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IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

GUILLERMO SAPIRO, ADVISER

MAY 2005



Acknowledgments

I would like to express my gratitude to my adviser Guillermo Sapiro for his guidance, encouragement and

support. Thanks to Beto, Kedar, Diego, Liron, Anish, Omar, Marcelo, Pierre, Alejandro and Carsten for

intersting conversations, not only research. Also to Bonnie, Dalia and Guillermo for taking care of me. To

my teachers at the U of MN, I learned a lot from S. Bobkov, R. Gulliver, C. Leung and O. Zeitouni. Gregory

Randall provided an environment where a lot of people from my generation were able to start doing research

in Uruguay, my thanks to him. Many thanks to IPAM, CSIC-Uruguay and IIE-UdelaR.

i



A Blanca, la Nona y Cacha.

ii



Abstract

In this work we have tried to solve several problems from Shape Theory. We have dealt with the estimation

of certain intrinsic quantities defined on submanifolds of Euclidean space, as well as with the use of this

information to perform shape comparison and alignment. We have also approached the problem of surface

warping and smoothing of information defined on implicit surfaces. Examples are shown and future lines

of research are suggested to both improving the performance and extending reach of the techniques here

introduced.
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Chapter 1

Introduction

The work presented in this thesis is comprised of several pieces. The different problems approached are of

practical nature and as a result there are some data that must be processed. The problems dealt with involve

considering a certain geometrical structure which, in its most basic form, is a surface in IR3. We think of

this strucutre as of the underlying entity. These structures are assumed to be given to us in either of two

ways: Implicitely or as Point Clouds. The former means that the surface is the zero level set of a certain

function φ : IR3 → IR, and the latter means that the input we get is just a finite set of points sampled from

the surface (or around the surface) according to a certain probability law.

Some of the problems are about trying to extract certain kinds of information about the underlying sur-

faces from the discrete data. Some examples are dimensionality, topology, curvatures and geodesic distances

and shortest paths bewteen any two points. In this thesis we have considered the extraction of what we

believe is a fundamental kind of information: metric information, that is, geodesic distances and shortest

paths. In some situations one may be interested in comparing two objects based on certain metric charac-

teristics of each of them. When we compare, we most often need to the put things we are comparing in

correspondence with one another. In this thesis we have also considered these two problems. We can say

therefore that the problems here dealt with are of metric nature. Roughly speaking, we could say that we

first estimate the metrics of the underlying structures, use this information to put them into correspondence

and then compare them.

Part I first briefly discusses work done during my Masters which revolved around trying to compute

intrinsic distance functions and geodesics on surfaces represented implicitly. This was extended during my

PhD to deal with (1) submanifolds of any Euclidean space given either implicitely or (2) as a Point Clouds.

In Chapter 4 the results of these extensions are presented. When dealing with point cloud data it turns out

that in order to prove (probabilisitic) convergence of the estimated quantity to the real one it suffices to

guarantee that certain random coverings defined by these point cloud data converge, in an appropiate sense,

to the underlying structure. This is explored in Chapter 3 and then used in Chapter 4.

As an application of the framework here proposed for intrinsic distance computation, my advisor suggested

considering the problem of comparing two surfaces given as point clouds in a manner invariant to general

isometries. In more detail, the idea was to consider the matrices with elements corresponding to the intrinsic

1



distance between pairs of points on each point cloud and then compare them in some way so as to obtain

a measure of similarity. The search for an appropiate framework for this led to the work presented in

Chapter 5.

Part II presents work dealing mainly with applications to Brain Imaging. This is also work on a problem

proposed to me by my advisor a long time ago. The idea is that among the different tasks that must

be performed by researchers who study the behaviour of the brain across populations, we encounter the

problem of having to map different brain surfaces into a common, standard, brain surface. This is known as

Brain Warping in the specialized literature. This is useful when a study has been performed on a number

of subjects and these need to be compared. Imagine that as the consequence of the study we obtain the

surface of the brain colored in a certain way, perhaps representing activity of the corresponding cortical area.

Then, in order to simplify comparative studies, it seems reasonable to map all the brains to a fixed shape,

for example a sphere or the standard brain alluded to above, and then color the target surface with the

coloring inherited through the mapping (from the coloring in the domain). It is necessary to require that

these mappings achieve low distorsion in some convenient sense. Also, it turns out that there are structures

on the brain surface that are stable across subjects, and should be used to specify restrictions to search

for the low distorsion mappings. As an initial attempt at the solution I worked on the object of Chapter 6

which proposes a more or less general framework for solving variational problems on implicit surfaces. In

this case, we assume that we have data defined on the surface which takes values on another manifold also

represented implicitly. This has clear connections with problem of Brain Warping mentioned above. We

obtain a set of equations that while defined on the whole Euclidean space, are intrinsic to the implicitly

defined target manifold and map into it. This permits the use of classical numerical techniques in Cartesian

grids, regardless of the geometry of the target manifold. The extension to open domain surfaces and target

submanifolds is addressed as well. In the latter case, the submanifold is defined as the intersection of two

higher dimensional hypersurfaces, and all the computations are restricted to this intersection. Examples of

the applications of the framework described in Chapter 6 include harmonic maps in liquid crystals, where

the target manifold is a hypersphere; probability maps, where the target manifold is a hyperplane; chroma

enhancement; texture mapping; and general geometric mapping between high dimensional manifolds.

Later in time, I returned to the problem and Chapters 7 and 8 are the results of that effort. Chapter

7 discusses a couple different applications of both the geodesic distance computation algorithms and the

Harmonic Maps framework presented in previous chapters.

In Chapter 8 we return to the problem of Brain Warping with new tools. For this new approach,

Minimizing Lipschitz Extensions are considered and the representation of the surfaces is based on Point

Clouds. The basic concept is to compute a map between surfaces that minimizes a distortion measure based

on geodesic distances while respecting the boundary conditions provided. In particular, the global Lipschitz

constant of the map is minimized. This framework allows generic boundary conditions to be applied and

allows direct surface-to-surface warping. It avoids the need for intermediate maps that flatten the surface

onto the plane or sphere, as is commonly done in the literature on surface-based non-rigid brain image

registration. The presentation of the framework is complemented with examples on synthetic geometric

phantoms and cortical surfaces extracted from human brain MRI scans.

Chapter 9 is the concluding chapter where we have tried to summarize the main concepts introduced in
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this work and discuss possible extensions.

1.1 Data Representation

Next, we discuss the two types of data representations we have worked with and their relation to the different

chapters in the thesis.

1.1.1 Implicit Surfaces

The implicit representation of surfaces, here introduced for solving variational problems and PDEs on sur-

faces, is inspired in part by the level-set work of Osher and Sethian [159]. This work, and those that followed

it, showed the importance of representing deforming surfaces as level-sets of functions with higher dimen-

sional domains, obtaining more robust and accurate numerical algorithms (and topological freedom). Note

that, in contrast with the level-set approach of Osher and Sethian, our manifolds are fixed.

Solving PDEs and variational problems with polynomial meshes involves the non-trivial discretization of

the equations in general polygonal grids, as well as the difficult numerical computation of other quantities like

projections onto the discretized surface (when computing gradients and Laplacians for example). Although

the use of triangulated surfaces is quite popular, there is still no consensus on how to compute simple

differential characteristics such as tangents, normals, principal directions, and curvatures. On the other

hand, it is commonly accepted that computing these objects for iso-surfaces (implicit representations) is

simpler and more accurate and robust. This problem becomes even more significant when not only do we

have to compute these first and second order differential characteristics of the surface, but also have to use

them to solve variational problems and PDEs for data defined on the surface. Very little work has been done

on the formal analysis of finite difference schemes on non-Cartesian meshes.1 Note also that working with

polygonal representations is dimensionality dependent, and solving these equations for high dimensional

(> 2) surfaces becomes even more challenging and significantly less studied. In Chapter 2 we propose a

solution for the problem of estimating weighted intrinsic functions on implicit surfaces. We assume that the

implicitating function is in fact the distance to the surface. In Chapter 6 we propose a framework for solving

certain variational problems on implicit surfaces via their associated time dependent PDEs, i.e. trough a

gradient descent procedure.

The works developed in chapters 2 and 6 are valid for hypersurfaces. In Chapter 6 we also show how

to extend the initial framework there introduced to Submanifolds by representing this structure as the

intersection of implicit hypersurfaces. Also, in the first sections of Chapter 4 we extend the ideas presented

in Chapter 2 to any submanifold of euclidean space.

Note that the computational cost of working with implicit representations is not higher than with meshes,

since all the work is performed in a narrow band around the level-set(s) of interest.

The framework of implicit representations enables us to perform all the computations on the Cartesian

grid corresponding to the embedding function. These computations are, nevertheless, intrinsic to the surface.

In Appendix B.3 we provide a dictionary that explains how to compute and intrinsic differential operation

1Very important work has been done for finite element approaches, e.g., by the group of Prof. M. Rumpf; as well as for
particular equations on particular sub-division representations [14].
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on a function f by using extrinsic differentials of both f and the implicitating function. Advantages of using

Cartesian grid instead of a triangulated mesh include the availability of well studied numerical techniques

with accurate error measures and the topological flexibility of the surface, all leading to simple, accurate,

robust and elegant implementations.

Numerical schemes that solve gradient descent flows and PDEs onto generic target manifolds N (and

spheres or surfaces in particular) will, in general, move the points outside of N due to numerical errors. The

points will then need to be projected back,2 see for example [4, 171] for the case of N being a sphere (where

the projection is trivial, just a normalization). For general target manifolds, this projection means that for

every point p ∈ IRd (N ⊂ IRd) we need to know the closest point to p in N. This means knowing the distance

from every point p ∈ IRd to N (or at least all points in a band of N). This is nothing else than an implicit

representation of the target N, being the particular embedding in this case a distance function. This presents

additional background for the framework here introduced, that is, if the embedding function for the surface

has to be computed anyway for the projection, why not use it from the beginning if it helps in other steps

in the computation?

In a number of applications, surfaces are already given in implicit form, e.g., [33], therefore, the framework

introduced in Chapter 6 is not only simple and robust, but it is also natural in those applications. Moreover, in

the state-of-the-art and most commonly used packages to obtain 3D models from range data, the algorithms

output an implicit (distance) function (see for example [170]). Therefore, it is very important, if nothing else

for completeness, to have the computational framework here developed, so that the surface representation

is dictated by the data and the application and not the other way around. On the other hand, not all

surfaces (manifolds) are originally represented in implicit form. When the target manifold N is simple, like

hyper-spheres in the case of liquid crystals, the embedding process is trivial. For generic surfaces, we need to

apply an algorithm that transforms the given explicit representation into an implicit one. Although this is

still a very active area of research, many very good algorithms have been developed, e.g., [63, 174, 122, 215].

Note that this translation needs to be done only once for any surface.

1.1.2 Point Clouds

Point clouds are one of the most primitive and fundamental shape representations. One of the most popular

sources of point clouds are 3D shape acquisition devices, such as laser range scanners, with applications

in geoscience, art (e.g., archival), medicine (e.g., prothestetics), manufacturing (from cars to clothes), and

security (e.g., recognition), among other disciplines. These scanners provide in general raw data in the form

of (noisy) unorganized point clouds representing surface samples. With the increasing popularity and very

broad applications of this source of data, it is natural and important to work directly with this representation,

without having to go to the intermediate step of fitting a surface to it (step that can add computational

complexity and introduce errors). See for example [20, 57, 61, 88, 133, 162, 163] for a few of the recent

works with this type of data. Note that point clouds can also be used as primitives for visualization, e.g.,

[23, 88, 173], as well as for editing [218].

Another important field where point clouds are found is in the representation of high-dimensional man-

2For particular flat target manifolds as the whole space IRd or as those in [161], the projection is not needed. Other authors,
e.g., [35, 118], have avoided the projection step for particular cases, while in [201] the authors modify the given variational
formulation, in some restricted cases, to include the projection step.
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ifolds by samples. This type of high-dimensional and general co-dimension data appears in almost all

disciplines, from computational biology to image analysis to financial data. Due to the extremely high di-

mensions, it is impossible to perform manifold reconstruction, and the work needs to be done directly on the

raw data, meaning the point cloud.

A variety of objects/shapes are then naturally represented as point clouds in IRd. It is thereby important

to be able to derive basic properties of the shape, such as topolgy, geodesic distances and curvatures,

directly from this representation. Also, one is often presented with the fundamental problem of having to

decide whether two of those point clouds, and their corresponding underlying objects or manifolds, represent

the same geometric structure or not (object recognition and classification). We are then concerned with

questions about the underlying unknown structures (objects), which need to be answered based on discrete

and finite measures taken between their respective point clouds. In greater generality, we wonder what is

the structural information we can gather about the object itself by exploring the point cloud by which the

object is represented. Examples include intrinsic distances, curvatures, normals (see [149]), dimension (see

[51]), spectrum of differential operators such as the intrinsic Laplacian (see [125] and references therein), and

topological invariants (see [47, 31, 155]).

Chapter 3 is devoted to setting some basic modelling assumptions and to presenting some basic results

which will be used in later sections. These results comprise mostly bounds on the probability of coverage

of a submanifold of IRd by Euclidean balls whose centers are distributed on (or around) the submanifold

according to a certain probability measure. This probability measure, for example in the case of shapes

acquired by a 3D scanner, models the acquisition process itself.

Chapter 4 addresses one of the most fundamental operations in the study and processing of sub-manifolds

of Euclidean space: The computation of intrinsic distance functions and geodesics. We show that this can be

done by working directly with the point cloud, without the need for reconstructing the underlying manifold.

The results are valid for general dimensions and co-dimensions, and for manifolds with or without boundary.

These results include the analysis of noisy point clouds obtained from sampling the manifold and are based

on the ideas presented in Chapter 2.

In Chapter 5, a geometric framework for comparing manifolds given by point clouds is presented. The

underlying theory is based on Gromov-Hausdorff distances, leading to isometry invariant and completely

geometric comparisons. This theory is embedded in a probabilistic setting as derived from random sampling

of manifolds, and then combined with results on matrices of pairwise geodesic distances to lead to a com-

putational implementation of the framework. The theoretical and computational results here presented are

complemented with experiments for three dimensional shapes.

1.2 Collaborations

The work presented in this thesis is mainly joint with my advisor, Prof. Guillermo Sapiro. Below is a detailed

list of co-autorships for the work presented in the different core chapters of this thesis.

Chapter 2

Joint with G. Sapiro.
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Chapter 4

Joint with G. Sapiro.

Chapter 5

Joint with G. Sapiro.

Chapter 6

Joint with G. Sapiro and S. Osher.

Chapter 7

Joint with G. Sapiro and P. Thompson.

Chapter 8

Joint with G. Sapiro and P. Thompson.
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7



Chapter 2

Distance Functions on Implicit

Manifolds

Figure 2.1: Distance map from a point on a portion of white/gray matter boundary of the cortex.
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2.1 Introduction

Computing distance functions has a number of applications in numerous areas including mathematical

physics, image processing, computer vision, robotics, computer graphics, computational geometry, opti-

mal control, and brain research. In addition, having the distance function from a seed to a target point, it

is straightforward to compute the corresponding geodesic path, since this is given by the gradient direction

of the distance function, back propagating from the target toward the seed (see for example [45]). Geodesics

are used for example for path planning in robotics [129], brain flattening and brain warping in computational

neuroscience [195, 194, 200, 203, 217], crests, valleys, and silhouettes computations in computer graphics

and brain research [16, 115, 208], mesh generation [210], and many applications in mathematical physics.

Distance functions are also very important in optimal control [199] and computational geometry for compu-

tations such as Voronoi diagrams and skeletons [169]. It is then of extreme importance to develop efficient

techniques for the accurate and fast computations of distance functions. It is the goal of this chapter to

present a computationally optimal technique for the computation of intrinsic weighted distance functions on

implicit hyper-surfaces. It is well-known already, and it will be further detailed below, that these weighted

distances can be obtained as the solution of simple Hamilton-Jacobi equations.

Figure 2.2: Distance map from one seed point on a knot. In this picture we evidence that the algorithm works well
for quite convoluted geometries (as long as h is properly chosen). Note how points close in the Euclidean sense but
far away in the intrinsic sense receive very different colors, indicating their large (intrinsic) distance.
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2.1.1 Distance Function Computation and its Hamilton-Jacobi Formulation

Before proceeding, let us first formally define the concept of intrinsic weighted distances on implicit hyper-

surfaces. Let S be a (codimension 1) hyper-surface in IRd defined as the zero level set of a function ψ :

IRd → IR. That is, S is given by {x ∈ IRd : ψ(x) = 0}. We assume from now on that ψ is a signed distance

function to the surface S. (This is not a limitation, since as we will discuss later, both explicit and implicit

representations can be transformed into this form.) Our goal is, for a given point p ∈ S, to compute the

intrinsic g-weighted distance function dg
S
(p, x) for all desired points x ∈ S.1 Note that we are referring to the

intrinsic g-distance, that is, the geodesic distance on the Riemannian manifold (S, g2II) (II stands for the

(d− 1)× (d− 1) identity matrix) and not on the embedding Euclidean space. For a given positive weight g

defined on the surface (we are considering only isotropic metrics for now), the g-distance on S (that coincides

with the geodesic distance of the Riemannian manifold (S, g2II)) is given by

dg
S
(p, x)

4
= inf

Cpx[S]
{Lg(C)} (2.1)

where

Lg{C} 4
=

∫ b

a

g (C(l)) ‖Ċ(l)‖ dl (2.2)

is the weighted length functional defined for piecewise C1 curves C : [a, b] → S, and Cpx[S] denotes the set of

curves piecewise C1 joining p to x, traveling on S. In general we will consider the definition to be valid for

any g̃ defined over the domain that the curve may travel through.

We need to compute this distance when all the concerning objects are represented in discrete form in

the computer. Computing minimal weighted distances and paths in graph representations is an old problem

that has been optimally solved by Dijkstra [58]. Dijkstra showed an algorithm for computing the path in

O(n log n) operations, where n is the number of nodes in the graph. The weights are given on the edges

connecting between the graph nodes, and the algorithm is computationally optimal. In theory, we could

use this algorithm to compute the weighted distance and corresponding path on polygonal (not implicit)

surfaces, with the vertices as the graph nodes and the edges the connections between them (see [120]). The

problem is that the optimal paths computed by this algorithm are limited to travel on the graph edges, giving

only a first approximation of the true distance. Moreover, Dijkstra’s algorithm is not a consistent one: it will

not converge to the true desired distance when the graph and grid is refined [147, 148]. The solution to this

problem, limited to Cartesian grids, was developed in [99, 178, 179, 199] (and recently extended by Osher

and Helmsen, see [158]). Tsitsiklis first described an optimal-control type of approach, while independently

Sethian and Helmsen both developed techniques based on upwind numerical schemes. The solution presented

by these authors is consistent and converges to the true distance [172, 199], while keeping the same optimal

complexity of O(n log n). This work was later extended in [117] for triangulated surfaces (see also [16, 124]

for related works on numerics on non-Cartesian grids). We should note that the algorithm developed in [117]

is currently developed only for triangulated surfaces with acute triangles. Therefore, before the algorithm

can be applied, as an initialization step the surfaces have to be pre-processed to remove all obtuse triangles

or other polygons present in the representation [119]. Following [179], we call these fast marching algorithms.

The basic idea behind the computationally optimal techniques for finding weighted distances, fast march-

1This can certainly be extended to any subset of S.
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ing algorithms, is to note that the distance function satisfies a Hamilton-Jacobi Partial Differential Equation

(PDE) in the viscosity sense; see for example [138, 175] for the general topic of distance functions on Rie-

mannian manifolds (and a nice mathematical treatment), and [27, 75, 119, 160, 159, 179] for the planar (and

more intuitive) case. This Hamilton-Jacobi equation is given by

‖∇Sd
g
S
‖ = g (2.3)

where ∇S is the gradient intrinsic to the surface, and dg
S

is the g-distance from a given seed point to the rest

of the manifold.2

That is, we can transform the problem of optimal distance computation into the problem of solving a

Hamilton-Jacobi equation (recall that g is known, it is the given weight), also known as the Eikonal equation.

In order to solve this equation, the current state of knowledge permits us to accurately and optimally (in

a computational sense) find (weighted) distances on Cartesian grids as well as on particular triangulated

surfaces (after some pre-processing, namely the elimination of obtuse triangles, see [15, 117]). The goal of

this chapter is to extend this to implicit hyper-surfaces.

Recall that although all the computational examples in this chapter will be presented for 3D surfaces,

the theory is valid for any d-dimensional hyper-surfaces, and will then be presented in this generality.

2.1.2 Distance Function and Geodesics on Implicit Surfaces

The motivations behind extending the distance map calculation to implicit surfaces are numerous: a) in

many applications, surfaces are already given in implicit form, e.g., [19, 33, 40, 174, 158, 159, 180, 214, 208],

and there is then a need to extend to this important representation the fast techniques previously mentioned.

We could of course triangulate the implicit surface, eliminate obtuse triangles, and then use the important

algorithm proposed in [117]. This is not a desirable process in general when the original data is in implicit

form, since it affects the distance computation accuracy due to errors from the triangulation, and also adds

the computational cost of the triangulation itself, triangulation that might not be needed by the specific

application. If for example all what it is needed is to compute the distance between a series of points

on the surface, the computational cost added by the triangulation is unnecessary. Note that finding a

triangulated representation of the implicit surface is of course dimensionality dependent, and adds the errors

of the triangulation process. Moreover, accurate triangulations that ensure correctness in the topology are

computationally expensive, and once again there is no reason to perform a full triangulation when we might

be interested just in the intrinsic distance between a few points on the implicit surface. b) it is a general

agreement that the work on implicit representations and Cartesian grids is more robust when dealing with

differential characteristics of the surface and partial differential equations on it. Numerical analysis on

Cartesian grids is much more studied and supported by fundamental results than the work on polygonal

surfaces. It is even recognized that there is no consensus about how to compute basic differential quantities

over a triangulated surface, see for example [135], although there is quite an agreement for implicit surfaces.

Moreover, representing an hyper-surface with structured elements such as triangles is certainly difficult for

dimensions other than 2 or 3. c) if the computation of the distance function is just a part of a general

2Note that ∇S and dg
S

become the classical gradient and distance respectively for Euclidean spaces.
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algorithm for solving a given problem, it is not elegant, accurate, nor computationally efficient to go back

and forth from different representations of the surface.

Before proceeding, we should note that although the whole framework and theory is here developed

for implicit surfaces, it is valid for other surface representations as well after pre-processing. This will be

explained and discussed later in the chapter (§2.5). Moreover, we will later assume that the embedding is

a distance function. This is not a limitation, since many algorithms exist to transform a generic embedding

function into a distance one; see also §2.5. Therefore, the framework here presented can be applied both to

implicit (naturally) and other surface representations like triangulated ones.

In order to compute intrinsic distances on surfaces, a small but important number of techniques have been

reported in the literature. As mentioned before, in a very interesting work Kimmel and Sethian extended

the fast marching algorithm to work on triangulated surfaces. In its current version, this approach can only

be used when dealing with 3D triangulated surfaces and its extension to deal with higher dimensions seems

very involved. Moreover, it can only correctly handle acute triangulations (thereby requiring a pre-processing

step). And of course, it doesn’t apply to implicit surfaces without some pre-processing (a triangulation).

Another very interesting approach to computing intrinsic distances, this time working with implicit

surfaces, was introduced in [40]. This will be further described below, but before that let’s make some

comments on it. First, this is an evolutionary/iterative approach, whose steady state gives the solution

to the corresponding Hamilton-Jacobi equation. Therefore, this approach is not computationally optimal

for the class of Hamilton-Jacobi equations discussed in this chapter (although when properly implemented

the computational complexity of this iterative scheme is the same as in the fast marching method here

proposed, the inner loop is more complex, making the iterative algorithm slower).3 Second, very careful

discretization must be done to the equation proposed in [40] due to the presence of intrinsic jump functions

that might change the zero level-set (i.e., the surface). On the other hand, the numerical implementation

is not necessarily done via the utilization of monotone schemes, as required by our approach and all the

fast marching techniques previously mentioned (thereby having a theoretical error Θ(
√

∆x) [53]), and better

accuracy might then be obtained.

In order to compute the intrinsic distance on an implicit surface, we must then solve the corresponding

Hamilton-Jacobi equation presented before. In order to do this in a computationally efficient way, we need

to extend the fast marching ideas in [99, 158, 178, 179, 199], which assume a Cartesian grid, to work in our

case. Since an implicit surface is represented in a Cartesian grid, corresponding to the embedding function,

the first and most intuitive idea is then to attempt to solve the intrinsic Eikonal equation using the fast

marching technique. The first step towards our goal is to express all the quantities in the intrinsic Eikonal

equation by its implicit-extended representations. What we mean is that the intrinsic problem (we consider

g = 1 for simplicity of exposition)

{
‖∇S dS(x)‖ = 1 for p ∈ S

dS(p) = 0.
(2.4)

with p ∈ S the seed point, is to be extended to all IRd (or at least to a band surrounding S), and the derivatives

3The general framework introduced in [40] is applicable beyond the Hamilton-Jacobi equations discussed in this chapter (see
also [134, 39]). Here we limit the comparison between the techniques to the equations were both approaches are applicable.
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are to be taken tangentially to {ψ = 0}. Considering then the projection of the Euclidean gradient onto the

tangent space of S to obtain the intrinsic one, and denoting by d̂ the Euclidean extension to the intrinsic

distance dS, we have to numerically solve, in the embedding Cartesian grid, the equation

{
‖∇d̂(x)‖2 − |∇d̂(x) · ∇ψ(x)|2 = 1 for x ∈ IRd

d̂(l(p)) = 0.
(2.5)

where l(p) is the ray through p normal to the level sets of ψ.

This is exactly the approach introduced in [40], as discussed above, to build-up the evolutionary approach,

given by the following PDE:

φt + sgn(φ0)
(√

‖∇φ‖2 − |∇φ · ∇ψ|2 − 1
)

= 0 (2.6)

where φ0(x) = φ(x, 0) is the initial value of the evolving function, generally a step-like function (convolved

with the signum) that tells inside from outside of the zero level-set. One then finds d̂(·) = φ(·,∞).

Of course, in order to obtain a computationally optimal approach, we want to solve the stationary problem

(2.5), and not its iterative counterpart (2.6). It turns out that the basic requirements for the construction

of a fast marching method, even with the recent extensions in [158], do not hold for this equation. This can

be explicitly shown, and has also been hinted by Kimmel and Sethian in their work on geodesics on surfaces

given as graphs of functions.4

To recap, the fast marching approach cannot be directly applied to the computation of intrinsic distances

on implicit surfaces defined on a Cartesian grid (equation (2.5)), and the state of the art in numerical analysis

for this problem says that in order to compute intrinsic distances one has either to work with triangulated

surfaces or has to use the iterative approach mentioned above. The problems with both techniques were

reported before, and it is the goal of this chapter to present a third approach that addresses all these

problems.

2.1.3 Our Contribution

The basic idea here presented is conceptually very simple. We first consider a small h offset of S. That is,

since the embedding function ψ is a distance function, with S as its zero level set, we consider all points x in

IR3 for which |ψ(x)| ≤ h. This gives a region in IRd with boundaries. We then modify the (Cartesian) fast

marching algorithm mentioned above for computing the distance transform inside this h-band surrounding S.

Note that here, all the computations are as in the works in [99, 178, 179, 199], in a Cartesian grid. We then

use this Euclidean distance function as an approximation of the intrinsic distance on S. In §2.2 we show that

the error between these two distances, under reasonable assumptions on the surface S, is of the same order

as the numerical error introduced by the fast marching algorithms in [99, 178, 179, 199].5 Therefore, when

adapting these algorithms to work on Euclidean spaces with boundary, adaptation described in §2.3, we

obtain an algorithm for the computation of intrinsic distances on implicit surfaces with the same simplicity,

4We have also benefited from private conversations with Stan Osher and Ron Kimmel to confirm this claim.
5In contrast with works such as [1, 165], where an offset of this form is just used to improve the complexity of the level-sets

method, in our case the offset is needed to obtain a small error between the computed distance transform and the real intrinsic
distance function, see next Section.
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computational complexity, and accuracy as the optimal fast marching techniques for computing Euclidean

distances on Cartesian grids.6 In §2.3 we also explicitly discuss the numerical error of our proposed technique.

Examples of the algorithm here proposed are given in Chapters 4 and 7. Since Osher and Helmsen have

recently shown that the fast marching algorithm can be used to solve additional Hamilton-Jacobi equations,

we show that the framework here proposed can be applied to equations from that class as well; this is done

in §2.5. This section also discusses the use of the framework here presented for non-implicit surfaces. Finally,

some concluding remarks are given in §2.6.

2.2 Distance Functions: Intrinsic vs. Extrinsic

The goal of this section is to present the connection between the intrinsic distance function and the Euclidean

one computed inside a band surrounding the (implicit) surface. We will completely characterize the difference

between these two functions, mainly based on results on shortest paths on manifolds with boundary. The

results here presented will justify the use of the Cartesian fast marching algorithms also for the computation

of intrinsic weighted distances on implicit surfaces.

Recall that we are dealing with a closed hyper-surface S in IRd represented as the zero level-set of a

distance function ψ : IRd → IR. That is, S = {ψ = 0}. Our goal is to compute a g-weighted distance map

on this surface from a seed point q ∈ S. Let

Ωh
4
=
⋃

x∈S

B(x, h) = {x ∈ IRd : |ψ(x)| ≤ h}

be the h-offset of S (here B(x, h) is the ball centered at x with radius h). It is well known that for a smooth

S, ∂Ωh is also smooth if h is sufficiently small, see Chapter A for references. Ωh is then a manifold with

smooth boundary.

Our computational approach is based on approximating the solution of the intrinsic problem (dg
S
(p) is

the intrinsic g-weighted distance on S).

{
‖∇S d

g
S
(p)‖ = g for p ∈ S

dg
S
(q) = 0.

(2.7)

by that of the Euclidean (or extrinsic) one:

{
‖∇dg̃Ωh(p)‖ = g̃ for p ∈ Ωh

dg̃Ωh(q) = 0.
(2.8)

where g̃ is a smooth extension of g in a domain containing Ωh, and dg̃Ωh(p) is the Euclidean g̃-weighted

distance in Ωh. Our goal is to be able to control, for points on S, ‖dg
S
− dg̃Ωh |‖L∞(S) with h. Note that we

have replaced the intrinsic gradient ∇S by the Euclidean one and the intrinsic distance dg
S
(p) on the surface

by the Euclidean distance dg̃Ωh (p) in Ωh. We have then transformed the problem of computing an intrinsic

distance into the problem of computing a distance in an Euclidean manifold with boundary.

6Although in this chapter we deal with the fast marching techniques, other techniques for computing distance functions
on Cartesian grids, e.g., the fast technique reported in [24] for uniform weights, could be used as well, since the basis of our
approach is the approximation of the intrinsic distance by an extrinsic one.
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We will show that under suitable (and likely) geometric conditions on S we can indeed control ‖dg
S
−

dg̃Ωh‖L∞(S) with h. In order to materialize this, we first need to briefly discuss the extension g̃ and to review

some basic background material on Riemannian manifolds with boundary.

2.2.1 The Extension of the Weight g

We require that g̃|S = g, and that g̃ is smooth and non-negative within Ωh. There are situations when

one has a readily available extension, and others where the extension has to be “invented.” We call the

former natural extension and the latter general extension. Both cases, as argued below, will provide smooth

functions g̃.

In many applications the weight g : S → IR depends on the curvature structure of the hyper-surface.

Denoting BS(·) : S → IRd×d the second fundamental form of S, and Λ (BS(x)) the set of its eigenvalues, this

means that

g(x) = F (Λ (BS(x))

where F is a given function. In this case it is utterly natural to take advantage of the implicit representation

by noting that BS(x) = Hψ |TxS
(x) for x ∈ S, where Hψ is the Hessian of ψ and TxS is the tangent space to

S at x (see [130]). The natural extension then becomes

g̃(x) = F (Λ(Hψ |TxS(x)
(x))), x ∈ Ωh (2.9)

where S(x)
4
= {y ∈ IRd : ψ(y) = ψ(x)}

This extension is valid for {x ∈ IRd : |ψ(x)| < 1/MS}, where MS absolutely bounds all principal curvatures

of S, see Chapter A.

When the weight g cannot be directly extended to be valid for a tubular neighborhood of the hyper-

surface, one has to do that in a pedestrian way. One such extension comes from propagating the values of g

along the normals of S in a constant fashion, i.e.:

g̃(x) = g(ΠS(x)), x ∈ Ωh (2.10)

where ΠS(·) : IRd → S stands for the normal projection onto S. This extension is well defined and smooth as

long as there is a unique foot in S for every x in the domain of the desired extension Ω. Taking h sufficiently

small we can guarantee that Ω ⊃ Ωh if S is smooth. See Chapter A for some details.

In practice this extension can be accomplished solving the equation [38]

φt + sgn(ψ) ∇ψ · ∇φ = 0

with initial conditions given by any φ(·, 0) such that φ(·, 0)|S = g. Then g̃(·) 4
= φ(·,∞).
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2.2.2 Shortest Paths and Distance Functions in Manifolds with Boundary

Since we want to approximate the problem of intrinsic distance functions by a problem of distance functions

in manifolds with boundary, and to prove that the latter converges to the former, we need to review basic

concepts on this subject. We will mainly include results from [2, 3, 209]. We are interested in the existence

and smoothness of the geodesic curves on manifolds with boundary, since our convergence arguments below

depend on these properties. We will assume throughout this section that (M,m) is a connected and complete

Riemannian manifold with boundary (this will later become the h-offset Ωh with the metric g̃2II , where II

now stands for the d× d identity matrix).

Definition 1 Let p, q ∈ M, then if dM(·, ·) : M × M → IR is the distance function in M (with its metric

m), a shortest path between p and q is a path joining them such that its Riemannian length equals dM(p, q).

Now, since M is complete, for every pair of points p and q there exists a shortest path joining them, see

[2]. The following results deal with the regularity of this shortest path.

Theorem 1 Let (M,m) be a C3 manifold with C1 boundary B. Then any shortest path of M is C1.

When (M,m) is a flat manifold (i.e. M is a codimension 0 subset of IRd and the metric m is isotropic

and constant), it is easy to see that any shortest path must be a straight line whenever it is in the interior

of M, and a shortest path of the boundary B when it is there.

It might seem a bit awkward that one cannot achieve a higher regularity class than C1 for the shortest

paths, even by increasing the regularity of M ∪ B, but a simple counterexample will convince the reader.

Think of M as IR2 with the open unit disc removed, see Figure 2.3, and its Euclidean metric. Let γ be

one arc-length parameterized shortest path joining A and B. Then, the acceleration γ̈ is ~0 in all the open

segment (AP ) , and in all the open arc (PQ) is −~er, that is, it points inwards, and has modulus 1. That is,

even in most simple examples, C2 regularity is not achievable. It is, however, very easy to check that in this

case γ̇ is actually Lipschitz.

Remark 1 For the general situation, in [3, 139] the authors proved that shortest paths do have Lipschitz

continuous first derivatives, which means that in fact shortest paths are twice differentiable almost everywhere

by Rademacher’s Theorem. This fact will be of great importance below.

For a more comprehensive understanding of the theory of shortest paths and distance functions in Rie-

mannian manifolds with boundary, see [2, 3, 139, 209] and references therein.

2.2.3 Convergence Result for the Extrinsic Distance Function

We now show the relation between the Euclidean distance in the band Ωh and the intrinsic distance in the

surface S. Below we will denote dS

4
= d1

S, and dΩh
4
= d1

Ωh
.

Remark 1 Since we assume the implicit surface S to be compact, the continuous function dS : S × S → IR

attains its maximum. Therefore we can define the diameter of the set as

diam(S)
4
= sup

p,q ∈S

dS(p, q) <∞
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Q

A

B

P

Figure 2.3: The minimal path is C1, but not C2.

Remark 2 Since S ⊂ Ωh we have that for every pair of points p and q in S, dΩh(p, q) ≤ dS(p, q), so in view

of the previous observation we have

dΩh(p, q) ≤ diam(S) ∀ p, q ∈ S

Remark 3 Since we are assuming g̃ to be a smooth extension of g to all Ωh (we stress the fact that the

extension does not depend on h), g̃ will be Lipschitz in Ω, and we call Kg̃ its associated constant. Further,

we will denote Mg
4
= max{x∈S} g(x) and Mg̃

4
= sup{x∈Ω} g̃(x).

We need the following Lemma whose simple proof we omit (see for example [45]).

Lemma 1 When a g̃-shortest path travels through an interior region, its curvature is absolutely bounded by

Bg̃
4
= sup

{x∈Ω}

(‖∇g̃(x)‖
g̃(x)

)

The following Lemma will be needed in the proof of the Theorem below. Its proof can be found in Appendix

A.

Lemma 2 Let f : [a, b] → IR be a C1([a, b]) function such that f ′ is Lipschitz. Let ϕ ∈ L∞([a, b]) denote

(one of) f ′’s weak derivative(s). Then

∫ b

a

f ′2(x) dx = f f ′∣∣b
a
−
∫ b

a

f(x)ϕ(x) dx
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We are now ready to present one of the main results of this Section. We bound the error between the

intrinsic distance on S and the Euclidean one in the offset Ωh. As we will see below, in the most general

case, the error is of the order h1/2 (h being half the offset width). We will later discuss that this is also the

order of the theoretical error for the numerical approximation in fast marching methods. That will lead us

to conclude that our algorithm does keep the convergence rate within the theoretically proven order for fast

marching methods’ numerical approximation. However, for all practical purposes, the order of convergence

in the numerical schemes used by fast marching methods is that of h, see [172]. We will also argue that for

all practical purposes we can guarantee no decay in the overall rate of convergence. We defer the detailed

discussion on this to after the presentation of the general bound below.

Theorem 2 Let A and B be two points on the smooth hyper-surface S. Let dg̃h = dg̃Ωh (A,B) and dg
S

=

dg
S
(A,B). Then, for points on the surface S, we have that for sufficiently small h

∣∣∣ dgS − dg̃h

∣∣∣ ≤ h
1
2 C(h) diam(S)

where C(h) depends on the global curvature structure of S and on g̃, and approaches a constant when h ↓ 0

(it does not depend on A nor B, we give a precise form of C(h) in the proof).

S

ΩA

B

h

Figure 2.4: Tubular neighborhood.

Proof:

Let dh = dΩh (A,B); dS = dS(A,B) and let γ : [0, dh] denote a Ωh g̃-distance minimizing arc-length parameterized

path between A = γ(0) and B = γ(dh), such that ‖γ̇‖ = 1. Let δ = Πψ(γ) = γ − ψ(γ)∇ψ(γ) be the orthogonal

projection of γ onto S. This curve will be as smooth as γ for small enough h, see Chapter A. For sufficiently small h,

the boundary of Ωh will be smooth, since S is smooth and no shocks will be generated (see next Section and Chapter

A). So we can assume that γ is C1 and that γ̇ is Lipschitz, since it is a shortest path within a smooth Riemannian

manifold with boundary, see §2.2.2 above.

It is evident that (this is a simple but key observation)

Lg̃{γ} = dg̃h
(1)

≤ dgS
(2)

≤ Lg{δ}

since

(1) S ⊂ Ωh and g̃|S = g
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(2) δ need not be a g-shortest path between A and B on S.

We then have

| dg
S
− dg̃h | ≤ |Lg{δ} − Lg̃{γ} | = |Lg̃{δ} − Lg̃{γ} |

≤
Z dh

0

˛̨
˛ g̃(δ)‖δ̇‖ − g̃(γ)‖γ̇‖

˛̨
˛ dt

≤
Z dh

0

˛̨
˛g̃(δ)‖δ̇‖ − g̃(δ)‖γ̇‖

˛̨
˛ dt +

Z dh

0

˛̨
˛ g̃(δ)‖γ̇‖ − g̃(γ)‖γ̇‖

˛̨
˛ dt

=

Z dh

0

g(δ)
˛̨
˛‖δ̇‖ − ‖γ̇‖

˛̨
˛ dt +

Z dh

0

|g̃(δ) − g̃(γ)| dt

≤ Mg

Z dh

0

‖γ̇ − δ̇‖ dt + Kg̃

Z dh

0

‖γ − δ‖ dt

= Mg

Z dh

0

‖∇ψ(γ) · γ̇∇ψ(γ) + ψ(γ)Hψ(γ)γ̇ ‖ dt + Kg̃

Z dh

0

‖ψ(γ)∇ψ(γ)‖ dt

≤ Mg

Z dh

0

| ∇ψ(γ) · γ̇ | dt + hMg

Z dh

0

‖Hψ(γ)γ̇ ‖ dt + Kg̃ h dh

We now bound the first two terms at the end of the preceding expression.

1. We first bound the second term in the preceding expression, this will be an ingredient to the bounding of the

first term as well.

We have:

‖Hψ(γ)γ̇ ‖ ≤ sup
{v: ‖v‖=1 ; p: d(p,S)≤h}

‖Hψ(p)v ‖ = sup
{p: d(p,S)≤h}

max (|λ(p)|, |µ(p)|)

where λ(p) and µ(p) denote the largest and the smallest eigenvalue of Hψ(p), respectively.

Now, as we know from Chapter A the maximum absolute eigenvalue of Hψ(p), K(p), is bounded by

K(p) ≤ MS

1 − |ψ(p)|MS

where MS is the maximum absolute eigenvalue of Hψ

˛̨
˛
S

, that is

MS = sup
{x∈S}

max
{1≤i≤d}

|λi (Hψ(x)) |

where λi (·) stands for the i-th eigenvalue of a symmetric matrix.

Then Z dh

0

‖Hψ(γ(s))γ̇(s) ‖ ds ≤ dh
MS

1 − hMS

2. Let us define the function f : [0, dh] → IR, f(t) = ψ(γ(t)). Then formally ḟ (t) = ∇ψ(γ(t)) · γ̇(t) and f̈ (t) =

Hψ(γ(t))[γ̇(t), γ̇(t)] + ∇ψ(γ(t)) · γ̈(t). Since γ̇(·) is Lipschitz, and ψ is regular we can guarantee that ḟ (·) is

also Lipschitz, so f̈(·) exists almost everywhere. We want to bound

Z dh

0

˛̨
˛ ḟ(t)

˛̨
˛ dt

We note first that f(0) = f(dh) = 0, and |f(t)| ≤ h, |f̈ (t)| ≤ MS

1−hMS
+ Bg̃ for almost every t ∈ [0, dh]. In fact,

we have that for those sub-intervals of [0, dh] in which the shortest path travels through ∂Ωh, either f(t) = h,
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or f(t) = −h for the whole subinterval, and therefore f(t) is constant for each subinterval, so f̈ (t) = 0 there.

On the other hand, when γ is in the interior of Ωh, it is a g̃-geodesic, so its acceleration is bounded by Bg̃, as

we have seen in Lemma 1. Therefore, we conclude that |f̈ (t)| ≤
˛̨
˛Hψ(γ(t))

h
γ̇(t), γ̇(t)

i˛̨
˛+Bg̃ . Combining all this

we have that for almost every t ∈ [0, dh],

|f̈(t)| −Bg̃ ≤ sup
{ v:‖v‖=1;d(p,S)≤h}

|Hψ(p)[v, v] | ≤ sup
{p: d(p,S)≤h}

max (|λ(p)|, |µ(p)|)

and the given bound follows as before.

Applying Cauchy-Schwartz inequality we obtain:

Z dh

0

| ḟ (t) | dt ≤
s

(dh)

Z dh

0

ḟ2(t) dt

Now using Lemma 2:

Z dh

0

ḟ2(t) dt = ḟ f
˛̨
˛
dh

0
−
Z dh

0

ff̈ dt = −
Z dh

0

ff̈ dt

≤
Z dh

0

| f |
˛̨
˛ f̈
˛̨
˛ dt ≤ (dh)h

„
MS

1 − hMS

+Bg̃

«

Finally,

Z dh

0

| ∇ψ(γ) · γ̇ | dt ≤ (dh)

s
h

„
MS

1 − hMS

+Bg̃

«

Using both computed bounds, we find that

| dgS − dg̃h | ≤ diam(S)
√
h

"
Mg

r
MS

1 − hMS

+Bg̃ +Mg

√
h

MS

1 − hMS

+Kg̃

√
h

#
(2.11)

@

From the preceding Lemma we obtain:

Corollary 1 For a given point q ∈ S

∥∥∥dg̃Ωh
∣∣∣
S

(q, ·) − dg
S
(q, ·)

∥∥∥
L∞(S)

h↓0−→ 0

Remark 2 The rate of convergence obtained with the techniques shown above is of order
√
h. A quick look

over the proof of convergence shows that the term responsible for the h1/2 rate is
∫ dh
0

∣∣∣ ḟ(t)
∣∣∣ dt. All other

terms have the higher order of h. Suppose we can find a finite collection of (disjoint) intervals Ii = (ai, bi)

such that sgn(ḟ) is constant (f is monotonic) within each Ii, ∪Ni=1Ii ⊆ [0, dh] where N is the cardinality of

that collection of intervals, and ḟ(t) = 0 for t ∈ [0, dh]
∖
∪Ni=1 Ii. Then, we could write:

∫ dh

0

∣∣∣ ḟ(t)
∣∣∣ dt =

N∑

i=1

sgn(ḟ)
∣∣∣
(ai,bi)

∫ bi

ai

ḟ(t) dt
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=

N∑

i=1

sgn(ḟ)
∣∣∣
(ai,bi)

(f(bi) − f(ai)) =

N∑

i=1

|f(bi) − f(ai)|

≤
N∑

i=1

(|f(bi)| + |f(ai)|)

≤ 2Nh since f(t) = ψ(γ(t)) and γ(·) travels through Ωh,

obtaining a higher rate of convergence, h. It is quite convincing that cases where N = ∞ can be considered

pathological. We then argue that for all practical purposes the rate of convergence achieved is indeed h (at

least). Moreover, for simple cases like a sphere (or other convex surfaces), it it very easy to show explicitly

that the error is (at least) of order h.7 Notwithstanding, it remains to characterize the space of surfaces (and

metrics g) for which we can guarantee that N <∞. Advances in this subject will be reported elsewhere.

This shows that we can approximate the intrinsic distance with the Euclidean one on the offset band Ωh.

Moreover, as we will detail below, the approximation error is of the same order as the theoretical numerical

error in fast marching algorithms. Thereby, we can use fast algorithms in Cartesian grids to compute intrinsic

distances (on implicit/implicitized surfaces), enjoying their computational complexity without affecting the

convergence rate given by the underlying numerical approximation scheme.

2.3 Numerical Implementation and its Theoretical Error

In this section we first discuss the simple modification that needs to be incorporated into the (Cartesian) fast

marching algorithm in order to deal with Euclidean spaces with manifolds with boundary. We then propose

a way of estimating the (now discrete) offset h, and bound the total numerical error of our algorithm, thereby

showing our assertion that the error with our algorithm is of the same order as the one obtained with the

fast marching algorithm for Cartesian grids (or triangulated 3D surfaces).

As stated before, we are dealing with the numerical implementation of the Eikonal equation inside an

open, bounded and connected domain Ω (this will later become the offset Ωh). The general equation, when

P (x) is the weight (it becomes g̃ for our particular case), is given by

{
‖∇f(x)‖ = P (x) ∀x ∈ Ω

f(r) = 0
(2.12)

with r the seed point. Note that following the results in the previous section, we are now dealing with the

Eikonal equation in Euclidean space, and so the Euclidean gradient is used above.

The upwind numerical scheme to be used for this equation is of the form

(∆x1 = ∆x2 = . . . = ∆xd = ∆x) [172]:

{ ∑d
j=1max

2
(
f̂(p) −mj , 0

)
= (∆x)2 P 2(p)

mj = min
(
f̂(p+ ∆x~ej), f̂(p− ∆x~ej)

) (2.13)

7In this case, as in the case of convex surfaces, the geodesic is composed of two straight lines inside the band, tangent to its
inner boundary, and a geodesic on the inner boundary of the band; see Figure 1.
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where f̂ is the numerically computed value of f for every point p in the discrete domain

D(Ω,∆x)
4
= Ω ∩ (ZZ∆x)

Here, ~ej with j = 1, 2, ..., d, are the elements of the canonical basis of IRd.

We now describe the fast marching algorithm for solving the above equation. For this we follow the

presentation in [179]. For clarity we write down the algorithm in pseudo-code form. Details on the original

fast marching method on Cartesian grids can be found in the mentioned references.

At all times there are 3 kinds of points under consideration:

• NarrowBand. These points have to them associated an already guessed value for f̂ , and are immediate

neighbors to those points whose value has already been “frozen.”

• Alive. These are the points whose f̂ value has already been frozen.

• Far Away. These are points that haven’t been processed yet, so no tentative value has been associated

to them. For that reason they have f̂ = ∞, forcing them not to be considered as part of the up-winding

stencil in the Gudunov’s Hamiltonian.

The steps of the algorithm are:

• Initialization:

1. Set f̂ = 0 for every point belonging to the set [Alive]. These are the seed point/s if they lie on

the grid. If the seed is not a grid point, their corresponding Neighbors8 are set Alive and are

given an initial value f̂ simply computed via interpolation (taking into account the distance from

the neighbor grid points to the seed point).

2. Find a tentative value of f̂ for every Neighbor of an Alive point and tag them NarrowBand.

3. Set f̂ = ∞ for all the remaining points in the discrete domain.

• Advance:

1. Beginning of loop: Let (pmin) be the point ∈ [NarrowBand] which takes the least value of f̂ .

2. Insert the point pmin to the set [Alive] and remove it from [NarrowBand].

3. Tag as Neighbors all those points in the discrete domain that can be written in the form pmin ±
∆x~ej , and belonging to [NarrowBand] ∪ [FarAway]. If a Neighbor is in [FarAway], remove

it from that set ([FarAway]) and insert it to [NarrowBand].

4. Recalculate f̂ for all Neighbors using equation (2.13)

5. Set [Neighbor] = empty set.

6. Back to the beginning (step 1).

8For a grid point p, any of its 2d-neighboring points can be written like p± ∆xi~ei.
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The boundary conditions are taken such that points beyond the discrete domain have f̂ = ∞.

The condition that is checked all the time, and that really defines the domain the algorithm is working

within, is the one that determines if a certain point q is Neighbor of a given point p that belongs to the

domain. The only thing one has to do in order to make the algorithm work in the domain Ωh specified by

{x ∈ IRd : |ψ(x)| ≤ h} is change the way the Neighbor checking is done. More precisely, we should check

q ∈ Neighbor(p) iff {(|ψ(q)| ≤ h) && (q can be written like p ± ∆x~ej )}

the emphasis here being on the test “|ψ(q)| ≤ h.” We could also achieve the same effect by giving an infinite

weight to all points outside Ωh, that is, we treat the outside of Ωh as an obstacle. That is, with an extremely

simple modification to the fast marching algorithm, we make it work as well for distances on manifolds

with boundary, and therefore, for intrinsic distances on implicit surfaces. This is of course supported by the

convergence results in the previous section and the analysis on the numerical error presented below.

2.3.1 Bounding the Offset h

We now present a technique to estimate h, the size of the offset of the hyper-surface S that actually defines

the computational domain Ωh. The bounds on h are very simple. On one hand, we need h to be large

enough so that the upwind scheme can be implemented, meaning that h has to be large enough to include

the stencil used in the numerical implementation. On the other hand, h has to be small enough to guarantee

that Ωh remains simply connected with smooth boundaries and that g̃ remains smooth inside Ωh.

Let MS be as before a bound for the absolute sectional curvature of S, and let ∆x be the grid size. In

addition, let W be the maximal offsetting of the surface S that guarantees that the resulting set remains

connected and different parts of the boundary of that set do not touch each other. We show below that a

suitable bounding of h is (recall that d is the dimension of the space)

∆x
√
d < h < min

{
1

MS

,W

}
. (2.14)

Let us introduce some additional notation. We denote by cell the unit cell of the computational grid.

Let x be a point in Ωh, we denote by n(x) the number of cells C1(x), . . . , Cn(x)(x) that contain x. It is clear

that if x ∈ D(Ωh,∆x) (it is a grid point), then x is contained in 2d cells having x as a vertex. It is also clear

that n(x) ≤ 2d. For a given cell C we call P(C) the set of points of D(Ωh,∆x) that compose C (i.e., its

vertices). We will denote by C(x) the set
⋃n(x)
i=1 Ci(x), and by P(x) the set

⋃n(x)
i=1 P(Ci(x)).

The lower bound comes from forcing that for every x ∈ S, all points in C(x) lie within Ωh (note of course

that we want h to be as small as possible). That is:

⋃

x∈S

C(x) ⊂ Ωh

Once again, this constraint comes in order to guarantee that there are “enough” points to make the

discrete calculations. We try to make C(x) ⊂ C(x, l), where C(x, l) stands for the hypercube centered in x,

with side length 2l, and sides parallel to the gridding directions. The worst scenario is when x is a point in
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Figure 2.5: We depict the situation that leads to the lower bound for h in the 2D case. In red: the curve. In black:
the centers of B(x ∈ S, d1/2∆x). In green: the points of D(Ωh,∆x) that fall inside B(x, d1/2∆x) for some x ∈ S, and
in blue those that don’t.

the discrete domain, and we must have l ≥ ∆x. Finally, we observe that C(x, l) ⊂ B(x, l
√
d). The condition

then becomes

⋃

x∈S

B(x,∆x
√
d) ⊂ Ωh =

⋃

x∈S

B(x, h)

which provides the lower bound, h > ∆x
√
d.

The upper bound includes two parts. First, we shouldn’t go beyond W , since if we do so, different parts

of the offset surface might touch each other, a situation which can even create a non-simply connected band

Ωh. The second part of the upper bound comes from seeking that when traveling on a characteristic line of

ψ at a point p of S, no shocks occur inside Ωh. It is a simple fact that this won’t happen if h < 1
MS

, see

Chapter A. It is extremely important to guarantee this both to obtain smooth boundaries for Ωh and to

obtain smooth extensions of the metric g (g̃).

Note of course that in general, h and also ∆x can be position dependent. We can use an adaptive grid,

and in places where the curvature of S is high, or places where high accuracy is desired, we can make ∆x

small.

2.3.2 The Numerical Error

It is time now to explicitly bound the numerical error of our proposed method. As stated above, it is our

goal to formally show that we are within the same order as the computationally optimal (fast marching)

algorithms for computing distance functions on Cartesian grids. Note that the numerical error for the fast

marching algorithm on triangulated surfaces has not been reported, although it is of course bounded by the

Cartesian one (since this provides a particular “triangulation”).

Numerical Error Bound of the Cartesian Fast Marching Algorithm

The aim of this section is to bound a quantity that measures the difference between the numerically computed

value d̂g
S
(p, ·) and the real value dg

S
(p, ·). Any such quantity will be comparing both functions on S, but in
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principle the numerically computed value will not be defined all over the hyper-surface. So we will be dealing

with an interpolation stage, that we comment further below in §2.3.2.

Let us fix a point p ∈ S, and let f̂(·) be the numerically computed solution (according to (2.13)), and f(·)
the real viscosity solution of the problem (2.12). The approximation error is then bounded by (see [172])

max
p∈D(Ω,∆x)

|f̂(p) − f(p)| ≤ CL(∆x)
1
2 (2.15)

where CL is a constant. In practice, however, the authors of [172] observed first order accuracy. As we have

seen, we also find an error of order h1/2 for the general approximation of the weighted intrinsic distance on

S with the distance in the band Ωh, and a practical order of h (see Remark 2 and Theorem 2).

Before proceeding with the presentation of the whole numerical error of our proposed algorithm, we need

the following simple Lemma whose proof we omit.

Lemma 3 For a convex set D ⊂ Ω, and y, z ∈ D, f satisfies

|f(z) − f(y)| ≤ ‖P‖L∞(Ω)‖z − y‖

Remark 3 Using the preceding Lemma and (2.15), it is easy to see that for x such that C(x) ⊂ Ω:

|f̂(p) − f̂(q)| ≤ 2CL(∆x)
1
2 + ‖P‖L∞(Ω)

√
d∆x, ∀ p, q ∈ P(x) (2.16)

a relation we will shortly use.

The Interpolation Error

Since following our approach we are now computing the distance function in the band Ωh, in the correspond-

ing discrete Cartesian grid, we have to interpolate this to obtain the distance on the zero level-set S. This

interpolation produces a numerical error which we now proceed to bound.

Given the function ζ : D(Ω,∆x) → IR (Ω being a generic domain, which becomes the band Ωh for our

particular case), we define the function I (ζ) : Ω → IR through an interpolation scheme. We will assume that

the interpolation error is bounded in the following way:

sup
y∈P(x)

|ζ(y) − I(ζ)(x)| ≤ max
z∈P(x)

ζ(z) − min
z∈P(x)

ζ(z)

for every x ∈ Ω.

The Total Error

We now present the complete error (numerical plus interpolation) introduced by our algorithm, without

considering the possible error in the computation of g̃ (or in other words, we assume that the weight was

already given in the whole band Ωh).

Let p be a point in S. We denote by
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• dg
S
(p, ·) : S → IR the intrinsic g-distance function from p to any point in S.

• dg̃h(p, ·) : Ωh → IR the g̃-distance function from p to any other point in Ωh.

• d̂g̃h(p, ·) : D(Ωh,∆x) → IR the numerically computed value of dg̃h(p, ·) to any point in the discrete

domain.

• I

(
d̂g̃h

)
(p, ·) : S → IR the result of interpolating d̂g̃h (that’s only specified for points in D(Ωh,∆x)) to

points in IRd ⊃ S.

The goal is then to bound

∥∥∥∥d
g
S
(p, ·) − I

(
d̂g̃h

)
(p, ·)

∥∥∥∥
L∞(S)

, and we proceed to do so now.

Let x be in S and y in P(x), then:

∣∣∣∣d
g
S
(p, x) − I

(
d̂g̃h

)
(p, x)

∣∣∣∣ ≤ |dg
S
(p, x) − dg̃h(p, x)| + |dg̃h(p, x) − dg̃h(p, y)| (2.17)

+

∣∣∣∣d
g̃
h(p, y) − d̂g̃h(p, y)

∣∣∣∣ +

∣∣∣∣d̂
g̃
h(p, y) − I

(
d̂g̃h

)
(p, x)

∣∣∣∣

and using Proposition 2, Lemma 3, (2.15) and simple manipulations (in that order) we obtain:

∣∣∣∣d
g
S
(p, x) − I

(
d̂g̃h

)
(p, x)

∣∣∣∣ ≤ C(h) diam(S)h
1
2 + Mg̃‖x− y‖ + CL(∆x)

1
2

+

(
max
y∈P(x)

d̂g̃h(p, y) − min
y∈P(x)

d̂g̃h(p, y)

)

The last term can be dealt with using (2.16). Since we want both h ↓ 0 and h
∆x ↑ ∞, in order to have

increasing fidelity in the approximation of dg̃h by its numeric counterpart d̂g̃h,
9 we can choose (for instance)

h = Cx (∆x)γ for some constant Cx >
√
d and γ ∈ (0, 1). We then obtain:

∥∥∥∥d
g
S
(p, ·) − I

(
d̂g̃h

)
(p, ·)

∥∥∥∥
L∞(S)

≤ (∆x)
γ
2 C(∆x; S) (2.18)

where C(∆x; S) goes to a constant (that depends on S) as ∆x ↓ 0, and this provides the desired bound.

To recap, we have obtained that the use of an Euclidean approximation in the band Ωh to the intrinsic

distance function on the level-set S doesn’t (meaningfully) change the order of the whole numerical approxi-

mation, in the worst case scenario. While in the most general case the theoretical bound for the error of our

method is of order h1/2 and the general order of the error of the underlying numerical scheme is (∆x)1/2,

for all practical purposes the approximation error (over S) between both distances (dg
S

and dg̃h) is of order h

(see remark after Corollary 2.1), and the practical numerical error between dg̃h and d̂g̃h is of order (∆x)β (for

some β ∈ [ 12 , 1) for our first order schemes). Then, the practical bound for the total error becomes something

of order (∆x)min(β,γ). Therefore, choosing a big enough γ (< 1) dispels any concerns about worsening the

overall error rate when doing Cartesian computations on the band.10

9This way, we will have an increasing number of points in Ωh.
10Note that the numerical scheme used by the Fast Marching algorithm decreases it’s accuracy when non-differentiable points

of the distance appear, this can happen for instance when the domain contains the cut locus of the initial set, [41]. In any case,

(∆x)
1
2 is the slowest error rate achievable.
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To conclude, let’s point out that since we are working within a narrow band (Ωh) of the surface S , we

are actually not increasing the dimensionality of the problem. We can then work with a Cartesian grid while

keeping the same dimensionality as if we were working on the surface.11

Figure 2.6: Top: Level lines for the intrinsic distance functions on the Stanford Bunny and on a torus. In both
rows, the (22) levels shown are 0.03, 0.05, 0.1, . . . , 0.95, 0.97 percent of the maximum value of the intrinsic distance,
and the coloring of the surface corresponds to the intrinsic distance function. Three views are presented. Note the
correct separation between adjacent level lines. Note also how these lines are “parallel”.

2.4 Geodesics on Implicit Surfaces

To find geodesic curves on the implicit surface, we back track starting from a specified initial point p towards

the seed point p0, while traveling on the surface in the direction given by the (negative) intrinsic-distance

gradient. This means that after we have computed the intrinsic distance function dg̃Ωh(p0, ·), as explained

above, we have to solve the following ODE (which obviously keeps the curve on S):

{
γ̇ = −∇ψd

g̃
Ωh

(γ)

γ(0) = p ∈ S

where ∇ψd
g̃
Ωh

(p)
4
= ∇dg̃Ωh(p)−

(
∇dg̃Ωh (p) · ∇ψ(p)

)
∇ψ(p) is the gradient of dg̃Ωh at p ∈ S projected onto the

tangent space to S = {ψ = 0} at p. Since we must discretize the above equation, one can no longer assume

that at every instant the geodesic path γ will lie on the surface, so a projection step must be added. In

addition, since all quantities are known only at grid points, an interpolation scheme must be used to perform

all evaluations at positions given by γ. We have used a simple Runge-Kutta integration procedure, with

adaptive step, namely an ODE23 procedure.

11The number of points in the band can be roughly estimated by the quantity 2 h area[S] when ∆x = 1.
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We should note that we are assuming that ∇ψd
g̃
Ωh

, the extrinsic gradient of the distance in the band,

is a good approximation of ∇Sd
g
S
, the intrinsic gradient of the intrinsic distance (and not just dg̃Ωh a good

approximation of dg
S

as we have previously proved).

2.5 Extensions

2.5.1 General Metrics: Solving Hamilton-Jacobi Equations on Implicit Surfaces

Since the very beginning of our exposition we have restricted ourselves to isotropic metrics. As stated in

the introduction, this already has a tremendous amount of applications, and just a few were shown in the

previous section. Since the fast marching approach has been recently extended to more general Hamilton-

Jacobi equations by Osher and Helmsen [158], we are immediately tempted to extend our framework to these

equations as well (these equations have applications in important areas such as adaptive mesh generation on

manifolds, [100], and semiconductors manufacturing).

Then, we are led to investigate the extension of our algorithm to general metrics of the form, G : S →
IRd×d, that is, a positive definite 2-tensor. Our new definition of weighted length becomes

LG{C} 4
=

∫ b

a

√
G(C(t))

[
Ċ(t), Ċ(t)

]
dt

and the problem is to find for every x ∈ S (for a fixed p ∈ S)

dGS (x, p)
4
= inf

Cpx[S]
{LG(C)} (2.19)

As before, we attempt to solve the approximate problem in the band Ωh, with an extrinsic distance:

dG̃Ωh(x, p)
4
= inf

Cpx[Ωh]
{L

G̃
(C)} (2.20)

where

L
G̃
{C} 4

=

∫ b

a

√
G̃(C(t))

[
Ċ(t), Ċ(t)

]
dt

for an adequate extension G̃ of G. The solution of the extrinsic problem satisfies (in the viscosity sense) the

Eikonal equation

(
G̃−1

)
(x)[∇dG̃Ωh ,∇dG̃Ωh ] = 1 (2.21)

The first issue now is the numerical solvability of the preceding equation using a fast marching type of

approach. Osher and Helmsen, [158], have extended the capabilities of the fast marching to deal with

Hamilton-Jacobi equations of the form

H(x,∇f) = a(x)

for geometrically based Hamiltonians H(x, ~p) : Ω(⊂ IRd) × IRd → IR that satisfy
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H(x, ~p) > 0 if ~p 6= ~0

H(x, ~p) is homogeneous of degree 1 in ~p

piHpi(x, ~p) ≥ 0 for 1 ≤ i ≤ d ∀x ∈ Ω, ∀ ~p
(2.22)

It easily follows that these conditions hold for (2.21) considering H(x, ~p)
4
=
√(

G̃−1
)
(x)[ ~p, ~p ], when the

matrix G̃−1(x) is diagonal. Therefore we can solve this kind of Hamilton-Jacobi equations (the extrinsic

problem) with the extended fast marching algorithm.

In order to show that our framework is valid for these equations as well, all what we basically need

to do is to prove that the extrinsic distance (2.20) on the offset Ωh converges to the intrinsic one on the

implicit surface S, i.e., (2.19). This can be done repeating the steps in the convergence proof previously

reported in §2.2.3 for isotropic metrics. Combining this with the results of Osher and Helmsen we then

obtain that our framework can be applied to a larger class of Hamilton-Jacobi equations: general Intrinsic

Eikonal Equations. The extension of this ideas to even more general intrinsic Hamilton-Jacobi equations of

the form Ĥ(x,∇Su) = â(x) x ∈ S remains to be studied, and eventual advances will be reported elsewhere.

2.5.2 Non Implicit Surfaces

The framework we presented was here developed for implicit surfaces, although it applies to other surface

representations as well. First, if the surface is originally given in polygonal or triangulated form, or even as

a set of unconnected points and curves, we can use a number of available techniques, e.g., [122, 140, 165,

188, 197, 215, 93] (and some very nice public domain software [140]), to first implicitize the surface and then

apply the technique here proposed.12 Note that the implicitation needs to be done only once per surface as

a pre-processing step, and will remain valid for all subsequent uses of the surface. This is important, since

many applications have been shown to benefit from an implicit surface representation. Moreover, as we have

seen, all what we need to have is a Cartesian grid in a small band around the surface S. Therefore, there is

no explicit need to perform an implicitation of the given surface representation. For example, if the surface

is given by a cloud of unconnected points, we can compute distances intrinsic to the surface defined by this

cloud, as well as intrinsic geodesic curves, without explicitly computing the underlying surface. All what is

needed is to embed this cloud of points in a Cartesian grid and consider only those points in the grid at a

distance h or less from the points in the cloud. The computations are then done on this band.

2.6 Concluding Remarks

In this chapter we have presented a novel computationally optimal algorithm for the computation of intrinsic

distance functions and geodesics on implicit hyper-surfaces. The underlying idea is based on using the

classical Cartesian fast marching algorithm in an offset bound around the given surface. We have provided

theoretical results justifying this approach and presented a number of experimental examples. The technique

can also be applied to 3D triangulated surfaces, or even surfaces represented by clouds of unconnected points,

after these have been embedded in a Cartesian grid with proper boundaries, see Chapter 4. We have also

mentioned that the approach is valid for more general Hamilton-Jacobi equations as well.

12The same techniques can be applied to transform any given implicit function into a distance one.
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Many questions remain open. Recently, T. Barth (and independently D. Chopp) have shown techniques

to improve the order of accuracy of fast marching methods. It will be interesting to see how the proposed

method here can be extended to match such accuracy. Related to this, we are currently working on tighter

bounds for the error between dg̃Ωh and dg
S
. More generally, it remains to be seen what class of intrinsic

Hamilton-Jacobi (or in general, what class of intrinsic PDE’s) can be approximated with equations in the

offset band Ωh. In an even more general approach, what kind of intrinsic equations can be approximated

by equations in other domains, with offsets just a particular and important example. Even if fast marching

techniques do not exists for these equations, it might be simpler and even more accurate to solve the

approximating equations in these domains than in the original surface S. The framework here presented

xooffers a solution to a fundamental problem.
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Chapter 3

Covering Submanifolds of IRd with

Random Euclidean Balls

In practice, we do not have too much control over the way in which points are sampled by the acquisition

device (e.g. scanner), or given by the learned sampled data. Therefore it is more realistic to make a

probabilistic model of the situation and then try to conveniently estimate the probability of achieving a

prescribed level of accuracy in the quantity we wish to estimate. This amounts to assuming the points were

sampled on or around the manifold according to some probability measure.1 Very often it is the case that

we need to establish coverage properties for the point cloud with respect to the object it represents. We

propose a model for this task and derive some bounds that will be useful ahead.

Let Pn
4
= {p1, . . . , pn} be a set of n different points sampled from the compact k-dimensional submanifold

S ⊂ IRd and define ΩhPn
4
=
⋃n
i=1B(pi, h).

2 In what follows we will first find an upper bound for �
(
S * ΩhPn

)

and then an upper bound for � (dH(Pn, S) > h).

We now present our model for the current setting: We assume that the points in Pn are independently

and identically sampled on or around the sub-manifold S in a with a probability law given by the measure

ν.3 We will write this as pi ∼ ν. As we will see below, the fundamental quantities one must control are

fν(r)
4
= minx∈S ν(B(x, r)), which can be interpreted as an indicator of the presence of holes at scale r, and

gν(s)
4
= ν (ΩsS) which measures how much probability mass is located inside a (small) tube around S. We

will further assume that ν has no atoms.

Remark 4 It is possible to contemplate the case of pi having different probability laws νi but still being

independent. In such a case, one should substitute fν(r) by min1≤i≤n fνi(r) and gν(s) by min1≤i≤n gνi(s).

We now present a few lemmas we will need ahead.

Lemma 4 Let x ∈ S be a fixed point on S. Then under the hypotheses on Pn described above for small

1In the case of objects sampled using a 3D scanner, this probability measure models the acquisition process itself. As we
will see below, one needs to require that the acquisition process does not leave big holes.

2The balls now used are defined with respect to the metric of IRd, they are not intrinsic. Other covering shapes could be
used as well, see comments ahead.

3This means that for any subset A ⊆ IRd, and any pi ∈ Pn, � (pi ∈ A) = ν(A).
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enough h > 0,

�
({
x /∈ ΩhPn

})
≤ (1 − fν(h))

n
.

Proof:

�
“n
x /∈ ΩhPn ∩ S

o”
=

�

 (
n\

i=1

{x /∈ B(pi, h)}
)!

=
�

 (
n\

i=1

{pi /∈ B(x, h)}
)!

=
nY

i=1

�
({pi /∈ B(x, h)})

=

nY

i=1

(1 − �
({pi ∈ B(x, h)}))

= (1 − �
({pi ∈ B(x, h)}))n

and we conclude using the definition of fν . @

Corollary 2 Under the hypotheses of the previous Lemma, let δ ∈ (0, h), then, for q ∈ S:

�
(
BS(q, δ) * ΩhPn

)
≤ (1 − fν(h− δ))n .

Proof:

We prove the following inclusion of events holds: {q ∈ Ωh−δ
Pn

} ⊆ {BS(x, δ) ⊂ ΩhPn}. In fact, let {q ∈ Ωh−δ
Pn

} hold, then

for some p ∈ Pn |q − p| ≤ h − δ. Let x ∈ BS(q, δ), then |x− q| ≤ dS(x, q) ≤ δ and hence |x− p| ≤ |x− q| + |q − p| ≤
δ + h− δ = h. @

Proposition 1 Let the set of hypotheses sustaining all of the previous lemmas hold. Then

�
(
S * ΩhPn

)
≤ NS

(
h

2

)
e−nfν(

h
2 ). (3.1)

where NS stands for the cardinality of a h
2 -covering net of S by euclidean balls.

Remark 5 If a prescribed probability of coverage p is desired, given a certain covering radius h, then we

find a lower bound for the number of sample points needed:

n ≥ 1

fν(
h
2 )

(
ln(

1

1 − p
) + ln NS(

h

2
)

)
(3.2)

provided fν(
h
2 ) > 0.

Proof:

Consider a finite h
2
-net covering S by euclidean balls, that is S =

SNS(h2 )
i=1 B(qi,

h
2
), then
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�
“
S * ΩhPn

”
=

�

 
[

x∈S

{x /∈ ΩhPn}
!

=
�

0
B@

NS(h
2
)[

i=1

[

x∈B(qi,
h
2

)

{x /∈ ΩhPn}

1
CA

≤ NS

„
h

2

«
max

1≤i≤NS(h2 )

�

0
B@

[

x∈B(qi ,
h
2

)

{x /∈ ΩhPn}

1
CA

= NS

„
h

2

«
max

1≤i≤NS(h2 )

�
„
B(qi,

h

2
) * ΩhPn

«
.

We conclude by using Corollary 2 and then the inequality 1 − u ≤ e−u, valid for u ≥ 0. @

Lemma 5 (Bounding the Covering Number) Under the hypotheses of the previous Lemma and further

assuming S to be compact, we have that for any small δ > 0 there exists a δ-covering of S by euclidean balls

with cardinality bounded by

NS (δ) ≤ 1

fν(
δ
2 )
. (3.3)

Proof:

The idea is constructive and folkloric. Let q1 be any point in S, then choose q2 ∈ S\B(q1, δ). Then choose q3 ∈
S\{B(q1, δ)∪B(q2, δ)}. Iterate this procedure until it is no longer possible to choose any point q ∈ S\{∪NS(δ)

k=1 B(qk, δ)},
in that case S ⊂ ∪NS(δ)

k=1 B(qk, δ). Note that B(qk,
δ
2
) ∩B(ql,

δ
2
) = ∅ if k 6= l. Then we have

1 ≥ ν

„
∪NS(δ)
k=1 B(qk,

δ

2
)

«
=

NS(δ)X

i=1

ν(B(qk,
δ

2
)) ≥ NS(δ) fν

„
δ

2

«
.

@

Remark 6 Using the last Lemma, we find a somewhat simpler bound for the probability of not achieving

coverage:

�
(
S * ΩhPn

)
≤ e−nf

h
ν

fhν
(3.4)

where fhν := fν(
h
2 ).

Remark 7 In general, or at least in the applications that follow, Chapters 4 and 5, one will require h tending

to 0.

Note that for {am}m∈IN , am ↓ 0, e−mam

am
goes to zero as m ↑ ∞ if am is asymptotically greater than or

equal logm
m . Then, in order to have the right hand side of (3.4) tend to zero we should have, for a sequence

{hn}n with hn ↓ 0 as n ↑ ∞:4

fhν ?
logn

n
. (3.5)

4This kind of conditions are common in the literature of Random Coverings, [182, 60].
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Let’s consider now the simple case of having a Uniform probability measure on S.5 In this case, fν(r) =

minx∈S
µ(B(x,r)∩S)

µ(S) ≥ minx∈S
µ(BS(x,r))

µ(S) . Now, using Bishop’s Volume Comparison Theorem (see [37, 175]),

we obtain minζ∈S µ (BS(ζ, r)) ≥ ωkr
k + θS(r), where θS(r)

rq → 0 when r → 0 for q ≤ k + 1. Hence fν(r) ≥
ωkr

k+θS(r)
µ(S) and the condition relating h, k and n should then be hk ?

“
a (S) 2k

ωk

”
log n
n

. Also, under condition

(3.5) we can estimate the rate at which e−nf
h
ν

fhν
approaches zero as n ↑ ∞. For example, with fhν ' log n

n ,

e−nf
h
ν

fhν
' 1

logn as n ↑ ∞. Note that of course we can speed up the convergence towards zero by choosing slower

variations of fhnν with n, for instance, with fhnν ' lognγ

n , with γ ≥ 1 we have e−nf
h
ν

fhν
' 1

γ(logn)nγ−1 as n ↑ ∞.

Bounds for �
(
S * ΩhPn

)
similar to ours can be found in [73, 101]. We should finally point out that the

problem of covering a certain domain (usually S1) with balls centered at random points sampled from this

domain has been studied by many authors, [184, 73, 72, 105, 182, 114, 95, 101], and even by Shannon in

[181].

Controlling the Hausdorff Distance

It will also come handy to obtain a lower bound for � (dH(Pn, S) ≤ δ).6 Clearly, this probability equals

�
({

S ⊆ ΩδPn
}
∩
{
Pn ⊆ ΩδS

})
, by definition of Hausdorff distance. Now, using the union bound and inde-

pendence of pi, pj when i 6= j we immediately find:

� (dH(Pn, S) ≤ δ) ≥ �
(
S ⊆ ΩδPn

)
+ �

(
Pn ⊆ ΩδS

)
− 1

≥ −e
−nfδν

f δν
+ (gν(δ))

n
(3.6)

To sum up, in this chapter we have presented basic conditions for the union of (Euclidean) balls centered at

the point cloud to cover (with probability) the underlying shape. When these conditions hold, we are then

free to work with this Euclidean structure, as done for example in the next chapter for computing intrinsic

geodesic distances without manifold reconstruction.

5For simplicity of exposition we will restrict ourselves to the case when S has no boundary. The modifications needed in our
arguments are of the same nature as those in [17].

6This is immaterial when the sampling is noiseless: Pn ⊆ S.
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Chapter 4

Distance Functions on Point Clouds

The goal of this chapter is to show how to compute geodesic distances for manifolds given as point cloud

data, one if not the most fundamental computation for shape analysis. A number of key building blocks are

part of the framework here introduced. The first one is based on the fact that distance functions intrinsic to

a given sub-manifold of IRd can be accurately approximated by Euclidean distance functions computed in a

thin offset band that surrounds this manifold. This concept was introduced in Chapter 2, where convergence

results were given for co-dimension one sub-manifolds of IRd (hyper-surfaces) without boundary.

The approximation of intrinsic distance functions (and geodesics) by extrinsic Euclidean ones permits

to compute them using computationally optimal algorithms in Cartesian grids (as long as the discretization

operation is permitted, memory wise, see §4.3.) These algorithms are based on the fact that the distance

function satisfies a Hamilton-Jacobi partial differential equation (see §4.1), for which consistent and fast

algorithms have been developed in Cartesian grids [99, 178, 179, 199]1 (see [117] for extensions to triangular

meshes and [197] for other Hamilton-Jacobi equations).

Once these basic results are available, we can then proceed and work with point clouds. The basic idea

here is to construct the offset band directly from the point cloud and without the intermediate step of

manifold reconstruction. This is addressed in §4.2.1 and §4.2.2 for points which are (maybe noisy) manifold

samples. For this (random) cases, we use the bounds for the probability that the constructed offset band

contains the underlying manifold, as presented in Chapter 3. In the experimental section, §4.3, we present

a number of important applications. These applications are given to show the importance of this novel

computational framework, and are by no means exhaustive.

We should note that to the best of our knowledge, the only additional works explicitly addressing the

computation of distance functions and geodesics for point clouds are the ones reported in [17, 189]2 and

recently the one reported in [81]. This last paper is also mesh based, and follows the geodesics approach in

Isomap with a novel neighborhood/connectivity concept and a number of interesting theoretical results and

novel dimensionality estimation contributions.

Very recently, some further work, in a very similar spirit to ours, has been done to understand topological

1Tsitsiklis first described an optimal-control type of approach to solve the Hamilton-Jacobi equation, while independently
Sethian and Helmsen both developed techniques based on upwind numerical schemes.

2In addition to studying the computation of distance functions on point clouds, [17, 189] address the important combination
of this with multidimensional scaling for manifold analysis. Prior work on using geodesic distances and multidimensional scaling
can be found in [177].
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properties of a submanifold represented by a point cloud under probabilistic assumptions on the sampling,

[155]. Some of the results there can be obtained following our approach.

4.1 Prelude

In Chapter 2, we presented a new approach for the computation of weighted intrinsic distance functions on

hyper-surfaces. We proved convergence theorems and addressed the fast, computationally optimal, compu-

tation of such approximations, see comments after Theorem 3 below. The key starting idea is that distance

functions satisfy the (intrinsic) Eikonal equation, a particular case of the general class of Hamilton-Jacobi par-

tial differential equations. Given p ∈ S (an hyper-surface in IRd), we want to compute dS(p, ·) : S → IR+∪{0},
the intrinsic distance function from every point on S to p. It is well known that the distance function dS(p, ·)
satisfies, in the viscosity sense (see [138]), the equation

{
‖∇SdS(p, x)‖ = 1 ∀x ∈ S

dS(p, p) = 0,

where ∇S is the intrinsic differentiation (gradient). Instead of solving this intrinsic Eikonal equation on S,

we solve the corresponding extrinsic one in the offset band ΩhS:

{
‖∇xdΩh

S
(p, x)‖ = 1 ∀x ∈ ΩhS

dΩh
S
(p, p) = 0,

where dΩh
S
(p, ·) is the Euclidean distance and therefore now the differentiation is the usual one.

We now recall the following theorem from Chapter 2 for the reader’s convenience.

Theorem 3 Let p and q be any two points on the smooth (orientable, without boundary) hyper-surface S,

then
∣∣∣dS(p, q) − dΩh

S
(p, q)

∣∣∣ ≤ CS

√
h, for small enough h, where CS is a constant depending on the geometry

of S.

This simplification of the intrinsic problem into an extrinsic one permits the use of the computationally

optimal algorithms mentioned in the introduction. This makes computing intrinsic distances, and from

them geodesics, as simple and computationally efficient as computing them in Euclidean spaces. Moreover,

as detailed in Chapter 2, the approximation of the intrinsic distance dS by the extrinsic Euclidean one dΩh
S

is never less accurate than the numerical error of these algorithms.

The result above was limited to hyper-surfaces of IRd (co-dimension one submanifolds of IRd) without

boundary, and the theory was applied to implicit surfaces, where computing the offset band is straightforward.

It is the purpose of the present chapter to extend the aforementioned Theorem to deal with: (1) submanifolds

of IRd of any codimension and possibly with boundary3, (2) convergence of geodesic curves in addition

to distance functions, (3) submanifolds of IRd represented as point clouds and (4) random sampling of

submanifolds of IRd in presence of noise. We should note that Theorem 3 holds even when the metric is not

the one inherited from IRd, obtaining weighted distance functions, Chapter 2.

3We will later impose some convexity conditions on the boundary in order to get rate of convergence estimates. However,
the uniform convergence in itself doesn’t require other hypotheses beyond smoothness.
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4.2 Submanifolds of IRd with Boundary

We first extend Theorem 1 to more general manifolds and we deal not only with distance functions but also

with geodesics. The first extension is important for the learning of high-dimensional manifolds from samples

and for scanned open volumes. The extension to geodesics is important for path planning on surfaces and

for finding special curves such as crests and valleys, see [15] and also Chapter 7.

First we need to recall some results that will be key ingredients in our proofs below. All our results rest

upon a certain degree of smoothness of geodesics in manifolds with boundary. We use “shortest path” and

“minimizing geodesic” interchangeably.

Theorem 4 ([2]) Let M be a C3 Riemannian manifold with C1 boundary ∂M. Then, any shortest path of

∂M is C1.

We will eventually need more regularity on the geodesics than simply C1. This is achieved by requiring

more regularity of the boundary.

Theorem 5 ([139]) Let U : IRd → IR be a C3 function such that for some h ∈ IR

1. the interior of {x ∈ IRd|U(x) = h} is non-empty and there we have DU(x) 6= 0.

2. the “obstacle” {x ∈ IRd|U(x) ≥ h} is compact.

Let p and q be any two points in the same connected component of {x ∈ IRd|U(x) ≤ h}, then the shortest

(constrained) path joining both points is C1 and has Lipschitz first derivative.

We now present the usual definition of length:

Definition 1 Let α : [a, b] → IRd be a curve, then we define its length L (α) as

L (α)
4
= sup

a=t0<...<tN=b

N−1∑

k=0

‖α(tk+1) − α(tk)‖.

Remark 8 Note that if α is Lipschitz with constant Lα, then L (α) =
∫ b
a
‖α̇(t)‖dt and L (α) ≤ Lα (b− a).

Proposition 2 Let S be a smooth compact submanifold of IRd with boundary ∂S. Let x, y be any two points

in S. Then, dΩh
S
(x, y) converges pointwise as h ↓ 0.

Proof:

Since ΩhS ⊆ Ωh
′

S if h′ ≥ h, we have that dΩh
S
(x, y) ≥ d

Ωh
′

S

(x, y) Also, for any h > 0, dΩh
S
(x, y) ≤ dS(x, y) ≤ diam (S) <

+∞. Hence, the sequence {dΩh
S
(x, y)}h>0 (for fixed x and y over S) is bounded and non-decreasing, therefore it

converges to the supremum of its range. @

Theorem 6 Let S be a compact C2 submanifold of IRd with (possibly empty) smooth boundary ∂S. Let x, y

be any two points in S. Then we have
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1. Uniform convergence of distances:

dΩh
S
|
S×S

(·, ·)
h↓0
⇒ dS(·, ·).

2. Convergence of geodesics: Let x and y be joined by a unique minimizing geodesic γS : [0, 1] → S over

S, and let γh : [0, 1] → ΩhS be a ΩhS-minimizing geodesic, then

γh
h↓0
⇒ γS.

Proof:

Given our hypothesis on S, and according to [69], there exists H > 0 such that ∂ΩhS is C1,1 for all 0 < h ≤ H. Then

Theorem 4 guarantees that for 0 < h ≤ H, γh : [0, 1] → ΩHS , the ΩhS length minimizing geodesic joining x and y is of

class C1. Since dΩh
S
(x, y) ≤ dS(x, y) ≤ diam (S) < +∞ for any h ∈ (0, H], we see that we can admit our ΩhS-geodesics

to have Lipschitz constant L ≤ diam (S). Obviously, the set ΩHS is bounded, and then the family {γh}0<h≤H is

bounded and equicontinuous. Hence, by Ascoli-Arzelá’s Theorem, there exist a subsequence {γhk}k∈IN and a curve

γ0 ∈ C0([0, 1], S) such that maxt∈[0,1] ‖γhk (t) − γ0(t)‖ hk↓0−→ 0.

Moreover, by writing |γ0(t) − γ0(t
′)| ≤ |γhk (t) − γ0(t)| + |γhk (t′) − γ0(t

′)| + L|t − t′| and using the (pointwise)

convergence of γhk towards γ0, we find that L is also a Lipschitz constant for γ0. Then we have γ0 ∈ C0,1([0, 1], S).

Now, since γ0 lies on S but may not be a shortest path, we have that its (finite) length is greater than or equal

to dS(x, y). We also have the trivial inequality dS(x, y) ≥ dΩh
S
(x, y). Putting all together we obtain

L (γh) = dΩh
S
(x, y) ≤ dS(x, y) ≤ L (γ0) .

Therefore

lim sup
h↓0

L (γh) = lim sup
h↓0

dΩh
S
(x, y) ≤ dS(x, y) ≤ L (γ0) .

Note that L (γ0) = L (limhk↓0 γhk ) ≤ lim infhk↓0 L (γhk ). This is the semicontinuity of length, an immediate conse-

quence of its definition , see [121].

Since lim infhk↓0(·) ≤ lim suphk↓0(·) ≤ lim suph↓0(·), we see that lim suph↓0 dΩh
S
(x, y) = lim suph↓0 L (γh) equals

dS(x, y), for all x and y in S. From Proposition 1, we find that in fact limh↓0 dΩh
S
(x, y) exists and equals dS(x, y).

Then, we have that the function dΩh
S
|
S×S

(·, ·) satisfies:

1. dΩh
S
|
S×S

: S × S → IR ∪ {0} is continuous for each H > h > 0.

2. for each (x, y) ∈ S × S, {dΩh
S
|
S×S

(x, y)}h is non-decreasing.

3. dΩh
S
|
S×S

(·, ·) converges pointwise towards dS(·, ·), which is continuous.

Then by Dini’s Uniform Convergence Theorem (see [9]) we can conclude that the convergence is uniform.

We can also see that γ0 must be a minimizing geodesic of S since from the above chain of equalities L (γ0) =

dS(x, y). Then, if there was only one such curve joining x with y, we would have uniform convergence (along any

subsequence!) of γh towards γ0.
4

@

Remark 9 In the previous Theorem, the convergence (of distances) is uniform but we will have forfeited

rate of convergence estimates unless we impose additional conditions on ∂S, as we do in Corollary 3. Note

that the new setting is wider than the one considered in Theorem 3 since the codimension of the underlying

4This follows from the fact that uniform convergence of γh to γ0 is equivalent to the statement that for any subsequence
{γhi} there exists a further subsubsequence {γhik

} uniformly converging to γ0.
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manifold is not necessarily 1. This is very important for applications such as dimensionality reduction, where

the dimension of the underlying manifold is unknown beforehand.

Corollary 3 Let S and ∂S satisfy the hypotheses of Theorem 6 . Let {Σi}i∈IN be a family of compact of sets

in IRd such that S ⊆ Σi ∀ i ∈ IN and dH(Σi, S)
i↑+∞−→ 0. Then,

dΣi(·, ·) |S×S

i↑+∞
⇒ dS(·, ·),

where dH stands for the Hausdorff distance between sets.

We now present a uniform rate of convergence result for the distance in the band in the case ∂S = ∅, and

from this we deduce Corollary 3 below, which deals with the case ∂S 6= ∅. This result generalizes the one

presented in Chapter 2 because it allows for any codimension.

Theorem 7 Under the same hypotheses of the Theorem above, with ∂S = ∅, we have that for small enough

h > 0:

max
(x,y)∈S×S

∣∣∣dΩh
S
|
S×S

(x, y) − dS(x, y)
∣∣∣ ≤ CS

√
h, (4.1)

where the constant CS does not depend on h. Also, we have the “relative” rate of convergence bound:

1 ≤ sup
x, y ∈ S

x 6= y

dS(x, y)

dΩh
S
(x, y)

≤ 1 + CS

√
h. (4.2)

Proof:

This is a remake of our proof of the main theorem in Chapter 2, therefore we skip some technical details which can

be found there. All along the proof we will sometimes write dh instead of dΩh
S

for the sake of notational simplicity.

We will denote by k (≤ n − 1) the dimension of S.

Let γ0 be the arc length parametrized S-shortest path Joining the points x, y ∈ S ; clearly, we have trace(γ0) ⊂ S.

Let γh be the ΩhS arc length parametrized shortest path joining x and y, which, as we know from Theorem 6,

uniformly converges toward γ0. For a number H as in the proof of Theorem 6, we have γh ∈ C1,1([0, dh], S), and

also η : ΩHS → IR defined by η(x)
4
= 1

2
d2(x, S) is smooth, see Appendix A.2. We define the projection operator

ΠS : ΩHS → S by ΠS(x) = x−Dη(x). We refer the reader to Appendix A.2 for properties of ΠS and η which we use

below.

Now, dΩh
S
(x, y) = L (γh) ≤ dS(x, y) ≤ L (ΠS(γh)), then

dS(x, y) − dΩh
S
(x, y) ≤ |L (ΠS(γh)) − L (γh)|

≤
Z dh

0

‚‚‚ ˙
ΠS(γh(t)) − γh(t)

‚‚‚ dt

=

Z dh

0

‚‚‚ ˙
Dη(γh(t))

‚‚‚ dt

≤
s

dh

Z dh

0

V̇ (t) · V̇ (t) dt (by Cauchy-Schwarz Ineq.)

≤
s

dh

Z dh

0

V (t) · V̈ (t) dt (Integrating by parts, see below.)
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where V (t)
4
= Dη(γh(t)) and V (0) = V (1) = 0, see Appendix A.2.

Also V̇ (t) = D2η(γh(t))γ̇(t) and since γ̇h is Lipschitz and η is smooth, V̈ (t) exists almost everywhere and

V̈ (t) = D3η(γh(t))[γ̇h(t), γ̇h(t)] +D2η(γh(t))γ̈(t) at points of existence. Then since D3ηDη = D2η(II − D2η) and

D2ηDη = Dη (see Appendix A.2),

V · V̈ = D3η(γh)[Dη(γh), γ̇h, γ̇h] +D2η[γ̈h, Dη(γh)]

=
`
D2η(γh)

`
II −D2η(γh)

´´
[γ̇h, γ̇h] + γ̈h ·Dη(γh).

The matrix Λ(t)
4
= D2η(γh(t))

`
II −D2η(γh(t))

´
filters out normal components, and has eigenvalues associated

with the tangential bundle given by (let d(t) = d(γh(t),S)),

λi(t) =
d(t)λi(0)

(1 + d(t)λi(0))
2 for 1 ≤ i ≤ k.

Note that max1≤i≤k|λi(t)| can be bounded by d(t) times a certain finite constant K ′ independent of h.

On the other hand, we can bound a.e. |γ̈h(t)| by a finite constant, say K, which takes into account the maximal

curvature of all the boundaries ∂ΩhS, 0 < h < H, but does not depend on h.

Putting all this together, we find (recall that ‖Dη(x)‖ =
p

2η(x) = d(x,S), see Appendix A.2):

“
dS(x, y) − dΩh

S
(x, y)

”2

≤ dh

Z dh

0

Λ(t)[γ̇h, γ̇h]dt

+ dh

Z dh

0

‖γ̈h‖ ‖Dη(γh)‖dt

≤ K′ max
t∈[0,dh]

d(t) d2
h +K max

t∈[0,dh]
d(t)d2

h.

Now, remembering that dh stands for dΩh
S
(x, y), that trace(γh) ⊂ ΩhS, and defining C = K +K ′, we arrive, with

just simple additional work at the relations (4.1) or (4.2). @

Remark 10 Note that, as the simple case of a circle in the plane shows, the rate of convergence is at most

C · h.

We immediately obtain the following Corollary which will be useful ahead.

Corollary 4 Let p ∈ S, and r ≤ H, then B(p, r) ∩ S ⊆ BS(p, r(1 + CS

√
r)).

Proof:

Let q ∈ B(p, r)∩S, then by (4.2), dS(p, q) ≤ dΩr
S
(p, q)(1+CS

√
r). But q ∈ B(p, r) ⊂ ΩrS, then dΩh

S
(p, q) = ‖p−q‖ ≤ r,

what completes the proof. @

Definition 2 ([59]) We say that the compact manifold S with boundary ∂S is strongly convex if for every

pair of points x and y in S, there exists a unique minimizing geodesic joining them whose interior is contained

in the interior of S.

Using basically the same procedure as in Theorem 7 with the convexity hypotheses above we can prove

the following Corollary.
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Corollary 5 (∂S 6= ∅) Under the hypotheses of Theorem 4, and assuming S to be strongly convex, we have

for small enough h > 0 the same conclusions of Theorem 7 (rate of convergence).

Proof:

Let M be an extension of S such that S is still strongly convex in M and let 0 < δ
4
= minx∈S minz∈M ‖x− z‖. Then,

B(x,α) ∩B(z, β) = ∅ for all x ∈ S, z ∈ ∂M and α, β < δ
3
. Hence, ΩαS ∩ Ωβ∂M

= ∅ for α, β ≤ δ
3
.

For any x, y ∈ S consider γh the ΩhM-minimizing geodesic, L (γh) = dΩh
M

(x, y).

By convexity of S there exists a unique M-minimizing geodesic γ0 ⊂ S joining x, y and then, by Theorem 6, γh

uniformly converges to γ0. In particular, for any ε > 0 there exists hε > 0 such that γh ⊂ Ωεγ0 for all h < hε. Choose

ε ≤ δ
3

then γh ⊂ Ωεγ0 ⊂ ΩεS. Furthermore, if h ≤ δ
3
, then Ωεγ0 ∩ΩhM = ∅ and therefore γh does not touch ∂ΩhM ∩∂Ωh∂M.

Thus, γh is C1,1 for h ≤ δ
3
. Note that with this choice of h we have ΩhS ∩ M ⊂ int(M) and therefore we also have a

smooth orthogonal projection operator Π : ΩhS → M.

Proceeding as in the first steps of the proof of Theorem 7 we have L (γh) = dΩh
M

(x, y) ≤ dM(x, y) ≤ L (Π(γh)),

since Π(γh) ⊂ M but may not be a minimizing path. Then, using the convexity of S in M, dM(x, y) = dS(x, y) and

therefore 0 ≤ dS(x, y)−dΩh
M

(x, y) ≤ |L (Πγh)−L (γh) | which can be bounded by a constant times
√
h just mimicking

the proof of Theorem 7. We conclude by noting that ΩhS ⊂ ΩhM hence dS(x, y) − dΩh
M

(x, y) ≥ dS(x, y) − dΩh
S
(x, y). @

Remark 11 Note that in case ∂S 6= ∅ is not strongly convex, then obviously the same statement of Corollary

5 remains valid for any strongly convex subset of S.

To conclude, in this chapter we extended the results in Chapter 2 to geodesics and distance functions in

general codimension manifolds with or without (smooth) boundary, thereby covering all possible manifolds

in common shape, graphics, visualization, and learning applications. We are now ready to extend this to

manifolds represented as point clouds.

4.2.1 Distance Functions on Point Clouds

We are now interested in making distance and geodesic computations on manifolds represented as point

clouds, i.e. sampled manifolds.

Let h, h′ and Pn be such that S ⊆ ΩhPn and Pn ⊆ Ωh
′

S and max(h, h′) ≤ H . Note that h′ represents a

level of noise present in the sampling.

We then have S ⊆ ΩhPn ⊆ Ωh+h′

S
. We want to consider dΩh

Pn
(p, q) for any pair of points p, q ∈ S

and prove some kind of proximity to the real distance dS(p, q). The argument carries over easily since

d
Ωh+h

′

S

(p, q) ≤ dΩh
Pn

(p, q) ≤ dS(p, q), hence 0 ≤ dS(p, q) − dΩh
Pn

(p, q) ≤ dS(p, q) − d
Ωh+h

′

S

(p, q), and the

rightmost quantity can be bounded by CS (h+ h′)1/2 (see §4.2) in the case that ∂S is either strongly convex

or void. The key condition is dH(S,Pn) ≤ ĥ for some prespecified ĥ. In the noiseless case (h′ = 0), the key

condition is S ⊂ ΩPhn
, something that can obviously be coped with using the compactness of S.5 We can

then state the following:

Theorem 8 (Uniform Convergence for Noiseless Point Clouds) Let S be a compact smooth subman-

ifold of IRd possibly with boundary ∂S. Then

5By compactness, given h > 0 we can find finite N(h) and points p1, p2, . . . , pN(h) ∈ S such that S = ∪
N(h)
i=1 BS(pi, h). But

since for p ∈ S, BS(p, h) ⊂ B(p, h) ∩ S, and we also get S ⊂ ∪
N(h)
i=1 B(pi, h).
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1. General Case: Given ε > 0, there exists hε > 0, such that ∀ 0 < h ≤ hε one can find finite n(h) and

a set of points Pn(h)(h) = {p1(h), . . . , pn(h)(h)} sampled from S such that

max
p,q∈S

(
dS(p, q) − dΩh

Pn(h)(h)
(p, q)

)
≤ ε

2. ∂S is either void or convex: For every sufficiently small h > 0 one can find finite n(h) and a set of

points Pn(h)(h) = {p1(h), . . . , pn(h)(h)} sampled from S such that

max
p,q∈S

(
dS(p, q) − dΩh

Pn(h)(h)
(p, q)

)
≤ CS

√
h

In practise, one must worry about both the number (n) of points and the radii (h) of the balls. Obviously,

there is a tradeoff between these quantities. If we want to use only few points, in order to cover S with the

balls we have to increase the value of the radius. Clearly, there exists a value H such that for values of h

smaller than H we don’t change the topology, see [7, 57, 81]. This implies that the number of points must be

larger than a certain lower bound. This result can be generalized to ellipsoids which can be locally adapted

to the geometry of the point cloud.

We now consider the general case of (maybe noisy) random sampling.

4.2.2 Random Sampling of Manifolds

We have to define the way in which we are going to measure accuracy. A possibility for such a measure is

(for each ε > 0)

�
„

maxp,q∈S

„
dS(p, q) − dΩh

Pn

(p, q)

«
> ε

«
. Notice that we are somehow considering dΩh

Pn
to be defined for all

pairs of points in S × S, even if it might happen that S ∩ ΩhPn 6= S. In any case, we extend dΩh
Pn

to all of

IRd × IRd by a large constant say K · diam (S), K � 1.
Let us define the events

Eε
4
=


max
p,q∈S

„
dS(p, q) − dΩh

Pn

(p, q)

«
> ε

ff
and Ih,n

4
=

n
S ⊆ ΩhPn

o
∩

n
Pn ⊆ ΩhS

o
.

Now, since Eε = (Eε ∩ Ih,n) ∪ (Eε ∩ Ich,n), using the union bound and then Bayes rule we have

� (Eε) ≤ � (Eε | Ih,n) + �
(
Ich,n

)
. (4.3)

It is clear now that we should use a convenient upper bound for the second term in the previous expression.

The first term can be easily dealt with using the convergence theorems presented in previous sections.

Combining the preceding discussion with the results in Chapter 3 we obtain the following convergence

theorem, where the dependence of ν with n (written as νn) means that there is a noise level present, which

we require to vanish as n ↑ ∞ in order to recover the true geodesic distance. In the noiseless case, the

support of ν is S and therefore νn = ν for all n.

Theorem 9 Let S be a k-dimensional smooth compact submanifold of IRd. Let Pn = {p1, . . . , pn} ⊆ IRd

be an i.i.d. set of points such that pi ∼ νn for 1 ≤ i ≤ n. Then if h = hn and νn are such that hn ↓ 0,
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fνn(hn2 ) ? lnn
n and |1 − gνn(hn)| > 1

n1+α for some α > 0 hold as n ↑ ∞, we have that for any ε > 0,

� (Eε)
n↑∞−→ 0.

Proof:

We base our proof on equations ((3.6) and (4.3). We first note that
�

(Eε | Ih,n) = 0 for n large enough because, from

considerations at the beginning of §4.2.1,
maxp,q∈S

„
dS(p, q) − d

Ω
hn
Pn

(p, q)

«
≤ CS

√
2hn whenever dH(S,Pn) ≤ hn holds. Let N = N(ε) ∈ IN be such that

hn <
1
2

“
ε
CS

”2

for all n ≥ N(ε). Then, for n ≥ N(ε),
�

(Eε) ≤ � `
I
c
h,n

´
≤ e−nf

hn
ν

f
hn
ν

+ 1 − (gνn(hn))n >
1

log n
+ n

n1+α ,

and the right hand side goes to 0 as n ↑ ∞. @

Noiseless Sampling

The following remarks are valid for the noiseless case.

Remark 12 1. As can be gathered from the preceding proof, for fixed ε > 0 and large n ∈ IN , � (Eε) can

be upper bounded by e−nf
hn
ν

fhnν
. For example, setting fhnν = γ logn

n for γ ≥ 1 yields (n big enough)

� (Eε) ≤
1

γ nγ−1 logn
. (4.4)

2. Then we see that by requiring
∑
n≥1

e−nf
hn
ν

fhnν
<∞ and using the Borel-Cantelli Lemma we obtain almost

sure convergence, namely:

�
(

lim
n↑∞

max
p,q∈S

(
dS(p, q) − dΩhn

Pn

(p, q)
)

= 0

)
= 1.

This can be guaranteed (for example) by setting fhnν = γ logn
n for γ > 2.

Perhaps the following simple observation is of more practical value:

Remark 13 Given h > 0, p ∈ (0, 1) and ε ∈ (0, CS

√
h), if (3.2) holds then � (Eε) ≥ p.

Noisy Sampling of Manifolds

We now elaborate on a couple of noisy models for the sampling and derive some rate estimates based on

Remark 12 and equation (3.6):

• pi ∼ U[Ω∆n

S
]. In this case, assuming r ≥ ∆n we obtain fν(r) ≥ a(B(·,∆n))

a(Ω∆n
S )

and gν(r) = 1 since

B(·,∆n) ⊂ B(·, r). Moreover, using Weyl’s Tube Theorem, (see [85]) we find an explicit formula for

the lower bound: fν(r) ≥ ωd∆
d
n

a(S)∆d−k
n +κ(∆n)

where κ(·) is a higher order term. Hence, (4.4) holds if we

set
ωd∆

k
n

a(S)+
κ(∆n)

∆
d−k
n

' γ logn
n , and hn ≥ 2∆n. Note that as hn vanishes, the condition becomes ∆k

n ' γ′ lognn

for some constant γ ′.
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• pi = u + ζ~nu where u ∼ U[S] and ζ ∼ E(0, βn), u and ζ are independent and where ~nt is unit norm

and uniformly distributed in the normal space to S at the point t.6 Note that since {u ∈ S, |ζ| ≤
r} ⊆ {u + ζ~nu ∈ ΩrS}, then gνn(r) ≥ 1 − e−βnr. Then, in order to satisfy |1 − gνn(hn)| > 1

n1+α we

can ask for the following condition (1): βn ? (1 + α) log n
hn

to hold. Consider, for z ∈ S and r > 0

the set Cz,r = {y ∈ IRd y = t + w where t ∈ BS(z, r/2) and w = C~nt, 0 ≤ C ≤ r/2}. It is then easy

to check that Cz,r ⊂ B(z, r). Hence, � (pi ∈ B(z, r)) ≥ � (pi ∈ Cz,r) ≥ � (u ∈ BS(z, r/2)) � (|ζ| ≤ r/2)

and therefore

fν(r) ≥ min
z∈S

a (BS(z, r/2))

a (S)
(1 − e−hnβn).

Now, assuming condition (1) holds, we find fνn(
hn
2 ) ? ωhkn(1 − c

n1+α ) for some constants c and ω,

which tells us that for n large enough, fνn(hn2 ) ? ω′hkn. We then see that we could still impose, as in

Remark 7, that hkn ' C log n
n . The resulting restriction for βn is βn ? (logn)1−1/kn1/k.

Note that although the results in this and in previous sections were presented for Euclidean balls of

the same radius, this can easily be extended to more general covering shapes, e.g. following [46], or using

minimal spanning trees still for balls but with different radii , or from the local directions of the data [162].

The band itself can be computed in several ways, and for the examples below we have used constant radii.

Locally adaptive radii can be used, based for example on diameters obtained from minimal spanning trees.

Automatic and local estimation of h defining ΩhPn was no pursued and is the subject of current research, we

are studying a multiscale approach.

4.3 Implementation Details and Examples

We now present examples of distance matrices and geodesics for point clouds, Figure 4.1; use these com-

putations to find intrinsic Voronoi diagrams, Figure 4.2 (see also [123, 131]); and compare the results with

those obtained with mesh-based techniques, Figure 4.3. We also present examples in high dimensions. These

exercises intend to exemplify the importance of computing distance functions and geodesics on point clouds,

and are by no means exhaustive. The 3D data sets used come from real point cloud data, and have been

obtained from range scanners (David model).

The theoretical results presented in previous sections show that the intrinsic distance and geodesics can

be approximated by the Euclidean ones computed in the band defined (for example) by the union of balls

centered at the points of the cloud. The problem is then simplified to first computing this band (no need for

mesh computation of course), and then use well known computationally optimal techniques to compute the

distances and geodesics inside this band, exactly as done in Chapter 2 for implicit surfaces. The band itself

can be computed in several ways, and for the examples below we have used constant radii. Locally adaptive

radii can be used, based for example on diameters obtained from minimal spanning trees or on the recent

work reported in [164]. Automatic and local estimation of h defining Ωh
Pn

, which will improve the bounds

here reported, was not pursued in this chapter and is the subject of current implementation efforts.

The software implementation of the algorithm is based on using the fast Euclidean distance computation

algorithms, usually referred to as fast marching algorithm [99, 178, 179, 199], twice. This algorithm has been

described in Chapter 2. The starting point is defining a grid over which all the computations are performed.

6
E(0, βn) denotes the Exponential distribution with zero mean and parameter βn: � (ζ ∈ [a, b]) =

R b
a
βn
2
e−βn|z| dz.
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This amounts to choosing ∆xi , the grid spacing in each direction i = 1, . . . , d, which will determine the

accuracy of the numerical implementation (the offset band includes less than 10 grid points).7 In the first

round we compute the band ΩhPn = {x ∈ IRd : d(Pn, x) ≤ h} by specifying a value of zero for the function

Ψ(x) = d(Pn, x) on the points x ∈ Pn. Since in general this points will not be on the grid, we use a simple

multilinear interpolation procedure to specify the values on neighboring grid points. The second use of the

fast distance algorithm is also simply reduced to using Ψ to define Ωh
Pn

. The computation of geodesics was

done using a simple Runge-Kutta gradient descent procedure, much in the way described in Chapter 2, with

some obvious modifications.

All the code and 3D visualization was developed in C++ using both Flujos (which is written using Blitz++,

see [74]) and VTK (see [202]). For matrix manipulation and visualization of other results we used matlab.

We are currently working on a more advanced implementation of the proposed framework that permits to

work with high dimensional data without having memory allocation problems that result from blind and

straightforward allocation of resources to empty and non-used grids.

4.3.1 High Dimensional Data

In this section we present a simple example for high dimensional data. We embedded a circle of radius

15 in IR5, and use a grid of size 34 × 4 × 4 × 4 × 34 (with uniform spacing ∆x = 1) such that each of

the sample points is of the form pi = 15
(
cos( 2πi

N ), 0, 0, 0, sin( 2πi
N )
)

+ (17, 2, 2, 2, 17), for 1 ≤ i ≤ N . We

then used our approach to compute the (approximate) distance function dh in a band in IR5, and then, the

error eij = |dS(pi, pj) − dh(pi, pj)| for i, j ∈ {1, . . . , N}. In our experiments we used h = 2.5 > ∆x
√

5.

We randomly sampled 500 points from the N = 1000 points used to construct the union of balls to build

the 500 × 500 error matrix ((eij)). We found maxij{eij} = 2.0275, that is a 4.3% L∞-error. In Figure

4.4 we show the histogram of all the (5002) entries of ((eij)). We should also note that when following

the dimensionality reduction approach in [189], with the geodesic distance computation here proposed, the

correct dimensionality of the circle was obtained.

In high dimensions, when the grid is too large, our current numerical implementation becomes unusable.

The problem stems from the fact that we require too much memory space, most of which is not really

used, since the computations are conducted only in a band around P ⊂ IRd. To be more precise, the

memory requirements of our current direct implementation, which uses a d-dimensional array to make the

computations, are ' (maxi li)
d, whereas, we really need a storage capacity of order µk(S)hd−k, where li is

the size of Ps bounding box along the i’th direction, 1 ≤ i ≤ d, and µk(S) is the measure of the k-dimensional

manifold S (embedded in IRd). This memory problem is to be addressed by a computation that is not based

on discretizing the whole band (note of course that the theoretical foundations presented in this chapter are

independent of the particular implementation). We are currently working on addressing this specific issue.

For further examples of our framework see [142] and for other applications [150] (for point cloud simpli-

fication) and [151] (for meshless subdivision of point clouds).

7Adaptive grids inside the fix or variable width offset band could be used as well, see for example [79].
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Comparison with Mesh-based Strategies for Distance Calculation in Presence of Noise

We now make some very basic comparisons between our approach to geodesic distance computations and

those based on graph approximations to the manifold, such as the one in Isomap [189, 81].8 The goal is to

show that such graph-based techniques are more sensitive to noise in the point cloud sample (and the error

can even increase to infinity with the increase in the number of points). This is expected, since the geodesic

in such techniques goes through the noisy samples, while in our approach, they just go through the union

of balls. We only make our argument for the 1D case, while the high dimensional cases can be similarly

studied.

1D Theoretical Case

Let’s consider a rectilinear segment of length L and n+ 1 equi-spaced points p1, . . . , pn+1 in that segment.

Consider the noisy points qi = pi+ζi~n where ~n is the normal to the segment and ζi 1 ≤ i ≤ n are independent

RV uniformly distributed in [−∆,∆]. Let l = L/n denote the distance between adjacent pis. Let d∆
g denote

the length of the polygonal path q1q2 . . . qn+1 and d0 = L. Then obviously d∆
g ≥ d0 for any realization of

the RVs ζi. Let di = ‖pi − pi+1‖, then by Pythagoras theorem di =
√
l2 + z2

i , where zi = ζi − ζi+1 are RVs

with triangular density in [−2∆, 2∆].

Then we compute � (di) = 1
2∆

∫ 2∆

−2∆

√
l2 + z2(1 − |z|

2∆ ) dz. The result is

� (di) =
√
l2 + 4∆2 +

l2

2∆
log

(
2∆ +

√
l2 + 4∆2

l

)
− 1

6∆2

(
(l2 + 4∆2)3/2 − l3

)
.

Now assuming ∆
l � 1, we find that up to first order � (di) ' l + ∆, and

�
(
d∆
g − d0

)
' n∆.

From this we also get9

pg
4
= �

(
d∆
g − d0 > ε

)
>
n∆

ε
.

On the other hand, for our approximation, d∆
h , if the segment is contained in the union of the balls

centered at the sampling points, d∆
h = d0. The probability of covering the segment by the band can be

made arbitrarily close to 1 by increasing n. More precisely, one can prove that if p stands for the value of

the probability of not covering the segment, then p ≤ k L∆(1 − k′ ∆L )n, for some positive constants k and k′.

Then, we can write

ph
4
= �

(
d∆
h − d0 > ε

)
≤ k′′

ε

L

∆
(1 − k′

∆

L
)n+1.

The comparison is now easy. We see that in order to have pg vanish as n ↑ ∞, ∆ must go to zero faster

than 1
n . Whereas, we know that by requiring ∆ ' logn

n ? 1
n we have ph ↓ 0 as n ↑ ∞. This means that the

graph approximation of the distance is more sensitive to noise than ours.10 This gives some evidence on why

8Isomap builds a mesh by locally connecting the (noisy) samples.
9Also, with similar arguments we can prove that maxζ1,...,ζn+1

`
d∆g − d0

´
' 2n2∆2

L
.

10Another way of seeing this is noting that for a fixed noise level ∆, by increasing n we actually worsen the graph approxi-
mation, whereas we are making our approximation better.
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our approach is more robust than popular mesh-based ones. Next we present results of some simulations

carried in order to further verify our claim.

Simulations

In the table below we present results of simulations carried out for the SwissRoll dataset [189], see Figure 4.3 .

We used 10000 points to define the manifold. We then generated 10000 noise vectors, being each component

uniform with power one and zero mean. Then, we generated noisy datasets from the noiseless SwissRoll

dataset by adding the noise vector times a constant nk to each vector of the noiseless initial dataset. We

then chose 1000 corresponding points in each dataset and computed the intrinsic pairwise distance approxi-

mation obtaining the matrices {(Dg,nk
ij )} and {(Dh,nk

ij )} for the graph-based and our approach respectively,

where k = 1, 2, . . . , 5, i, j ∈ [1, 1000], and nk denotes the noise level. We then computed the values of

maxij |Dg,nk
ij −Dg,0

ij | and maxij |Dh,nk
ij −Dh,0

ij | for each k, where Dg,0
ij and Dh,0

ij stand for noiseless intrinsic

distance approximations. In the table below, h indicates the radii and k the size of the neighborhood for

Isomap. The graph approximation shows less robustness to noise than our method, as was argued above.

This is also true for the sensitivity,11 where our approach outperforms the graph-based one by at least one

order of magnitude. Note that the sensitivity for our approach can be formally studied from Theorem 5.

Noise Power (n2
k) maxij |D

g,nk
ij −D

g,0
ij | k maxij |D

h,nk
ij −D

h,0
ij | h

0.0001 2.5222 7 0.5266 1.8

0.01 4.6409 7 0.9430 1.8

0.04 5.1737 7 1.2489 1.8

0.09 5.3292 7 1.4682 1.8

0.16 5.4651 7 1.7965 1.8

11Sensitivity is defined as
˛̨
˛1 −

distance for noisy points
distance for clean points

˛̨
˛.
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Figure 4.1: Top: Intrinsic distance function for a point cloud. A point is selected in the head of the David, and the
intrinsic distance is computed following the framework here introduced. The point cloud is colored according to their
intrinsic distance to the selected point, going from bright red (far) to dark blue (close). The offset band, given by
the union of balls, is shown next to the distance figure. Bottom: Same as before, with a geodesic curve between two
selected points.
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Figure 4.2: Voronoi diagram for point clouds. Four points (left) and two points (right) are selected on the cloud,
and the point cloud is divided (colored) according to their geodesic distance to these four points. Note that this is a
surface Voronoi, based on geodesics computed with our proposed framework, not an Euclidean one.
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Figure 4.3: Examples of geodesic computations. This data is used to study the algorithm robustness to noise, see
§4.3.1.
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Figure 4.4: Histogram for the error in the case of a circle embedded in IR5.
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Chapter 5

Comparison of Point Clouds

5.1 Introduction

The goal of this work, inspired in part by [66] and the tools developed in Chapter 4 and [189], is to develop a

theoretical and computational framework to compare shapes represented as point clouds. We are then going

to assume the existence of an underlying structure from which our point cloud data are obtained through

a sampling/acquisition process. Also, eventually we introduce the further assumption that the underlying

structures we want say things about all belong to a family or class of objects which satisfy certain tameness

properties.

As we have mentioned in the Introduction to this thesis (§1.1), a variety of objects can be represented as

point clouds in IRd. One is often presented with the problem of having to decide whether two of those point

clouds, and/or the corresponding underlying objects or manifolds, represent the same geometric structure

or not (object recognition and classification). We are then concerned with questions about the underlying

unknown structures (objects), which need to be answered based on discrete measures taken between their

respective point clouds. In greater generality, we may wonder what is the structural information we can

gather about the object itself by exploring a point cloud which represents it.1

Multidimensional scaling (MDS),2 for example, has been used to partly approach this general problem of

object analysis/recognition, by means of checking whether the underlying space (object) is flat or not, and

also providing information about the object’s dimensionality (as a subset of IRd) and its projection into a

reduced space. Procedures based on MDS require that one first computes the inter-point distance matrix for

all the members of the point cloud (or for a representative selected sub-set of them). If one is interested in

comparing two different objects, the problem is reduced to a comparison between the corresponding inter-

point distance matrices of their point clouds. If the distance we use is the Euclidean one, these matrices

only provide information about their rigid similarity, and (assuming the matrices are of the same size) if

they are equal (up to a permutations of the indices of all elements),3 we can only conclude that there exists

1A related important question is what conditions must a point verify in order to faithfully represent an object, not to mention
that one must ascribe a meaning to the word faithfully.

2For Multimensional Scaling, see for example [21].
3Boutin and Kemper, [25], have approached the recognition problem for (discrete objects) by looking only at the histogram

of inter-point squared Euclidean distances. Interestingly, they showed that while there are counterexamples for the recognition
problem with this kind of input, they constitute a very small fraction of all the possible point configurations. Such histograms
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a rigid isometry (rotation, reflection, translation) from one point cloud to the other. Under assumptions of

compactness we can also say something about the true underlying objects. Being more precise, let the point

clouds Pi ⊂ Si be εi-coverings of the compact surfaces Si in IR3, for i = 1, 2 (this will be formally defined

below). Then assuming there exists a rigid isometry τ : IR3 → IR3 such that τ(P1) = P2, we can bound the

Hausdorff distance (which we will also formally define below) between τ(S1) and S2 as follows:

dIR
3

H (τ(S1), S2) ≤ dIR
3

H (τ(S1), τ(P1)) + dIR
3

H (τ(P1),P2) + dIR
3

H (P2, S2) (5.1)

= dIR
3

H (S1,P1) + dIR
3

H (τ(P1),P2) + dIR
3

H (P2, S2)

≤ ε1 + 0 + ε2

And of course the same kind of bound holds for the Hausdorff distance between the point clouds once we

assume the underlying continuous objects are rigidly isometric, see §5.2.1 below.

One possible modification would be considering, still for compact surfaces, the intrinsic distance instead

of the Euclidean (extrinsic) one for the construction of the aforementioned inter-point distance matrices. A

comparison of these new distance matrices would then allow for more freedom in deciding when 2 objects

are similar since now bends are allowed.

If S1 and S2 happen to be isometric (here also allowing for bends and not only rigid transformations) we

wonder whether we will be able to detect this by looking at (finite) point clouds Pi sampled from each Si.

This problem is harder to tackle. We approach it through a probabilistic model, since in principle there might

exist even for the same object, two different samplings that look quite dissimilar (under discrete measures

we can cope with computationally), for arbitrarily fine scales (see below).

With the help of the theory here presented we recast these considerations in a rigorous framework and

address the case where the distances considered to characterize each point cloud (object) are more general.

We concentrate on the case when there exists an intrinsic notion of distance for each object we sample. For

the applications of isometry invariant shape (surfaces) recognition, one must therefore consider the distance

as measured by paths constrained to travel on the surface of the objects, better referred to as geodesic

distance.

These ideas have been introduced and used in [26, 66] for bending invariant recognition in 3D (without

the theoretical foundations here introduced), see also [97]; and in [81, 189] to detect intrinsic surface dimen-

sionality. The works [26, 66] argue in favor of invariance to full isometries in the case of face recognition.

We have recently discovered the works of Patrizio Frosini and his collaborators at the University of Bologna

who have developed interesting theoretical tools for the problem of comparing shapes, see [80] and references

therein.

In this Chapter we introduce both a theoretical and computational framework for the so called isometry

invariant shape recognition problem. The theory we use and build our framework upon is that pioneered by

Gromov [87], in which a metric is introduced in the space of all (compact) metric spaces. For the sake of

generality we present most of the framework for metric spaces, but the reader, at any moment, is invited to

think of surfaces for simplicity. We will abuse of terminology in the following sense: Since we are dealing

both with metric spaces and finite sets of samples from them, we are going to speak of continuous and

have been used earlier by the Princeton Shape Analysis Group, see www.cs.princeton.edu/gfx/proj/shape/index.html.
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discrete metric spaces. For instance, given a metric space (X, dX) we consider a finite subset of it, � m ⊂ X

which we endow with the metric of X to conform a discrete metric space, then X will be called continuous

(we will use this nomenclature from now on). This is in analogy with the sampling of signals.

The fundamental approach used for isometry invariant recognition in this Chapter is derived then from

the Gromov-Hausdorff distance, which we now proceed to present. Suppose X and Y are two (objects)

compact subsets of a common bigger metric space (Z, dZ), and we want to compare X to Y in order to

decide whether they are/represent the same object or not. Then, an idea that one might come up with very

early on is that of computing the Hausdorff distance between them (see for example [36, 103] for an extensive

use of this for shape statistics and image comparison):

dZH(X,Y )
4
= max(sup

x∈X
dZ(x, Y ), sup

y∈Y
dZ(y,X)) (5.2)

Figure 5.1: Two examples of general isometries.

But, what happens if we want to allow for certain deformations to occur and still decide that the objects

are the same? More precisely, we are interested in being able to find a distance between metric spaces that

is blind to isometric transformations (“bends”). This will permit a truly geometric comparison between

the manifolds, independently of their embedding and bending position. Following [87], we introduce the

Gromov-Hausdorff distance between Metric Spaces:
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dGH(X,Y )
4
= inf

Z,f,g
dZH(f(X), g(Y )) (5.3)

where f : X → Z and g : Y → Z are isometric embeddings (distance preserving) into the metric space Z. It

turns out that this measure of metric proximity between metric spaces is well suited for our problem at hand

and will allow us to give a formal framework to address the isometric shape recognition problem (for point

cloud data). However, this notion of distance between metric spaces encodes the “metric” disparity between

them, at first glance, in a computationally impractical way. We derive below new results that connect this

notion of disparity with other more computationally appealing expressions.

Remark 14 In [66] the authors proposed to use MDS applied to the geodesic distance matrices of each point

cloud in order to obtain a new pair of point clouds in IR3, such that the Euclidean distance matrices of these

new point clouds resemble as well as possible (according to some criterion) the geodesic distance matrices

between the original point clouds. The comparison then proceeds by computing some metric in IR3 to measure

the dissimilarity between the new point clouds. One could use, for example, the rigid-isometries invariant

Hausdorff distance dIR
3,rigid

H
(·, ·), see §5.2.1 ahead. This process can be rewritten in a more appealing way as

follows. Let P1 ⊂ IR3 and P2 ⊂ IR3 be the original point clouds and Q1 ⊂ IR3 and Q2 ⊂ IR3 the corresponding

new (projected) point clouds. Let also f̂ : IR3 → IR3 and ĝ : IR3 → IR3 be such that f̂(P1) = Q1 and

ĝ(P2) = Q2. Then, the number we compute is dIR
3,rigid

H
(f̂(P1), ĝ(P2)) which has an interesting resemblance

with the formula in the definition of the Gromov-Hausdorff distance.4

Since we have in mind specific applications and scenarios such as those described above, and in particular

surfaces and sub-manifolds of some Euclidean space IRd, we assume that we are given as input points densely

sampled from the metric spaces (surfaces, manifolds). This will manifest itself in many places in the theory

described below. We will present a way of computing a discrete approximation (or bound) to dGH(, ) based

on the metric information provided by these point clouds.

The problem of isometry invariant shape recognition at hand can be split in two parts. Firstly, suppose

the metric spaces under consideration happen to be isometric. We then have to guarantee that we can

discover this by looking at a computable discrete measure of metric similarity based just on our observed

data, that is, the point clouds. Secondly, if that measure of (discrete) metric similarity is “small,” what can

we say about that metric similarity between the underlying metric spaces? Both parts are addressed in our

work. One cannot perform object recognition without either of them.

The rest of this Chapter is organized as follows: The basic theoretical foundations are given in Section

§5.2, Section §5.3 presents the computational foundations, Section §5.4 illustrates the use of the framework

with real examples, and finally Section §5.5 concludes the paper and describes current efforts and future

directions.

We should note that this is a mainly theoretical work which proposes a framework (that leads to a possible

practical algorithm) and that the examples provided in §5.4 are not exhaustive and do not make use of all

the machinery here introduced, they simply exemplify and illustrate the application of the framework. More

comprehensive experimentation is subject of current efforts and will be reported in the future.

4Of course, bf and bg are not isometries, in general.
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5.2 Theoretical Foundations

This section covers the fundamental theory behind the bending invariant recognition framework we develop.

We first introduce some basic notation, definitions, and classical results. We use basic concepts on metric

spaces, see for example [110] for a simple exposition of this.

Definition 3 (Metric Space) A set M is a metric space if for every pair of points x, y ∈ M there is a

well defined function dM (x, y) whose values are non-negative real numbers, such that (a) dM (x, y) = 0 ⇔
x = y, and (b) dM (x, y) ≤ dM (y, z) + dM (z, x) for any x, y and z ∈ M . We call dM : M ×M → IR the

metric or distance. For clarity we will specify a metric space as the pair (M,dM ).

Definition 4 (Covering) For a point x in the metric space (X, dX) and r > 0, we will denote by BX(x, r)

the set {z ∈ X | dX(x, z) < r}. For a subset A of X, we use the notation BX(A, r) = ∪a∈ABX(a, r). We say

that a set C ⊂ X is an R-covering of X if BX(C,R) = X. We will also frequently say that the set A is a

n-covering of X if A constitutes, for some r > 0, a covering of X by n-balls with centers in points of A.

Definition 5 (Isometry) We say the metric spaces (X, dX) and (Y, dY ) are isometric when there exists a

bijective mapping Φ : X → Y such that dX (x1, x2) = dY (Φ(x1),Φ(x2)) for all x1, x2 ∈ X. Such a Φ is an

isometry between (X, dX) and (Y, dY ).

Next, we state some well known properties of the Gromov-Hausdorff distance dGH(, ) which will be useful

for our presentation.

Proposition 3 1. Let (X, dX), (Y, dY ) and (Z, dZ) be metric spaces then

dGH(X,Y ) ≤ dGH(X,Z) + dGH(Z, Y ).

2. If dGH(X,Y ) = 0 and (X, dX), (Y, dY ) are compact metric spaces, then (X, dX) and (Y, dY ) are

isometric.

3. Let {x1, . . . , xn} ⊂ X be a R-covering of the compact metric space (X, dX).

Then dGH(X, {x1, . . . , xn}) ≤ R.

4. For compact metric spaces (X, dX) and (Y, dY ):

1

2
|diam (X) − diam (Y )| ≤ dGH(X,Y ) ≤ 1

2
max (diam (X) ,diam (Y ))

where diam (X) := maxx,x′∈X dX(x, x′) stands Diameter of the metric space (X, dX).

5. For bounded metric spaces (X, dX) and (Y, dY ),

dGH(X,Y ) = inf
φ : X → Y

ψ : Y → X

sup
x1, x2 ∈ X

y1, y2 ∈ Y

(xi, yi) ∈ G(φ, ψ)

1

2
|dX(x1, x2) − dY (y1, y2)|

where G(φ, ψ) = {(x, φ(x)), x ∈ X} ∪ {(ψ(y), y), y ∈ Y } and the infimum is taken over all arbitrary

maps φ : X → Y and ψ : Y → X.
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The proofs of Properties 1 to 4 can be gleaned from [28, 87, 89, 168], and Property 5 can be found in [112].

Also of great informative value is [167].

Remark 15 Note that Property 5 above can be recast in a somewhat more clear form: Let

A(φ) = supx1,x2∈X |dX (x1, x2) − dY (φ(x1), φ(x2))|, B(ψ) = supy1,y2∈Y |dX (ψ(y1), ψ(y2)) − dY (y1, y2)| and

C(φ, ψ) = supx∈X, y∈Y |dX(x, ψ(y)) − dY (φ(x), y)|, then

dGH(X,Y ) = inf
φ : X → Y

ψ : Y → X

1

2
max (A(φ), B(ψ), C(φ, ψ)) (5.4)

It is interesting to note the following: Assume that dGH(X,Y ) ≤ η for small η, then roughly speaking, we

can find φ and ψ such that (1) φ provides a low metric distortion map from X to Y (because A(φ) ≤ 2η),

(2) ψ provides a low metric distortion map from Y to X (because B(ψ) ≤ 2η), and (3) φ and ψ are

“almost” inverses of one another (because C(φ, ψ) ≤ 2η, then taking y = φ(x) in the definition of C we find

dX(x, ψ(φ(x))) ≤ 2η for all x ∈ X; and also, symmetrically, dY (y, φ(ψ(y))) ≤ 2η for all y ∈ Y ).

Remark 16 From Property 4 it follows that two metric spaces whose diameters differ must be at a positive

dGH(, ) distance, as intuition requires.

From these properties, we can also easily obtain the following important result:

Corollary 6 Let X and Y be compact metric spaces. Let moreover � m be a r-covering of X (consisting of

m points) and � m′ be a r′-covering of Y (consisting of m′ points). Then

|dGH(X,Y ) − dGH( � m, � m′)| ≤ r + r′

We can then say that if we could compute dGH(, ) for discrete metric spaces which are dense enough

samplings of the “continuous” underlying ones, that number would be a good approximation to what happens

between the continuous spaces. Currently, there is no computationally efficient way to directly compute

dGH(, ) between discrete metric spaces in general. This forces us to develop a roundabout path, see §5.2.2

ahead. Before going into the general case, we discuss next the application of the ideas of our framework to

a simpler but important case.

5.2.1 Intermezzo: The Case of Rigid Isometries

When we try to compare two (compact) subsets X and Y of a larger metric space Z, the situation is a bit

simpler. The measure of similarity boils down to a somewhat simpler Hausdorff distance between the sets

(which of course must take into account self-isometries of Z). In more detail, one must compute

dZ,rigid
H

(X,Y )
4
= inf

Φ
dZH(X,Φ(Y )) (5.5)

where Φ : Z → Z ranges over all self-isometries of Z. If we knew an efficient way of computing infΦ d
Z
H(X,Φ(Y )),

then this restricted shape recognition problem would be well posed for Z, in view of an adapted version of

Proposition 3 and Corollary 6, as soon as we can give guarantees of coverage. For the sake of completeness

we state such a result.
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Proposition 4 dZ,rigid
H

(·, ·) satisfies the triangle inequality and in particular, the following relation holds:

∣∣∣dZ,rigidH
(X,Y ) − dZ,rigid

H
( � m, � m′)

∣∣∣ ≤ r + r′

for compact X,Y ⊂ Z such that X ⊂ BZ( � m, r) and Y ⊂ BZ( � m′ , r′).

Coverage can be guaranteed, in the case of sub-manifolds of IRd, by imposing a probabilistic model on

the samplings � m of the manifolds, and a bound on the curvatures of the family of manifolds one wishes to

work with. In more detail, for given r > 0 and p ∈ (0, 1), we can show that there exists finite mp,r such that

�
(
dIR

d

H (X, � m) > r
)
≤ 1 − p

for m ≥ mp,r, see Section §5.3.2.

In the case of surfaces in Z = IR3, Φ sweeps all rigid isometries, and there exist good algorithms which

can actually solve the problem approximately. For example, in [84] the authors report an algorithm which

for any given 0 < α < 1 can find a rigid transformation Φ̂α such that

dIR
3

H ( � m, Φ̂α( � m′)) ≤ (8 + α) inf
Φ
dIR

3

H ( � m,Φ( � m′))

with complexity O(s4 log s) where s = max(m,m′). This computational result, together with simple consid-

erations, makes the problem of surface recognition (under rigid motions) well posed and well justified. In

fact, using Proposition 4 we obtain a bound between the distance we want to estimate dIR
3,rigid

H
(X,Y ) and

the observable (computable) value dIR
3

H ( � m, Φ̂α( � m′)):

dIR
3,rigid

H
(X,Y ) − (r + r′) ≤ dIR

3

H ( � m, Φ̂α( � m′)) ≤ 10
(
dIR

3,rigid
H

(X,Y ) + (r + r′)
)

(5.6)

Equation (5.6) gives a formal justification to the procedure outlined for this surface recognition problem. To

the best of our knowledge, this is the first time such formality is presented for this very important problem,

both in the particular case just shown and for the general one addressed next. In any case, if dS is the

measure of similarity we are considering, and d̂S is the computable approximate measure of similarity, the

kind of relation we seek to establish is

A(dS(X,Y ) − α) ≤ d̂S( � m, � m′) ≤ B(dS(X,Y ) + β) (5.7)

for some constants A,B and numbers α and β which can be made small by refining the samplings. Moreover,

it may happen that relation (5.7) holds with a certain probability. Every recognition task needs to be

supported by a relation of this type, see also [56].

5.2.2 The General Case

The theory introduced by Gromov addresses the concept of metric approximation between metric spaces.

When dealing with discrete metric spaces, as those arising from samplings or coverings of continuous ones,

it is convenient to introduce another distance between them which ultimately is the one we compute for

point clouds, see §5.3.6 ahead. For discrete metric spaces (both of cardinality n) ( � = {x1, . . . , xn}, d � ) and
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( � = {y1, . . . , yn}, d � ) we define the distance: 5

dI( � , � )
4
= min

π∈Πn
max

1≤i,j≤n

1

2
|d � (xi, xj) − d � (yπi , yπj )| (5.8)

where Πn stands for the set of all permutations of {1, . . . , n}. A permutation π provides the correspondence

between the points in the sets, and |d � (xi, xj)−d � (yπi , yπj )| gives the pointwise distance/disparity once this

correspondence has been assumed.

It is evident that one has, by virtue of Property 5 from Proposition 3 (and Remark 15, if we take the

infimum over invertible maps ψ = φ−1):

dGH( � , � ) ≤ dI( � , � ) (5.9)

Moreover, we easily derive the following bound, whose usefulness will be made evident in §5.3.

Corollary 7 Let (X, dX) and (Y, dY ) be compact metric spaces. Let � = {x1, . . . , xn} ⊂ X and � =

{y1, . . . , yn} ⊂ Y , such that BX( � , RX ) = X and BY ( � , RY ) = Y (the point clouds provide RX and RY

coverings respectively). Then

dGH(X,Y ) ≤ RX +RY + dI( � , � ) (5.10)

with the understanding that d � = dX | � × � and d � = dY | � × � .

Remark 17 This result tells us that if we manage to find coverings of X and Y for which the distance dI is

small, then if the radii those coverings are also small, the underlying manifolds X and Y sampled by these

point clouds must be close in a metric sense. Another way of interpreting this is that we will never see a

small value of dI( � , � ) whenever dGH(X,Y ) is big, a simple statement with practical value, since we will only

be able to look at values of dI, which depend on the point clouds. This is because, in contrast with dGH(, ),

the distance dI is (approximately) computable from the point clouds, see §5.3.6.

We now introduce some additional notation regarding coverings of metric spaces. Given a metric space

(X, dX), the discrete subset N
(R,s)
X,n denotes a set of points {x1, . . . , xn} ⊂ X such that (1) BX(N

(R,s)
X,n , R) =

X , and (2) dX (xi, xj) ≥ s whenever i 6= j. In other words, the set constitutes a R-covering and the points

in the set are not too close to each other.

Remark 18 For each r > 0 denote by N(r,X) the minimum number of closed balls of radii r needed to cover

X. Then, ([168], Chapter 10), we can actually show that the class (M, dGH) of all compact metric spaces X

whose covering number N(r,X) are bounded for all (small) positive r by a function N : (0, C1) → (0,∞) is

totally bounded. This means that given ρ > 0, there exist a finite positive integer k(ρ) and compact metric

spaces X1, . . . , Xk(ρ) ∈ M such that for any X ∈ M one can find i ∈ {1, . . . , k(ρ)} such that dGH(X,Xi) ≤
ρ. This is very interesting from the point of view of applications since it gives formal justification to the

classification problem of metric spaces. For example, in a system of storage/retrieval of faces/information

manifolds, this concept permits the design of a clustering procedure for the shapes.

The following Proposition will also be fundamental for our computational framework in §5.3.

5One can easily check that this is really a distance.
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Proposition 5 ([87]) Let (X, dX) and (Y, dY ) be any pair of given compact metric spaces and let η =

dGH(X,Y ). Also, let N
(R,s)
X,n = {x1, . . . , xn} be given. Then, given α > 0 there exist points {yα1 , . . . , yαn} ⊂ Y

such that

1. dI(N
(R,s)
X,n , {yα1 , . . . , yαn}) ≤ (η + α)

2. BY ({yα1 , . . . , yαn}, R+ 2(η + α)) = Y

3. dY (yαi , y
α
j ) ≥ s− 2(η + α) for i 6= j.

Remark 19 This proposition tells us that if the metric spaces happen to be sufficiently close in a metric

sense, then given a s-separated covering on one of them, one can find a (s′-separated) covering in the other

metric space such that dI between those coverings (point clouds) is also small. This, in conjunction with

Remark 17, proves that in fact our goal of trying to determine the metric similarity of metric spaces based

on discrete observations of them is, so far, a (theoretically) well posed problem.

Since by Tychonoff’s Theorem the n-fold product space Y × . . .×Y is compact, if s−2η ≥ c > 0 for some

positive constant c, by passing to the limit along the subsequences of {yα1 , . . . , yαn}{α>0} (if needed) above one

can assume the existence of a set of different points {ȳ1, . . . , ȳn} ⊂ Y such that dI({ȳ1, . . . , ȳn}, N (R,s)
X,n ) ≤ η,

mini6=j dY (ȳi, ȳj) ≥ s− 2η > 0, and BY ({ȳ1, . . . , ȳn}, R+ 2η) = Y .

Since we are only given finite sets of points sampled from each metric space, the existence of {ȳ1, . . . , ȳn}
guaranteed by Proposition 5 and Remark 19 doesn’t seem to make our life a lot easier since those points could

very well not be contained in our given finite datasets. The simple idea of using a triangle inequality (with

metric dI) to deal with this does not work in principle, since one can find, for the same underlying space,

two covering nets whose dI distance is not small, see [29, 141]. Let us explain this in more detail. Assume

that as input we are given two finite sets of points � m and � m on two metric spaces, X and Y respectively,

which we assume to be isometric. Then the results above ensure that for any given N
(R,s)
X,n ⊂ � m there exists

a N
(R,s)
Y,n ⊂ Y such that dI(N

(R,s)
X,n , N

(R,s)
Y,n ) = 0. However, it is clear that this N

(R,s)
Y,n has no reason to be

contained in the given point cloud � m. The obvious idea would be try to rely on some kind of property of

independence on the sample representing a given metric space, namely that for any two different covering

nets N1 and N2 (of the same cardinality and with small covering radii) of X the distance dI(N1, N2) is also

small. If this were granted, we could proceed as follows:

dI(N
(R,s)
X,n , N

(R̂,ŝ)
Y,n ) ≤ dI(N

(R,s)
X,n , N

(R,s)
Y,n ) + dI(N

(R̂,ŝ)
Y,n , N

(R,s)
Y,n ) (5.11)

= 0 + small(R, R̂)

where small(R, R̂) is small number depending only on R and R̂. The property we fancy to rely upon was

conjectured by Gromov in [86] (see also [196]) and disproved by Burago & Kleiner in [29] and Mc.Mullen in

[141], see also [153] for certain positive results. Their counterexamples are for separated covering nets in ZZ2.

It is not known whether one can construct counterexamples for compact metric spaces, or if there exists a

characterization of a family of n-points separated covering nets of a given compact metric space such that

any two of them are at a small dI-distance which can be somehow controlled with n. A first step towards

this is the density condition introduced in [30].
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If counterexamples didn’t exist for compact metric spaces, then the above inequality would be sufficient.

Without assuming this, we give below an argument which tackles the problem in a probabilistic way. In other

words, we use a probabilistic approach to bound dI for two different samples from a given metric space. For

this, we pay the price of assuming the existence of a measure which comes with our metric space.6 On the

other hand, probabilistic frameworks are natural for (maybe noisy) random samples of manifolds as obtained

in real applications.7

5.2.3 A Probabilistic Setting for Sub-manifolds of IRd

We now limit ourself to smooth Riemannian sub-manifolds of IRd endowed with the metric inherited from

ambient space. However, the work can be extended to more general metric spaces, see further comments in

§5.5.2. In what follows, for an event E, � (E) will denote its probability and for a random variable x, � (x)

will denote its expected value.

Let Z be a smooth and compact sub-manifold of IRd with intrinsic (geodesic) distance function dZ(·, ·).
We can now speak more freely about points {zi}mi=1 sampled uniformly from X : We say that the random

point ẑ is uniformly distributed on Z if for any measurable C ⊂ Z, � (ẑ ∈ C) = a(C)
a(Z) , where a (B) denotes the

area of the measurable set B ⊂ Z. This uniform probability measure can be replaced by other probability

measures which for example adapt to the geometry of the underlying surface, and the framework here

developed can be extended to those as well, see comments in §5.5.2.

Let
�

= {z1, . . . , zn} and
� ′ = {z′1, . . . , z′n} be two discrete subsets of Z (two point clouds). For any

permutation π ∈ Πn and i, j ∈ {1, . . . , n},

|dZ(zi, zj) − dZ(z′πi , z
′
πj )| ≤ dZ(zi, z

′
πi) + dZ(zj , z

′
πj )

and therefore we have

dZB(
�
,

� ′)
4
= min
π∈Πn

max
k

dZ(zk, z
′
πk) ≥ dI(

�
,

� ′) (5.12)

This is known as the Bottleneck Distance between
�

and
� ′, both being subsets of Z. This is one possible

way of measuring distance between two different samples of the same metric space.8

Instead of dealing with (5.11) deterministically, after imposing conditions on the underlying metric spaces

X and Y , we derive probabilistic bounds for the left hand side. We also make evident that by suitable choices

of the relations among the different parameters, this probability can be chosen at will. This result is then

used to bound the distance dI between two point cloud samples of a given metric space, thereby leading to

the type of bound expressed in Equation (5.11) and from this, the bounds on the original Gromov-Hausdorff

distance between the underlying objects.

We introduce the Voronoi diagram V(
�
) on Z, determined by the points in

�
(see for example [131]).

6In the present work we therefore deal only with the case of sub-manifolds of IRd.
7In more generality, data are acquired by sensors or arrays of sensors which return a value in IRd for some d ≥ 1. The

acquisition process or the sensors themselves might be subject to some perturbations (miscalibrations of mechanical parts of
a 3D-scanner, electric noise in electrodes, etc). Under the assumption of existence of an underlying structure from which the
data are sampled, it therefore seems sensible to introduce a probability measure which models the acquisition process.

8In [153], this distance is used to establish the equivalence (according to this notion) of separated nets in certain Hyperbolic
metric spaces.
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The i-th Voronoi cell of the Voronoi diagram defined by {z1, . . . , zn} ⊂ Z is given by

Vi
4
= {z ∈ Z| dZ(zi, z) < min

j 6=i
dZ(zj , z)} (5.13)

We then have Z =
⊔n
k=1 Vk .

Lemma 6 1. If the points {z1, . . . , zn} are s-separated, then for any 1 ≤ i ≤ n, BZ(zi,
s
2 ) ⊂ Vi.

2. If the points {z1, . . . , zn} constitute a R-covering of Z, then Vi ⊆ BZ(zi, R) for all i = 1, . . . , n.

Proof:

To prove 1. first note that for any z ∈ Z and i 6= j, dZ(z, zi) + dZ(z, zj) ≥ s by the triangle inequality. Assume in

particular that z ∈ BZ(zi,
s
2
), then dZ(z, zi) <

s
2

and dZ(z, zj) >
s
2

for all j 6= i, then z ∈ Vi. To prove 2. assume

z ∈ Vi but z /∈ BZ(zi, R), that is dZ(z, zi) ≥ R. But since {z1, . . . , zn} is a R-covering of Z, z must belong to a

certain BZ(xk, R) for some k 6= i, that is dZ(z, zk) < R. But then z is closer to zk than to zi, which contradicts

z ∈ Vi. @

We consider
�

to be fixed, and we assume
� ′ = {z′1, . . . , z′n} to be chosen from a set

�
m ⊂ Z consisting

of m� n i.i.d. points sampled uniformly from Z.

We first want to find, amongst points in
�
m, n different points {zi1 , . . . , zin} such that each of them

belongs to one Voronoi cell, {zik ∈ Vk for k = 1, . . . , n}. We provide lower bounds for

� (# (Vk ∩
�
m) ≥ 1, 1 ≤ k ≤ n), the probability of this happening.

We can see the event as if we collected points inside all the Voronoi cells, a case of the Coupon Collecting

Problem, see [70]. We buy merchandise at a coupons-giving store until we have collected all possible types

of coupons. The next Lemma presents the basic results we need about this concept. These results are due

to Von Schilling ([176]) and Borwein and Hijab ([22]).

Lemma 7 (Coupon Collecting) If there are n different coupons one wishes to collect, such that the prob-

ability of seeing the k-th coupon is pk ∈ (0, 1), (let ~p = (p1, . . . , pn)), and one obtains samples of all of them

in an independent way then:

1. ([176]) The probability P~p(n,m) of having collected all n coupons after m trials is given by

P~p(n,m) = 1 − Sn




n∑

j=2

(−1)j




n∑

k=j

pk



m
 (5.14)

where the symbol Sn means that we consider all possible combinations of the n indices in the expression

being evaluated.9

2. ([22]) The expected value of the number of trials needed to collect all the coupons is given by

E~p(n) = �
(

max
1≤i≤n

Xi

pi

)
(5.15)

where Xi are independent positive random variables satisfying � (Xi > t) = e−t for t ≥ 0 and 1 ≤ i ≤ n.

9For example S3((p1 + p2)k) = (p1 + p2)k + (p1 + p3)k + (p2 + p3)k .
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For n ∈ IN let hn :=
∑n

i=1 i
−1.

Corollary 8 P~p(n,m) ≥ 1 − hn
m·mink pk

.

Proof:

By Markov’s inequality, 1 − P~p(n,m) ≤ E~p(n)

m
. Now, note that E~p(n) is decreasing in each pk for pk ≥ 0, then it

is clear that E~p(n) ≤ E~1(n)

mink pk
. On the other hand, it is easy to compute by direct probabilistic calculation that

E~1
n

(n) = nhn. We conclude by noting that, by (5.15), cEc~p(n) = E~p(n) for any c > 0. @

We now directly use these results to bound the bottleneck distance.

Theorem 10 Let (Z, dZ) be a smooth compact sub-manifold of IRd. Given a covering N
(R,s)
Z,n of Z with

separation s > 0 and a number p ∈ (0, 1), there exists a positive integer m = mn(p) such that if
�
m = {zk}mk=1

is a sequence of i.i.d. points sampled uniformly from Z, with probability p one can find a set of n different

indices {i1, . . . , in} ⊂ {1, . . . ,m} with

dZB(N
(R,s)
Z,n , {zi1 , . . . , zin}) ≤ R and Z =

n⋃

k=1

BZ(zik , 2R).

Moreover, mn(p) ≤
[

hn
minz a(BZ (z, s2 ))

a(Z)
1−p

]
+ 1.10

This result can also be seen the other way around: For a given m, the probability of finding the afore-

mentioned subset in
�
m is P~pZ (n,m) as given by (5.14), for suitably defined ~pZ . The precise form of ~pZ can

be understood from the proof.

Proof:

Let N
(R,s)
Z,n = {bz1, . . . , bzn}. We consider the coupon collecting problem in which the k-th coupon has been acquired

at least once if #{ � m ∩ Vk} ≥ 1, where Vk is the k-th cell of the Voronoi partition corresponding to the covering net

N
(R,s)
Z,n . The components of the probability vector ~p are given by pk = a(Vk)

a(Z)
for k = 1, . . . , n. Using the fact that

(5.14) is increasing in the number of trials m,11 we see that given p we can find a positive integer M such that for

m ≥M

�

 
n\

k=1

{#{ � m ∩ Vk} ≥ 1}
!

≥ p

Discarding points when more than one has been found inside the same Vk, we can obtain with probability at

least p, exactly one point inside each Vk. Let i1, . . . , in be indices such that zik ∈ Vk for k = 1, . . . , n. Then

dZB({zi1 , . . . , zin}, N (R,s)
Z,n ) ≤ maxz∈Āk dZ(z, bzk), since by Lemma 6, Vk ⊆ BZ(bzk, R), and this concludes the proof of

the first claim. Also, by the very same steps plus the triangle inequality we prove that {zi1 , . . . , zin} constitutes a

2R-covering of Z. Finally, note that by Corollary 8, P~p(n,m) ≥ p for m ≥ hn
(1−p) mink pk

. Since again by Lemma 6,

a (Vk) ≥ minz∈Z a
`
BZ(z, s

2
)
´

the last claim follows. @

Corollary 9 Let X and Y compact sub-manifolds of IRd. Let N
(R,s)
X,n be a covering of X with separation s

such that for some positive constant c, s− 2dGH(X,Y ) > c. Then, given any number p ∈ (0, 1), there exists

10For real x, [x] stands for the largest integer not greater that x.
11Something obvious for which in, principle, we do not need to know the exact expression (5.14).
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a positive integer m = mn(p) such that if � m = {yk}mk=1 is a sequence of i.i.d. points sampled uniformly from

Y , we can find, with probability at least p, a set of n different indices {i1, . . . , in} ⊂ {1, . . . ,m} such that

dI(N
(R,s)
X,n , {yi1 , . . . , yin}) ≤ 3 dGH(X,Y ) +R and Y =

n⋃

k=1

BY (yik , 2(R+ 2dGH(X,Y ))).

Moreover, mn(p) ≤
[

hn
miny a(BY (y, c2 ))

a(Y )
1−p

]
+ 1.

Proof:

Let η = dGH(X,Y ). Following Remark 19, we can find a (R + 2η, s − 2η) n-covering of Y , which we denote by

N
(R̃,s̃)
Y,n , such that dI(N

(R,s)
X,n , N

(R̃,s̃)
Y,n ) ≤ η. Let, as in Theorem 10, m = mn(p) be such that for any i.i.d. set of points

�
m = {y1, . . . , ym} uniformly sampled from Y one has

�
“
∃ {yi1 , . . . , yin} ⊂ �

m : dYB

“
N

(R̃,s̃)
Y,n , {yi1 , . . . , yin}

”
≤ R̃

”
≥ p

where i1, . . . , in are different indices. Let NY,n ⊂ Y be a set of n different points. Then, using the triangle inequality

dI(N
(R,s)
X,n , NY,n) ≤ dI(N

(R,s)
X,n , N

(R̃,s̃)
Y,n ) + dI(NY,n, N

(R̃,s̃)
Y,n )

≤ η + dYB(NY,n, N
(R̃,s̃)
Y,n )

Hence we obtain, by Theorem 10,

�
“
∃NY,n ⊂ �

m : dI

“
N

(R̃,s̃)
X,n , NY,n

”
≤ η + R̃

”
≥ p.

The other claims follow just like in the proof of Theorem 10. @

Remark 20 1. The preceding Corollary deals with the case of positive detection: X and Y are nearly

isometric and we wish to detect this by only accessing the point clouds. The constant c quantifies this

metric proximity as encoded by the phrase “nearly isometric.” For instance, for a recognition task

where for any two similar objects X and Y , dGH(X,Y ) ≤ ηmax, one could choose c = s− 2ηmax.

2. Note that the probability P~pY (n,m) itself (or mn(p)) depends on dGH(X,Y ) through the constant c, see

an example of the application of these ideas in §5.3.4 ahead.

Note also that one can write down the following useful bound

P~pY (n,m) ≥ 1 − hn

m · miny∈Y a
(
BY (y, c2 )

)a (Y ) (5.16)

which was implicitly used in the proof of Theorem 10. It is sensible to assume one is interested in per-

forming the recognition/classification task for a number of objects which satisfy certain conditions, that

is, tune the framework to a particular class of objects. In particular, suppose the class is characterized,

among other conditions, by an upper bound on the sectional curvatures. For small r > 0 this allows,

via Bishop-Günther’s Theorem, to obtain a lower bound on minz a (BZ(z, r)) valid for all objects Z in
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the class. This in turn can be used to calibrate the system to provide any prespecified probability p as in

Corollary 9 for any two objects within the class, see §5.3.4 and §5.3.2 for a more detailed presentation

of this ideas.

A rougher estimate of the value of mn(p) alluded to in Corollary 9 can be obtained using the value of

E~p(n) when all the coupons are equally likely: m ' E ~1
n

(n) = n · hn ' n logn.

This concludes the main theoretical foundation of our proposed framework. Now, we must devise a

computational procedure which allows us to actually find the subset NY,n inside the given point cloud � m
when it exists, or at least find it with a large probability. Note that in practise we can only access metric

information, that is, interpoint distances. A stronger result in the same spirit of Theorem 10 should take

into account possible self-isometries of X (Y ), which would increase the probability of finding a net which

achieves small dI distance to the fixed one. We present such a computational framework next.

5.3 Computational Foundations

There are a number of additional issues that must be dealt with in order to develop an algorithmic procedure

from the theoretical results previously presented. These are now addressed.

5.3.1 Initial Considerations

In practise our input consists of two statistically independent point clouds � m and � m′ each of them composed

of i.i.d. points sampled uniformly from X and Y , respectively. For a positive integer n � min(m,m′) we

construct good coverings N
(R,s)
X,n of X and N

(R′,s′)
Y,n of Y , respectively. Actually, R, s,R′ and s′ all depend

on n, and we should choose n such that R and R′ are small enough to make our bounds useful, see the

additional computations below. Details on how we construct these coverings are provided in Section §5.3.3.

We will assume, without loss of generality, that these coverings are statistically independent of � m and � m′ .

It is convenient to introduce the following additional notation: For a set of points
�
q = {zk}qk=1 and for

a set of indices Iu = {i1, . . . , iu} ⊂ {1, . . . , q}, let
�
q [Iu] denote the subset {zi1 , . . . , ziu} of

�
q .

Corollary 9 suggests that in practise we compute the following symmetric expression

dF( � m, � m′)
4
= max

(
min

Jn⊂{1,...,m}
dI(N

(R,s)
X,n , � m′ [Jn]), min

In⊂{1,...,m}
dI(N

(R′,s′)
Y,n , � m[In])

)
(5.17)

which depends not only on � m and � m′ but also on pre-specified covering nets N
(R,s)
X,n and N

(R′,s′)
Y,n . However

we prefer to omit this dependence in the list of arguments in order to keep the notation simpler.

Then, dF( � m, � m′) upper bounds dGH( � m, � m′), something we need to require. In fact, for any In ⊂
{1, . . . ,m}, using the triangle inequality for dGH (Property 1 from Proposition 3) and then Property 3 from

Proposition 3:

dGH( � m, � m′) ≤ dGH( � m, � m[In]) + dGH( � m[In], � m′)

≤ dGH( � m, � m[In]) + dGH( � m[In], N
(R′,s′)
Y,n ) + dGH(N

(R′,s′)
Y,n , � m′)

≤ dXH( � m, � m[In]) + dI( � m[In], N
(R′,s′)
Y,n ) +R′
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Now, considering I∗n such that dI( � m[I∗n], N
(R′,s′)
Y,n ) = minIn⊂{1,...,m} dI(N

(R,s)
Y,n , � m[In]), we find

dGH( � m, � m′) ≤ dXH( � m, � m[I∗n]) + dF( � m, � m′) +R′

Symmetrically, we also obtain for J∗
n such that dI( � m[J∗

n], N
(R,s)
X,n ) = minJn⊂{1,...,m′} dI(N

(R,s)
X,n , � m′ [Jn])

dGH( � m, � m′) ≤ dYH( � m′ , � m′ [J∗
n]) + dF( � m, � m′) +R.

Hence, combining the last two expressions

dGH( � m, � m′) ≤ dF( � m, � m′) (5.18)

+ min
(
dXH( � m, � m[I∗n]), dYH( � m′ , � m′ [J∗

n])
)

+ max(R,R′)

what implies (Corollary 6) a similar upper bound for dGH(X,Y ). In fact, let rm := dXH(X, � m) and rm′ :=

dYH(Y, � m′), then

dGH(X,Y ) ≤ dF( � m, � m′) (5.19)

+ min
(
dXH( � m, � m[I∗n]), dYH( � m′ , � m′ [J∗

n])
)

+ max(R,R′) + rm + rm′

Let ∆X := dXH( � m, � m[I∗n]) and ∆Y := dYH( � m′ , � m′ [J∗
n]).

We now deal with the opposite kind of inequality. By Corollary 9 we know that with probability at least

P~pX (n,m) × P~pY (n,m′) we will have both:12

dF( � m, � m′) ≤ 3 dGH(X,Y ) + max(R,R′) (5.20)

and

∆X ≤ 2(R′ + 2dGH(X,Y )) and ∆Y ≤ 2(R+ 2dGH(X,Y )) (5.21)

and from this it follows in particular that min(∆X ,∆Y ) ≤ 2 max(R,R′) + 4dGH(X,Y ) with the same prob-

ability.

Summing up, we have thus obtained:

dGH(X,Y ) − α(R,R′,m,m′) ≤ L( � m, � m′)
prob

≤ 7(dGH(X,Y ) + β(R,R′)) (5.22)

where the symbol
prob

≤ means that the inequality holds with probability P~pX (n,m)×P~pY (n,m′), α(R,R′,m,m′) :=

12Because we assumed � m to be independent from � m′ .
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max(R,R′) + (rm + rm′),13 β(R,R′) := 3
7 max(R,R′), and

L( � m, � m′) := dF( � m, � m′) + min(∆X ,∆Y ). (5.23)

Note, for future reference, that L( � m, � m′) ≤ 3
2 max(diam (X) ,diam (Y )).

Remark 21 Note that α, β and the probability can be controlled by suitably choosing all the parameters.

We have therefore obtained an expression like the one anticipated in Section §5.2.1, Equation (5.7). The

main difference is that we have not yet proved that L( � m, � m′) can be computed exactly or approximately

in practise. In §5.3.6 we present a simple algorithm for approximately computing this quantity. We do not

provide bounds on the fidelity of the algorithm in this Chapter. Results in this direction are subject of current

efforts.

Remark 22 By a modification of the ideas here presented it may be possible to provide a framework recog-

nition of partial objects: One might want to check whether one object is a part of another one. Clearly, in

that case, one shouldn’t but compute one half of dF. The covering net N
(R′,s′)
Y,n should represent the object

that we want to find inside the one represented by � m.

5.3.2 Working with Point Clouds

All we have are finite sets of points (point clouds) sampled from each metric space, and all our computations

must be based on these observations only. Since we made the assumption of randomness in the sampling (and

it also makes sense in general to make a random model of the problem, given that the shapes are acquired

by a scanner for example), we must relate the number of acquired data points to the coverage properties

we wish to have. In other words, and following our theory above, we would like to say that given a desired

probability pc and a radius rc, there exists a finite m such that the probability of covering all the metric

space with m balls (intrinsic or not) of radius rc centered at those m random points is at least pc. This kind

of characterizations are easy to deal with in the case of sub-manifolds of IRd, where the tuning comes from

the curvature bounds available. For this we follow [142]. Let Z be a smooth and compact sub-manifold of

IRd of dimension k. Let
�
m = {z1, . . . , zm} ⊂ Z consist of m i.i.d. points uniformly sampled from Z. For

r > 0 define

fZ(r)
4
= min

z∈Z
a (BZ(z, r)) (5.24)

Then, for p ∈ (0, 1) and δ > 0 we can prove that if m ≥ − log((1−p)fZ(δ/4))
fZ (δ/2) then

pδ,m
4
= � (Z ⊆ ∪mi=1BZ(zi, δ)) ≥ p (5.25)

The function fZ can be lower bounded using an upper bound, K, for the sectional curvatures of Z

(Bishop-Günther Theorem, see [85]): fZ(r) ≥ FK,k(r) where FK,k(r) denotes the area of a ball of radius

r in a space of constant sectional curvature K and dimension k. For example, when K > 0, one has

FK,k(r) = 2πk/2

Γ(k/2)

∫ r
0

(
sin(t

√
K)√

K

)k−1

dt.14

13Observe that α(R,R′,m,m′) ≤ 3 max(R,R′).
14Γ(t) denotes the usual Gamma function: Γ(t) =

R ∞
0
ut−1e−u du.
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This relation gives us some guidance about the number points we must sample in order to have a certain

covering radius, or to estimate the covering radius in terms of m. An important point to remark is that this

kind of relations, (5.25), should hold for the family of shapes we want to work with (in a way similar to the

one exposed in §5.3.4), therefore, once given bounds on the curvatures that characterize the family, one can

determine a precise probabilistic covering relation for it. We leave the exploitation/application of this idea

for future work.

Given the natural number n ≤ m (or eventually s > 0), we use the oracle described in §5.3.3 below to find

n-points from
�
m which constitute a covering of

�
m of the given cardinality n (or of the given separation s

or given covering radius R) and of a resulting radius Rres (or resulting separation sres). We denote this set

by N
(Rres,s)�
m,n

⊆ �
m (or N

(R,sres)�
m,n

⊆ �
m, respectively).

5.3.3 Finding Coverings

In order to find the coverings N
(R,s)
Z,n , we use the well known Farthest Point Sampling (FPS) strategy, which

we describe next. Suppose we have a dense sampling
�
m of the smooth and compact sub-manifold (Z, dZ)

of IRd as interpreted by the discussion above. We want to simplify our sampling and obtain a well separated

covering net of the space. We also want to estimate the covering radius and separation of our covering net.

It is important to obtain subsets which retain as best as possible the metric information contained in the

initial point cloud in order to make computational tasks more treatable without sacrificing precision.

We first show a procedure to sample the whole of Z. Fix n the number of points we want to have in

our simplified point cloud Pn. We build Pn recursively. Given Pn−1, we select p ∈ Z such that dZ(p,Pn) =

maxz∈Z dZ(z,Pn−1) (here we consider of course, geodesic distances). There might exist more than one point

which achieves the maximum, we either consider all of them or randomly select one and add it to Pn−1.

This sub-sampling procedure has been studied and efficiently implemented in [150] for the case of surfaces

represented as point clouds.

The FPS procedure satisfies several useful properties as described below.

Let M(Pn−1) ⊂ Z denote the set of points z for which dZ(Pn−1, z) is maximal. We denote by sn and

Rn the separation and covering radius of Pn ⊂ Z, respectively.

Lemma 8 Let Pn be the set obtained for each n ≥ n0 according to the FPS strategy starting from Pn0 , and

let pn+1 denote any point in M(Pn). Then, for n ≥ n0,

1. dZH(Z,Pn+1) ≤ dZH(Z,Pn), that is Rn+1 ≤ Rn.

2. dZ(pn+2,Pn+1) ≤ dZ(pn+1,Pn).

3. sn
4
= min1≤i<j≤n dZ(pi, pj) ≥ min1≤i<j≤n+1 dZ(pi, pj) = sn+1.

4. sn = dZ(pn,Pn−1).

5. dZH(Z,Pn) = dZ(pn+1,Pn).

6. n ≤ a(Z)
fZ ( sn2 ) where a is the area measure on Z and fZ was defined in (5.24).15

15Note that with curvature bounds one can obtain a more explicit relation between sn and n.
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In practise we do not have access to Z but only to a point cloud,
�
m, sampled from it. Anyhow, we can

still follow the same algorithmic procedure.

Remark 23 These properties make it easy to compute sn and Rn on the fly inside the algorithm, something

useful when the objective is to to obtain either a pre-specified covering radius or a minimal prespecified

separation. However, it turns out to be useful to have an estimate on n depending on a prespecified covering

radius, that is, we want to find n such that using the FPS we obtain a covering of Z consisting of n points

and with radius not greater than ε. Property 6 in Lemma §8 gives us a way. Observe that sn = Rn−1, then

note that if n ≥ a(A)
fZ (ε/2) we must have fZ(sn/2) ≤ fZ(ε/2). But fZ is obviously non-decreasing, therefore

ε ≥ sn = Rn−1 ≥ Rn.

An interesting problem to solve has to do with the behavior of sn with n through the FPS procedure, in

the sense that we would like to know the maximum number of steps of the procedure that can be performed

such that the separation remains larger than a prespecified number, check Remark 20. Note, for example,

that in the case of the unit sphere S2, the construction of the FPS net goes roughly as follows: The first two

points are any antipodal points, call them p1 and p2. The third point can be any on the equator with respect

to p1 and p2. The fourth point will lie still on the equator defined by p1 and p2 but will be antipodal to p3.

The next eight points will be the centers of the octants defined by the 3 maximal circumferences passing

through {p1, p2, p3, p4}, {p1, p2, p5, p6} and {p3, p4, p5, p6}. The construction follows a similar pattern for

n > 8. We can therefore obtain an exact formula for sn. Now, given a surface S ∈ A (A is a certain class

of compact smooth surfaces), we would like to be able to lower bound sn(S) by some quantity related to

sn(S
2). Perhaps this will require assuming upper bounds on the Gauss curvature of S ∈ A. In any case,

knowledge of this lower bounds will let us find, for any given s > 0, a ns ∈ IN such that for all n ≤ ns,

sn(S) ≥ s for all S ∈ A.

Let us now assume that the discrete metric space (
�
m, dZ) is a good random sampling of the underlying

(Z, dZ) in the sense that dH(Z,
�
m) ≤ r with a certain probability pr,m, as discussed in Section §5.3.2. We

then want to simplify
�
m in order to obtain a set Pn with n points which is both a good sub-sampling and

a well separated covering net of X .16 We want to use our n sampled points in the best possible way. We

are then led to using the construction discussed above. For example, choose randomly one point p1 ∈ �
m

and consider P1 = {p1}.17 Run the procedure FPS until n − 1 other points have been added to the set of

points.18 Compute now rn
4
= maxq∈ � m d(q,Pn). Then, also with probability pr,m, Pn is a (r + rn)-covering

net of X with separation sn as expressed in Lemma 8. Following this, we now use the notation N
((r+rn),sn)
Z,n .

Next, we present a simplified example of application of the ideas discussed so far.

5.3.4 An Idealized Example

Suppose, for instance, that we are trying to detect, amongst a finite number of objects {X i}Li=1 belonging

to a certain family A, when two objects are isometric. We will assume for simplicity of exposition that we

16One more reason for wanting the sub-sampling to be well separated, besides the one given by Corollary 9, is that intuitively,
the more separated the covering net, the more efficient the use of the points to cover the metric space.

17Another option is choosing p1 and p2 in � m at maximal distance and then recurse.
18As we mentioned before, the goal can be different: Keep adding points while the separation of the resulting sub-sampling

is big enough as measured by some pre-specified constant s > 0.
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have only two possible cases or hypotheses: either (H1) dGH(X i, Xj) = 0 or (H2) dGH(X i, Xj) ≥ D for

some D > 0 for all 1 ≤ i, j ≤ L.

We characterize the family A as those smooth compact surfaces of IR3 such that their Gaussian curvature

is bounded from above by some positive constant K, whose total area is bounded from above by some finite

constant A. Then, for any sufficiently small t > 0,

fS(t)
4
= min

x∈S
a (BS(x, t)) ≥ 2π

K
(1 − cos(t

√
K)) =: FK,2(t)

for all S ∈ A, by the Bishop-Günther Theorem, see §5.3.2. Note in particular that FK,2(t) > 0 for 0 < t <
π√
K

.

For 1 ≤ i ≤ L we will denote by � imi the point cloud corresponding to the object X i and ri will denote

numbers such that X ⊂ B( � imi , ri).
19

Let X i and Xj be any two such objects, we will decide, in this example, that X i and Xj are isometric

whenever L( � imi , � jmj ) is smaller than a certain threshold, see Equation (5.22).

Fix ε > 0. For all X i choose coverings N
(Ri,si)

Xi,ni
such that max1≤i≤LRi ≤ ε, then ni will be fixed by the

procedure one uses to construct those coverings, see §5.3.3. Let n := maxi ni and R := mini Ri ≤ ε. By

adding new points to each of the coverings, if necessary, construct new coverings all with n points, covering

radius ε and resulting separation si. Let s := mini si. Note that we can estimate n in terms of ε, A and K

using the discussion in Remark 23. In fact, n ≥ nε
4
= 1 +

[
A

FK,2(ε/2)

]
will do the job.

We are now going to estimate the number of sample points (cardinality of the point clouds) needed for

each (all) of the objects in order to be able to detect (H1) with high probability.

According to (5.22), for any 1 ≤ i, j ≤ L we know that:

• Under (H1), with a probability Qij := P~pXi (n,mi) × P~pXj (n,mj), we have

L( � mi , � mj ) ≤ 3ε.

• Also, under (H2), assuming ε ≥ rk for 1 ≤ k ≤ L,20

L( � mi , � mj ) ≥ D − 3ε

This tells us how to design ε in relation to D in order to be able to tell both hypotheses apart by

computing L( � mi , � mj ). Thus, let ε� D
6 .21

Now, one wants to impose Qij to be high, that is Qij ≥ (1 − q)2 for some small prespecified q. Then,

using the comments in Remark 20, we see we can for example fix c := s and estimate the required number of

samples for each Xi as mi ≥ hnA
q·FK,2( s2 ) . In conclusion, one can require that all the point clouds consist of at

least
hnεA

q·FK,2( s2 ) points (sampled uniformly) from each of the objects and that all the coverings (constructed

using FPS) consist of at least nε points.

19In this example we neglect the fact that this covering relation holds with a certain probability.
20This is reasonable since � imi are supposed to be finer samplings than N

(Ri,si)

Xi,n
.

21What means that all Ri �
D
6

.
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5.3.5 Computing Geodesic Distances

In our experiments we have always worked with sub-manifolds of IRd. We have used a graph based distance

computation following [205], or the exact distance, which can be computed only for certain examples (spheres,

planes). We could also use the techniques developed for triangular surfaces in [117], or, being this the optimal

candidate, the work on geodesics on (maybe noisy) point clouds developed in [142].

The geodesic computation leads to additional sources of (controllable) errors. We can not compute

dX(xi, xj) and dY (yi, yj) exactly, but rather approximate values dhX(xi, xj) and dh
′

Y (yi, yj) for which error

bounds are often available [142]. For some suitable function f(·, ·, ·, ·)

∣∣dX (xi, xj) − dhX(xi, xj)
∣∣ ≤ f(h, r, s, n) (5.26)

and

∣∣∣dY (yi, yj) − dh
′

Y (yi, yj)
∣∣∣ ≤ f(h′, r′, s′, n) (5.27)

where h and h′ control the degrees of approximation. These kind of bounds can be computed for all the

approximations we have worked with (see [17], [117]), and also for methods like the one proposed in [142].

We omit in this report the inclusion of this source of errors in our considerations, results in that direction

will reported elsewhere.

5.3.6 Additional Implementational Details

In this section we conclude the details on the implementation of the framework here proposed.

The first step of the implementation is the computation of dF and subsequently L, which from the theory

we described before, bounds the Gromov-Hausdorff distance.

We have implemented a simple algorithm.22 According to the definition of dF, (5.17), given the matrix of

pairwise geodesic distances between points of � m, we need to determine whether there exists a sub-matrix of

the whole distance matrix corresponding to � m which has a small dI distance to the corresponding interpoint

distance matrix of a given N
(R′,s′)
Y,n . Since we are free to choose -any coverings-, we select this latter covering

net as the result of applying the FPS procedure to obtain a subsample consisting of n points, where the

first two points are selected to be at maximal distance from each other. We believe that this choice, by the

very nature of the FPS sampling procedure, produces a set of points with certain particularly interesting

metric characteristics. For example, just to motivate our choice, consider the set of the first 7 FPS points

of a dense point cloud on a crocodile and a dog models shown in Figure 5.2 below.

To fix notation, let � m = {x1, . . . , xm} andN
(R′,s′)
Y,n = {yj1 , . . . , yjn}. We then use the following algorithm.

(k = 1, 2) Choose xi1 and xi2 such that |dX(xi1 , xi2) − dY (yj1 , yj2)| is minimized.

(k > 2) Let xik+1
∈ � m be such that ek+1(xik+1

) = min1≤il≤m ek+1(xil) where

ek+1(xil) = max
1≤r≤k

|dX (xil , xir ) − dY (yjk+1
, yjr )|

22This simpler algorithm in turn can be modified to be exhaustive and therefore rigorous, details will provided elsewhere.
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Figure 5.2: FPS nets (for n = 7) on two point cloud models shown as red balls. Note the perceptual meaningfulness
of the point locations automatically chosen by the procedure.

We stop when n points, {xi1 , xi2 , . . . , xin} have been selected, and therefore a distance sub-matrix

((dX (xiu , xiv )))
n
u,v=1, is obtained.

Since we can write

dI

(
{xi1 , . . . , xin}, N (R′,s′)

Y,n

)
≤ 1

2
max

1≤k≤n
max

1≤t≤k−1
|dX(xik , xit ) − dY (yjk , yjt)| =

1

2
max

1≤k≤n
ek(xik )

we then see that with our algorithm we are trying to decrease the error by working across the sub-diagonal

rows of the distance matrix corresponding to N
(R′,s′)
Y,n = {yj1 , . . . , yjn}.

Of course, we now use the same algorithm to compute the other half of dF . Note that the set of indices

{i1, . . . , in} corresponds to I∗n as introduced in the definition of ∆X and subsequently L, Equation (5.23).

Therefore, we also obtain an approximation to L( � m, � m′).

The case k = 1, 2 requires visiting all m(m−1)
2 interpoint distances between points in � m. For k ≥ 3, one

must check km different interpoint distances. Then, the complexity of the algorithm is O(2hnm+m2). We

are currently studying computational improvements along with error bounds for the results provided by the

algorithm.

Of course, we still have to prove (or disprove) that the above algorithm, based on FPS covering nets,

approximates dF within a reasonable factor. This is subject of current efforts.

5.4 Examples

We now present simple experiments that illustrate the application of the theoretical and computational

framework introduced in previous sections. We should note that in these experiments we don’t yet exploit

the full potential of our theory.23 For example, to use some of the bounds we need to estimate (or know!)

curvature bounds. This estimation could be done using bootstrapping and will be investigated in the future.

Also in the future, we plan to make these experiments more rigorous, including concepts of hypothesis testing.

We complemented the more complex data (as presented below) with simple shapes:

23For instance, we are not taking into account the probability of covering the shape with the random cloud sampled from it,
see (5.25).
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[Plane] Σπ = [− π√
8
, π√

8
]2 and � m are points sampled uniformly from the square. Note that diam (X) = π.

[Sphere] S = {x ∈ IRd : ‖x‖ = 1} and � m is a set of points uniformly distributed on the sphere. We

generated the sample points using the method of Muller, see [207].

5.4.1 Positive Detection

We first test our framework when X and Y are isometric. We consider X = Y and see whether we make the

right decision based on the discrete measurements. Let � m and � m be two independent sets composed of m

independent, uniformly distributed random points on X . We consider X to be either the plane Σπ or the

sphere S as defined above. Given n, using the FPS procedure, we constructN
(RX ,sX)

� m,n and N
(RY ,sY )

� m,n from � m
and � m, respectively, and look for a metric match inside � m and � m, respectively, following the algorithm

described in §5.3.6 for the computation of dF( � m, � m) and subsequently L( � m, � m).24 For each dataset we

tested for values of m ∈ M = {1000, 2000, 2500} and n ∈ N = {20, 40, . . . , 140}, and obtained the results

reported below. In Tables 5.1 and 5.2 we show the values obtained for L for values of m ∈ M and n ∈ N .

As expected, the values of L are small both when compared to the values reported in next section (for non-

isometric shapes, X = Σπ and Y = S) and when compared to the upper bound 3π
2 ' 4.7124, as mentioned

after Equation (5.22). Note that as a verification, in accordance with formula (5.22) for dGH(X,Y ) = 0,

we also display the corresponding values of 3 max(RX , RY ) and the probability, P~pX (n,m) × P~pY (n,m), of

having L ≤ 3 max(RX , RY ) estimated by using the bound (5.16). Asterisks (∗) in the tables denote that our

lower bound (5.16) was not tight enough to give a positive number. Note that in our experiments we always

obtained L ≤ 3 max(RX , RY ). This is in some sense a validation of our algorithm for computing L. It also

can be interpreted as that there is still room for improvement in the bounds (5.22).

m\n 20 40 60 80 100 120 140

1000 0.57077 0.39095 0.32211 0.29971 0.26287 0.24900 0.24900
L 2000 0.57216 0.38335 0.31009 0.28149 0.24506 0.24074 0.22770

2500 0.56942 0.37424 0.30553 0.26125 0.23818 0.24336 0.22468

1000 1.4929 0.96361 0.71275 0.59935 0.51257 0.48078 0.42079
3 max(RX , RY ) 2000 1.5607 1.0024 0.75905 0.65428 0.53287 0.49245 0.44269

2500 1.5626 1.0317 0.76530 0.66509 0.54065 0.50211 0.45791

1000 0.83082 0.55117 0.22773 0.044571 ∗ ∗ ∗
prob ≥ 2000 0.91527 0.77526 0.58685 0.44374 0.21043 0.14020 0.039607

2500 0.93275 0.82145 0.66751 0.56269 0.35018 0.25493 0.13207

Table 5.1: Table with values of L for X,Y = Pπ (a plane). See the text for a detailed explanation.

5.4.2 Positive Rejection

We now proceed to compare shapes that are not isometric. We let X = Σπ (a plane) and Y = S (a sphere).

In this case we expect to be able to detect, based on the finite point clouds, that L is large, in comparison

to the values we obtain in the previous section, when the shapes were actually the same.

24Keep in mind that actually dF( � m, � m′ ) depends on n, see its definition (5.17).
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m\n 20 40 60 80 100 120 140

1000 0.65513 0.50742 0.44578 0.41879 0.38161 0.36817 0.35826
L 2000 0.63882 0.49814 0.43230 0.39641 0.38798 0.34721 0.31449

2500 0.63873 0.51874 0.40902 0.39149 0.34665 0.32906 0.31931

1000 1.7930 1.2932 0.98264 0.87936 0.78162 0.72061 0.64876
3 max(RX , RY ) 2000 1.8154 1.3407 1.0688 0.91887 0.83075 0.72182 0.66511

2500 1.8154 1.3573 1.0264 0.91894 0.79693 0.72379 0.68160

1000 0.71395 0.39766 0.085661 0.0017990 ∗ ∗ ∗
prob ≥ 2000 0.82951 0.68052 0.43286 0.31059 0.16894 0.061612 0.0087141

2500 0.87192 0.71880 0.52749 0.43477 0.27696 0.16941 0.10045

Table 5.2: Table with values of L for X,Y = S (a unit sphere). See the text for a detailed explanation.

Table 5.3 shows the results of a simulation in which we compared the sphere S and the plane Σπ, while

varying the covering net sizes and the total number of points uniformly sampled from them (n ∈ N and

m ∈ M as before). As expected, the values are larger than when comparing plane against plane or sphere

against sphere.

m\n 20 40 60 80 100 120 140

1000 1.3191 1.2715 1.1583 1.1739 1.1919 1.1537 1.0849
L 2000 1.0751 1.0751 1.0816 1.0991 1.1155 1.1155 1.1305

2500 1.2059 1.1369 1.1369 1.1471 1.0984 1.1179 1.1179

Table 5.3: Values of L for a comparison between Σπ and S for n ∈ N and m ∈ M .

5.4.3 3D-Shape Recognition

We conclude the experiments with real (more complex) data. We have 4 sets (isometry classes) of shapes,25

the crocodile C = {C1, C2}, the giraffe G = {G1, G2}, the hand H = {H1, H2} and the body, B = {B1, B2}.
The 2 shapes in each set are bends of each other and therefore isometric. We ran the algorithm with

n = 50, m = 2500 (recall the rough estimate m ' n logn given in Remark 20 and note that with this

choices n logn ' 200 � 2500 = m), using Dijkstra’s algorithm to compute geodesic distances.26 The data

description and results are reported in Figure 5.3. Observe that for any fixed shape X ∈ C ∪ G ∪ H ∪ B,

the value of L(X,Y ) is always lower for Y in the same isometry class as X . We note that the technique is

not only able to discriminate between different objects but, as expected, doesn’t get confused by bends: The

distances between a given object and the possible bends of another one are very similar, as it should be the

case for isometry invariant recognition.

25The datasets were kindly provided to us by Prof. Kimmel and his group at the Technion.
26We first considered 10000 points sampled from each of the objects. From each of these these sets we then sub-sampled the

2500 we worked with. For each dataset we used the 10000 points to construct a 15-nearest neighbors graph and then computed
the intrinsic distance matrix between the 2500 subset of points using Dijkstra over the whole graph.

73



Model

1.4071 5.5900 11.769 10.776 11.109 11.111 11.109 11.146

5.5900 1.4576 12.647 10.196 11.119 11.120 11.123 11.159

11.769 12.647 1.9357 6.2874 15.169 15.170 15.274 15.207

10.776 10.196 6.2874 2.0342 14.692 14.693 14.797 14.746

11.109 11.119 15.169 14.692 0.0045257 0.019845 0.22663 0.19691

11.111 11.120 15.170 14.693 0.019845 0.0047940 0.23164 0.19715

11.109 11.123 15.274 14.797 0.22663 0.23164 0.033033 0.096958

11.146 11.159 15.207 14.746 0.19691 0.19715 0.096958 0.032846

Diameters 22.205 22.222 30.322 29.367 0.040326 0.038832 0.44957 0.37998

Figure 5.3: Comparison results for the complex objects described in §5.4.3. The number of points per model
are indicated in the first row under the corresponding figure. The values reported are the estimate of L

between all pairs of objects given by our algorithm. Note that (1) For any object X in this experiment,
L(X,Y ) is minimal for Y in the isometry class of X ; (2) All objects within the same isometry class have
similar values of L with all other objects belonging to another class.

5.5 Extensions and Conclusions

The comparison framework here introduced opens the doors to extensive research in the area. We conclude

this Chapter by presenting some possible directions.

5.5.1 Extensions

The extension to more general metric spaces can be done, in principle, once one agrees upon some definition

of uniform probability measure, something that could be done using the Hausdorff Measure, which is defined

from the metric.

Another related possible (and easy) extension is that of admitting the points to be sampled from the

manifolds with probability measures other than uniform. Actually, in the case of surfaces in IR3 acquired by

a 3D-Scanner, the probability measure models the acquisition process itself. In this case, the framework here

presented can be extended for a wide family a probability measures, namely those which admit a density

function which vanishes at most in sets of 0-uniform measure, i.e., there are no holes in the acquisition

process.

In other situations it might make more sense to consider the recognition problem for triplets (X, d, µ),

where (X, d) is a metric space and µ is a (probability) measure defined on sets of X .

74



An interesting extension which might make the computational analysis easier would be working with

alternative definitions of Hausdorff distance. For example, remembering that the Hausdorff distance between

X,Y ⊂ Z, (Z, d, µ) a metric space with metric d (and with probability measure µ) was defined as

dZH(X,Y )
4
= max(sup

x∈X
d(x, Y ), sup

y∈Y
d(y,X)).

Then, one can consider substituting each of the supremums inside the max(, ) operation by an Lp-

approximation (for p ≥ 1), for example: supx∈X d(x, Y ) ↔
(∫
dp(x, Y )µ(dx)

)1/p
, and similarly for the other

supremum to obtain, also allowing for a Lq-approximation of the max (q ≥ 1):

dZHp,q
(X,Y )

4
=

((∫
dp(x, Y )µ(dx)

)q/p
+

(∫
dp(y,X)µ(dy)

)q/p)1/q

and then the corresponding notion of (p, q)-Gromov-Hausdorff distance is accordingly defined. In particular,

it would be interesting to know the corresponding (p, q) version of Property 5 in Proposition 3. Of particular

interest in this respect is the very recent work [187].

Scale Dependent Comparisons

In some applications it might be interesting to compare objects in a more local fashion, or in other words,

in a scale dependent way. For example, given two objects S1 and S2 (with corresponding geodesic distance

functions d1 and d2) one might wonder whether they resemble each other under the distance dGH(, ) when

each of them is endowed with the metric dεi
4
= ε(1− e−

di
ε ), i = 1, 2. This choice for the new metrics imposes

a scale dependent comparison.

This situation has an important consequence: When ε is small enough one might choose to replace di

by their Euclidean counterparts since, for nearby points x and x′ on the sub-manifold S ⊂ IRk, dS(x, x′) '
dIRk (x, x

′). This dispenses with the computational burden of having to approximate the geodesic distance.

Also, in a similar vein, in certain applications it may make sense to normalize the distance matrices of all

the objects so as to obtain a scale invariant comparison.

5.5.2 Conclusions

A theoretical and computational framework for comparing (smooth, connected and compact) sub-manifolds

of IRd given as point clouds was introduced in this Chapter. The theoretical component is based on the

Gromov-Hausdorff distance, which has been embedded in a probabilistic framework to deal with point clouds

and computable discrete distances. Examples illustrating this theory were provided.

We are currently working on proving the correctness of the algorithm described in §5.3.6, improving its

computational efficiency, performing additional experiments adding hypotheses testing techniques, and in

particular, comparing high dimensional point clouds with data from image sciences and neuroscience. These

further results and extensions will be reported elsewhere.
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Chapter 6

PDEs and Variational Problems on

Implicit Surfaces

6.1 Introduction

In a number of applications in mathematical physics, image processing, computer graphics, and medical

imaging, we have to solve variational problems and partial differential equations defined on a general manifold

M (domain manifold), which map the data onto another general manifold N (target manifold). That is, we

deal with maps from M to N. When these manifolds are for example three dimensional surfaces, the

implementation of the corresponding gradient descent flow or the given PDEs is considerably elaborate.

In [134] we have shown how to address this problem for general domain manifolds, while restricting the

target manifolds N to the trivial cases of the Euclidean space or hyper-spheres (this framework has been

followed for example in [1]). The key idea was to implicitly represent the domain surface as the (zero)

level-set of a higher dimensional function φ, and then solve the PDE in the Cartesian coordinate system

which contains the domain of this new embedding function. The technique was justified and demonstrated

in [134]. It is our goal to show how to work with general target manifolds, and not just hyper-planes or

hyper-spheres as previously reported in the literature. Inspired by [134], we also embed the target manifold

N as the (zero) level-set of a higher dimensional function ψ. That is, when solving the gradient descent

flow (or in general, the PDE), we guarantee that the map receives its values on the zero level-set of ψ. The

map is defined on the whole space, although it never receives values outside of this level-set. Examples of

applications of this framework include harmonic maps in liquid crystals (N is a hypersphere) and 3D surface

warping [195]. In this last case, the basic idea is to find a smooth map between two given surfaces. Due

to the lack of the new frameworks introduced here and in [134], this problem is generally addressed in the

literature after an intermediate mapping of the surfaces onto the plane is performed (see also [113, 216]).

With these novel frameworks, direct three dimensional maps can be computed without any intermediate

mapping, thereby eliminating their corresponding geometric distortions, see Chapter 8. For this application,

as in [195], boundary conditions are needed, this is addressed in Chapter 8.

To introduce the ideas, we concentrate on flat domain manifolds.1 When combining this framework with

1For completeness, we will present the general equations for both generic domain and target manifolds at the end of the
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the results on [134], we can of course work with general domains and then completely avoid other popular

surface representations, like triangulated surfaces. We are then able to work with intrinsic equations, in

Euclidean space and with classical numerics on Cartesian grids, regardless of the geometry of the involved

domain and target manifolds. In addition to presenting the general theory, we also address the problem of

target submanifolds and open hypersurfaces. A number of theoretical results complement the algorithmic

framework here described.

For illustration purposes only, the proposed framework is presented for classical equations from the theory

of harmonic maps. The technique could easily be extended to general equations, as it will be clear from

the developments below, by using the dictionary provided in Appendix B.3. For motivational purposes, in

Appendix B.1 we present a simple physical derivation of the Harmonic Maps equation in a simple case.

6.1.1 Why Implicit Representations?

Let us conclude this introduction describing the main reasons and advantages of working with implicit

representation when dealing with PDEs and variational problems.

The implicit representation of surfaces, here introduced for solving variational problems and PDEs, is

inspired in part by the level-set work of Osher and Sethian [159]. This work, and those that followed it,

showed the importance of representing deforming surfaces as level-sets of functions with higher dimensional

domains, obtaining more robust and accurate numerical algorithms (and topological freedom). Note that, in

contrast with the level-set approach of Osher and Sethian, our target manifold is fixed, what is “deforming”

is the dataset being mapped onto it.

Solving PDEs and variational problems with polynomial meshes involves the non-trivial discretization of

the equations in general polygonal grids, as well as the difficult numerical computation of other quantities like

projections onto the discretized surface (when computing gradients and Laplacians for example). Although

the use of triangulated surfaces is quite popular, there is still no consensus on how to compute simple

differential characteristics such as tangents, normals, principal directions, and curvatures. On the other

hand, it is commonly accepted that computing these objects for iso-surfaces (implicit representations) is

simpler and more accurate and robust. This problem becomes even more significant when we not only have

to compute these first and second order differential characteristics of the surface, but also have to use them

to solve variational problems and PDEs for data defined on the surface. Very little work has been done

on the formal analysis of finite difference schemes on non-Cartesian meshes.2 Note also that working with

polygonal representations is dimensionality dependent, and solving these equations for high dimensional

(> 2) surfaces becomes even more challenging and significantly less studied. The work here developed is

valid for all dimensions of interest (we develop the computational and theoretical framework independently

of the manifold dimension). Note that the computational cost of working with implicit representations is

not higher than with meshes, since all the work is performed in a narrow band around the level-set(s) of

interest.

Our framework of implicit representations enables us to perform all the computations on the Cartesian

grid corresponding to the embedding function. These computations are, nevertheless, intrinsic to the surface.

chapter. These equations are easily derived from [134] and the work here presented.
2Very important work has been done for finite element approaches, e.g., by the group of Prof. M. Rumpf; as well as for

particular equations on particular sub-division representations [14].
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Advantages of using Cartesian grid instead of a triangulated mesh include the availability of well studied

numerical techniques with accurate error measures and the topological flexibility of the surface, all leading

to simple, accurate, robust and elegant implementations. The approach is general (applicable to PDEs and

variational problems beyond those derived in this chapter) and dimensionality independent as well. We

should note of course that the computational framework here developed is only valid for manifolds which

can be represented in implicit form or as intersection of implicit forms. As mentioned above, problems

such as 3D shape warping via PDEs could not be addressed (without intermediate projections) without the

framework here proposed.

Numerical schemes that solve gradient descent flows and PDEs onto generic target manifolds N (and

spheres or surfaces in particular) will, in general, move the points outside of N due to numerical errors. The

points will then need to be projected back,3 see for example [4, 171] for the case of N being a sphere (where

the projection is trivial, just a normalization). For general target manifolds, this projection means that for

every point p ∈ IRd (N ⊂ IRd) we need to know the closest point to p in N. This means knowing the distance

from every point p ∈ IRd to N (or at least all points in a band of N). This is nothing else than an implicit

representation of the target N, being the particular embedding in this case a distance function. This presents

additional background for the framework here introduced, that is, if the embedding function for the surface

has to be computed anyway for the projection, why not use it from the beginning if it helps in other steps

in the computation?

In a number of applications, surfaces are already given in implicit form, e.g., [33], therefore, the framework

introduced in this chapter is not only simple and robust, but it is also natural in those applications. Moreover,

in the state-of-the-art and most commonly used packages to obtain 3D models from range data, the algorithms

output an implicit (distance) function (see for example graphics.stanford.edu/projects/mich/). Therefore,

it is very important, if nothing else for completeness, to have the computational framework here developed,

so that the surface representation is dictated by the data and the application and not the other way around.

On the other hand, not all surfaces (manifolds) are originally represented in implicit form. When the target

manifold N is simple, like hyper-spheres in the case of liquid crystals, the embedding process is trivial. For

generic surfaces, we need to apply an algorithm that transforms the given explicit representation into an

implicit one. Although this is still a very active area of research, many very good algorithms have been

developed, e.g., [63, 174, 122, 215]. Note that this translation needs to be done only once for any surface.

Note also that for rendering, the volumetric data can be used directly, without the need for an intermediate

mesh representation.

6.2 The Computational Framework

From now on we assume that the target d − 1 dimensional manifold N is given as the zero level set of a

higher dimensional embedding function ψ : IRd → IR, which we consider to be a signed distance function

(this mainly simplifies the notation). For the case where N is a surface in three dimensional space for

example, then ψ : IR3 → IR. We also assume that the domain manifold M is flat and open (as mentioned

in the introduction, general domain manifolds were addressed in [134]). We illustrate the basic ideas with

3For particular flat target manifolds as the whole space IRd or as those in [161], the projection is not needed. Other authors,
e.g., [35, 118], have avoided the projection step for particular cases, while in [201] the authors modify the given variational
formulation, in some restricted cases, to include the projection step.
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a functional from the theory of harmonic maps. This is just a particular example (and a very important

one), and from this example it will be clear how the same arguments can be applied to any given variational

problem and PDE. In particular, it can be applied to common Navier-Stokes flows used in brain warping.

6.2.1 The Variational Formulation and its Euler-Lagrange

We search for necessary conditions for the functional E[~u], defined by

E[~u]
4
=

∫

M

e[~u] dMv (6.1)

where

e[~u]
4
=

1

2
‖J~u‖2

F (6.2)

to achieve a minimum. Here, ‖ · ‖2
F =

∑
ij(·)2ij is the norm of Frobenius and J~u is the Jacobian of the map

~u : M → {ψ = 0}. Note that here we are already restricting the map to be onto the zero level-set of ψ, that

is, onto the surface of interest N (the target manifold). This is what permits us to work with the embedding

function and the whole space, while guaranteeing that the map will always be onto the target manifold, as

desired.4 Once again, this energy will be used throughout this chapter to exemplify our framework. It will

be clear after developing this example that the same arguments work for other variational formulations, as

well as for generic PDEs defined onto generic surfaces.

Proposition 6 The Euler-Lagrange of Equation (6.1), with (6.2), is given by

∆~u+

(∑

k

Hψ

[
∂~u

∂xk
,
∂~u

∂xk

])
∇ψ(~u) = 0, (6.3)

where Hψ stands for the Hessian of the embedding function ψ (and we used the notation A [~x, ~y] = ~yTA~x).

The solution to this equation is a map onto the zero level-set of ψ.

Proof: The proof is based on adding to the classical techniques to compute Euler-Lagrange equations a

projection step that guarantees that the perturbation keeps the map onto {ψ = 0}.
Assume that ~u is a map minimizing E(·). Given t > 0, we construct the variation

~vt
4
= ~u+ t ~r

where ~r is a compact C∞ map in M. For an arbitrary x ∈ M, we will in general not obtain that ~vt(x) ∈
{ψ = 0} for all t and x. That is, ψ(~vt(x)) 6= 0 at some (t, x). Therefore, this variation is not admissible. On

the other hand, we can from it construct an admissible variation via

~wt
4
= Π{ψ=0}(~vt)

where Π{ψ=0} : Rd → {ψ = 0} is the projection operator onto {ψ = 0}. Note that since ψ is a signed

distance function, we can simply write this projection operator onto {ψ = 0} as

4We use ~· to note that for the most general case, the function is vectorial.
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Π{ψ=0}(~α) = ~α− ψ(~α) ∇ψ(~α).

Let’s now define

E(t)
4
= E[~wt]

Since the energy achieves a minimum for t = 0,

Ė0
4
=
dE(t)

dt

∣∣∣∣
(t=0)

= 0.

Let’s compute this first variation. We have that

Ė0 =
∑

ij

∫

M


∂w

i
t

∂xj

d
(
∂wit
∂xj

)

dt



∣∣∣∣∣∣
t=0

dMv (6.4)

Moreover (recall that Hψ stands for the Hessian of ψ),

∂wt
∂xj

=

(
∂~u

∂xj
+ t

∂~r

∂xj

)
−
(
∇ψ(~wt) ·

(
∂~u

∂xj
+ t

∂~r

∂xj

))
∇ψ(~wt) (6.5)

− ψ(~wt)Hψ(~wt)

(
∂~u

∂xj
+ t

∂~r

∂xj

)

and we observe that

∂wt
∂xj

∣∣∣∣
(t=0)

=
∂~u

∂xj
−
(
∇ψ(~u) · ∂~u

∂xj

)
∇ψ(~u)

since ψ(~u) = 0. We can further simplify this observing that 0 = ∂ψ(~u)
∂xj

= ∇ψ(~u) · ∂~u
∂xj

. Therefore,

∂wt
∂xj

∣∣∣∣
(t=0)

=
∂~u

∂xj
(6.6)

With a bit further work we can compute the additional derivative,
d

„

∂wit
∂xj

«

dt =
∂

„

dwit
dt

«

∂xj
. This change in

the order of derivatives is done in order to immediately evaluate the result at t = 0, thereby simplifying the

following derivative. Following in an similar fashion, we obtain

dwit
dt

= ~r − (∇ψ(~wt) · ~r)∇ψ(~wt) − ψ(~wt) Hψ(~wt)~r (6.7)

and

dwit
dt

∣∣∣∣
(t=0)

= ~r − (∇ψ(~u) · ~r)∇ψ(~u). (6.8)

Combining the above computations all together we obtain
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d
(
∂wit
∂xj

)

dt

∣∣∣∣∣∣
(t=0)

=

∂

(
dwit
dt

∣∣∣
(t=0)

)

∂xj
(6.9)

=
∂~r

∂xj
−∇ψ(~u)

{
∂~r

∂xj
· ∇ψ(~u) + Hψ

(
~r,
∂~u

∂xj

)}
− (~r · ∇ψ(~u))

(
Hψ

∂~u

∂xj

)
.

Following from (6.4) we have that5

Ė0 =
∑

j

∫

M


∂ ~wt
∂xj

d
(
∂ ~wt
∂xj

)

dt



∣∣∣∣∣∣
t=0

dMv (6.10)

=
∑

j

∫

M

{
∂~r

∂xj
· ∂~u
∂xj

− (~r · ∇ψ(~u))Hψ

[
∂~u

∂xj
,
∂~u

∂xj

]}
dMv.

Now, applying the divergence theorem we conclude the computation. We first write

∑

ij

∫

M

∂~r

∂xj
· ∂~u
∂xj

dMv =
∑

i

∫

M

∇ri · ∇ui dMv

and then apply the fact ∇ri · ∇ui = ∇ ·
(
ri∇ui

)
− ri ∆ui, together with the divergence theorem, to obtain

(n stands for the outward unit normal to ∂M).

∑

ij

∫

M

∂~r

∂xj
· ∂~u
∂xj

dMv =
∑

i

∫

∂M

ri
∂ui

∂n
dS −

∫

M

ri∆uidMv (6.11)

To conclude we put together this last expression with (6.9), and after some algebra we obtain that Ė0 is

equal to

∫

∂M

~r · J~un dS −
∫

M

~r ·
{

∆~u+

(∑

k

Hψ

[
∂~u

∂xk
,
∂~u

∂xk

])
∇ψ(~u)

}
dMv (6.12)

The boundary condition is eliminated since the support of ~r is compactly included in M. To eliminate

the additional term for an arbitrary ~r we must impose

∆~u+

(∑

k

Hψ

[
∂~u

∂xk
,
∂~u

∂xk

])
∇ψ(~u) = 0. (6.13)

2

Equation (6.3) (or (6.13)) then gives the corresponding Euler-Lagrange for the given variational problem.

Note, once again from our computations, that despite all the terms “live” in the Euclidean space where the

target manifold is embedded, ~u will always map onto the level-set of interest, {ψ = 0}, and therefore, onto

the surface of interest. This is guaranteed by this equation, no additional computations are needed. This

5We have used as before the notation A [~x, ~y] = ~yTA~x
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is the beauty of the approach, while working freely on the Euclidean space (and therefore with Cartesian

numerics), we can guarantee that the equations are intrinsic to the given surfaces of interest. We will further

verify this in §6.2.3 to help the reader grasp the intuition behind this framework. In the same section we

present a particular example of the above equation for a target surface given by a hypersphere.

The Gradient-Descent Flow

The gradient descent corresponding to (6.13) is given by

∂ui

∂t
= ∆ui +

d∑

k=1

Hψ(~u)

[
∂~u

∂xk
,
∂~u

∂xk

]
∂ψ

∂ui
(~u), (6.14)

where the initial datum ~u0 is given by the vector field we want to process, together with Neumann boundary

conditions:

{
~u(x, 0) = ~u0(x), x ∈ M

J~un|∂M = 0.
(6.15)

To complete the picture, the use of Neumann boundary conditions needs to be justified. This is done in

Appendix B.2.

6.2.2 Connections with Harmonic Maps

The goal of this section is to illustrate the connections of the equations above with the well known theory

of harmonic maps. As it is the case of the proof of Proposition 6, these connections are simple to derive,

as we do below. Nevertheless, the derivations themselves present illustrative calculus with implicit surfaces

and PDEs on them.

The expressions derived in previous sections come from the theory of harmonic maps, e.g., [92, 213, 50,

136, 64, 65, 137, 98, 166, 186, 185, 12]. In general, harmonic maps are defined as those maps between two

manifolds (M, g) and (N, h) which minimize the energy

E[~u]
4
=

∫

M

e[~u] dVM (6.16)

where, in local coordinates, the energy density e[~u] is given by

e[~u](x)
4
=

1

2
gpq(x) hij(~u(x))

∂ui

∂xp

∂uj

∂xq
. (6.17)

We have used Einstein’s summation here, where repeated indices indicate summation with respect to

this index, together with the usual notation for tensors.6 When both the domain and target manifolds are

represented explicitly, the classical case, the Euler-Lagrange equation corresponding to this energy is given

by (see [186])

∆Mu
l + Γlij(~u) g

αβ ∂u
i

∂xα
∂uj

∂xβ
= 0 (6.18)

6(g−1)ij
4
= gij .
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where ∆M is the Laplace-Beltrami operator (reduced to the regular Laplacian for the case of flat domain

manifolds) and Γlij(~u) stands for the Christoffel symbols of the target manifold, evaluated at ~u. Note that

the first component, the Laplace-Beltrami of u, addresses the domain manifold, whereas the second term

addresses the target manifold. By embedding the target manifold, we are changing the Christoffel symbols

(expressing them in implicit form, see below),7 while the work in [134] changed the other terms, since the

embedding was done to the domain manifold, see §6.4. The framework here introduced can then be seen

as the re-writing of given PDEs mapping manifolds to manifolds in such a way that the intrinsic geometric

characteristics of the equation are expressed using the embedding functions.

As an example, let’s see what happens with the above energy for the Euclidean case. Since both metrics

are proportional to the identity,

e[~u](x) =
K

2

∑

ij

(
∂ui

∂xj

)2

which is just a constant multiplying ‖J~u‖2
F. Therefore, the energy defined in the previous case is just

a particular case of harmonic maps. In general, this energy can be used in problems such as color image

denoising and directions denoising [12, 13], as a regularization term for ill-possed problems defined on general

surfaces [156], for general denoising [152, 198], for models of liquid crystals, and as a component of a system

for surface mapping and matching [136, 216].

An(other) Informal Calculation

We now present an additional computation that connects in a deep way the implicit framework with harmonic

maps. We consider the harmonic energy density given in (6.17) for the planar domain manifold case (gij =

δij). We can simplify things to obtain

e[~u](x) =
1

2
hij(~u(x))

∂ui

∂xp

∂uj

∂xp
=

1

2

∑

p

h[~uxp , ~uxp ]

We know that Π∇ψ = I−∇ψ∇ψT can be thought of as the inverse of the target manifold’s metric tensor.

But since ∇ψ is a zero eigenvalue eigenvector for Π∇ψ , it will be a ∞ eigenvalue eigenvector for Π−1
∇ψ. Then,

we can’t use the identification h = (hij) ↔ Π−1
∇ψ in the above expression for the energy density. However,

we can proceed as follows. Take ε > 1 and define the metric8

hε
4
=
(
εI−∇ψ∇ψT

)−1

one can then compute the inverse as (it’s an elementary formula, see for example [111])

hε =
1

ε

(
I +

∇ψ∇ψT
ε− 1

)

The energy density can be rewritten as (we will use a subindex ε)

7Or alternatively, the second fundamental form of the target manifold.
8Since ε > 1, all the eigenvalues are positive.
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eε[~u](x) =
1

2ε

(∑

i

‖~uxi‖2 +
1

ε− 1

∑

i

|~uxi · ∇ψ|2
)

After computing the variational derivative for the functional
∫

M
eε[~u](x) dx we obtain that ~u must satisfy

∆~u +
1

ε− 1

(∑

i

Hψ[~uxi , ~uxi ] + ∆~u · ∇ψ
)
∇ψ = 0

By multiplying all the terms in the above equation by ε− 1 and letting ε→ 1 we find that the expression

between brackets must vanish. As we will see in §6.2.3, what’s between brackets is nothing but ∆ν(x) where

ν(x) = ψ(~u(x)). So ν is a harmonic function in M. It is also evident that ν satisfies Dirichlet boundary

conditions if ~u does, and since we are trying to map things from M to N, those boundary conditions for

~u must be such that dist(~u(x),N) = 0 for x ∈ M, so ν|∂M
= 0. Then we conclude that ν must be zero

everywhere in M.

6.2.3 Simple Verifications

We now show that the Euler-Lagrange (6.13), and its corresponding gradient descent flow (6.14), are the

extension for implicit targets of common equations derived in the literature for explicitly represented man-

ifolds. We also explicitly show that the flow equation guarantees, as expected from the derivations above

and in particular from the proof of Proposition 6, that if the initial datum is on the target manifold, it will

remain on it. We also express the second fundamental form of a manifold that is implicitly represented. All

these results will help to further illustrate the approach and verify its correctness.

Geodesics on Implicit Manifolds

It is well known, see [64, 65, 175], that arc-length parameterized geodesics on the manifold N satisfy the

harmonic maps PDE, and therefore Equation (6.3). If we assume isotropic and homogeneous metric over N,

from Equation (6.3) we obtain that (arc-length parameterized) geodesics must satisfy

γ̈ + Hψ [γ̇, γ̇] ∇ψ(γ) = 0. (6.19)

This important equation shows how to obtain geodesic curves on manifolds represented in implicit form.

Liquid Crystals (N = Sd−1)

One of the most popular examples of harmonic maps is given when the target manifold N is a hypersphere.

That is, the map is onto Sd−1. In this case, the embedding (signed distance) function is simply ψ(~y) = ‖~y‖−1,

~y ∈ IRd. From this, ∇ψ(~y) = ~y
‖~y‖ and (Hψ(~y))ij =

δij
‖~y‖ − yiyj

‖~y‖3 . We also have that Hψ(~u(x))
[
∂~u
∂xk

, ∂~u∂xk

]
=

δij
∂ui

∂xk
∂uj

∂xk
− ∂ui

∂xk
∂uj

∂xk
uiuj , since ‖~u‖ = 1. In addition, ui ∂u

i

∂xk
= 0, fact simply obtained taking derivatives

with respect to xk . We then obtain that ∂ui

∂xk
∂uj

∂xk
uiuj =

(
∂ui

∂xk
ui

)2

= 0, and
∑d

k=1 Hψ(~u(x))
[
∂~u
∂xk

, ∂~u∂xk

]
=
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∑
ik

(
∂ui

∂xk

)2

= ‖J~u(x)‖2
F . Therefore, the corresponding diffusion equation from (6.14) is

∂~u

∂t
= ∆~u+ ‖J~u‖2

F ~u

which is exactly the well known gradient descent flow for this case. We have then verified the correctness of

the derivation in Proposition 6 for the case of unit spheres as target manifolds.

Diffusion of Probabilities

In this case, N = {x ∈ IRd| xi ≥ 0,
∑d
i=1 xi = 1} which is not a closed manifold. However, by maximum

principle arguments, if the initial datum is on N, it will remain there for all time of smooth existence, see

§6.2.5 and [161]. Then, we can formally consider ψ(x) =
Pd
i=1 xi−1√

d
, the signed distance from a point x ∈ IRd

to the hyperplane {z ∈ IRd| ∑d
i=1 zi = 1}, where the sign was selected accordingly to our choice of (1,...,1)√

d

as the unit normal to the hyperplane. We then obviously obtain ∇ψ(x) = (1,...,1)√
d

and Hψ(x) = 0 for all x.

Consequently, the evolution equation for this case is

~ut = ∆~u

as expected, [161].

Mapping Restriction onto the Zero Level-Set

We now explicitly show that if the initial datum belongs to the target surface given by the zero level-set of ψ,

then the solution to the diffusion flow (6.14) also belongs to this level-set. This further shows the correctness

of our approach.

Proposition 7 A regular solution to Equation (6.14) holds ψ(~u(x, t)) = 0, ∀x ∈ M, ∀ t ≥ 0 of regularity.

Proof: If the initial datum is on {ψ = 0}, then this property is true for t = 0. Let’s define ν(x, t) = ψ(~u(x, t)).

Then9

∂ν

∂t
= ∇ψ(~u) · ∂~u

∂t
= ∆~u · ∇ψ(~u) +

d∑

k=1

Hψ(~u)

[
∂~u

∂xk
,
∂~u

∂xk

]

since ψ is a distance function. In addition, ∂ν
∂xi

= ∇ψ(~u) · ∂~u∂xi , and then

∂2ν

∂x2
i

=

(
Hψ(~u)

∂~u

∂xi

)
· ∂~u
∂xi

+ ∇ψ(~u) · ∂
2~u

∂x2
i

.

Adding on i = 1, ..., d, it follows that ∂ν
∂t = ∆ν, meaning that ν verifies the heat flow. In addition to

this, ∂ν
∂n |∂M = ∇x (ψ(~u(x, t))) · n = JT~u∇ψ(~u) · n = (∇ψ(~u))TJ~un = (∇ψ(~u))T0 = 0, due to the boundary

conditions on the evolution of ~u.

9The calculations that follow in the proof don’t take into account that ψ might fail to be differentiable at some points. This
could be simply addressed by a regularization argument. Moreover, we use the fact that there exists T > 0 such that ~u is
regular in [0, T ), see below.
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We have then obtained that ν verifies the heat flow with Neumann boundary conditions and with zero

initial data. From the uniqueness of the solution, it follows that ν(x, t) = 0 ∀x ∈ M, ∀ t ≥ 0.

2

Second Fundamental Form for Implicit Surfaces

If we compare the gradient descent flow (and Euler-Lagrange equation) we have obtained with the classical

one from harmonic maps, we see that the main difference is that Christoffel symbols for the target manifold

term appearing in the classical formulation have been replaced by a new term that includes the Hessian of

the embedding function. We obtained this by first embedding the target manifold and then restricting the

search for the minimizing map to the class of maps onto the zero level-set of the embedding function. This

approach can be followed to apply this framework to any related variational problem. We now show how the

same equation can be obtained by simply substituting the second fundamental form of the explicit target

manifold by the corresponding expression for an implicit target manifold. This will illustrate how to apply

our framework to more general PDEs, not necessarily gradient descent flow. The basic idea is just to replace

all the PDE components concerning the target manifold by their counterparts for implicit representations.

In [130] (page 150) it is shown that the scalar second fundamental form h at a point p of a hypersurface

S can be written in the form

h(p)(V,W ) =
Hψ(p)[V,W ]

‖∇ψ‖2

for V , W ∈ TpS. According to [130] (page 139) the vectorial second fundamental form is given by

II(p)(V,W ) = h(p)(V,W )
∇ψ
‖∇ψ‖

From (6.18) and what we have just seen it is obvious that the implicit version of the harmonic map

Euler-Lagrange is (6.13).

As stated before, the implicit representation of the target surface permits then to compute the second

fundamental form using differences on Cartesian grids, without the need to develop new numerical techniques

on polygonal grids.

From the result just presented, in order to transform a given PDE into its counterpart when the target

manifold is represented in implicit form, all that needs to be done is to re-write all the characteristics of the

PDE, concerning this target manifold, in implicit form. For completeness, in Appendix B.3 we present basic

facts on calculus on implicitly represented hyper-surfaces.

6.2.4 Explicit Derivation of the Diffusion Flow

Here we first proceed in a näıve way to obtain an equivalent formulation of the gradient descent flow that

will help in the numerical implementation. We assume we have a family {~u(~x, t)}t of mappings from Ω to

N. For each t we define the harmonic energy of a member of the family as

E(t) =
1

2

∫

Ω

‖J~u(~x,t)‖2
F dx
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We then find a variation of the family such that E(t) decreases. To accomplish this we formally differen-

tiate the energy with respect to t. A simple computation yields

Ė(t) = −
∫

Ω

~ut · ∆~u dx

Now, since ~u(~x, t) ∈ N ∀ ~x ∈ Ω and ∀ t of smooth existence, one must have ~ut(~x, t) ∈ T~u(~x,t)N. An

appropriate choice for ~ut would be

~ut = ΠT~u(~x,t)N

(
∆~u
)

(6.20)

since this makes Ė(t) = −
∫
Ω
‖~ut‖2 dx ≤ 0.

The projection operator in (6.20), as we already know (see Appendix B.3), can be expressed in a very

simple form using ψ (the signed distance function to N),

ΠT~pN

(
~v
)

= ~v − ~v · ∇ψ(p)∇ψ(p). (6.21)

Now, it should happen that (6.20) is equivalent to (6.14). We show this in §6.5.

6.2.5 Remarks on the Solutions of the Diffusion Flow

In previous subsections we have derived novel equations for PDEs mapping into target manifolds. We

complete the work of this Section with relevant results from the literature on the mathematical correctness

of these equations.

The well posedness of these diffusion problem with Neumann boundary conditions is addressed in [96, 154],

where the following results are obtained, here included for completeness:

Theorem 11 For a given C∞ mapping ~u0 : M → N ⊂ IRn+1 with ∂~u0

∂n = 0 on ∂M and for every

2 + dim(M) < p < +∞ there exists an ε > 0 (depending on ~u0) and a mapping ~u : M → N of class Lp2(M×
[0, ε], IRn+1). 10 Moreover, ~u is unique and C∞ except at the corner ∂M× {0}.

Theorem 12 Let (M, g) and (N, h) be compact Riemmanian Manifolds with convex boundary. Let ~u :

M × [0, ω) → N be a maximal solution of the diffusion problem with initial value a C∞ mapping ~u0,
11 with

χ0
4
= ‖e[~u0]‖L∞ > 0. Let r ∈ IR be such that RicM ≥ − r

2 g,
12 and R ≥ 0 such that all sectional curvatures

of N are not greater than R
4 . Then,

1. In the case r +Rχ0 > 0

(a) if R > 0 then

{
ω ≥ 1

r log(1 + r
Rχ0

) when r 6= 0

ω ≥ 1
Rχ0

when r = 0

(b) if R = 0 then ω = +∞.

2. In the case r +Rχ0 ≤ 0, ω = +∞.

10
L
p
2(M× [0, ε], IRn+1) is the space of functions f : M → IRn+1 such that for every i = 1, . . . , n+ 1, ∇Mf i, H

M

fi
and ∂fi

∂t
are

all in L
2(M × [0, ε]).

11A solution ~u : M × [0, ω) → N of the diffusion problem is maximal if it cannot be extended to be a solution on M × [0, ω + ε)
for any ε > 0 or if ω = +∞.

12RicM stands for the Ricci curvature tensor of M.
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Maps into Open Surfaces

So far, we have only addressed the case when the target surface is closed (zero level-set). We now briefly deal

with open surfaces. We show, following classical results, that when the map ~u is evolving according to the

flow in §6.2.1, the set C(t)
4
= {~u(x, t), x ∈ M} remains inside the initial convex-hull of C0

4
= {~u0(x), x ∈ M},

∀ t ≥ 0. This property is basically a consequence of the maximum principle. In the actual computations,

this might of course be violated due to numerical errors, and we will later discuss how to correct for this as

well.

Let us first motivate the general result presented below for the planar case. Assume that the target

manifold N is flat, for example Rk (we still assume that the domain manifold M is flat). Let ~u(x, t)

solve ∂~u
∂t = ∆~u for x ∈ M and t ≥ 0, and ∂~u

∂n

∣∣
∂M

= 0. Let Ξ be a convex set of Rk with smooth

boundary (this guarantees that the distance function is also smooth almost everywhere, see [175] for a

formal statement), and ξ the signed distance function to this set (positive outside and negative inside).

Define g(x, t)
4
= ξ(~u(x, t)). Then it follows that ∂g

∂t − ∆g = −∑k
i=1 Hξ(

∂~u
∂xk

, ∂~u∂xk ).13 Since Ξ is convex, so

it is ξ. Then, the Hessian of ξ is positive semi-definite, meaning that ∂g
∂t − ∆g ≤ 0. Following the scalar

maximum principle, max{x∈M, t≥0} g(x, t) = max{x∈M} g(x, 0). If {~u0(x), x ∈ M} ⊆ Ξ, which is equivalent

to 0 ≥ ξ(~u0(x)) = g(x, 0), we obtain that g(x, t) ≤ 0, and ~u(x, t) ∈ Ξ, for all x ∈ M y t ≥ 0.

The general result now presented is from [96]. We quote it here for completeness.14

Theorem 13 Let ~u(x, t) be the solution of (6.14) at time t. Let us assume that for t ≤ T this solution

remains smooth. Let I0 = ~u0(Ω), and I0 be the convex hull of I0. Then for (x, t) ∈ Ω × [0, T ], ~u(x, t) ∈ I0.

6.3 Maps into Implicit Submanifolds

Here we present a modification to the diffusion flow introduced above, which is well suited to diffuse data that

belongs to a certain submanifold C of N = {ψ = 0}. We specify this submanifold by C = {ψ = 0}∩ {Φ = 0},
where we select Φ : IRN → R to be the signed intrinsic (to N) distance function to {Φ = 0}, satisfying (see

Appendix B.3 for the notation)

1 = ‖∇ψΦ‖ =
√
‖∇Φ‖2 − |∇ψ · ∇Φ|2 (6.22)

In addition we specify the condition

Φ(p) = 0 for p ∈ KC

where

KC = {x ∈ IRN |x = p+ α∇ψ(p),with p ∈ C, α ∈ IR}

is the cone intersecting {ψ = 0} at C and director rays normal also to {ψ = 0}.
13Note once again that we are omitting details regarding the correct handling of the distance function, since it is not everywhere

differentiable. However, by a regularization argument, the same conclusion holds.
14The proof of this result has a lot of interest in itself since it can be carried out within the implicit framework introduced in

this chapter.
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The reason for specifying the submanifold this way is that we cannot proceed as before, simply specifying

the submanifold as the zero level set of it’s Euclidean distance function. This is because such function would

be singular precisely on the submanifold.

As we show in Appendix B.3, the Hessian of Φ, intrinsic to N evaluated at the point p, and restricted to

act on vectors that belong to TpN, can be written in the form

HN
Φ (p) = HΦ(p) − Λ(p) Hψ(p) (6.23)

where Λ(p) = ∇Φ(p) · ∇ψ(p). This expression will be used below.

We now derive the Euler-Lagrange corresponding to this additional mapping restriction. For this, we use

a technique slightly different that the one in §6.2.1.

Proposition 8 The Euler-Lagrange of the functional (6.1), when the solution is restricted to the implicitly

represented submanifold C defined above, is given by

∆~u+

(∑

k

Hψ(~u)

[
∂~u

∂xk
,
∂~u

∂xk

])
∇ψ(~u) +

(∑

k

HN
Φ (~u)

[
∂~u

∂xk
,
∂~u

∂xk

])
∇ψΦ(~u) = 0. (6.24)

Proof: Let us assume that ~u achieves a minimum of the energy functional (6.1). We must build a variation

of ~u that belongs to C, the intersection of the zero level-sets of two embedding functions (and not just of ψ

as before). It is clear that one such variation would be

~wλ = ΠC (~u+ λ~v)

We are interested only on those terms of e[~wλ] that do not vanish after the
∑N

i=1
∂
∂xi

(•)
∣∣∣
λ=0

operation,

namely those linear in λ. Therefore we only preserve those terms in ~wλ which are constant or linear in λ:

~wλ ' ~u+ λΠT~uC(~v)

We write

ΠT~uC(~v) = ΠT~u{ψ=0} { ~v − (~v · ∇ψΦ(~u))∇ψΦ(~u) }
= ~v − (~v · ∇ψΦ(~u))∇ψΦ(~u) − (~v · ∇ψ(~u))∇ψ(~u)

where ∇ψΦ(~u) = ∇Φ(~u) − Λ(~u) ∇ψ(~u) is the gradient of Φ intrinsic to {ψ = 0}.
In this way we find that (up to a first order in λ):

e[~wλ] ' e[~u] + λ

N∑

i=1

~uxi · [~vxi − ~vxi · ∇ψΦ(~u) ∇ψΦ(~u) (6.25)

− ~v · ∂∇ψΦ(~u)

∂xi
∇ψΦ(~u) − ~v · ∇ψΦ(~u)

∂∇ψΦ(~u)

∂xi

− ~vxi · ∇ψ(~u) ∇ψ(~u) − ~v · ∂∇ψ(~u)

∂xi
∇ψ(~u) − ~v · ∇ψ(~u)

∂∇ψ(~u)

∂xi
]
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Since Φ(~u) = ψ(~u) = 0, differentiating with respect to xi we obtain that ∇Φ(~u) · ~uxi = ∇ψ(~u) · ~uxi = 0,

and therefore

∇ψΦ(~u) · ~uxi = 0

The expression (6.25) can be simplified to obtain

e[~wλ] ' e[~u] + λ

N∑

i=1

~uxi ·
[
~vxi − ~v · ∇ψΦ(~u)

∂∇ψΦ(~u)

∂xi
− ~v · ∇ψ(~u)

∂∇ψ(~u)

∂xi

]

Moreover, since

∂∇ψΦ(~u)

∂xi
= HΦ~uxi −

∂Λ

∂xi
(~u) ∇ψ(~u) − Λ(~u) Hψ ~uxi

we have

∂∇ψΦ(~u)

∂xi
· ~uxi = HN

Φ [~uxi , ~uxi ]

With all this in mind we find that (again, up to first order in λ)

e[~wλ] ' e[~u] + λ

N∑

i=1

~uxi ·
[
~vxi − ~v · ∇ψΦ(~u) HN

Φ [~uxi , ~uxi ] − ~v · ∇ψ(~u) Hψ(~u)[~uxi , ~uxi ]
]

Using this expression, after imposing that ∂
∂λ

∣∣
λ=0

∫
Ω
e[~wλ] dv = 0 for every ~v, we find that the Euler-

Lagrange is

∆~u+

(∑

k

Hψ

[
∂~u

∂xk
,
∂~u

∂xk

])
∇ψ(~u) +

(∑

k

HN
Φ

[
∂~u

∂xk
,
∂~u

∂xk

])
∇ψΦ(~u) = 0. (6.26)

an expression utterly predictable.

2

6.3.1 Simple Verification

As for the case of closed manifolds, we now verify that in fact the gradient descent corresponding to the

Euler-Lagrange (6.26) keeps ~u in {ψ = 0} ∩ {Φ = 0}.

Proposition 9 If ~u is a solution to the gradient descent flow corresponding to Equation (6.26), then ~u maps

into the submanifold {ψ = 0} ∩ {Φ = 0}.

Proof: We just need to show that both ν(x, t)
4
= ψ(~u(x, t)) and µ(x, t)

4
= Φ(~u(x, t)) are always zero. The

idea is the same one we used in §6.2.3, it is enough to show that both ν and µ satisfy the heat equation with

adiabatic boundary conditions.

[ψ]

We have
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νt = ∇ψ · ∆~u+
∑

k

Hψ

[
∂~u

∂xk
,
∂~u

∂xk

]

since ∇ψ ⊥ ∇ψΦ. Also

∆ν = ∇ψ · ∆~u+
∑

k

Hψ

[
∂~u

∂xk
,
∂~u

∂xk

]

and

νt = ∆ν

[Φ]

We have

µt = ∇Φ · ∆~u+ ∇Φ · ∇ψΦ

(∑

k

HN
Φ

[
∂~u

∂xk
,
∂~u

∂xk

])
+ Λ

(∑

k

Hψ

[
∂~u

∂xk
,
∂~u

∂xk

])

From ∇Φ · ∇ψΦ = ∇ψΦ · ∇ψΦ = ‖∇ψΦ‖2 = 1, the above equation continues as

= ∇Φ · ∆~u+

(∑

k

HN
Φ

[
∂~u

∂xk
,
∂~u

∂xk

])
+ Λ

(∑

k

Hψ

[
∂~u

∂xk
,
∂~u

∂xk

])

= ∇Φ · ∆~u+

(∑

k

HΦ

[
∂~u

∂xk
,
∂~u

∂xk

])

Also

∆µ = ∇Φ · ∆~u+

(∑

k

HΦ

[
∂~u

∂xk
,
∂~u

∂xk

])

and then

µt = ∆µ

Finally, it is easy to see that both ν and µ satisfy Neumann boundary conditions. Since at t = 0 both

functions are zero, we must have that they are identically zero.

2

6.3.2 Example

We now present an example of the evolution corresponding to the above equation, where the target manifold

the circle S1 ⊂ IR3. We will prove, by direct calculation, that the evolution PDE corresponding to (6.26)

reduces to the expected one.

Let C = {(x, y, z) ∈ IR3| x2 + y2 = 1, z = 0}. We will then choose the representation C = {(x, y, z) ∈
IR3| z = 0} ∩ {(x, y, z)| x2 + y2 = 1}. We select N = {(x, y, z) ∈ IR3| z = 0}, that is, ψ(x, y, z) = z and
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e3

C

N

CK

Figure 6.1: Example of a mapping into S1 ⊂ IR3.

therefore ∇ψ = ~e3 = (0, 0, 1). The set KC is then given by {(x, y, z)| x2 + y2 = 1}. In Figure 6.1 we depict

the situation. Now we solve (6.22) with the condition Φ |
KC

= 0. Observe that ∇ψΦ = (Φx,Φy, 0), then the

PDE we must solve reads Φ2
x + Φ2

y = 1, and then the solution that satisfies the boundary condition above is

Φ(x, y, z) =
√
x2 + y2 − 1. Let ρ =

√
x2 + y2. One computes that ∇Φ(x, y, z) = (x, y, 0)ρ−1. We can now

find the components of HΦ, the Hessian matrix of Φ at the point (x, y, z) to obtain Φxx = ρ−1 − x2ρ−3,

Φyy = ρ−1 − y2ρ−3, Φxy = Φyx = −xyρ−3, and Φzx = Φxz = Φzy = Φyz = Φzz = 0. Since Hψ = 0 we

obtain HN
Φ (x, y, z) = HΦ(x, y, z).

The next step is to write equation (6.26) in this specific case. The first observation is that,again, since

Hψ = 0, the time evolution corresponding to (6.26) simplifies to

~ut = ∆~u+

(∑

k

HΦ(~u) [~uxk , ~uxk ]

)
∇Φ(~u)

For any vector ~v = (vx, vy, vz) ∈ IR3, one has at the point (x, y, z), HΦ[~v,~v] = v2
x(1 − x2) + v2

x(1 − x2) −
2xyvxvy = v2

x + v2
y − (xvx + yvy)

2.

It is also of great help knowing, from §6.3.1, that along the time evolution, both ψ(~u) = 0 and Φ(~u) = 0 if

the initial datum is on C. This translates into that ρ = 1 everywhere in our expressions for HΦ and ∇Φ. Let’s

write ~u = (U, V,W ), then, since U2 + V 2 = 1, differentiating with respect to xk we find UUxk + V Vxk = 0.

We also have W = 0.

Hence, HΦ(~u)[~uxk , ~uxk ] = U2
xk

+ V 2
xk

− (UUxk + V Vxk)
2 = U2

xk
+ V 2

xk
, and the time evolution equation

reads





Ut = ∆U + (‖∇U‖2 + ‖∇V ‖2)U

Vt = ∆V + (‖∇U‖2 + ‖∇V ‖2)V

W = 0

(6.27)

which we immediately recognize as the one corresponding to diffusion of maps into S1 (⊂ IR2, if we discard

the superfluous component W ), see Appendix B.2, equation (B.2).
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6.4 Implicit Domain Manifolds and p-Harmonic Maps

For completeness, we present now the formulas corresponding to the case where both the domain and

target manifolds are represented in implicit form (with the embedding functions being the corresponding

signed distance ones). Deriving these formulas is straightforward using the framework here presented when

combined with the work in [134]. We also show the corresponding flows for p-harmonic maps.

6.4.1 p-Harmonic Maps

We still assume M to be planar. The energy density (6.2) (but not the dependence of the energy on its

density) is redefined as follows. For every p ∈ [1,+∞) let

ep[~u]
4
=

1

p
‖J~u‖pF

A simple application of variational calculus leads to conclude that15

~ut = p1− 2
p Π∇ψ(~u)

(
∇ ·
(
(ep[~u])

1− 2
p JT~u

))
(6.28)

Note that if p < 2 difficulties are expected to arise, see [12] and the references therein.

6.4.2 Generic (Implicit) Domain Manifolds

Let M = {x ∈ IRm : φ(x) = 0}, where φ(·) is the signed distance function to M, then the diffusion is given

by:

~ut = ∇ ·
(
Π∇φJ

T
~u

)
+


∑

k,r

Hψ[~uxr , ~uxk ] (Π∇φ)kr


∇ψ (6.29)

The whole deduction rests upon the redefinition of the energy (6.1) and its density (6.2). Now we should

define the energy density to be

eφ[~u]
4
=

1

2
‖Jφ~u‖2

F

where the intrinsic Jacobian of ~u can be written as (see Appendix B.3 for more details) Jφ~u = J~u Π∇φ.

The new definition for the energy should be:16

E[~u]
4
=

∫

IRm
eφ[~u] δ(φ(x)) dx (6.30)

Comparing (6.29) with (6.18), we can infer the implicit form of the Christoffel symbols:17

15The divergence operator convention (for a matrix A) we have used is ∇ ·A =
“
∇ · ~Av1

˛̨
˛ . . .

˛̨
˛∇ · ~Avr

”
, where ~Avi stands for

the i-th column of A. That is, we apply a columnwise divergence.
16We have already taken into account that ‖∇φ‖ = 1.
17Of course gij =

`
Π∇φ

´
ij

(= g−1
ij ). Then, it is nice to observe (although formally incorrect) that since Π∇φ∇φ = 0, then

the metric g : IRd → IRd×d has eigenvalue +∞ in the direction given by ∇φ thus prohibiting intermingling of information
between adjacent level sets of φ.
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Γlij(~u) =
∂2ψ

∂ui∂uj
(~u)

∂ψ

∂ul
(~u)

6.4.3 Generic (Implicit) Domain Manifold and p-Harmonic Maps

Using both generalizations presented above, we arrive at the following formula with a bit more computational

effort

~ut = p1− 2
p Π∇ψ(~u)

(
∇ ·
(
(eφ,p[~u])

1− 2
p Π∇φJ

T
~u

))
(6.31)

where

eφ,p[~u]
4
=

1

p
‖Jφ~u‖

p
F

6.4.4 Diffusion of Tangent and Normal Directions

Throughout this section we will assume dim(M) = dim(N). Assume we want to diffuse intrinsic vectorial

data constrained to be a direction (unit norm) and to be either normal or tangent to the domain manifold,

e.g., [134]. This is an extremely important case, for example to denoise principal directions and normal

vectors. We now derive these equations, which to the best of our knowledge have not been reported before

even for explicit manifolds.

To achieve this goal, we minimize the functional (6.30) taking a variation of the form (assume ~u minimizes

the energy functional while satisfying both ‖~u‖ = 1 and Π(~u) = ~u)

~uλ(x)
4
=

~u+ λΠ(~v)

‖~u+ λΠ(~v)‖

where ~v : M → IRd is smooth and Π is either ΠTxM or ΠNxM (projection onto the tangent or normal space

respectively). Let ~w = Π(~v), then it follows easily that

dE[~uλ]

dt

∣∣∣∣
λ=0

= −
∫

IRm
{∆φ~u + 2 eφ[~u] ~u} · ~w δ(φ(x)) dx

Imposing dE[~uλ]
dt

∣∣∣
λ=0

= 0 for all v implies

Π (∆φ~u + 2 eφ[~u] ~u) = Π (∆φ~u) + 2 eφ[~u] ~u = 0

Finally, the diffusion flow obtained is

∂~u

∂t
(x, t) = Πx (∆φ~u(x, t)) + 2 eφ[~u](x, t) ~u(x, t) (6.32)

Note that if the PDE (6.32) admits a smooth solution until time T ,18 and if (for instance) we are dealing

with tangent directions diffusion, the function f(x, t)
4
= ∇φ(x) · ~u(x, t) satisfies ft(x, t) = 2eφ[~u]f(x, t).

18Note that we might be subject to the topological obstruction given by the Hairy Ball Theorem when dim(M) = dim(N) is
odd.
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Therefore

f(x, t) = f(x, 0)e2
R

t
0
e[~u](x,t)dt

thus verifying that if ∇φ(x) · ~u(x, 0) = 0 then ∇φ(x) · ~u(x, t) = 0 for t ≤ T . We also want to check whether

‖~u(x, t)‖ = 1 ∀ (x, t). Let

Fφ[~u](t)
4
=

1

2

∫

IRd
‖J~u‖2

F δ(φ(x)) dx

then Ḟφ[~u](t) = −
∫
IRd ~ut · ∆φ~u δ(φ(x)) dx. Since both ‖~u‖ = 1 and Π(~u) = ~u (so Π(~ut) = ~ut since Π does

not depend on t) must hold, and in order to make Ḟφ[~u](t) non-positive we choose

~ut = ΠΠT~u{‖~u‖=c}∆φ~u (6.33)

where ΠT~u{‖~u‖=c} = I − ~u
‖~u‖

~uT

‖~u‖ for any c > 0.

Note that the above evolution indeed forces ~u(x, t) to satisfy both imposed conditions. Let ~v : IRd → IRd

be such that Π(~v) = ~0 then (~v · ~u)t = ~v · ~ut = ~v · ΠΠT~uSd−1∆φ~u = ΠT~v · ΠT~u{‖~u‖=c}∆φ~u = 0, since the

projection matrix is symmetric, and just using this we have
(

1
2‖~u‖2

)
t
= ~u · ~ut = ~u ·ΠT~u{‖~u‖=c} = 0 trivially.

Finally, using ‖~u‖ = 1 and carrying out some computations in a way similar to §6.5 below,19 one can prove

that (6.33) reduces to (6.32).

6.5 Numerical Implementation and Examples

We now discuss the numerical implementation of the flows previously introduced. Since the target manifold

is now implicitly represented, we can basically use classical, well studied, numerical techniques on Carte-

sian grids. In other words, the framework here introduced permits the use of already existing numerical

techniques, thereby enjoying their available analysis results. This is a key concept, instead of working on

the development of new numerical schemes for meshes, the use of implicit representations following our

framework brings us back to classical schemes. Moreover, examples like those in Figure 6.5 have not been

reported in the literature yet, since prior to our approach all PDEs for mapping 3D meshes used projections

as intermediate steps. Therefore, the work here proposed, when combined with [134], not only permits to

use classical numerical schemes to solve PDEs and variational problems for surfaces, it is also an enabling

technology for general maps.

Note that although the flows derived in this chapter guarantee that the map remains on the target (sub-

manifold), numerical errors can move it away from it, requiring a simple projection step (see the projection

equations presented before in this chapter). In particular, when dealing with submanifolds, although the

evolution equations also guarantee that the solution will remain inside the convex hull, due to numerical

discretization, ~u could be taken outside of it during the evolution. In order to numerically project it back,

we need to have a distance function to this convex hull defined on the implicitly defined target manifold. In

[145] we have shown how to computationally optimal compute such a distance function on implicitly defined

manifolds, and this is the technique used for this projection into the convex hull.

19The main difference is that now one must take into account the Laplace-Beltrami expressed “implicitly,” see Appendix B.3
for more details on intrinsic differential operators within the implicit framework.
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An explicit scheme can be devised to implement (6.29) (recall that this is the extension, for general

domain manifolds, of the Equation (6.14) derived in §6.2). However, following [62], it turns out that it is

more convenient to implement the mathematically equivalent evolution derived in §6.2.4. More specifically,

the equivalent evolution is (see equation (6.21))

∂u

∂t
= ∆u −

(
∆u · ∇ψ

)
∇ψ (6.34)

That both evolutions are equivalent is easy to see:

Proposition 10 Equation (6.34) is equivalent to the mapping into implicit surfaces flow (6.14).

Proof: One has that f(x, t)
4
= ψ(~u(x, t)) = 0 ∀(x, t) ∈ Ω × IR+ ∪ {0} for ~u(·, ·) satisfying (6.14). Now,

differentiating f with respect to xi we obtain

∇ψ(~u) · ~uxi = 0

Differentiating again with respect to xi,

Hψ[~uxi , ~uxi ] + ∇ψ · ~uxixi = 0

Summing for all i,

∑

i

Hψ[~uxi , ~uxi ] + ∇ψ · ∆~u = 0

and using the previous expression we derive (6.34) from (6.14).

2

6.5.1 Numerical Scheme

All the coding was done using Flujos as the main core (see [74]) and VTK (see [202]) for visualization

purposes. Note that for visualization purposes only, the surfaces are triangulated at the end, via marching

cubes as implemented in [202]. This is not at all an intrinsic component of our framework, and many

applications (e.g., brain warping and regularization problems) are interested in the values of the solution ~u,

without the need for visualization of the target surface.

All the examples below were carried based in equation (6.31). Once again, the numerical implementation

is straightforward (at least when p = 2), since it is basic Cartesian numerics, and full details and analysis

can be found in the standard literature in numerical analysis. We select a particular efficient scheme from

the literature, while others (including implicit or semi-implicit schemes) could be used as well.

We use forward time discretization (explicit scheme), and for the spatial discretization, we used the

following well known recipe. To spatially discretize

ft(x, t) = ∇ · (K(x)∇f(x, t)) (6.35)

(K(x) is a symmetric positive semi-definite matrix), we consider backward approximation of the divergence

and a forward approximation of the gradient. Let’s explain how this applies in our situation, and for that
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we assume p = 2 in (6.31). Then the equation we have to implement is

~ut(x, t) = Π∇ψ(~u(x,t))

(
∇ ·
(
Π∇φ(x)

(
JT~u (x, t)

)))
(6.36)

If we don’t take into account the outer projection matrix, every coordinate of ~u evolves according to

uit(x, t) = ∇ ·
(
Π∇φ(x)∇ui(x, t)

)

having for each component the same structure than the model evolution (6.35). We then borrow the above

discretization for our evolution. If we consider the coupling among different uis imposed by the projection

matrix Π∇ψ(·), we see that we still preserve numerical stability since this matrix is positive semidefinite

and has spectral radius not greater than 1.20 In more detail, it can be shown after some calculations (see

[91, 191]) that for the scheme (p now denotes a position over the grid)

~vn+1
p = ~vnp + ∆t P(~vnp )

(
∇− ·

(
Q(p)∇+~vnp

) )

the stability condition is of the form (λ = ∆t
(∆x)2 )

λ ≤ min
p,u

S(p)

ρ(P(u)) max{S2(p), D2(p)}
or

λ ≤ 1

maxu ρ(P(u))
min
p

{
S(p)

max{S2(p), D2(p)}

}

where ρ(P(p)) stands for the spectral radius of the matrix P(p), S(p) =
∑

ij (qij(p) + qij(p− ∆x~ei)), and

D(p) =
∑

ij (qij(p) − qij(p− ∆x~ei)). In our case we may admit D(·) to be small compared with S(·) (given

the identification Q ↔ Π∇φ) when ∆x is small. This can be easily related to the curvatures of {φ = 0} giving

a condition on the sampling of the distance function (φ) representing the domain manifold. This condition

mainly means that we require a fine enough sampling as to guarantee that the change in the normals to

the level surfaces of φ is small between adjacent grid points. This condition is obviated when the domain

manifold is planar. So the stability condition becomes

λ ≤ 1

maxu ρ(P(u)) maxp S(p)

Since by Cauchy-Schwartz’s inequality (and the aforementioned assumption on the change of ∇φ between

adjacent grid points) 2 d (in practise) upper-bounds S(p), remembering the fact that ρ(P(p)) ≤ 1, we arrive

at λ ≤ 1
2 d . Note that if a more careful implementation is desired, good choices are ADI or AOS schemes,

see [206].

All derivatives in Π∇ψ(·) and Π∇φ(·) were approximated by central differences. An interpolation scheme

had to be used since the evaluations of Π∇ψ(·) in the above equation are at positions given by ~u(x, t),

positions not necessarily on the underlying grid. We used linear interpolation for this purpose.

Note that as done in [134], when the domain manifold is also implicitly represented, the values of the

map on it are, from time to time (every 5 iterations, for example), extended to its surrounding offset due

20Note that ‖~v‖2 ≥ Π∇ψ [~v,~v] = ‖v‖2 − |∇ψ · ~v|2 ≥ 0 for all ~v. We have used that φ is a distance function.
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to stability considerations, we call this process “extension evolution”. This process is well known in the

area of Implicit Surfaces. Also, as explained before, due to numerical discretization, the discretely computed

solution map can be taken out of the target manifold during the evolution. In this chapter, we simply

project it back at every iteration. We have seen that this projection is a trivial step due to the fact that the

embedding is a distance function. It is quite straightforward to show that the results reported in [4] can be

extended for our equations as well, at least for convex hyper-surfaces (additional numerical work in this area

has been performed by Prof. W. E, [62]). This guarantees then that the projection step does not introduce

numerical problems. Further analysis of this projection step will be reported elsewhere.

This provides the whole numerical scheme for this particular equation using our framework. To resume,

we implement (6.36) with simple finite differences schemes (central, forward, and backward differences). At

every numerical iteration, the values of ~u are projected to the zero level-set to correct for possible numerical

errors (projection which becomes trivial since the embedding function is a distance function). If the domain

manifold is not planar, every k (k = 5 in our experiments) iterations we run a certain number of iterations

of the extension evolution, [134]. When needed, we interpolate the values of the grid onto the underlying

surface by simple linear interpolation. All these steps are widely known, simple to implement, are based on

well known numerical schemes, and are generic and not designed just for a particular flow.

6.5.2 Examples

In all the examples below, the domain manifold M is either the Euclidean space IR2 or an implicit torus.

The target manifold N is an implicit surface in IR3, that is, the zero level-set of ψ : IR3 → IR, ψ being a

signed distance function (this is of course also the case when the surface is a sphere, ψ being as in §6.2.3).

In order to present interesting examples we construct texture maps, add noise to them, and then diffuse

them using our framework. Let S be the surface onto which we want to map a given (planar) image defined

in a subset D ⊂ IR2. Then the texture map is a map ~T : S → D. Once the map is known, we inverted it to

find a map ~u0 : D → S. Then, we built up the noisy map ~u : D → S defined by

~u(x) = ΠS (~u0(x) + ~n(x))

where ~n : D → S is random map with small prescribed power σ. We then feed the evolution (6.14) with ~u as

initial condition, and Neumann boundary conditions. After a certain number of steps, we stop the evolution,

invert the resulting map, and use it as a texture map to paint the surface with a certain texture.21

As a means of finding a suitable ~T we have implemented the work in [217] (a multidimensional scaling

approach), combined with the technique developed in [145] for computing distances on implicit surfaces.

In all the steps just described there are some minor implementation details, mainly regarding interpolation

tasks, that we omit for the sake of clarity.

In Figures 6.2, 6.3 and 6.4 we then denoise vectors from the plane IR2 to a 3D surface defined as the zero

level-set of ψ : IR3 → IR and map a texture image to the surface using the obtained map. Note that the

map is the one being processed, not the image itself.

We also show an example of diffusion of random maps from an implicit torus to the implicit bunny

model, see Figure 6.5. As expected from the theory, when evolving this set with the harmonic flow, the set

21Note that we are not proposing this as a complete texture mapping alternative, it is just to provide an illustrative example.
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Figure 6.2: Diffusion of a noisy texture map (left) onto an implicit sphere (right).

converges to a unique point. This particular example of mapping a given 3D surface to another one was

previously addressed via artificial, distortion introducing, projections to the plane or sphere when the surface

was represented as meshes [195].

6.6 Conclusions

In this chapter we have shown how to implement variational problems and partial differential equations onto

general target surfaces. We have also addressed the case of open target surfaces and sub-manifolds. The key

concept is to represent the target (sub-)manifolds in implicit form, and then implement the equations in the

corresponding embedding space. This framework completes the work with general domain manifolds reported

in [134], thereby providing a complete solution to the computation of maps between generic manifolds.

We are currently using this framework to map two generic surfaces for warping (without intermediate

projections onto the plane), and to develop numerical techniques for high order flows on and onto surfaces. To

complete the general computational framework here introduced, a detailed numerical analysis on comparison

with mesh beased techniques is to be performed. For the work on implicit domain manifolds introduced in

[134], some of this analysis was recently performed in [1]. We plan to perform similar tests for implicit target

manifolds and results will be reported elsewhere.
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Figure 6.3: Diffusion of a noisy texture map onto an implicit teapot. We show two different views (noisy on the top
and regularized on the bottom).
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Figure 6.4: Diffusion of a texture map for an implicit teapot (noisy on he top and regularized on the bottom). A
chess board texture is mapped.
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Figure 6.5: Diffusion of a random map from an implicit torus to the implicit bunny. In blue are marked those points
of the bunny’s surface pointed by the map at every instant. Different figures correspond to increasing instances of
the evolution, from top to bottom and left to tight. We show the map at 17 of 100 iterations performed to the initial
map with a time step of .01. We used the 2-harmonic heat flow with adiabatic conditions.
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Chapter 7

Two applications to Brain Imaging

7.1 Introduction

Some of the most fundamental brain imaging analysis processes can be seen as finding appropriate maps

from a general manifold M (domain manifold) onto another general manifold N (target manifold). For

example, to compare brain data across subjects, individual brain datasets (M) are often mapped to a

neuroanatomical template or brain atlas (N), using a spatial transformation that deforms brain surfaces or

volumes to match their counterparts in the atlas, e.g., [11, 48, 195]. Additional examples are finding special

curves such as sulcal beds (M being a segment of the real line and N the 3D brain surface, i.e., the cortex),

regularizing or smoothing maps of surface-based signals, such as fMRI data or cortical thickness (M being

the 3D brain surface and N the positive real line), and brain warping (both M and N are 3D brains), e.g.,

[42, 146, 195]. In other words, it is fundamental for brain imaging research to efficiently compute maps

between manifolds, from a generic M to a generic N. Moreover, all these important tasks can be addressed

with partial differential equations (PDEs) or variational formulations between the two manifolds. PDEs

have been widely used in neuroimaging, for example in segmenting anatomy using deformable surfaces and

probability diffusion [33, 55, 116, 190], in denoising or enhancing brain-derived signals using anisotropic

diffusion or scale-spaces [212], and in computing structural brain changes in development or dementia, e.g.,

[78, 77, 192] and references therein. In this chapter we show a couple of applications of the ideas explained

before in this thesis to problems in Brain Imaging. In §7.2 we follow [145] and show how to compute

interesting geodesics on implicit cortical surfaces, namely sulcal fundi in the cortex. Based on Chapter 6, in

§7.3 we show how to find smooth curves constrained by landmarks on a cortical surface.

7.2 Geodesic computations

Computing distance functions and geodesics on surfaces has a number of applications in brain imaging.

For example, it can be used for finding cortical features such as sulci, for cortical surface flattening, for

visualization, and for brain warping [115, 195, 200, 203], for correctly estimating spatial correlations in

cortical fMRI signals [211], and for estimating the variability and distance between functional loci in the

cortex. In Figure 7.1 we show the computation of sulci (valleys) on an implicit surface representing the
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boundary between the white and gray matter in a portion of the human cortex (data obtained from MRI).

Here the (extended) weight g̃ is a function of the mean curvature given by [15]

g̃valley(x) = ω +

(
M(x) − min

y∈Ωh
M(y)

)p

where M stands for the mean curvature of the level sets of ψ, so it is computed simply as M(x) = ∆ψ(x).

We then used the procedure described in §2.4 for tracking intrinsic geodesics. In the example here presented

we used ω = 100 and p = 3. More details on the use of this approach for detecting valleys (and creases) can

be found in [15] and in the references therein.

Figure 7.1: These four figures show the detection of valleys over implicit surfaces representing a portion of the human
cortex. We use a mean curvature based weighted distance. In the left-upper corner we show the mean curvature of
the brain surface (clipped to improve visualization). It is quite convincing that this quantity can be of of great help
to detect valleys. In the remaining figures we show two curves over the surface, whose coloring correspond to the
mean curvature (not clipped, from red, yellow, green to blue, as the value increases). The red curve is the one that
corresponds to the natural geodesic (g = 1), while the white curve is the weighted-geodesic that should travel through
“nether” regions. Indeed, a very clear difference exists between both trajectories, since the white curve makes its
way through regions where the mean curvature attains low values. The figure in the right-low quadrant is a zoomed
view of the same situation.
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7.3 Curve Smoothing via Heat Flow

We now present two examples of the formulation in Chapter 6 for smoothing curves on an implicit cortical

surface M using Cartesian numerics. Our goal is to compute a smooth curve that passes through a number

of previously marked points (landmarks). Without the constraints given by the points, the solution will be

a geodesic. The curve is forced to go through the points (or close to them) simply by adding a term that

penalizes its distance to the landmarks {p1, . . . , pN} ⊂ M.

We consider the functional

J(γ) := Js(γ) + λJl(γ)

where Js(γ) := 1
2

∫ 1

o ‖γx‖2dx and Jl(γ) =
∫ 1

0 gl(γ(x)) dx and gl(y) :=
∑N

i=1 ρ (dM(pi, y)) for some convenient

ρ. In our experiments ρ(z) = 1 − e−
z2

σ , where σ measures the area of atraction of each landmark point.

The idea is that we are willing to exchange smoothness, as measured by Js for proximity to the landmarks.

Let γ : [0, 1] × (0, T ) → M = {x : ψ(x) = 0} be a family of curves.

The resulting gradient descent flow for the functional J is

γt = γxx + Hψ(γ)[γx, γx]∇ψ(γ) − λ~Vl(γ)

where, for m ∈ M, ~V (m) corresponds to the Gateâux derivative of Jl.

This is solved with time-implicit numerics to speed up convergence. Figure 7.3, first row, presents a first

example, where we clearly see the evolution of the yellow curve to the constrained black one. On the second

and third rows we extend this for the computation of the sulcal bed, constrained by a few given points

(regular view on the left and zoomed in one on the right). For this, we add a third term that penalizes paths

that move away from the sulcal bed defined as follows

Jsb(γ) :=

∫ 1

0

gvalley(γ(x)) dx

where gvalley is the weight defined in §7.2.
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Figure 7.2: In this example, the yellow curve is the initial one and the black one is the final one. Also in black are
shown the landmark points for these example. The color on the surface of the sphere at the point y is given by gl(y).

Figure 7.3: Finding special curves on implicit target surfaces. From an initial curve, adding constraints to the
classical harmonic energy, we obtain curves that are attracted to marked points (landmarks). Here we show the
procedure applied to a curve on a piece of cortical surface.
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Chapter 8

Minimizing Lipschitz extensions for

Surface Warping

8.1 Introduction

Brain warping, a form of brain image registration and geometric pattern matching, is one of the most

fundamental and thereby most studied problems in computational brain imaging [195]. Brain images are

commonly warped, using 3-dimensional deformation fields, onto a common neuroanatomic template prior to

cross-subject comparison and integration of functional and anatomical data. Images of the same subject may

be warped into correspondence over time, to help analyze shape changes during development or degenerative

diseases. Almost all the active research groups in this area have developed and/or have their favorite brain

warping technique.1 A few representative works can be found at [42, 44, 48, 71, 78, 90, 146, 192, 194, 195,

67, 200], this list being far from complete. In spite of this, the problem is still open and widely studied, since

there is not a “ground truth” method to obtain a map between brains. The criteria for matching different

features (e.g., geometry or intensity) may also depend on the applications, which range from recovering

intraoperative brain change to mapping brain growth, or reducing cross-subject anatomical differences in

group functional MRI studies.

The way the brain warping problem is addressed is critical for studies of brain diseases that are based

on population comparisons. Examples of this application can be found at [78, 192], although these are a

very non-exhaustive account of the rich literature on the subject. The interested reader may also check

[193] for numerous applications of brain warping and population studies. As detailed in [195], brain warping

approaches can be divided into two classes, those based on volume-to-volume matching and those based

on surface-to-surface matching. Our work belongs to the latter of the categories. Surface matching has

recently received increasing attention as most functional brain imaging studies focus on the cortex, which

varies widely in geometry across subjects. The power of these studies depends on the degree to which the

functional anatomy of the cortex can be aligned across subjects, so improved cortical surface registration has

become a major goal. In contrast with flow based works such as those in [42, 146, 192], our motivation is as

1This includes groups at JHU, UCLA, U. Penn., INRIA, MGH, GATECH, Harvard-BW, and the University of Florida, to
name just a few.
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in [8, 90, 94, 102, 108, 216, 217, 204]. That is, we aim to compute a map that preserves certain pre-defined

geometric characteristics of the surfaces. While the literature has mainly attempted to preserve angles and

areas, we work with geodesic distances (see also [177]). Our work is inspired by the literature on Lipschitz

minimizing maps and in its connection to the infinite Laplacian. The motivation for using these frameworks

will be presented after some brief mathematical introduction below.

In this chapter we therefore introduce the use of Lipschitz minimizing maps into the area of computa-

tional brain imaging, presenting a theoretical and computational framework complemented by examples with

artificial and real data. An additional critical contribution of the work here presented is that intermediate

distorting maps to the plane or sphere are avoided – these intermediate mappings are common practice in

the brain warping literature.

8.2 Formal statement of the problem

Let B1 and B2 be two cortical surfaces (2D surfaces in the three dimensional Euclidean space) which we

consider smooth and endowed with the metric inherited from IR3 so that dB1 and dB2 are the geodesic

distances measured on B1 and B2, respectively. Let Γ1 ⊂ B1 and Γ2 ⊂ B2 be subsets which represent

features for which a correspondence is already known. In general, the sets Γi are the union of smooth curves

traced on the surfaces, e.g., sulcal beds lying between gyri, and/or a union of isolated points. A set of

anatomical landmarks that occur consistently in all subjects can be reliably identified using standardized

anatomical protocols or automated sulcal labeling techniques (see for example Brain VISA by Mangin and

Riviere and SEAL by Le Goualher).

Functional anatomy also varies with respect to sulcal landmarks, but sulci typically lie at the interfaces

of functionally different cortical regions so aligning them improves the registration of functionally homolo-

gous areas. As commonly done in brain warping [195], we assume that a correspondence between Γ1 and

Γ2 is pre-specified to the map (boundary conditions of the map). In this correspondence, internal point

correspondences may be allowed to relax along landmark curves in the final mappings, e.g., [132].

To fix ideas let’s assume that Γ1 = ∪Nk=1xi and Γ2 = ∪Nk=1yi, and that the correspondence is given by

xi 7→ yi for 1 ≤ i ≤ N .

We want to find a (at least continuous) map φ : B1 → B2 such that φ(xi) = yi for 1 ≤ i ≤ N and such

that φ produces minimal distortion according to some functional J. One possible way of interpreting this

problem is that we are trying to extrapolate or extend the correspondence from Γ1 to the whole of B1 in

such a way that we achieve small distortion.

A possible way to measure the distortion produced by a map φ is by computing the functionals (1 ≤ p <

∞)

Jp(φ) =

(
1

µ(B1)

∫

B1

‖DB1φ‖p2 µ(dx)

)1/p

(8.1)

whereDB1 denotes differentiation intrinsic to the surface B1 and µ is the area measure on B1. One immediate

idea is then to consider, for a fixed p ∈ (1,∞), the following variational problem:

Problem 1 (minimize Jp) Find φ ∈ S such that Jp(φ) = infψ∈S Jp(ψ), where S is a certain smoothness

class of maps φ from B1 to B2 such that they respect the given boundary conditions φ(xi) = yi for all xi ∈ Γ1.
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The case p = 2 corresponds to the Dirichlet functional and has connections with the theory of (standard)

Harmonic Maps. In more generality, it is customary to call the solutions to Problem 1 p-Harmonic Maps,

see for example [64, 107, 68]. It is easy to show, under mild regularity assumptions, that for a fixed φ, Jp(φ)

is nondecreasing as a function of p, and that [82]

J∞(φ) := lim
p↑∞

Jp(φ) = essupx∈B1
‖DB1φ(x)‖2, (8.2)

which is the Lipschitz constant of φ.

In this chapter we propose to use the functional J∞ as a measure of distortion for maps between cortical

surfaces and to solve the associated variational problem in order to find a candidate mapping between the

cortical surfaces (constrained by the provided boundary conditions).

Let L denote the space of all Lipschitz continuous maps ψ : B1 → B2 such that ψ(xi) = yi for 1 ≤ i ≤ N .

We then propose to solve the following problem:

Problem 2 (minimize J∞) Find φ ∈ L such that J∞(φ) = infψ∈L J∞(ψ).

We now argue in favor of this functional.

8.2.1 Why use J∞ ?

Our first argument is that J∞ measures distortion in a more global way than any of the Jp for p ∈ (1,∞), since

instead of computing an averaged integral quantity, we are looking at the supremum of the local distortions,

‖DB1φ(x)‖2. Note also that as stated above, J∞ upper-bounds Jp under mild regularity assumptions.

Another element to consider is that this problem is well posed for the kind of general boundary data we

want to respect, provided both at curves and isolated points on the surfaces. At least for the case p ≤ 2,

this is not true in general, see [34].

We are then looking for a Lipschitz extension of the map given at Γ1 whose Lipschitz constant is as small

as possible. Let

L(Γ1,Γ2) := max
xi,xj∈Γ1

dB2(yi, yj)

dB1(xi, xj)
,

that is, the Lipschitz constant of the boundary data. In general, we will have infψ∈L J∞ > L(Γ1,Γ2). This

is related to Kirszbraun’s Theorem, which in one of its many guises states that a Lipschitz map f : S → IRD,

S ⊂ IRd, has an extension f̄ : IRd → IRD with the same Lipschitz constant as f , see [69]. In the same vein,

one has Whitney and McShane extensions which apply to the case when the domain is any metric space

X and the target is IR. These extensions provide functions that agree with f where boundary conditions

are given and preserve the Lipschitz constant throughout X , see for example [10, 109]. The more general

problem of extending f : S → Y (S ⊂ X , X and Y any metric spaces) to all X with the same Lipschitz

constant is not so well understood and only partial results are known, see for example [128, 126, 127].

The idea then is to keep the distortion at the same order as that of the provided boundary conditions.

In general there might be many solutions for the Problem (2). One particular class of minimizers which

has recently received a lot of attention is that of absolute minimizers, or absolutely minimizing Lipschitz

extensions (AMLE). Roughly speaking, the idea here is to single out those solutions of Problem (2) that also

possess minimal local Lipschitz constant, again, see [10] for a general exposition, and [109] for a treatment

of the case when the domain is any reasonable metric space and the target is the real line.
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8.3 Proposed computational approach

If we take for example the case of p-Harmonic maps, one way of dealing with the computation of the optimal

map φp is by implementing the geometric p-heat flow associated with the Euler-Lagrange equation of the

functional Jp, starting from a certain initial condition. As was explained in Chapter 6, using an implicit

representation for both B1 and B2, we could obtain the partial differential equation PDEp we need to solve

in order to find φp. By taking the formal limit as p ↑ ∞ we would find PDE∞, the PDE that characterizes

the solution φ∞ of the (variational) Problem (2).2 All of this might work if we had a notion of solution

for the resulting PDEs. Whereas this is feasible in the case of PDEp for 1 < p < ∞, to the best of our

knowledge, there is no such notion of a solution for PDE∞. One could of course still persist and try to solve

these equations without the necessary theoretical foundations and call these plausible solutions ∞-Harmonic

Maps. Nonetheless, this is certainly an interesting line of research.

A different direction is considered in this work. As a guiding example, we first concentrate on the case

where B1 is any closed smooth manifold and B2 is replaced by IR, as considered in [32] (for scalar data

interpolation on surfaces), and in [157]. In [32], the authors propose to follow a similar path to the one we

have just described, and they do not obtain a convergent numerical discretization for the resulting PDE.

Meanwhile, in [157], the author proposes a convergent discretization of the PDE, basing his construction on

the original variational problem. We choose to follow this idea as our guiding principle.

We now explain this alternative approach. The basic idea is simple, instead of first obtaining the Euler-

Lagrange equations for J∞ and then discretizing them, we will first discretize J∞ and then proceed to

solve the resulting discrete problem. Consider that the domain B1 is given discretely as a set of (different)

points
�

1 = {x1, . . . , xm} together with a neighborhood relation (i.e., a graph). To fix ideas let’s assume the

neighborhood relation is a k-nearest neighbors one. Denote, for each 1 ≤ i ≤ m, by Ni = {xj1 , . . . , xjk} ∈ �
1

the set of k neighbors of the point xi. We consider the discrete local Lipschitz constant of the map φ at xi:

Li(φ) := max
xj∈Ni

dB2(φ(xi), φ(xj ))

dB1(xi, xj)
(8.3)

Upon noting that Li(φ) serves as a discrete approximation to ‖DB1φ(xi)‖2, we see that a possible

discretization of the functional J∞(φ) is given by the discrete global Lipschitz constant of φ given by

max1≤i≤m Li(φ). The author of [157] proposed, in the case when B2 is replaced by IR, solving the dis-

crete version of Problem (2) by following the following iterative procedure (here described for B2 a surface

as in our problem):

• Let φ0 be an initial guess of the map.

• For each n ≥ 1, if xi /∈ Γ1, let

φn(xi) = arg min
y∈B2

max
j∈Ni

dB2(y, φn−1(xj))

dB1(xi, xj)
(8.4)

• φn(xi) = yi for all n ≥ 0 for xi ∈ Γ1.

2The case when the domain is a subset of IRd and the target is the real line leads to the so called infinity Laplacian, see
[10, 106, 52].
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With computational efficiency related modifications described below, this is the approach we follow in

general. The intuition behind this iterative procedure is that, at each point of the domain, we are changing

the value of the map in order to minimize the local Lipschitz constant, that is, the local distortion produced

by the map. This is in agreement with the notion of AMLEs briefly explained in §8.2.1. We should remark

that since we are using intrinsic distances for the matching, we can let Li(φ) play the role of (the norm of)

the displacement field for analyzing the deformation,3 see §8.5 ahead.

8.4 Implementation details

In addition to discretizing the domain
�

1, we also use a discretization
�

2 = {y1, . . . , ym′} of the target space

B2 for our implementation. We endow
�

2 with a neighborhood relation given by the k-nearest neighbors of

each point. For computational efficiency, we work at all times with two different scales in the discrete domain
�

1. We choose a subset F1 of
�

1 such that #F1 � m but still F1 is an efficient (well separated) covering of
�

1 with small covering radius. We do this by using the well known (geodesic) Farthest Point Sampling (FPS)

procedure, see [143, 150], which can be efficiently constructed based on optimal computational techniques.

Roughly speaking, we apply the iterative procedure on this subset of points only and then extend the map

to the rest of the points in the domain
�

1. We now show how to obtain a reasonable initial condition φ0

and then discuss additional details regarding the implementation of the iterative procedure described in the

previous section.

Building the initial condition: We compute, for all xr ∈ F1\Γ1, φ0(xr) = argminy∈B2
maxxi∈Γ1

dB2
(y,yi)

dB1
(xr,xi)

.

For this step we use the classical Dijkstra’s algorithm for approximating the distances dB1 and dB2 since

they might be evaluated at faraway points. This is of course run on the graphs obtained from connecting

each point to its k-nearest neighbors.

The iterative procedure: After φ0 is computed for all points in the set F1, we run the iterative procedure

from §8.3 on this set of points. The main modification here is that whereas we still use Dijkstra’s algorithm

for approximating dB2 in the target surface, since in the domain we must compute dB1 only for neighboring

points (F1 was chosen to be dense enough), for computationally efficiency we can approximate dB1(xi, xj) '
‖xi − xj‖ for xj ∈ Ni. We should also point out that for points in F1, the neighborhood relation is defined

to be that of k-nearest neighbors with respect to the metric on
�

1 defined by the adjacency matrix of
�

1.

Let φ∗ : F1 → �
2 denote the map obtained as the output of this stage.

Extension to the whole domain: After we have iterated over points in F1 until convergence, we extend the

map φ∗ to all points xi in
�

1\{F1∪Γ1}. This is done by computing φ∗(xi) = arg miny∈B2
maxx∈F1∪Γ1

dB2
(y,φ∗(x))

dB1
(xi,x)

.

For this step, and since we have already obtained the map for a relatively dense subset, we approximate both

dB1 and dB2 by the Euclidean distance. Once again, the motivation for this is just computational efficiency.

3One can a situation in which two isometric surfaces are matched by our algorithm such that Li(φ) = 1 for all i, but the
displacement field ‖xi − φ(xi)‖ is large since there may be no rigid motion that aligns the two surfaces. One simple example is
a flat sheet of paper and the same sheet slightly bent.
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8.5 Examples

In this section we present some computational examples of the ideas presented in previous sections. First, in

Figure 8.1 the domain B1 is a cube (m = 10086) and the target B2 is a sphere (m′ = 17982). For the purposes

of visualizing the map, we assigned the clown texture (which can be thought of as a function I :
�

2 → IR)

to the sphere, which can be seen on the bottom-right corner of the figure. The sphere and the cube were

concentric and of approximately the same size. We selected F1 on the cube consisting of 1000 well separated

points using the FPS procedure alluded to in §8.4. Also, we set k = 6 (number of neighbors). We then chose

Γ1 to be the first 100 points of the set and then projected them onto the sphere, obtaining in this way, the

corresponding set Γ2 to use as boundary conditions. We then followed the computational procedure detailed

before. The top-left figure shows the composition I ◦ φ∗ : cube → IR as a texture on the cube. Finally,

the top-right and the bottom-left images show the histogram of Li(φ∗) and its spatial distribution in the

domain (we paint the cube at each point xi with the color corresponding to Li(φ∗)), respectively. Ideally, we

would like to obtain a δ-type histogram, meaning that the distances have been constantly scaled. Of course,

this is not possible (unless one of the surfaces is isometric to a scaled version of the other), and we attempt

to obtain histograms as concentrated as possible. This is quite nicely obtained for this and the additional

examples in this chapter.

Figure 8.2 shows the construction of a map from the unit sphere S2 into a cortical hemisphere
�

(B).

The boundary conditions consisted of 6 pairs of points. We first took the following 6 points on the sphere

Γ1 = {(±1, 0, 0), (0,±1, 0), (0, 0,±1)}. We then constructed the intrinsic distance matrix [dS2(pi, pj)] for all

pi, pj ∈ Γ1. Finally, we chose 6 points {q1, . . . , q6} = Γ2 in
�

such that maxi 6=j
d � (qi,qj)
dS2 (pi,pj)

was as close as

possible to 1
πdiam(

�
). We painted

�
with a texture IH depending on its mean curvature so as to more easily

visualize the sulci/crests: If H(x) stands for mean curvature of B at x, then IH(x) = (H(x) − minxH(x))2.

See the caption for more details.

The example in Figure 8.3 is about computing a map Φ from a subject’s left hemisphere
�

1 to another

subject’s left hemisphere
�

2. The boundary conditions were constructed in a way similar to the one used for

the previous example, but in this case, 300 points were chosen. Note that, if available, hand traced curves

could be used as commonly done in the literature (in other words, more anatomical/functional oriented

boundary conditions). In the first two rows we show 4 different views of each cortical surface, and in

the third row we show
�

1 colored with the values of Li(Φ) which we interpret as a measure of the local

deformation of the map needed to match
�

1 to
�

2. See the caption for more details.

8.6 Concluding remarks

In this chapter we have introduced the notions of minimizing Lipschitz extensions into the area of surface and

brain warping. These maps provide a more global constraint than ordinary p-harmonic ones, and allow for

more general boundary conditions. The proposed computational framework leads to an efficient surface-to-

surface warping algorithm that avoids distorting intermediate steps that are common in the brain warping

literature. We are currently investigating the use of this new warping technique for creating population

averages and applying it to disease and growth studies. In earlier work, the Jacobian of a deformation map-

ping over time has been used to map the profile of brain tissue growth and loss in a subject scanned serially
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Figure 8.1: Artificial example of the proposed warping algorithm. From top to bottom and left to right: The
domain surface, with a picture painted on it to help in visualizing the computed map; histogram of the Lipschitz
constant (note how it is concentrated around a single value); color coded distribution of the Lipschitz constant for
the computed map; and mapped texture following the computed map.

(tensor-based morphometry [192, 43]). The discrete local Lipschitz constants of our computed mappings also

provide a useful index of deformation that can be analyzed statistically across subjects. The framework here

introduced can also be applied in 3D for volumetric warping and with weighted geodesic distances instead

of natural ones to include additional geometric characteristics in the matching. Results in these directions

will be reported elsewhere.
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Figure 8.2: An example of mapping between the cortex and a sphere. The order is the same as in the previous
figure, but now the domain and target surface are colored with a curvature-based color code. Note once again the
concentration of the Lipschitz constant for the computed map. On the left, the texture map corresponding to IH(x)
as described in the text is used. On the right, the texture is max(IH(x), δ) for a user selected value of the threshold
δ, which highlights the gyral crests.
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Figure 8.3: Warping between the cortical surfaces of two brains. In the first row we show 4 views of
�

1: posterior,
medial, lateral and directly viewing the occipital cortex. The corresponding 4 views of

�
2 are shown in the second

row. In the third row, we show
�

1 with texture I(xi) = Li(Φ) which can interpreted as a measure of local deformation
needed to match xi ∈

�
1 to Φ(xi) ∈

�
2. Relatively little deformation (blue colors) is required to match features across

subjects on the flat interhemispheric surface (second image in the second row). This is consistent with the lower
variability of the gyral pattern in the cingulate and medial frontal cortices. By contrast, there is significant expansion
required to match the posterior occipital cortices of these two subjects, especially in the occipital poles which are the
target of many functional imaging studies of vision. The final panel in the figure shows the corresponding histogram
for Li(φ), the local Lipschitz constants of the map.
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Chapter 9

Conclusions and Future Lines of

Research

In this chapter we briefly summarize the contents of the core chapters of the thesis and provide concluding

remarks along with future lines of research for each of them, and then some general remarks.

Chapters 2 and 4

In this pair of chapters we have presented a novel computationally optimal algorithm for the computation

of intrinsic distance functions (and geodesics) on submanifolds of euclidean space (possibly with convex

boundary) given either implicitly or as random point clouds. The underlying idea is based on using the

classical Cartesian fast marching algorithm in an offset bound around the given surface. We have provided

theoretical results justifying this approach and presented a number of experimental examples. We discussed

on the plausibility of tighter bounds for the error between dg̃Ωh and dg
S
. When considering a random point

cloud representation of the manifold, we obtained probabilistic bounds for the error. We based this bounds

on relatively simple but useful estimatives on the probability of covering the manifold by the union of balls

centered at the points in the cloud, Chapter 3. As another interesting extension, it remains to characterize

what is the class of intrinsic Hamilton-Jacobi (or in general, what class of intrinsic PDE’s) can be approx-

imated with equations in the offset band Ωh. In an even more general approach, what kind of intrinsic

equations can be approximated by equations in other domains, with offsets just a particular and important

example. Even if fast marching techniques do not exists for these equations, it might be simpler and even

more accurate to solve the approximating equations in these domains than in the original surface S. The

framework here presented then not only offers a solution to a fundamental problem, but it also opens the

doors to a new area of research.

Chapter 5

In this chapter we dealt with the comparison of shapes under certain invariance properties. More precisely,

we chose to think of shapes as of metric spaces endowed with a certain metrics. We then considered thee

Gromov-Hausdorff distance between metric spaces as a measure of similarity between these (shapes) metric
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spaces. We explained how this pre-exisiting theory can suit the problem well and proposed a computational

approach. We discussed possible extension and improvements. In particular we noted that instead of only

considering shapes to be metric spaces, it may be more useful to consider them as measure metric spaces and

use analogous definitions of the Gromov-Hausdorff metric which may make the computational framework

more efficient. We also discussed how the choice of the metric with which we endow each of the shapes can

allow for more flexibility in the comparison process. In particular, we suggested considering scale dependent

comparisons. Finally, the algorithmic part of the framework has been tested experimentally but some

theoretical work is still needed.

Chapters 6 and 7

In Chapter 6 we have shown how to implement variational problems and partial differential equations on

implicit surfaces for data taking values onto general target surfaces. We have also addressed the case of

open target surfaces and sub-manifolds. The key concept is to represent the target (sub-)manifolds in

implicit form, and then implement the equations in the corresponding embedding space. This framework

extends the work with general domain manifolds reported in [134], thereby providing a possible approach

to the computation of maps between generic manifolds. As a byproduct of the work, a dictionary has been

obtained which permits the translation of intrinsic differential quantities into properly modified extrinsic

ones. In Chapter 7 we showed a couple applications of the machinery developed for solving PDEs on implicit

surfaces. These applications were done using Brain Imaging data. An interesting application was obtained

for obtaining smooth interpolation/approximation of points on a surface.

Chapter 8

In this chapter we introduced the notions of minimizing Lipschitz extensions into the area of surface and

brain warping. These maps provide a more global constraint than ordinary p-harmonic ones, and allow for

more general boundary conditions. The proposed computational framework leads to an efficient surface-to-

surface warping algorithm that avoids distorting intermediate steps that are common in the brain warping

literature. The discrete local Lipschitz constants of our computed mappings also provide a useful index

of deformation that can be analyzed statistically across subjects. This framework introduced can also be

applied in 3D for volumetric warping and with weighted geodesic distances instead of natural ones to include

additional geometric characteristics in the matching. The work presented in this thesis is preliminary and

deeper investigations are needed in both, the theoretical and practical aspects of the work.

General Remarks

In this thesis a set of problems in Computer Vision were considered. These problems dealt with geometric

data in two formats, implicit representations and point clouds. The solutions proposed attempted to provide

a more or less rigorous model for the problem, a well justified solution with some theoretical guarantees and

a computational framework for the application of the ideas.
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Appendix A

Some Technical Ingredients

A.1 Signed Distance Functions to Hypersurfaces in Euclidean Space

We now present a few important results on distance maps. These have been mainly adapted (and adopted)

from [5, 6, 83, 183].

Let S be a smooth closed hypersurface in IRd and let ψ(x) denote the signed distance function to S, taken

positive in the exterior and negative in the interior of S, respectively. Then, ψ is smooth we know that it

satisfies the Eikonal equation

‖∇ψ‖ = 1 (A.1)

The signed distance function satisfies this PDE everywhere in the viscosity sense [104, 54]. It is also well

known that within a sufficiently small neighborhood of S = {ψ = 0}, ψ(·) is smooth, or at least as smooth

as S. These assertions can be made precise through the following Lemma from [76]:

Lemma 9 Let S be a Ck (k ≥ 2) codimension 1 closed hyper-surface of IRd. Then, the signed distance

function to S is Ck(U) for a certain neighborhood U of S.

Differentiating ‖∇ψ‖2 = 1 we obtain

D
(
∇ψ
)
∇ψ = 0

Therefore,

Hψ∇ψ = 0 (A.2)

meaning that the normal to S at p is an eigenvector of the Hessian, associated to the null eigenvalue.

Differentiating again we obtain

D3ψ∇ψ + (D2ψ)2 = 0 (A.3)

The next Lemma, whose detailed proof can be found in [5], is mainly based in the relations (A.2) and

(A.3), and it is used to verify that the function µ : (−ε, ε) → IRd×d defined by µ(t) = Hψ(p0 + t∇ψ(p0)) (p0
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is any point in the manifold {ψ = 0}) satisfies the following ODE:

µ̇(t) + µ2(t) = 0 t ∈ (−ε, ε)

Lemma 10 The eigenvectors of Hψ are constant along the characteristic lines x(s) = x0 + s∇ψ(x(s))

(arc length parametrized, x0 is a point onto S) of ψ within any neighborhood where it is smooth, and the

eigenvalues vary according to

λi(s) =
λi(0)

s λi(0) + 1

We use the above formula to bound the maximum offset |ε| of {ψ = 0} that keeps {ψ = ε} smooth, we just

take |ε| (max1≤i≤d−1 |λi(0)|) < 1.

We now obtain bounds on the eigenvalues of the Hessian of the distance function:

Corollary 10 The eigenvalues λi(p) of Hψ(p) (principal curvatures of {x : ψ(x) = ψ(p)}) are absolutely

bounded by

|λi(p)| ≤
MS

1 − |ψ(p)|MS

where MS absolutely bounds all eigenvalues of Hψ(p), p ∈ S; and |ψ(p)| is sufficiently small.

To conclude, let’s present some concepts on projections onto the implicit surface S, zero level-set of the

distance function ψ. It is clear that the projection of a point p ∈ IRd onto S is given by

ΠS(p) = p− ψ(p)∇ψ(p).

This projection is well defined as long as there is only one x ∈ S such that ΠS(p) = x. This can be

guaranteed when working within a small tubular neighborhood of a smooth surface S. Moreover, this map

is smooth within a certain tubular neighborhood of S [183]:

Theorem 14 If S ⊂ IRd is a compact Ck (k ≥ 2) codimension 1 hyper-surface, then there is a h(S) > 0

such that the map ΠS is well defined and belongs to Ck−1({x : d(x, S) < h}, IRd).

A.2 Properties of Squared Euclidean Distance Functions

The references for this section are [6], pp.12-16, and [69].

Theorem 15 ([6]) Let Γ ⊂ IRd be a compact, smooth manifold without boundary. Then η(x)
4
= 1

2d
2(Γ, x)

is smooth in a tubular neighborhood U of Γ. Also, in U it satisfies ‖Dη‖2 = 2η.

Corollary 11 The projection operator Π : U → Γ, for a given x ∈ U , can be written as Π(x) = x−Dη(x).

Moreover, this operator is smooth.
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Remark 24 Differentiation of the relation < Dη,Dη >= 2η gives us D2ηDη = Dη. Differentiating once

more we also find D3ηDη = D2η.

Theorem 16 ([6]) Let Γ and U be as in the previous Theorem and let y ∈ U and x = y − Dη(x) ∈ Γ,

k = dim(Γ). Then, denoting by λ1, . . . , λn the eigenvalues of D2η(y),

λi(y) =

{
d(Γ,y)κi(x)

1+d(Γ,y)κi(x)
if 1 ≤ i ≤ k

1 if k < i ≤ n,

where κi(x) are the principal curvatures of Γ at x along Dd(Γ, y) ∈ NxΓ, where NxΓ is the normal space to

Γ at x.

A.3 Technical Lemma

Lemma 11 Let f : [a, b] → IR be a C1([a, b]) function such that f ′ is Lipschitz. Let ϕ ∈ L∞([a, b]) denote

(one of) f ′’s weak derivative. Then one has:

∫ b

a

f ′2(x) dx = f f ′∣∣b
a
−
∫ b

a

f(x)ϕ(x) dx

Proof:

Let ext(f ′) denote the Lipschitz extension of f ′ to all IR given by

ext(f ′)(x) =

8
><
>:

f ′(a) for x < a

f ′(x) for x ∈ [a, b]

f ′(b) for x > b

Then let ext(f) be given by any (bounded) primitive of ext(f ′), that is ext(f) =
R
ext(f ′). Let bϕ ∈ L∞IR denote

ext(f ′)’s weak derivative, and we have that bϕ
˛̨
˛
[a,b]

and ϕ coincide as weak derivatives of f . Let {ηε(·)}{ε>0} be a

family of bounded support mollifiers. Then we define the function

fε = ext(f) ∗ ηε

It is clear that we will have (⇒ means uniform convergence)

(a)

fε
ε↓0

⇒ ext(f) over compact sets of IR

(b)

f ′
ε

ε↓0

⇒ ext(f ′) over compact sets of IR

(c)

f ′′
ε

ε↓0−→ bϕ locally in L2(IR)

Since f ′
ε ∈ C∞(IR) we can use integration by parts to conclude that:

Z b

a

f ′
ε
2
(x) dx = f ′

εfε

˛̨
˛
b

a
−
Z b

a

fε(x) f
′′
ε (x) dx
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Now the left hand side will converge to
R b
a
f ′2(x) dx in view of (b); the first term in the right hand side will obviously

converge to f f ′
˛̨
˛
b

a
. For the remaining term we observe the following ,using Cauchy-Schwartz inequality (let <,>:

L2([a, b]) × L2([a, b]) → IR denote L2([a, b])’s internal product):

˛̨
˛̨
Z b

a

fε(x) f
′′
ε (x) dx −

Z b

a

f(x)ϕ(x) dx

˛̨
˛̨

=
˛̨
< f ′′

ε , fε > − < ϕ, f >
˛̨
=
˛̨
< f ′′

ε , fε − f > + < f, f ′′
ε − ϕ >

˛̨

≤ (b− a)

„„
max

{x∈[a,b]}

˛̨
f ′′
ε (x)

˛̨«
‖fε − f‖L2([a,b]) +

„
max

{x∈[a,b]}
|f(x)|

«
‖f ′′
ε − ϕ‖L2([a,b])

«

Now, everything is under control since

max
{x∈[a,b]}

˛̨
f ′′
ε (x)

˛̨
≤ ‖ϕ‖L∞([a,b])

Hence we have proved Z b

a

fε(x) f
′′
ε (x) dx

ε↓0−→
Z b

a

f(x)ϕ(x) dx

the last step of the proof. @
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Appendix B

Appendices to Chapter 6

B.1 Physical Intuition

We now present a simple physical interpretation of harmonic maps. The argument is just intuitive, not at all

rigorous. Moreover, we will restrict ourselves to simple manifolds. Let’s assume that the domain manifold

M is an interval [a, b] ⊂ IR, and that the target manifold N is a surface in IR3. Assume that M is uniformly

discretized and that pi, 0 ≤ i ≤ L − 1, are the points in the discretization, where L defines the resolution

of this division. Springs of zero natural length and constant kL are attached to the points {a} and {b} and

sharing the other extremes with other springs on the points inside M.

Let ~U : M → N be a map such that ~U(a) = p ∈ N, ~U(b) = q ∈ N . Let’s consider the elastic energy of

EL of all the springs when we lay them on the surface N:

EL(~U) =

L−1∑

i=0

kL
2
d2

N(~U (pi), ~U(pi+1)

When we force the ends of the springs to be on N, the elastic energy must be minimized in the equilibrium,

and it characterizes the map we are seeking.

When L is large and the target manifold is sufficiently smooth, we can approximate the distances

d2
N(~U(p), ~U(q)) on N by ‖~U(p) − ~U(q)‖2. When the vector field ~U is differentiable, and using the mean value

theorem, we write ~U(p) − ~U(q)) = J~U (s) (p− q), where s is an intermediate point of the interval between

p and q. We then obtain

d2
N(~U(p), ~U(q)) ' (p− q)T

(
JT~U (s)J~U (s)

)
(p− q).

Since, J~U = ~Ux, the elastic energy can be approximated by

EL(~U) '
L−1∑

i=0

kL
2

‖~Ux(si)‖2(pi − pi+1)
2 =

L−1∑

i=0

kL
2

‖~Ux(si)‖2(
b− a

L
)2

We must choose kL so that for every L the springs are being pulled by the same force, obtaining kL = k ·L,

for some constant k. This is easily seen, observing that as L increases the resting length of the springs reduces
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as b−a
L . With this in mind, from the above expression for the energy, we obtain

EL(~U) ' k · (b− a)

2

L−1∑

i=0

‖~Ux(si)‖2 b− a

L

L↑∞−→ k · (b− a)

2

∫ b

a

‖~Ux(x)‖2 dx

This is just the harmonic energy already defined.

B.2 Boundary Conditions for the Gradient Descent Flow

We now justify the use of Neumann boundary conditions for the gradient descent flow in §6.2.1. In the scalar

case, one has the evolution problem





It(x, t) = ∆I(x, t) x ∈ M, t ≥ 0

I(x, 0) = I0(x), x ∈ M

∇I · n|∂M = 0.

(B.1)

We observe that the quantity σ(t)
4
=
∫

M
I(x, t) dMv remains constant,

σ̇(t) =

∫

M

It(x, t) dMv =

∫

M

∆I(x, t) dMv =

∫

M

∇ · (∇I) dMv =

∫

∂M

∇I · n dMs = 0

thereby imposing the boundary conditions.

One wonders which quantity is preserved thru time by the flow in the general case, when imposing the

boundary condition (6.15). We illustrate this for the particular case of N = S1. In this case, the evolution

equations are given by (see also §6.2.3)

{
Xt = ∆X +

(
‖∇X‖2 + ‖∇Y ‖2

)
X

Yt = ∆Y +
(
‖∇X‖2 + ‖∇Y ‖2

)
Y

(B.2)

The Neumann boundary conditions for this case are written as

∇X · n = ∇Y · n = 0 in ∂M

Transforming to polar coordinates (ρ, θ) one finds that the evolution equations (for smooth initial data,

and at least for some time) are (see also [166])

{
θt = ∆θ

ρt = 0
(B.3)

with boundary conditions

∇θ · n = 0 in ∂M

Again one finds that
∫

M
θ(x, t) dMv is constant.

In the most general case, when the target manifold is arbitrary, one might guess that the intrinsic
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barycenter1 of the map is preserved through time, since that’s exactly what the particular cases given above

show us. However, to the best of our knowledge, there is not such a result in the literature of harmonic

maps, and the conservation of the barycenter is only obtained when constraints are added. The examples

discussed above still motivate the use of Neumann boundary conditions.

B.3 Implicit Calculus

We now present basic facts about differential calculus on implicitly represented surfaces. For more informa-

tion see for example [18, 40, 144].

We have a smooth scalar function f : IRd → IR, and a smooth vector field ~λ : IRd → IRD (d and D are

not necessarily equal). The manifold onto which the calculus is to be done is represented as S = {ψ = 0},
for ψ(·) the signed distance function to S.

All the ideas of differentiation can be obtained from simple considerations related to the restriction of

the function to a geodesic curve living in the manifold. We consider an arc-length parameterized geodesic

curve γ : [−ε, ε] → S such that γ(0) = p is a given point of S. We denote F (t) = f(γ(t)) and ~Λ(t) = ~λ(γ(t)).

Implicit gradient

We differentiate once F (t) to obtain Ḟ (0) = ∇f(p) · γ̇(0). Since γ̇(0) ∈ TpS (the tangent plane), we find the

implicit gradient of f at p to be ∇Sf(p) = ∇f(p) −∇f(p) · ~n(p) ~n(p), where ~n(p) stands for the normal to

the manifold at p. Since we can also write ~n(p) = ∇ψ(p), we obtain

∇Sf(p)
4
= ∇f(p) −

(
∇f(p) · ∇ψ(p)

)
∇ψ(p)

We often use the alternative notation ∇ψf since the definition can be applied to any level set of ψ. Note

that we can write ∇ψf = Π∇ψ∇f where

Π∇ψ
4
= I −∇ψ∇ψT

Implicit Hessian

If we compute the second derivative of F we find that F̈ (0) = ∇f(p) · γ̈(0) + Hf [γ̇(0), γ̇(0)]. Now, we know

that an arc-length parameterized geodesic curve of S must satisfy the harmonic maps differential equation

γ̈ + Hψ(γ)[γ̇, γ̇] ∇ψ(γ) = 0

We then find that F̈ (0) =
(
Hf (p) −∇f(p) · ∇ψ(p) Hψ(p)

)
[γ̇, γ̇]. Again we have that γ̇ ∈ TpS, and we find

the implicit Hessian of f at p to be

HS
f (p)

4
= ΠψhfΠψ

where

1The intrinsic barycenter G of the map ~u : Ω → N is defined by G = argminp∈N
1
2

R
Ω d

2
N

(p, ~u(x)) dx. See [49] for more
details on the barycenter.
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hf
4
= Hf (p) −∇f(p) · ∇ψ(p) Hψ(p)

We will frequently use the alternative notation Hψ
f (p).

Implicit Laplacian

From the previous computation it’s an easy exercise to compute the implicit Laplacian or Laplace-Beltrami

of f since by definition ∆Sf = trace{HS
f}.

For any pair of symmetric matrices A and B one has that trace{ABA} =
∑

i

∑
j

∑
k aijaikbjk and

trace{AB} =
∑

i

∑
j aijbij . Now we have that ΠψBΠψ = B+∇ψ∇ψTB∇ψ∇ψT −∇ψ∇ψTB−B∇ψ∇ψT .

We then obtain

trace{ΠψBΠψ} = trace{B} +
∑

i

∑

j

∑

k

ψxiψxjψxiψxkbjk

− 2
∑

i

∑

j

ψxiψxj bij

Recalling that ψ(·) is a distance function, so that it satisfies ‖∇ψ‖ = 1, we find

trace{ΠψBΠψ} = trace{B} −
∑

i

∑

j

ψxiψxj bij

= trace{B} −B[∇ψ,∇ψ]

We conclude the reasoning by taking B = hf :

trace{HS
f} = trace{hf} − hf [∇ψ,∇ψ]

= trace{hf} −Hf [∇ψ,∇ψ]

since Hψ[∇ψ,∇ψ] = 0. Since trace{Hf} = ∆f − (∇f · ∇ψ)∆ψ, we find that

∆Sf = ∆f − (∇f · ∇ψ)∆ψ −Hf [∇ψ,∇ψ]

It’s interesting to observe how the expression just found for ∆Sf coincides with the one obtained by

minimizing the intrinsic Dirichlet integral,2

D(f)
4
=

1

2

∫

IRd
‖∇Sf‖2 δ(ψ) dv

as is done in [134]. The authors showed that a smooth function f extremizing D(f) must satisfy

∇ ·
(
∇f − (∇f · ∇ψ) ∇ψ

)
= 0

2As one expects since this is the definition of harmonic functions.
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We should verify that this definition coincides with ours. This is accomplished as follows:

∇ ·
(
∇f − (∇f · ∇ψ) ∇ψ

)
= ∆f − (∇f · ∇ψ)∆ψ −∇

(
∇f · ∇ψ

)
· ∇ψ

= ∆f − (∇f · ∇ψ)∆ψ −Hf [∇ψ,∇ψ] −Hψ[∇f,∇ψ]

= ∆f − (∇f · ∇ψ)∆ψ −Hf [∇ψ,∇ψ]

= ∆Sf (according to our definition),

since Hψ[∇ψ, •] = 0.

Vector Calculus

• Implicit Jacobian: With the ideas developed before, we easily find (differentiating ~Λ(t)) that

JS
~λ

4
= J~λΠψ

• Implicit Divergence: Using the expression for the intrinsic Jacobian we write

∇S · ~λ 4
= trace

(
J~λΠψ

)

and

∇S · ~λ 4
= ∇ · ~λ− J~λ[∇ψ,∇ψ]

It is useful to observe that ∇S · ~λ = ∇ · ~λ when ~λ(x) ∈ Tx{ψ = 0}
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