X ,Y ) > c. Then, given any

c© The Eurographics Association 2004.

36



Facundo Mémoli and Guillermo Sapiro / Comparing Point Clouds

number p ∈ (0,1), there exists a positive integer m′ = m′
n(p)

such that if Ym′ = {yk}
m′

k=1 is a sequence of i.i.d. points sam-
pled uniformly from Y , we can find, with probability at least
p, a set of n different indices {i1, . . . , in} ⊂ {1, . . . ,m′} such
that dI(N(r,s)

X ,n ,{yi1 , . . . ,yin}) ≤ 3dGH(X ,Y )+ r.

This concludes the main theoretical foundation of our pro-
posed framework. We have shown that dI is a good approxi-
mation of the Gromov-Hausdorff distance between the point
clouds, in a probabilistic sense. Now, we must devise a com-
putational procedure which allows us to actually find the
subset {yi1 , . . . ,yin} inside the given point cloud Ym when
it exists, or at least find it with a large probability. Note that
in practise we can only access metric information, that is,
interpoint distances. Point positions cannot be assumed to
be accessible since that would imply knowing the (isome-
try) transformation that maps X into Y . A stronger result
should take into account possible self-isometries of X (Y ),
which would increase the probability of finding a net which
achieves small dI distance to the fixed one. Next we present
such a computational framework.

3. Computational Foundations

There are a number of issues that must be addressed in or-
der to develop an algorithmic procedure from the theoretical
results previously presented. These are now addressed.

3.1. Initial Considerations

In practise we have as input two independent point clouds
Xm and Ym′ each of them composed of i.i.d. points sam-
pled uniformly from X and Y , respectively. We fix a number
n < min(m,m′) and construct good coverings N(r,s)

X ,n of X and

N(r′,s′)
Y,n of Y . Actually, r,s,r′ and s′ all depend on n, and we

should choose n such that r and r′ are small enough to make
our bounds useful, see the additional computations below.
Details on how we construct these coverings are provided in
Section §3.3.

It is convenient to introduce the following additional no-
tation. For q ∈ IN, let {1 : q} denote the set {1, . . . ,q}; also
for a set of points Zq = {zk}

q
k=1 and for a set of 1 ≤ u ≤ q

indices Iu = {i1, . . . , iu} ⊂ {1 : q}, let Zq[Iu] denote the set
{zi1 , . . . ,ziu}.

Corollary 3 suggests that in practise we compute the sym-
metric expression

dF (Xm,Ym) := (5)

max
(

min
Jn⊂{1:m}

dI(N(r,s)
X ,n ,Ym[Jn]), min

In⊂{1:m}
dI(N(r′ ,s′)

Y,n ,Xm[In])

)

which depends not only on Xm and Ym′ but also on specified

covering nets N(r,s)
X ,n and N(r′,s′)

Y,n . However we prefer to omit
the dependence in the list of arguments to keep the notation
simpler.

Then, we know that with probability at least P~pX (n,m)×

P~pY (n,m′) we have (we assume Xm to be independent
from Ym′ ) dF(Xm,Ym′) ≤ 3dGH(X ,Y )+max(r,r′). More-
over, in some precise sense dF(Xm,Ym′) upper bounds
dGH(Xm,Ym′), something we need to require otherwise we
would have solved one problem to gain another, and that im-
plies (Corollary 1) a similar upper bound for dGH(X ,Y ).

In fact, for any In ⊂ {1 : m}

dGH(Xm,Ym′) ≤ dGH(Xm,Xm[In])+dGH(Xm[In],Ym′)

≤ dGH(Xm,Xm[In])+dGH(Xm[In],N
(r′,s′)
Y,n )

+ dGH(N(r′,s′)
Y,n ,Ym′)

≤ dX
H(Xm,Xm[In])+dI(Xm[In],N

(r′,s′)
Y,n )+ r′

Now, considering In such that dI(Xm[In],N
(r′,s′)
Y,n ) =

minIn⊂{1:m} dI(N(r,s)
Y,n ,Xm[In]), we find dGH(Xm,Ym′) ≤

dX
H(Xm,Xm[In])+dF(Xm,Ym′)+ r′.

Symmetrically, we also obtain for Jn such that
dI(Ym[Jn],N

(r,s)
X ,n ) = minJn⊂{1:m′} dI(N(r,s)

X ,n ,Ym′ [Jn])

dGH(Xm,Ym′) ≤ dY
H(Ym′ ,Ym′ [Jn])+dF(Xm,Ym′)+ r

Hence, dGH(Xm,Ym′) ≤ dF(Xm,Ym′) +

min
(

dX
H(Xm,Xm[In]), dY

H(Ym′ ,Ym′ [Jn])
)

+max(r,r′).

Let ∆X = dX
H(Xm,Xm[In]) and ∆Y = dY

H(Ym′ ,Ym′ [Jn]).
The computational procedure we infer is: If dF(Xm,Ym′)
is “large”we then know that dGH(X ,Y ) must also be
“large”with high probability. On the other hand, if
dF(Xm,Ym′) is “small”and min(∆X ,∆Y ) is also “small”
then dGH(X ,Y ) must also be “small.”

3.2. Working with Point Clouds

First, all we have is a finite sets of points, point clouds, sam-
pled from each metric space, and all our computations must
be based on these observations alone. Since we made the as-
sumption of randomness in the sampling (and it also makes
sense in general to model the problem in this way, given the
way shapes are acquired by a scanner for example), we must
relate the number of acquired points to the coverage prop-
erties we wish to have. In other words, and following our
theory above, we would like to say that given a desired prob-
ability p and a radius r, there exists a finite m such that the
probability of covering all the metric space with m balls (in-
trinsic or not) of radius r centered at those m random points
is at least p. This kind of characterizations are easy to deal
with in the case of submanifolds of IRd , where the tuning
comes from the curvature bounds available. For this we fol-
low arguments from [31]. Let Z be a smooth and compact
submanifold of IRd of dimension k. Let Zm ⊂ Z consist of
m i.i.d. points uniformly sampled from Z. Let K be an upper
bound for the sectional curvatures of Z. Then we can prove
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that for a sequence rm → 0 such that rm ?
ln m
m for large m,

P
(

dIRd

H
(Z,Zm) > rm

)
' 1

ln m .

Then, since one can also prove, [31], that for any z ∈ Z,
δ > 0 small, B(z,δ)∩ Z ⊂ BZ(z,CKδ), for some constant
CK > 1 depending only on metric properties of Z (curvatures
and diameter), we also find P

(
dZ

H
(Z,Zm) > rm

)
' 1

ln m .

This relation gives us some guidance regarding how many
points we must sample in order to have a certain covering ra-
dius, or to estimate the covering radius in terms of m. More
precise estimates can be found in the reference mentioned
above. The important point to remark is that this kind of re-
lations should hold for the family of shapes we want to work
with, therefore, once given bounds on the curvatures and di-
ameters which characterize the family, one can determine a
precise probabilistic covering relation for it. We leave the
exploitation of this idea for future work.

Given the natural number n � m (or eventually s > 0), we
use the procedure described in §3.3 below to find n-points
from Zm which constitute a covering of Zm of the given car-
dinality n (or of the given separation s) and of a resulting
radius r. We denote this set by N(r,s)

Zm,n ⊆ Zm.

3.3. Finding Coverings

In order to find the coverings, we use the well known Far-
thest Point Sampling (FPS) procedure, which we describe
next. Suppose we have a dense sampling Zm of the smooth
and compact submanifold of IRd (Z,dZ) as interpreted by the
discussion above. We want to simplify our sampling and ob-
tain a well separated covering net of the space. We also want
to estimate the covering radius and separation of our net. It is
important to obtain subsets which retain as best as possible
the metric information contained in the initial point cloud
in order to make computational tasks more treatable without
sacrificing precision.

We first show a procedure to sample the whole space Z.
Fix n the number of points we want to have in our simplified
point cloud Pn. We build Pn recursively. Given Pn−1, we se-
lect p ∈ Z such that dZ(p,Pn) = maxz∈Z dZ(z,Pn−1) (here
we consider of course, geodesic distances). There might ex-
ist more than one point which achieves the maximum, we
either consider all of them or randomly select one and add it
to Pn−1. This subsampling procedure has been studied and
efficiently implemented in [33] for the case of surfaces rep-
resented as point clouds.

Let us now assume that the discrete metric space (Zm,dZ)
is a good random sampling of the underlying (Z,dZ) in the
sense that dH(Z,Zm)≤ r with probability pr,m, as discussed
in Section §3.2. We then want to simplify Zm in order to
obtain a set Pn with n points which is both a good subsam-
pling and a well separated net of Z. We want to use our n
sampled points in the best possible way. We are then led to
using the construction discussed above. Choose randomly

one point p1 ∈ Zm and consider P1 = {p1}. Run the proce-
dure FPS until n−1 other points have been added to the set
of points. Compute now rn = maxq∈Zm dZ(q,Pn). Then, also
with probability pr,m, Pn is a (r + rn)-covering net of Z with
separation sn, the resulting separation of the net. Following
this, we now use the notation N((r+rn),sn)

Z,n .

We use a graph based distance computation following
[39], or the exact distance, which can be computed only
for certain examples (spheres, planes). We could also use
the techniques developed for triangular surfaces in [26], or,
being this the optimal candidate, the work on geodesics on
(noisy) point clouds developed in [31].

3.4. Additional Implementational Details

In this section we conclude the details on the implementa-
tion of the framework here proposed. The first step of the
implementation is the computation of dI and subsequently
dF , which from the theory we described before, bounds the
Gromov-Hausdorff distance.

We have implemented a simple algorithm. Considering
the matrix of pairwise geodesic distances between points of
Xm, we need to determine whether there exists a submatrix
of the whole distance matrix corresponding to Xm which has
a small dI distance to the corresponding matrix of a given

N(r′,s′)
Y,n . We select this latter net as the result of applying the

FPS procedure to obtain a subsample consisting of n points,
where the first two points are selected to be at maximal dis-
tance from each other. To fix notation, let Xm = {x1, . . . ,xm}

and N(r′ ,s′)
Y,n = {y j1 , . . . ,y jn}. We then use the following algo-

rithm.

(k = 1,2) Choose xi1 and xi2 such that |dX (xi1 ,xi2) −
dY (y j1 ,y j2)| is minimized.

(k > 2) Let xik+1 ∈ Xm be such that ek+1(xik+1) =
min1≤il≤m ek+1(xil ) where ek+1(xil ) :=
max1≤r≤k |dX (xil ,xir )−dY (y jk+1 ,y jr )|.

We stop when n points, {xi1 ,xi2 , . . . ,xin} have been selected,
and therefore a distance submatrix ((dX (xiu ,xiv)))

n
u,v=1, is

obtained. Since we can write dI({xi1 , . . . ,xin},N
(r′ ,s′)
Y,n ) =

1
2 max1≤k≤n max1≤t≤k−1 |dX (xik ,xit ) − dY (y jk ,y jt )| =
1
2 max1≤k≤n ek(xir ) we then see that with our algorithm
we are minimizing the error file-wise.

Of course, we now use the same algorithm to compute the
other half of dF . This algorithm is not computationally opti-
mal. We are currently studying computational improvements
along with error bounds for the results provided by the algo-
rithms.

4. Examples

We now present experiments that confirm the validity of the
theoretical and computational framework introduced in pre-
vious sections. In the future, we plan to make these experi-
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ments more rigorous, including concepts of hypothesis test-
ing. As a simplification, for our experiments we have only
computed dF neglecting the other terms (see §3.1) which
would provide a estimative of the Gromov-Hausdorff prox-
imity between the shapes.

We complemented the more complex data (as presented
below) with simple shapes: (1) A plane, Pπ = [− π√

8
, π√

8
]2

and (2) A sphere, S = {x ∈ IRd : ‖x‖ = 1}.

We first test our framework when X and Y are isometric.
We first consider X = Y and see whether we make the right
decision based on the discrete (random) measurements. Let
Xm and Ym be two independent sets composed of m indepen-
dent, uniformly distributed random points on X . In the case
of the sphere we generated this uniformly distributed sample
points using the method of Muller, see [42]. We consider X
to be either the plane Pπ or the sphere S as defined above.
Given n, from Xm and Ym, and using the FPS procedure, we
construct NXm,n and NYm,n (we omit the supraindices since
we won’t use the values of covering radius and separation),
and look for a metric match inside Xm and Ym, respectively,
following the algorithm described in §3.4 for the computa-
tion of dF(Xm,Ym). (Recall that actually dF(Xm,Ym) de-
pends on n, see its definition (5).) For each dataset we tested
for values of m ∈ M = {500,600, . . . ,2000} and n ∈ N =
{5,10,15, . . . ,100}, and obtained the results reported below.
In Table 1 we show the values of dF for selected values of
m and n. As expected, the values of dF are small compared
to D(Pπ) = D(S) = π (see below for the corresponding val-
ues when comparing non-isometric shapes). In Figure 1 (first
two figures) we show a pseudocolor representation of the re-
sults for dF .

We now proceed to compare shapes that are not isomet-
ric, starting with X = Pπ (a plane) and Y = S (a sphere). In
this case we expect to be able to detect, based on the finite
point clouds, that dF is large. Table 1 (see also last two fig-
ures of Figure 1), shows the results of a simulation in which
we compared the sphere S and the plane Pπ, varying the net
sizes and the total number of points uniformly sampled from
them. The experiments have been repeated 100 times to pro-
duce this table, and the reported values consist of the mean
of these 100 tests, as well as their maximum (the correspond-
ing deviation was 1.72×10−2). As expected, the values are
larger than when comparing plane against plane or sphere
against sphere.

We conclude the experiments with real (more complex)
data. We have 4 sets of shapes (the datasets were kindly
provided to us by Prof. Kimmel and his group at the Tech-
nion), each one with their corresponding bends. We ran the
algorithm N = 6 times with n = 70, m = 2000, using the
4 nearest neighbors to compute the geodesic distance using
the isomap engine. The data description and results are re-
ported in Table 2. We note not only that the technique is able
to discriminate between different object, but as expected, it
doesn’t get confused by bends. Moreover, the distances be-

n\m 500 900 1500 1900

5 0.036793 0.015786 0.018160 0.0074027
25 0.041845 0.050095 0.026821 0.031019
45 0.081975 0.042198 0.038990 0.036376
65 0.068935 0.052482 0.035718 0.031512
85 0.077863 0.038660 0.036009 0.036894

n\m 500 900 1500 1900

5 0.013282 0.013855 0.010935 0.013558
25 0.082785 0.043617 0.033095 0.033592
45 0.074482 0.067096 0.057161 0.040727
65 0.079456 0.076762 0.049503 0.043405
85 0.083577 0.083344 0.058094 0.054144

n\m 500 1000 1500 2000

10 1.839× 10−1 1.902× 10−1 1.931× 10−1 1.942× 10−1

25 1.834× 10−1 1.908× 10−1 1.920× 10−1 1.944× 10−1

50 1.818× 10−1 1.899× 10−1 1.925× 10−1 1.933× 10−1

75 1.873× 10−1 1.882× 10−1 1.936× 10−1 1.939× 10−1

100 1.846× 10−1 1.913× 10−1 1.924× 10−1 1.936× 10−1

Table 1: Table with values of dF for a plane (top), a sphere
(middle), and a plane against a sphere (bottom).

tween a given object and the possible bends of another one
are very similar, as it should be for isometric invariant recog-
nition.

5. Conclusions

A theoretical and computational framework for comparing
manifolds (metric spaces) given by point clouds was intro-
duced in this paper. The theoretical component is based on
the Gromov-Hausdorff distance, which has been extended
and embedded in a probabilistic framework to deal with
point clouds and computable distances. Examples support-
ing this theory were provided. We are currently working on
improving the computational efficiency of the algorithm and
comparing high dimensional point clouds with data from im-
age sciences and neuroscience.
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