Shape Matching using Gromov-Hausdorff distances

Background concepts

- Metric Space. A metric space is a pair (X, d) where X is a set and $d: X \times X \rightarrow \mathbb{R}^{+}$s.t.

1. For all $x, y, z \in X, d(x, y) \leq d(x, z)+d(z, y)$.
2. For all $x, y \in X, d(x, y)=d(y, x)$.
3. $d(x, y)=0$ if and only if $x=y$.

- Folklore Lemma. Let $\mathbb{X}_{n}=\left\{x_{1}, \ldots, x_{n}\right\}$ and $\mathbb{Y}_{n}=\left\{y_{1}, \ldots, y_{n}\right\}$ be points in \mathbb{R}^{k}. If

$$
\left\|x_{i}-x_{j}\right\|=\left\|y_{i}-y_{j}\right\|
$$

for all i, j, then there exists a rigid isometry $T: \mathbb{R}^{k} \rightarrow \mathbb{R}^{k}$ s.t.

$$
T\left(x_{i}\right)=y_{i}, \text { for all } i
$$

Let $\mathbf{D}\left(\mathbb{X}_{n}\right)$ and $\mathbf{D}\left(\mathbb{Y}_{m}\right)$ be the Euclidean interpoint distance matrices of \mathbb{X}_{n} and \mathbb{Y}_{m}, respectively. Then, the Folklore Lemma tells us that

$$
\begin{gathered}
\mathbf{D}\left(\mathbb{X}_{n}\right) \sim_{\text {perm }} \mathbf{D}\left(\mathbb{Y}_{m}\right) \\
\hat{\Downarrow} \\
\mathbb{X}_{n} \simeq_{\text {rigid-iso }} \mathbb{Y}_{m}
\end{gathered}
$$

- Hausdorff distance. For (compact) subsets A, B of a (compact) metric space (Z, d), the Hausdorff distance between them, $d_{\mathcal{H}}^{Z}(A, B)$, is defined to be the infimal $\varepsilon>0$ s.t.

$$
A \subset B^{\varepsilon}
$$

and

$$
B \subset A^{\varepsilon}
$$

where $A^{\varepsilon}=\{z \in Z \mid d(z, A)<\varepsilon\}$.

Equivalently,

$$
d_{\mathcal{H}}^{Z}(A, B)=\max \left(\max _{b \in B} \min _{a \in A} d(a, b), \max _{a \in A} \min _{b \in B} d(a, b)\right)
$$

Geodesic distance vs Euclidean distance

Geodesic distance: invariance to 'bends'

The GH distance for Shape Comparison

- Regard shapes as (compact) metric spaces, [MS04], [MS05].
- The metric with which one endows the shapes depends on the desired invariance. For example, if invariance to
- rigid isometries is desired, use Euclidean distance (remember Folklore Lemma).
- bends is desired, use "geodesic" distance.
- Let \mathcal{X} denote set of all compact metric spaces. Define GH distance (metric) on \mathcal{X}, then ($\left.\mathcal{X}, d_{\mathcal{G H}}\right)$ is itself a metric space.
- GH distance provides reasonable framework for Shape Comparison: good theoretical properties.
- However, it leads to difficult optimization problems.

GH: definition

$$
d_{\mathcal{G} \mathcal{H}}(X, Y)=\inf _{Z, f, g} d_{\mathcal{H}}^{Z}(f(X), g(Y))
$$

It would be much more intuitive to compare the metrics d_{X} and d_{Y} directly..
For maps $f: X \rightarrow Y$, and $g: Y \rightarrow X$ compute

$$
\operatorname{dist}(f)=\max _{x, x^{\prime}}\left|d_{X}\left(x, x^{\prime}\right)-d_{Y}\left(f(x), f\left(x^{\prime}\right)\right)\right|
$$

and

$$
\operatorname{dist}(g)=\max _{y, y^{\prime}}\left|d_{Y}\left(y, y^{\prime}\right)-d_{X}\left(g(y), g\left(y^{\prime}\right)\right)\right|
$$

and then minimize $\max (\operatorname{dist}(f), \operatorname{dist}(g))$ over all choices of f and g.

It would be much more intuitive to compare the metrics d_{X} and d_{Y} directly..
For maps $f: X \rightarrow Y$, and $g: Y \rightarrow X$ compute

$$
\operatorname{dist}(f)=\max _{x, x^{\prime}}\left|d_{X}\left(x, x^{\prime}\right)-d_{Y}\left(f(x), f\left(x^{\prime}\right)\right)\right|
$$

and

$$
\operatorname{dist}(g)=\max _{y, y^{\prime}}\left|d_{Y}\left(y, y^{\prime}\right)-d_{X}\left(g(y), g\left(y^{\prime}\right)\right)\right|
$$

and then minimize $\max (\operatorname{dist}(f), \operatorname{dist}(g))$ over all choices of f and g.

It would be much more intuitive to compare the metrics d_{X} and d_{Y} directly..
For maps $f: X \rightarrow Y$, and $g: Y \rightarrow X$ compute

$$
\operatorname{dist}(f)=\max _{x, x^{\prime}}\left|d_{X}\left(x, x^{\prime}\right)-d_{Y}\left(f(x), f\left(x^{\prime}\right)\right)\right|
$$

and

$$
\operatorname{dist}(g)=\max _{y, y^{\prime}}\left|d_{Y}\left(y, y^{\prime}\right)-d_{X}\left(g(y), g\left(y^{\prime}\right)\right)\right|
$$

and then minimize $\max (\operatorname{dist}(f), \operatorname{dist}(g))$ over all choices of f and g.

It would be much more intuitive to compare the metrics d_{X} and d_{Y} directly..
For maps $f: X \rightarrow Y$, and $g: Y \rightarrow X$ compute

$$
\operatorname{dist}(f)=\max _{x, x^{\prime}}\left|d_{X}\left(x, x^{\prime}\right)-d_{Y}\left(f(x), f\left(x^{\prime}\right)\right)\right|
$$

and

$$
\operatorname{dist}(g)=\max _{y, y^{\prime}}\left|d_{Y}\left(y, y^{\prime}\right)-d_{X}\left(g(y), g\left(y^{\prime}\right)\right)\right|
$$

and then minimize $\max (\operatorname{dist}(f), \operatorname{dist}(g))$ over all choices of f and g.

It would be much more intuitive to compare the metrics d_{X} and d_{Y} directly..
For maps $f: X \rightarrow Y$, and $g: Y \rightarrow X$ compute

$$
\operatorname{dist}(f)=\max _{x, x^{\prime}}\left|d_{X}\left(x, x^{\prime}\right)-d_{Y}\left(f(x), f\left(x^{\prime}\right)\right)\right|
$$

and

$$
\operatorname{dist}(g)=\max _{y, y^{\prime}}\left|d_{Y}\left(y, y^{\prime}\right)-d_{X}\left(g(y), g\left(y^{\prime}\right)\right)\right|
$$

and then minimize $\max (\operatorname{dist}(f), \operatorname{dist}(g))$ over all choices of f and g.

correspondences

Definition [Correspondences]

For sets A and B, a subset $R \subset A \times B$ is a correspondence (between A and B) if and and only if

- $\forall a \in A$, there exists $b \in B$ s.t. $(a, b) \in R$
- $\forall b \in B$, there exists $a \in A$ s.t. $(a, b) \in R$

Let $\mathcal{R}(A, B)$ denote the set of all possible correspondences between sets A and B.

Note that in the case $n_{A}=n_{B}$, correspondences are larger than bijections.

correspondences

Note that when A and B are finite, $R \in \mathcal{R}(A, B)$ can be represented by a matrix $\left(\left(r_{a, b}\right)\right) \in\{0,1\}^{n_{A} \times n_{B}}$ s.t.

$$
\begin{aligned}
& \sum_{a \in A} r_{a b} \geq 1 \quad \forall b \in B \\
& \sum_{b \in B} r_{a b} \geq 1 \quad \forall a \in A
\end{aligned}
$$

correspondences

Note that when A and B are finite, $R \in \mathcal{R}(A, B)$ can be represented by a matrix $\left(\left(r_{a, b}\right)\right) \in\{0,1\}^{n_{A} \times n_{B}}$ s.t.

$$
\begin{aligned}
& \sum_{a \in A} r_{a b} \geq 1 \quad \forall b \in B \\
& \sum_{b \in B} r_{a b} \geq 1 \quad \forall a \in A
\end{aligned}
$$

correspondences

Note that when A and B are finite, $R \in \mathcal{R}(A, B)$ can be represented by a matrix $\left(\left(r_{a, b}\right)\right) \in\{0,1\}^{n_{A} \times n_{B}}$ s.t.

$$
\begin{aligned}
& \sum_{a \in A} r_{a b} \geq 1 \quad \forall b \in B \\
& \sum_{b \in B} r_{a b} \geq 1 \quad \forall a \in A
\end{aligned}
$$

correspondences

Note that when A and B are finite, $R \in \mathcal{R}(A, B)$ can be represented by a matrix $\left(\left(r_{a, b}\right)\right) \in\{0,1\}^{n_{A} \times n_{B}}$ s.t.

$$
\begin{aligned}
& \sum_{a \in A} r_{a b} \geq 1 \quad \forall b \in B \\
& \sum_{b \in B} r_{a b} \geq 1 \quad \forall a \in A
\end{aligned}
$$

0	1	1	0	0	1	1
1	1	0	1	0	1	1
1	0	1	0	0	1	0
0	1	0	1	1	0	1
1	0	1	1	0	1	0

correspondences

Note that when A and B are finite, $R \in \mathcal{R}(A, B)$ can be represented by a matrix $\left(\left(r_{a, b}\right)\right) \in\{0,1\}^{n_{A} \times n_{B}}$ s.t.

$$
\begin{aligned}
& \sum_{a \in A} r_{a b} \geq 1 \quad \forall b \in B \\
& \sum_{b \in B} r_{a b} \geq 1 \quad \forall a \in A
\end{aligned}
$$

Another expression for the GH distance

A theorem, [BuBuIv]
For compact metric spaces $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$,

$$
d_{\mathcal{G H}}(X, Y)=\frac{1}{2} \inf _{R} \max _{(x, y),\left(x^{\prime}, y^{\prime}\right) \in R}\left|d_{X}\left(x, x^{\prime}\right)-d_{Y}\left(y, y^{\prime}\right)\right|
$$

Main Properties

1. Let $\left(X, d_{X}\right),\left(Y, d_{Y}\right)$ and $\left(Z, d_{Z}\right)$ be metric spaces then

$$
d_{\mathcal{G H}}(X, Y) \leq d_{\mathcal{G H}}(X, Z)+d_{\mathcal{G H}}(Y, Z) .
$$

2. If $d_{\mathcal{G} H}(X, Y)=0$ and $\left(X, d_{X}\right),\left(Y, d_{Y}\right)$ are compact metric spaces, then $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$ are isometric.
3. Let $\mathbb{X}_{n}=\left\{x_{1}, \ldots, x_{n}\right\} \subset X$ be a finite subset of the compact metric space $\left(X, d_{X}\right)$. Then,

$$
d_{\mathcal{G H}}\left(X, \mathbb{X}_{n}\right) \leq d_{\mathcal{H}}\left(X, \mathbb{X}_{n}\right) .
$$

4. For compact metric spaces $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$:

$$
\begin{aligned}
\frac{1}{2}|\operatorname{diam}(X)-\operatorname{diam}(Y)| & \leq d_{\mathcal{G H}}(X, Y) \\
& \leq \frac{1}{2} \max (\operatorname{diam}(X), \operatorname{diam}(Y))
\end{aligned}
$$

Main Properties

(1.) Let $\left(X, d_{X}\right),\left(Y, d_{Y}\right)$ and $\left(Z, d_{Z}\right)$ be metric spaces then

$$
d_{\mathcal{G H}}(X, Y) \leq d_{\mathcal{G H}}(X, Z)+d_{\mathcal{G H}}(Y, Z) .
$$

2. If $d_{\mathcal{G} \mathcal{H}}(X, Y)=0$ and $\left(X, d_{X}\right),\left(Y, d_{Y}\right)$ are compact metric spaces, then $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$ are isometric.
3. Let $\mathbb{X}_{n}=\left\{x_{1}, \ldots, x_{n}\right\} \subset X$ be a finite subset of the compact metric space $\left(X, d_{X}\right)$. Then,

$$
d_{\mathcal{G H}}\left(X, \mathbb{X}_{n}\right) \leq d_{\mathcal{H}}\left(X, \mathbb{X}_{n}\right) .
$$

4. For compact metric spaces $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$:

$$
\begin{aligned}
\frac{1}{2}|\operatorname{diam}(X)-\operatorname{diam}(Y)| & \leq d_{\mathcal{G H}}(X, Y) \\
& \leq \frac{1}{2} \max (\operatorname{diam}(X), \operatorname{diam}(Y))
\end{aligned}
$$

Main Properties

1. Let $\left(X, d_{X}\right),\left(Y, d_{Y}\right)$ and $\left(Z, d_{Z}\right)$ be metric spaces then

$$
d_{\mathcal{G H}}(X, Y) \leq d_{\mathcal{G} \mathcal{H}}(X, Z)+d_{\mathcal{G} \mathcal{H}}(Y, Z)
$$

2. If $d_{\mathcal{G H}}(X, Y)=0$ and $\left(X, d_{X}\right),\left(Y, d_{Y}\right)$ are compact metric spaces, then $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$ are isometric.
3. Let $\mathbb{X}_{n}=\left\{x_{1}, \ldots, x_{n}\right\} \subset X$ be a finite subset of the compact metric space $\left(X, d_{X}\right)$. Then,

$$
d_{\mathcal{G H}}\left(X, \mathbb{X}_{n}\right) \leq d_{\mathcal{H}}\left(X, \mathbb{X}_{n}\right)
$$

4. For compact metric spaces $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$:

$$
\begin{aligned}
\frac{1}{2}|\operatorname{diam}(X)-\operatorname{diam}(Y)| & \leq d_{\mathcal{G H}}(X, Y) \\
& \leq \frac{1}{2} \max (\operatorname{diam}(X), \operatorname{diam}(Y))
\end{aligned}
$$

Stability, [MS05]

$$
\left|d_{\mathcal{G} \mathcal{H}}(X, Y)-d_{\mathcal{G} \mathcal{H}}\left(\mathbb{X}_{n}, \mathbb{Y}_{m}\right)\right| \leq r\left(\mathbb{X}_{n}\right)+r\left(\mathbb{Y}_{m}\right)
$$

for finite samplings $\mathbb{X}_{n} \subset X$ and $\mathbb{Y}_{m} \subset Y$, where $r\left(\mathbb{X}_{n}\right)$ and $r\left(\mathbb{Y}_{m}\right)$ are the covering radii.

$$
\left|d_{\mathcal{G H}}(X, Y)-d_{\mathcal{G H}}\left(\mathbb{X}_{n}, \mathbb{Y}_{m}\right)\right| \leq r\left(\mathbb{X}_{n}\right)+r\left(\mathbb{Y}_{m}\right)
$$

for finite samplings $\mathbb{X}_{n} \subset X$ and $\mathbb{Y}_{m} \subset Y$, where $r\left(\mathbb{X}_{n}\right)$ and $r\left(\mathbb{Y}_{m}\right)$ are the covering radii.

Stability, [MS05]

$$
\left|d_{\mathcal{G H}}(X, Y)-d_{\mathcal{G} \mathcal{H}}\left(\mathbb{X}_{n}, \mathbb{Y}_{m}\right)\right| \leq r\left(\mathbb{X}_{n}\right)+r\left(\mathbb{Y}_{m}\right)
$$

for finite samplings $\mathbb{X}_{n} \subset X$ and $\mathbb{Y}_{m} \subset Y$, where $r\left(\mathbb{X}_{n}\right)$ and $r\left(\mathbb{Y}_{m}\right)$ are the covering radii.

Stability, [MS05]

$$
\left|d_{\mathcal{G} \mathcal{H}}(X, Y)-d_{\mathcal{G} \mathcal{H}}\left(\mathbb{X}_{n}, \mathbb{Y}_{m}\right)\right| \leq r\left(\mathbb{X}_{n}\right)+r\left(\mathbb{Y}_{m}\right)
$$

for finite samplings $\mathbb{X}_{n} \subset X$ and $\mathbb{Y}_{m} \subset Y$, where $r\left(\mathbb{X}_{n}\right)$ and $r\left(\mathbb{Y}_{m}\right)$ are the covering radii.

Stability, [MS05]

$$
\left|d_{\mathcal{G} \mathcal{H}}(X, Y)-d_{\mathcal{G} \mathcal{H}}\left(\mathbb{X}_{n}, \mathbb{Y}_{m}\right)\right| \leq r\left(\mathbb{X}_{n}\right)+r\left(\mathbb{Y}_{m}\right)
$$

for finite samplings $\mathbb{X}_{n} \subset X$ and $\mathbb{Y}_{m} \subset Y$, where $r\left(\mathbb{X}_{n}\right)$ and $r\left(\mathbb{Y}_{m}\right)$ are the covering radii.

Stability, [MS05]

$$
\left|d_{\mathcal{G} \mathcal{H}}(X, Y)-d_{\mathcal{G} \mathcal{H}}\left(\mathbb{X}_{n}, \mathbb{Y}_{m}\right)\right| \leq r\left(\mathbb{X}_{n}\right)+r\left(\mathbb{Y}_{m}\right)
$$

for finite samplings $\mathbb{X}_{n} \subset X$ and $\mathbb{Y}_{m} \subset Y$, where $r\left(\mathbb{X}_{n}\right)$ and $r\left(\mathbb{Y}_{m}\right)$ are the covering radii.

Stability, [MS05]

$$
\left|d_{\mathcal{G} \mathcal{H}}(X, Y)-d_{\mathcal{G} \mathcal{H}}\left(\mathbb{X}_{n}, \mathbb{Y}_{m}\right)\right| \leq r\left(\mathbb{X}_{n}\right)+r\left(\mathbb{Y}_{m}\right)
$$

for finite samplings $\mathbb{X}_{n} \subset X$ and $\mathbb{Y}_{m} \subset Y$, where $r\left(\mathbb{X}_{n}\right)$ and $r\left(\mathbb{Y}_{m}\right)$ are the covering radii.

Stability, [MS05]

$$
\left|d_{\mathcal{G} \mathcal{H}}(X, Y)-d_{\mathcal{G} \mathcal{H}}\left(\mathbb{X}_{n}, \mathbb{Y}_{m}\right)\right| \leq r\left(\mathbb{X}_{n}\right)+r\left(\mathbb{Y}_{m}\right)
$$

for finite samplings $\mathbb{X}_{n} \subset X$ and $\mathbb{Y}_{m} \subset Y$, where $r\left(\mathbb{X}_{n}\right)$ and $r\left(\mathbb{Y}_{m}\right)$ are the covering radii.

Stability, [MS05]

$$
\left|d_{\mathcal{G H}}(X, Y)-d_{\mathcal{G H}}\left(\mathbb{X}_{n}, \mathbb{Y}_{m}\right)\right| \leq r\left(\mathbb{X}_{n}\right)+r\left(\mathbb{Y}_{m}\right)
$$

for finite samplings $\mathbb{X}_{n} \subset X$ and $\mathbb{Y}_{m} \subset Y$, where $r\left(\mathbb{X}_{n}\right)$ and $r\left(\mathbb{Y}_{m}\right)$ are the covering radii.

Critique

- Was not able to show connections with (sufficiently many) pre-existing approaches such as Shape Distributions, Shape Contexts, Hamza-Krim, Frosini et al.
- Computationally hard: currently only two attempts have been made:
- [MS04,MS05] and [BBK06] only for surfaces.
- [MS05] gives probabilistic guarantees for estimator based on sampling parameters.
- Full generality leads to a hard combinatorial optimization problem: QAP.

Critique

- Was not able to show connections with (sufficiently many) pre-existing approaches such as Shape Distributions, Shape Contexts, Hamza-Krim, Frosini et al.
- Computationally hard: currently only two attempts have been made:
- [MS04,MS05] and [BBK06] only for surfaces.
- [MS05] gives probabilistic guarantees for estimator based on sampling parameters.
- Full generality leads to a hard combinatorial optimization problem: QAP.

Desiderata

- Obtain an L^{p} version of the GH distance that:
- retains theoretical underpinnings
- its implementation leads to easier (continuous, quadratic, with linear constraints) optimization problems
- can be related to pre-existing approaches (shape contexts, shape distributions, Hamza-Krim,..) via lower/upper bounds.

First attempt: naive relaxation

Remember that

$$
d_{\mathcal{G H}}(X, Y)=\frac{1}{2} \inf _{R} \max _{(x, y),\left(x^{\prime}, y^{\prime}\right) \in R}\left|d_{X}\left(x, x^{\prime}\right)-d_{Y}\left(y, y^{\prime}\right)\right|
$$

where $R \in \mathcal{R}(X, Y)$. Using the matricial representation of R one can write

$$
d_{\mathcal{G H}}(X, Y)=\frac{1}{2} \inf _{R} \max _{x, x^{\prime}, y, y^{\prime}}\left|d_{X}\left(x, x^{\prime}\right)-d_{Y}\left(y, y^{\prime}\right)\right| r_{x, y} r_{x^{\prime}, y^{\prime}}
$$

where $R=\left(\left(r_{x, y}\right)\right) \in\{0,1\}^{n_{X} \times n_{B}}$ s.t.

$$
\begin{aligned}
& \sum_{x \in X} r_{x y} \geq 1 \quad \forall y \in Y \\
& \sum_{y \in Y} r_{x y} \geq 1 \quad \forall x \in X
\end{aligned}
$$

First attempt: naive relaxation

Remember that

$$
d_{\mathcal{G H}}(X, Y)=\frac{1}{2} \inf _{R} \max _{(x, y),\left(x^{\prime}, y^{\prime}\right) \in R}\left|d_{X}\left(x, x^{\prime}\right)-d_{Y}\left(y, y^{\prime}\right)\right|
$$

where $R \in \mathcal{R}(X, Y)$. Using the matricial representation of R one can write

$$
\left.d_{\mathcal{G H}}(X, Y)=\frac{1}{2} \inf _{R} \max _{x, x^{\prime}, y, y^{\prime}} \right\rvert\, d_{X}\left(x, x^{\prime}\right)-d_{Y}\left(y, y^{\prime}\right) r_{x, y} r_{x^{\prime}, y^{\prime}}
$$

where $R=\left(\left(r_{x, y}\right)\right) \in\{0,1\}^{n_{X} \times n_{B}}$ s.t.

$$
\begin{aligned}
& \sum_{x \in X} r_{x y} \geq 1 \quad \forall y \in Y \\
& \sum_{y \in Y} r_{x y} \geq 1 \quad \forall x \in X
\end{aligned}
$$

First attempt: naive relaxation (continued)

- The idea would be to use L^{p} norm instead of L^{∞} (max max)
- relax $r_{x, y}$ to be in $[0,1](!)$

Then, the idea would be to compute (for some $p \geq 1$):

$$
\widehat{d}_{\mathcal{G} \mathcal{H}}(X, Y)=\frac{1}{2} \inf _{R}\left(\sum_{x, x^{\prime}, y, y^{\prime}}\left|d_{X}\left(x, x^{\prime}\right)-d_{Y}\left(y, y^{\prime}\right)\right|^{\mathbf{p}} r_{x, y} r_{x^{\prime}, y^{\prime}}\right)^{1 / \mathbf{p}}
$$

where $R=\left(\left(r_{x, y}\right)\right) \in[\mathbf{0}, \mathbf{1}]^{n_{X} \times n_{B}}$ s.t.

$$
\begin{aligned}
& \sum_{x \in X} r_{x y} \geq 1 \quad \forall y \in Y \\
& \sum_{y \in Y} r_{x y} \geq 1 \quad \forall x \in X
\end{aligned}
$$

First attempt: naive relaxation (continued)

- The idea would be to use L^{p} norm instead of L^{∞} (max max)
- relax $r_{x, y}$ to be in $[0,1](!)$

Then, the idea would be to compute (for some $p \geq 1$):

$$
\widehat{d}_{\mathcal{G H}}(X, Y)=\frac{1}{2} \inf _{R}(\sum_{x, x^{\prime}, y, y^{\prime}}\left|d_{X}\left(x, x^{\prime}\right)-d_{Y}\left(y, y^{\prime}\right)\right|^{\mathbf{p}} \underbrace{r_{x, y} r r_{x^{\prime}, y^{\prime}}})^{1 / \mathbf{p}}
$$

where $R=\left(\left(r_{x, y}\right)\right) \in[\mathbf{0}, \mathbf{1}]^{n_{X} \times n_{B}}$ s.t.

$$
\begin{aligned}
& \sum_{x \in X} r_{x y} \geq 1 \quad \forall y \in Y \\
& \sum_{y \in Y} r_{x y} \geq 1 \quad \forall x \in X
\end{aligned}
$$

First attempt: naive relaxation (continued)

- The idea would be to use L^{p} norm instead of L^{∞} (max max)
- relax $r_{x, y}$ to be in $[0,1](!)$

Then, the idea would be to compute (for some $p \geq 1$):

$$
\widehat{d}_{\mathcal{G H}}(X, Y)=\frac{1}{2} \inf _{R}(\sum_{x, x^{\prime}, y, y^{\prime}}\left|d_{X}\left(x, x^{\prime}\right)-d_{Y}\left(y, y^{\prime}\right)\right|^{\mathbf{p}} \underbrace{r_{x, y} r r_{x^{\prime}, y^{\prime}}})^{1 / \mathbf{p}}
$$

where $R=\left(\left(r_{x, y}\right)\right) \in[\mathbf{0}, \mathbf{1}]^{n_{X} \times n_{B}}$ s.t.

$$
\begin{aligned}
& \sum_{x \in X} r_{x y} \geq 1 \quad \forall y \in Y \\
& \sum_{y \in Y} r_{x y} \geq 1 \quad \forall x \in X
\end{aligned}
$$

- The resulting problem is a continuous variable QOP with linear constraints, but..
- there is no limit problem.. this discretization cannot be connected to the GH distance..
we need to identify the correct relaxation of the GH distance. More precisely, the correct notion of relaxed correspondence.

More background

Consider a finite set $A=\left\{a_{1}, \ldots, a_{n}\right\}$. A set of weights, $W=\left\{w_{1}, \ldots, w_{n}\right\}$ on A is called a probability measure on A if $w_{i} \geq 0$ and $\sum_{i} w_{1}=1$.

Probability measures can be interpreted as a way of assigning (relative) importance to different points.

There is a more general definition that we do not need.

correspondences and measure couplings

Let A and B be compact subsets of the compact metric space (X, d) and μ_{A} and μ_{B} be probability measures supported in A and B respectively.

Definition [Measure coupling] Is a probability measure μ on $A \times B$ s.t. (in the finite case this means $\left.\left(\left(\mu_{a, b}\right)\right) \in[0,1]^{n_{A} \times n_{B}}\right)$

- $\sum_{a \in A} \mu_{a b}=\mu_{B}(b) \forall b \in B$
- $\sum_{b \in B} \mu_{a b}=\mu_{A}(a) \forall a \in A$

Let $\mathcal{M}\left(\mu_{A}, \mu_{B}\right)$ be the set of all couplings of μ_{A} and μ_{B}. Notice that in the finite case, ($\left.\left(\mu_{a, b}\right)\right)$ must satisfy $n_{A}+n_{B}$ linear constraints.

$$
Y
$$

The support of the coupling consists of the non-zero entries.

Y

The support of the coupling consists of the non-zero entries.

$$
Y
$$

The support of the coupling consists of the non-zero entries.

Y

The support of the coupling consists of the non-zero entries.

L^{p} Gromov-Hausdorff distances [M07]

Compute (for some $p \geq 1$):

$$
\mathbf{D}_{p}(X, Y)=\frac{1}{2} \inf _{\mu}\left(\sum_{x, x^{\prime}, y, y^{\prime}}\left|d_{X}\left(x, x^{\prime}\right)-d_{Y}\left(y, y^{\prime}\right)\right|^{p} \mu_{x, y} \mu_{x^{\prime}, y^{\prime}}\right)^{1 / p}
$$

where $\mu=\left(\left(\mu_{x, y}\right)\right) \in[\mathbf{0}, \mathbf{1}]^{n_{X} \times n_{Y}}$ s.t.

$$
\begin{aligned}
& \sum_{x \in X} \mu_{x, y}=\mu_{Y}(y) \forall y \in Y \\
& \sum_{y \in Y} \mu_{x, y}=\mu_{X}(x) \forall x \in X
\end{aligned}
$$

This is a QOP with linear constrains! Also, thanks to concepts from measure theory, there is a continuous conterpart (sampling theory)

L^{p} Gromov-Hausdorff distances [M07]

Compute (for some $p \geq 1$):

$$
\mathbf{D}_{p}(X, Y)=\frac{1}{2} \inf _{\mu}(\sum_{x, x^{\prime}, y, y^{\prime}}\left|d_{X}\left(x, x^{\prime}\right)-d_{Y}\left(y, y^{\prime}\right)\right|^{p} \underbrace{\mu_{x, y}} \mu_{x^{\prime}, y})^{1 / p}
$$

where $\mu=\left(\left(\mu_{x, y}\right)\right) \in[\mathbf{0}, \mathbf{1}]^{n_{X} \times n_{Y}}$ s.t.

$$
\begin{aligned}
& \sum_{x \in X} \mu_{x, y}=\mu_{Y}(y) \forall y \in Y \\
& \sum_{y \in Y} \mu_{x, y}=\mu_{X}(x) \forall x \in X
\end{aligned}
$$

This is a QOP with linear constrains! Also, thanks to concepts from measure theory, there is a continuous conterpart (sampling theory)

L^{p} Gromov-Hausdorff distances [M07]

Compute (for some $p \geq 1$):

$$
\mathbf{D}_{p}(X, Y)=\frac{1}{2} \inf _{\mu}(\left.\sum_{x, x^{\prime}, y, y^{\prime}} \overbrace{d_{X}\left(x, x^{\prime}\right)-d_{Y}\left(y, y^{\prime}\right)}^{\Gamma_{X, Y}}\right|_{\mu_{x, y}} ^{\mu_{x^{\prime}, y}})^{1 / p}
$$

where $\mu=\left(\left(\mu_{x, y}\right)\right) \in[\mathbf{0}, \mathbf{1}]^{n_{X} \times n_{Y}}$ s.t.

$$
\begin{aligned}
& \sum_{x \in X} \mu_{x, y}=\mu_{Y}(y) \forall y \in Y \\
& \sum_{y \in Y} \mu_{x, y}=\mu_{X}(x) \forall x \in X
\end{aligned}
$$

This is a QOP with linear constrains! Also, thanks to concepts from measure theory, there is a continuous conterpart (sampling theory)

Numerical Implementation

- The numerical implementation of the second option leads to solving a continuous variable QOP with linear constraints:

$$
\begin{gathered}
\min _{U} \frac{1}{2} U^{T} \boldsymbol{\Gamma} U \\
\text { s.t. } U_{i j} \in[0,1], U \mathbf{A}=\mathbf{b}
\end{gathered}
$$

where $U \in \mathbb{R}^{n_{X} \times n_{Y}}$ is the unrolled version of $\mu, \boldsymbol{\Gamma} \in \mathbb{R}^{n_{X} \times n_{Y} \times n_{X} \times n_{Y}}$ is the unrolled version of $\Gamma_{X, Y}$ and \mathbf{A} and \mathbf{b} encode the linear constrains $\mu \in \mathcal{M}\left(\mu_{X}, \mu_{Y}\right)$.

- This can be approached for example via gradient descent. The QOP is non-convex in general!
- Initialization is done via solving one of the several lower bounds (discussed ahead). All these lower bounds lead to solving LOPs.

Shapes as mm-spaces, [M07]

- Now we are talking of triples $\left(X, d_{X}, \mu_{X}\right)$ where X is a set, d_{X} a metric on X and μ_{X} a probability measure on X.
- These objects are called measure metric spaces, or mm-spaces for short.
- two mm-spaces X and Y are deemed equal or isomorphic whenever there exists an isometry $\Phi: X \rightarrow Y$ s.t. $\mu_{Y}(B)=\mu_{X}\left(\Phi^{-1}(B)\right.$ for all (measurable) sets $B \subset Y$.

$$
\left(X, d_{X}, \mu_{X}\right)
$$

Properties of $\mathbf{D}_{p},[\mathrm{M} 07]$

1. Let X, Y and $Z \mathrm{~mm}$-spaces then

$$
\mathbf{D}_{p}(X, Y) \leq \mathbf{D}_{p}(X, Z)+\mathbf{D}_{p}(Y, Z)
$$

2. If $\mathrm{D}_{p}(X, Y)=0$ if and only if X and Y are isomorphic.
3. Let $\mathbb{X}_{n}=\left\{x_{1}, \ldots, x_{n}\right\} \subset X$ be a subset of the mm-space (X, d, ν). Endow \mathbb{X}_{n} with the metric d and a prob. measure ν_{n}, then

$$
\mathbf{D}_{p}\left(X, \mathbb{X}_{n}\right) \leq d_{\mathcal{W}, p}\left(\nu, \nu_{n}\right)
$$

The parameter p is not superfluous

The simplest lower bound one has is based on the triangle inequality plus

$$
2 \cdot \mathbf{D}_{p}(X,\{q\})=\left(\int_{X \times X} d_{X}\left(x, x^{\prime}\right) \nu(d x) \nu\left(d x^{\prime}\right)\right)^{1 / p}:=\operatorname{diam}_{p}(X)
$$

That is

$$
\mathbf{D}_{p}(X, Y) \geq \frac{1}{2}\left|\operatorname{diam}_{p}(X)-\operatorname{diam}_{p}(Y)\right|
$$

For example, when $X=S^{n}$ (spheres with uniform measure and usual intrinsic metric):

- $p=\infty$ gives $\operatorname{diam}_{\infty}\left(S^{n}\right)=\pi$ for all $n \in \mathbb{N}$
- $p=1$ gives $\operatorname{diam}_{1}\left(S^{n}\right)=\pi / 2$ for all $n \in \mathbb{N}$
- $p=2$ gives $\operatorname{diam}_{2}\left(S^{1}\right)=\pi / \sqrt{3}$ and $\operatorname{diam}_{2}\left(S^{2}\right)=\sqrt{\pi^{2} / 2-2}$

Connections with other approaches

- Shape Distributions [Osada-et-al]
- Shape contexts [SC]
- Hamza-Krim, Hilaga et al approach [HK]
- Rigid isometries invariant Hausdorff [Goodrich]
- Gromov-Hausdorff distance [MS04] [MS05]
- Elad-Kimmel idea [EK]
- Topology based methods

$$
\left(\begin{array}{ccccc}
0 & d_{12} & d_{13} & d_{14} & \ldots \\
d_{12} & 0 & d_{23} & d_{24} & \ldots \\
d_{13} & d_{23} & 0 & d_{34} & \ldots \\
d_{14} & d_{24} & d_{34} & 0 & \ldots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

Shape Distributions [Osada-et-al]

$$
\left(\begin{array}{ccccc}
0 & d_{12} & d_{13} & d_{14} & \ldots \\
d_{12} & 0 & d_{23} & d_{24} & \ldots \\
d_{13} & d_{23} & 0 & d_{34} & \ldots \\
d_{14} & d_{24} & d_{34} & 0 & \ldots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

Shape Distributions [Osada-et-al]

Shape Distributions [Osada-et-al]

$\left(\begin{array}{ccccc}0 & d_{12} & d_{13} & d_{14} & \ldots \\ d_{12} & 0 & d_{23} & d_{24} & \ldots \\ d_{13} & d_{23} & 0 & d_{34} & \ldots \\ d_{14} & d_{24} & d_{34} & 0 & \ldots \\ \vdots & \vdots & \vdots & \vdots & \ddots\end{array}\right)$

Shape Distributions [Osada-et-al]

Shape Distributions [Osada-et-al]

Shape Distributions [Osada-et-al]

Upper and Lower bounds Let (X, d, ν) be an mm-space.

- Shape Distributions [Osada-et-al]: construct histogram of interpoint distances, $F_{X}: \mathbb{R} \rightarrow[0,1]$ given by

$$
t \mapsto \nu \otimes \nu\left(\left\{\left(x, x^{\prime}\right) \mid d\left(x, x^{\prime}\right) \leq t\right\}\right)
$$

- Shape Contexts [SC]: at each $x \in X$, construct histogram of $d(x, \cdot)$, $C_{X}: X \times \mathbb{R} \rightarrow[0,1]$ given by

$$
(x, t) \mapsto \nu\left(\left\{x^{\prime} \mid d\left(x, x^{\prime}\right) \leq t\right\}\right)
$$

- Hamza-Krim [HK]: at each $x \in X$ compute mean distance to rest of points, $H_{X}: X \rightarrow \mathbb{R}$

$$
x \mapsto\left(\int_{X} d^{p}\left(x, x^{\prime}\right) \nu\left(d x^{\prime}\right)\right)^{1 / p}
$$

- Wasserstein under Euclidean isometries: consider $X, Y \subset \mathbb{R}^{d}$ and compute

$$
d_{\mathcal{W}, p}^{i s o}(X, Y)=\inf _{T} d_{\mathcal{W}, p}(X, T(Y))
$$

- Gromov-Hausdorff distance [MS04][MS05][BBK06]

Upper and Lower bounds Let (X, d, ν) be an mm-space.

- Shape Distributions [Osada-et-al]: construct histogram of interpoint distances, $F_{X}: \mathbb{R} \rightarrow[0,1]$ given by

$$
t \mapsto \nu \otimes \nu\left(\left\{\left(x, x^{\prime}\right) \mid d\left(x, x^{\prime}\right) \leq t\right\}\right)
$$

- Shape Contexts [SC]: at each $x \in X$, construct histogram of $d(x, \cdot)$, $C_{X}: X \times \mathbb{R} \rightarrow[0,1]$ given by

$$
(x, t) \mapsto \nu\left(\left\{x^{\prime} \mid d\left(x, x^{\prime}\right) \leq t\right\}\right)
$$

- Hamza-Krim [HK]: at each $x \in X$ compute mean distance to rest of points, $H_{X}: X \rightarrow \mathbb{R}$

$$
x \mapsto\left(\int_{X} d^{p}\left(x, x^{\prime}\right) \nu\left(d x^{\prime}\right)\right)^{1 / p}
$$

- Wasserstein under Euclidean isometries: consider $X, Y \subset \mathbb{R}^{d}$ and compute

$$
d_{\mathcal{W}, p}^{i s o}(X, Y)=\inf _{T} d_{\mathcal{W}, p}(X, T(Y))
$$

- Gromov-Hausdorff distance [MS04][MS05][BBK06]

Shape Contexts

$$
\left(\begin{array}{ccccc}
0 & d_{12} & d_{13} & d_{14} & \ldots \\
d_{12} & 0 & d_{23} & d_{24} & \ldots \\
d_{13} & d_{23} & 0 & d_{34} & \ldots \\
d_{14} & d_{24} & d_{34} & 0 & \ldots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

0
0
0
0
0
0

Shape Contexts

Inlll

$$
\left(\begin{array}{ccccc}
0 & d_{12} & d_{13} & d_{14} & \ldots \\
d_{12} & 0 & d_{23} & d_{24} & \ldots \\
d_{13} & d_{23} & 0 & d_{34} & \ldots \\
d_{14} & d_{24} & d_{34} & 0 & \ldots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

Shape Contexts

$$
\left(\begin{array}{ccccc}
0 & d_{12} & d_{13} & d_{14} & \ldots \\
d_{12} & 0 & d_{23} & d_{24} & \ldots \\
d_{13} & d_{23} & 0 & d_{34} & \ldots \\
d_{14} & d_{24} & d_{34} & 0 & \ldots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

Hull ho

Upper and Lower bounds Let (X, d, ν) be an mm-space.

- Shape Distributions [Osada-et-al-01]: construct histogram of interpoint distances, $F_{X}: \mathbb{R} \rightarrow[0,1]$ given by

$$
t \mapsto \nu \otimes \nu\left(\left\{\left(x, x^{\prime}\right) \mid d\left(x, x^{\prime}\right) \leq t\right\}\right)
$$

- Shape Contexts [Belongie-Malik-Puzicha-02]: at each $x \in X$, construct histogram of $d(x, \cdot), C_{X}: X \times \mathbb{R} \rightarrow[0,1]$ given by

$$
(x, t) \mapsto \nu\left(\left\{x^{\prime} \mid d\left(x, x^{\prime}\right) \leq t\right\}\right)
$$

- Hamza-Krim [HK-01]: at each $x \in X$ compute mean distance to rest of points, $H_{X}: X \rightarrow \mathbb{R}$

$$
x \mapsto\left(\int_{X} d^{p}\left(x, x^{\prime}\right) \nu\left(d x^{\prime}\right)\right)^{1 / p}
$$

- Wasserstein under Euclidean isometries: consider $X, Y \subset \mathbb{R}^{d}$ and compute

$$
d_{\mathcal{W}, p}^{i s o}(X, Y)=\inf _{T} d_{\mathcal{W}, p}(X, T(Y))
$$

- Gromov-Hausdorff distance

Upper and Lower bounds Let (X, d, ν) be an mm-space.

- Shape Distributions [Osada-et-al-01]: construct histogram of interpoint distances, $F_{X}: \mathbb{R} \rightarrow[0,1]$ given by

$$
t \mapsto \nu \otimes \nu\left(\left\{\left(x, x^{\prime}\right) \mid d\left(x, x^{\prime}\right) \leq t\right\}\right)
$$

- Shape Contexts [Belongie-Malik-Puzicha-02]: at each $x \in X$, construct histogram of $d(x, \cdot), C_{X}: X \times \mathbb{R} \rightarrow[0,1]$ given by

$$
(x, t) \mapsto \nu\left(\left\{x^{\prime} \mid d\left(x, x^{\prime}\right) \leq t\right\}\right)
$$

- Hamza-Krim [HK-01]: at each $x \in X$ compute mean distance to rest of points, $H_{X}: X \rightarrow \mathbb{R}$

$$
x \mapsto\left(\int_{X} d^{p}\left(x, x^{\prime}\right) \nu\left(d x^{\prime}\right)\right)^{1 / p}
$$

- Wasserstein under Euclidean isometries: consider $X, Y \subset \mathbb{R}^{d}$ and compute

$$
d_{\mathcal{W}, p}^{i s o}(X, Y)=\inf _{T} d_{\mathcal{W}, p}(X, T(Y))
$$

- Gromov-Hausdorff distance

Hamza-Krim

$$
\frac{\sum_{j} d_{1, j}}{N}
$$

$$
\left(\begin{array}{ccccc}
0 & d_{12} & d_{13} & d_{14} & \ldots \\
d_{12} & 0 & d_{23} & d_{24} & \cdots \\
d_{13} & d_{23} & 0 & d_{34} & \cdots \\
d_{14} & d_{24} & d_{34} & 0 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right) \quad \begin{gathered}
\frac{\sum_{j} d_{2, j}}{N} \\
\circ \\
\hline \circ \\
\hline
\end{gathered}
$$

$$
\frac{\sum_{j} d_{N, j}}{N}
$$

Hamza-Krim

$$
\frac{\Sigma_{i} d_{1, j}}{N}
$$

$$
\left(\begin{array}{ccccc}
0 & d_{12} & d_{13} & d_{14} & \cdots \\
d_{12} & 0 & d_{23} & d_{24} & \cdots \\
d_{13} & d_{23} & 0 & d_{34} & \cdots \\
d_{14} & d_{24} & d_{34} & 0 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right) \quad \begin{gathered}
\frac{\sum_{j} d_{2, j}}{N} \\
\hline \\
\vdots \\
\hline
\end{gathered}
$$

$$
\frac{\Sigma_{j} d_{N, j}}{N}
$$

Hamza-Krim

$$
\frac{\sum_{j} d_{1, j}}{N}
$$

$$
\left(\begin{array}{ccccc}
0 & d_{12} & d_{13} & d_{14} & \ldots \\
d_{12} & 0 & d_{23} & d_{24} & \ldots \\
d_{13} & d_{23} & 0 & d_{34} & \ldots \\
d_{14} & d_{24} & d_{34} & 0 & \ldots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

$$
\frac{\sum_{j} d_{N, j}}{N}
$$

Upper and Lower bounds Let (X, d, ν) be an mm-space.

- Shape Distributions [Osada-et-al-01]: construct histogram of interpoint distances, $F_{X}: \mathbb{R} \rightarrow[0,1]$ given by

$$
t \mapsto \nu \otimes \nu\left(\left\{\left(x, x^{\prime}\right) \mid d\left(x, x^{\prime}\right) \leq t\right\}\right)
$$

- Shape Contexts [Belongie-Malik-Puzicha-02]: at each $x \in X$, construct histogram of $d(x, \cdot), C_{X}: X \times \mathbb{R} \rightarrow[0,1]$ given by

$$
(x, t) \mapsto \nu\left(\left\{x^{\prime} \mid d\left(x, x^{\prime}\right) \leq t\right\}\right)
$$

- Hamza-Krim [HK-01]: at each $x \in X$ compute mean distance to rest of points, $H_{X}: X \rightarrow \mathbb{R}$

$$
x \mapsto\left(\int_{X} d^{p}\left(x, x^{\prime}\right) \nu\left(d x^{\prime}\right)\right)^{1 / p}
$$

- Wasserstein under Euclidean isometries: consider $X, Y \subset \mathbb{R}^{d}$ and compute

$$
d_{\mathcal{W}, p}^{i s o}(X, Y)=\inf _{T} d_{\mathcal{W}, p}(X, T(Y))
$$

- Gromov-Hausdorff distance

Upper and Lower bounds Let (X, d, ν) be an mm-space.

- Shape Distributions [Osada-et-al-01]: construct histogram of interpoint distances, $F_{X}: \mathbb{R} \rightarrow[0,1]$ given by

$$
t \mapsto \nu \otimes \nu\left(\left\{\left(x, x^{\prime}\right) \mid d\left(x, x^{\prime}\right) \leq t\right\}\right)
$$

- Shape Contexts [Belongie-Malik-Puzicha-02]: at each $x \in X$, construct histogram of $d(x, \cdot), C_{X}: X \times \mathbb{R} \rightarrow[0,1]$ given by

$$
(x, t) \mapsto \nu\left(\left\{x^{\prime} \mid d\left(x, x^{\prime}\right) \leq t\right\}\right)
$$

- Hamza-Krim [HK-01]: at each $x \in X$ compute mean distance to rest of points, $H_{X}: X \rightarrow \mathbb{R}$

$$
x \mapsto\left(\int_{X} d^{p}\left(x, x^{\prime}\right) \nu\left(d x^{\prime}\right)\right)^{1 / p}
$$

- Wasserstein under Euclidean isometries: consider $X, Y \subset \mathbb{R}^{d}$ and comput

$$
d_{\mathcal{W}, p}^{i s o}(X, Y)=\inf _{T} d_{\mathcal{W}, p}(X, T(Y))
$$

- Gromov-Hausdorff distance

Upper and Lower bounds Let (X, d, ν) be an mm-space.

- Shape Distributions [Osada-et-al-01]: construct histogram of interpoint distances, $F_{X}: \mathbb{R} \rightarrow[0,1]$ given by

$$
t \mapsto \nu \otimes \nu\left(\left\{\left(x, x^{\prime}\right) \mid d\left(x, x^{\prime}\right) \leq t\right\}\right)
$$

- Shape Contexts [Belongie-Malik-Puzicha-02]: at each $x \in X$, construct histogram of $d(x, \cdot), C_{X}: X \times \mathbb{R} \rightarrow[0,1]$ given by

$$
(x, t) \mapsto \nu\left(\left\{x^{\prime} \mid d\left(x, x^{\prime}\right) \leq t\right\}\right)
$$

- Hamza-Krim [HK-01]: at each $x \in X$ compute mean distance to rest of points, $H_{X}: X \rightarrow \mathbb{R}$

$$
x \mapsto\left(\int_{X} d^{p}\left(x, x^{\prime}\right) \nu\left(d x^{\prime}\right)\right)^{1 / p}
$$

- Wasserstein under Euclidean isometries: consider $X, Y \subset \mathbb{R}^{d}$ and compute

$$
d_{\mathcal{W}, p}^{i s o}(X, Y)=\inf _{T} d_{\mathcal{W}, p}(X, T(Y))
$$

- Gromov-Hausdorff distance

The bound for the $\mathrm{H}-\mathrm{K}$ approach

Let $p=1$ for simplicity. For a mm-space $\left(X, d_{X}, \mu_{X}\right) \operatorname{let} s_{X}: X \rightarrow \mathbb{R}^{+}$be given by
$x \mapsto \sum_{x^{\prime} \in X} \mu_{X}\left(x^{\prime}\right) d_{X}\left(x, x^{\prime}\right)$ (average distance to all other points).
The HK lower bound, denoted by $L B_{H K}(X, Y)$ is defined to be (the mass transportation problem)

$$
L B_{H K}(X, Y):=\min _{\mu \in \mathcal{M}\left(\mu_{X}, \mu_{Y}\right)} \sum_{x, y} \mu(x, y)\left|s_{X}(x)-s_{Y}(y)\right|
$$

Proposition 1 ([M07]). For all mm-spaces X and Y,

$$
\frac{1}{2} L B_{H K}(X, Y) \leqslant \mathbf{D}_{1}(X, Y)
$$

Proof is simple:

The bound for the $\mathrm{H}-\mathrm{K}$ approach

Let $p=1$ for simplicity. For a mm-space $\left(X, d_{X}, \mu_{X}\right)$ let $s_{X}: X \rightarrow \mathbb{R}^{+}$be given by

$$
\left.x \mapsto \sum_{x^{\prime} \in X} \mu_{X}\left(x^{\prime}\right) d_{X}\left(x, x^{\prime}\right)\right\} \text { (average distance to all other points). }
$$

The HK lower bound, denoted by $L B_{H K}(X, Y)$ is defined to be (the mass transportation problem)

$$
L B_{H K}(X, Y):=\min _{\mu \in \mathcal{M}\left(\mu_{X}, \mu_{Y}\right)} \sum_{x, y} \mu(x, y)\left|s_{X}(x)-s_{Y}(y)\right|
$$

Proposition 1 ([M07]). For all mm-spaces X and Y,

$$
\frac{1}{2} L B_{H K}(X, Y) \leqslant \mathbf{D}_{1}(X, Y)
$$

Proof is simple:

Proof. Take any $\mu \in \mathcal{M}\left(\mu_{X}, \mu_{Y}\right)$ and write

$$
\begin{gathered}
\sum_{x, y} \sum_{x^{\prime}, y^{\prime}}\left|d_{X}\left(x, x^{\prime}\right)-d_{Y}\left(y, y^{\prime}\right)\right| \mu(x, y) \mu\left(x^{\prime}, y^{\prime}\right)= \\
\sum_{x, y} \sum_{x^{\prime}, y^{\prime}}\left|\mu\left(x^{\prime}, y^{\prime}\right)\left(d_{X}\left(x, x^{\prime}\right)-d_{Y}\left(y, y^{\prime}\right)\right)\right| \mu(x, y) \geqslant \\
\sum_{x, y} \underbrace{\sum_{x^{\prime}, y^{\prime}} \mu\left(x^{\prime}, y^{\prime}\right)\left(d_{X}\left(x, x^{\prime}\right)-d_{Y}\left(y, y^{\prime}\right)\right) \mid} \mu(x, y)= \\
\left\{\sum_{x^{\prime}, y^{\prime}} \mu\left(x^{\prime}, y^{\prime}\right) d_{X}\left(x, x^{\prime}\right)=\sum_{x^{\prime}} d_{X}\left(x, x^{\prime}\right) \sum_{y^{\prime}} \mu\left(x^{\prime}, y^{\prime}\right)=\sum_{x^{\prime}} \mu_{X}\left(x^{\prime}\right) d_{X}\left(x, x^{\prime}\right)=s_{X}(x)\right\} \\
\sum_{x, y}\left|s_{X}(x)-s_{Y}(y)\right| \mu(x, y) \geqslant \\
L B_{H K}(X, Y)
\end{gathered}
$$

The last inequality follows since μ was arbitrary and $L B_{H K}$ was defined as the minimum. To finish the proof, take the min over all choices of μ in $\mathcal{M}\left(\mu_{X}, \mu_{Y}\right)$ and recall definition of \mathbf{D}_{1}.

Some Experiments

Some experimentation: ~ 70 models in 7 classes. Classification using 1-nn: $P_{e} \sim 2 \%$. Hamza-Krim gave $\sim 15 \%$ on same db with all same parameters etc.

Discussion

Identifying a notion of distance/metric between shapes is useful/important.

- When will you say that two shapes are the same? This is the zero of your distance between shapes.
- Having a true metric on the space of shapes permits proving stability and having a sampling theory.
- Understand hierarchy of lower/upper bounds. When is a particular LB better than another? study highly symmetrical shapes.

Discussion

- Implementation is easy: Gradient descent or alternate opt.
- Solving lower bounds yields a seed for the gradient descent. These lower bounds are compatible with the metric in the sense that a layered recognition system is possible: given two shapes, (1) solve for a LB (this gives you a μ), if value small enough, then (2) solve for GW using the μ as seed for your favorite iterative algorithm.
- Easy extension to partial matching- preprint available from my webpage soon.
- Interest in relating GH/GW ideas to other methods in the literature. Interrelating methods is important also for applications: when confronted with N methods, how do they compare to each other? which one is better for the situation at hand?
- Euclidean case.
- Persistent Topology based methods (Frosini et al., Carlsson et al.)
- No difference between continuous and discrete. Probability measures take care of the 'transition'.
http://math.stanford.edu/~memoli/ShapeComp/sc.html

Bibliography

[BBI] Burago, Burago and Ivanov. A course on Metric Geometry. AMS, 2001
[EK] A. Elad (Elbaz) and R. Kimmel. On bending invariant signatures for surfaces, IEEE Trans. on PAMI, 25(10):1285-1295, 2003.
[BBK] A. M. Bronstein, M. M. Bronstein, and R. Kimmel. Generalized multidimensional scaling: a framework for isometry-invariant partial surface matching. Proc. Natl. Acad. Sci. USA, 103(5):1168-1172 (electronic), 2006.
[HK] A. Ben Hamza, Hamid Krim: Probabilistic shape descriptor for triangulated surfaces. ICIP (1) 2005: 1041-1044
[Osada-et-al] Robert Osada, Thomas A. Funkhouser, Bernard Chazelle, David P. Dobkin: Matching 3D Models with Shape Distributions. Shape Modeling International 2001: 154-166
[SC] S. Belongie and J. Malik (2000). "Matching with Shape Contexts". IEEE Workshop on Contentbased Access of Image and Video Libraries (CBAIVL2000).
[Goodrich] M. Goodrich, J. Mitchell, and M. Orletsky. Approximate geometric pattern matching under rigid motions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 21(4):371-376, 1999.
[M08-partial] F.Memoli. Lp Gromov-Hausdorff distances for partial shape matching, preprint.
[M08-euclidean]F. Mémoli. Gromov-Hausdorff distances in Euclidean spaces. NORDIA-CVPR-2008.
[M07] F.Memoli. On the use of gromov-hausdorff distances for shape comparison. In Proceedings of PBG 2007, Prague, Czech Republic, 2007.
[MS04] F. Memoli and G. Sapiro. Comparing point clouds. In SGP '04: Proceedings of the 2004 Eurographics/ACM SIGGRAPH symposium on Geometry processing, pages 32-40, New York, NY, USA, 2004. ACM.
[MS05] F. Memoli and G. Sapiro. A theoretical and computational framework for isometry invariant recognition of point cloud data. Found. Comput. Math., 5(3):313-347, 2005.
http://math.stanford.edu/~ memoli

