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Background concepts

• Metric Space. A metric space is a pair (X, d) where X is a set and
d : X ×X → R+ s.t.

1. For all x, y, z ∈ X, d(x, y) ≤ d(x, z) + d(z, y).
2. For all x, y ∈ X, d(x, y) = d(y, x).
3. d(x, y) = 0 if and only if x = y.

• Folklore Lemma. Let Xn = {x1, . . . , xn} and Yn = {y1, . . . , yn} be
points in Rk. If

‖xi − xj‖ = ‖yi − yj‖

for all i, j, then there exists a rigid isometry T : Rk → Rk s.t.

T (xi) = yi, for all i



Let D(Xn) and D(Ym) be the Euclidean interpoint distance matrices of Xn

and Ym, respectively. Then, the Folklore Lemma tells us that

D(Xn) ∼perm D(Ym)

"

Xn #rigid−iso Ym



Equivalently,

dZ
H(A, B) = max(max

b∈B
min
a∈A

d(a, b),max
a∈A

min
b∈B

d(a, b))

• Hausdorff distance. For (compact) subsets A, B of a (compact) metric
space (Z, d), the Hausdorff distance between them, dZ

H(A, B), is defined
to be the infimal ε > 0 s.t.

A ⊂ Bε

and
B ⊂ Aε

where Aε = {z ∈ Z| d(z, A) < ε}.



Geodesic distance vs Euclidean distance



Geodesic distance: invariance to ‘bends’
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The GH distance for Shape Comparison

• Regard shapes as (compact) metric spaces, [MS04], [MS05].

• The metric with which one endows the shapes depends on the desired
invariance. For example, if invariance to

– rigid isometries is desired, use Euclidean distance (remember Folk-
lore Lemma).

– bends is desired, use ”geodesic” distance.

• Let X denote set of all compact metric spaces. Define GH distance (met-
ric) on X , then (X , dGH) is itself a metric space.

• GH distance provides reasonable framework for Shape Comparison: good
theoretical properties.

• However, it leads to difficult optimization problems.



dGH(X, Y ) = inf
Z,f,g

dZ
H(f(X), g(Y ))

GH: definition
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It would be much more intuitive to compare the metrics dX and dY directly..

For maps f : X → Y , and g : Y → X compute

dist(f) = max
x,x′

|dX(x, x′)− dY (f(x), f(x′))|

and
dist(g) = max

y,y′
|dY (y, y′)− dX(g(y), g(y′))|

and then minimize max(dist(f),dist(g)) over all choices of f and g.
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correspondences
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Definition [Correspondences]

For sets A and B, a subset R ⊂ A×B is a correspondence (between A and B)
if and and only if

• ∀ a ∈ A, there exists b ∈ B s.t. (a, b) ∈ R

• ∀ b ∈ B, there exists a ∈ A s.t. (a, b) ∈ R

Let R(A, B) denote the set of all possible correspondences between sets A
and B.

Note that in the case nA = nB , correspondences are larger than bijections.



correspondences
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Note that when A and B are finite, R ∈ R(A, B) can be represented by a
matrix ((ra,b)) ∈ {0, 1}nA×nB s.t.

∑

a∈A

rab ≥ 1 ∀b ∈ B

∑

b∈B

rab ≥ 1 ∀a ∈ A

0 1 1 0 0 1 1

1 1 0 1 0 1 1

1 0 1 0 1 1 0

0 0 0 0 0 0 0

1 0 1 1 0 1 0

B

A
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Another expression for 
the GH distance
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A theorem, [BuBuIv]

For compact metric spaces (X, dX) and (Y, dY ),

dGH(X, Y ) =
1
2

inf
R

max
(x,y),(x′,y′)∈R

|dX(x, x′)− dY (y, y′)|



Main Properties
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1. Let (X, dX), (Y, dY ) and (Z, dZ) be metric spaces then

dGH(X, Y ) ≤ dGH(X, Z) + dGH(Y, Z).

2. If dGH(X, Y ) = 0 and (X, dX), (Y, dY ) are compact metric spaces, then
(X, dX) and (Y, dY ) are isometric.

3. Let Xn = {x1, . . . , xn} ⊂ X be a finite subset of the compact metric space
(X, dX). Then,

dGH(X, Xn) ≤ dH(X, Xn).

4. For compact metric spaces (X, dX) and (Y, dY ):

1
2
|diam(X)− diam(Y )| ≤ dGH(X, Y )

≤ 1
2

max (diam(X), diam(Y ))
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Stability, [MS05]
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X

|dGH(X, Y )− dGH(Xn, Ym)| ≤ r(Xn) + r(Ym)

for finite samplings Xn ⊂ X and Ym ⊂ Y , where r(Xn) and r(Ym) are the
covering radii.

Y
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Critique

• Was not able to show connections with (sufficiently many) pre-existing
approaches such as Shape Distributions, Shape Contexts, Hamza-Krim,
Frosini et al.

• Computationally hard: currently only two attempts have been made:

– [MS04,MS05] and [BBK06] only for surfaces.
– [MS05] gives probabilistic guarantees for estimator based on sampling

parameters.
– Full generality leads to a hard combinatorial optimization prob-

lem: QAP.
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Desiderata

• Obtain an Lp version of the GH distance that:

– retains theoretical underpinnings

– its implementation leads to easier (continuous, quadratic, with linear
constraints) optimization problems

– can be related to pre-existing approaches (shape contexts, shape dis-
tributions, Hamza-Krim,..) via lower/upper bounds.
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First attempt: naive relaxation

Remember that

dGH(X, Y ) =
1
2

inf
R

max
(x,y),(x′,y′)∈R

|dX(x, x′)− dY (y, y′)|

where R ∈ R(X,Y ). Using the matricial representation of R one can write

dGH(X, Y ) =
1
2

inf
R

max
x,x′,y,y′

|dX(x, x′)− dY (y, y′)| rx,y rx′,y′

where R = ((rx,y)) ∈ {0, 1}nX×nB s.t.
∑

x∈X

rxy ≥ 1 ∀y ∈ Y

∑

y∈Y

rxy ≥ 1 ∀x ∈ X
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First attempt: naive relaxation (continued)

• The idea would be to use Lp norm instead of L∞ (max max)

• relax rx,y to be in [0, 1] (!)

Then, the idea would be to compute (for some p ≥ 1):

d̂GH(X, Y ) =
1
2

inf
R




∑

x,x′,y,y′

|dX(x, x′)− dY (y, y′)|p rx,y rx′,y′




1/p

where R = ((rx,y)) ∈ [0,1]nX×nB s.t.
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y∈Y
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we need to identify the correct relaxation of the GH distance. More precisely,
the correct notion of relaxed correspondence.

• The resulting problem is a continuous variable QOP with linear con-
straints, but..

• there is no limit problem.. this discretization cannot be connected to the
GH distance..



More background

Consider a finite set A = {a1, . . . , an}. A set of weights, W = {w1, . . . , wn} on
A is called a probability measure on A if wi ≥ 0 and

∑
i w1 = 1.

Probability measures can be interpreted as a way of assigning (relative) impor-
tance to different points.

There is a more general definition that we do not need.

0.25 0.25

0.25 0.25

0.1
0.40

0.1
0.40



correspondences and 
measure couplings
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Let A and B be compact subsets of the compact metric space (X, d) and µA

and µB be probability measures supported in A and B respectively.

Definition [Measure coupling] Is a probability measure µ on A×B s.t. (in
the finite case this means ((µa,b)) ∈ [0, 1]nA×nB )

•
∑

a∈A µab = µB(b) ∀b ∈ B

•
∑

b∈B µab = µA(a) ∀a ∈ A

Let M(µA, µB) be the set of all couplings of µA and µB .
Notice that in the finite case, ((µa,b)) must satisfy nA + nB linear constraints.
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The support of the coupling consists of the non-zero entries.
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Lp Gromov-Hausdorff distances [M07]

Compute (for some p ≥ 1):

Dp(X, Y ) =
1
2

inf
µ




∑

x,x′,y,y′

|dX(x, x′)− dY (y, y′)|p µx,y µx′,y′




1/p

where µ = ((µx,y)) ∈ [0,1]nX×nY s.t.
∑

x∈X

µx,y = µY (y) ∀y ∈ Y

∑

y∈Y

µx,y = µX(x) ∀x ∈ X

This is a QOP with linear constrains! Also, thanks to concepts from measure
theory, there is a continuous conterpart (sampling theory)
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ΓX,Y
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Numerical Implementation

• The numerical implementation of the second option leads to solving a
continuous variable QOP with linear constraints:

minU
1
2UT ΓU

s.t. Uij ∈ [0, 1], UA = b

where U ∈ RnX×nY is the unrolled version of µ, Γ ∈ RnX×nY ×nX×nY is
the unrolled version of ΓX,Y and A and b encode the linear constrains
µ ∈M(µX , µY ).

• This can be approached for example via gradient descent. The QOP is
non-convex in general!

• Initialization is done via solving one of the several lower bounds (discussed
ahead). All these lower bounds lead to solving LOPs.



(X, dX , µX)

Shapes as mm-spaces, [M07]

• Now we are talking of triples (X, dX , µX) where X is a set, dX a metric
on X and µX a probability measure on X.

• These objects are called measure metric spaces, or mm-spaces for short.

• two mm-spaces X and Y are deemed equal or isomorphic whenever there
exists an isometry Φ : X → Y s.t. µY (B) = µX(Φ−1(B) for all (measur-
able) sets B ⊂ Y .



GH
H

=
GW
W
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Properties of Dp, [M07]

1. Let X, Y and Z mm-spaces then

Dp(X, Y ) ≤ Dp(X,Z) + Dp(Y, Z).

2. If Dp(X, Y ) = 0 if and only if X and Y are isomorphic.

3. Let Xn = {x1, . . . , xn} ⊂ X be a subset of the mm-space (X, d, ν).
Endow Xn with the metric d and a prob. measure νn, then

Dp(X, Xn) ≤ dW,p(ν, νn).
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The parameter p is not superfluous

The simplest lower bound one has is based on the triangle inequality plus

2 · Dp(X, {q}) =
(∫

X×X
dX(x, x′) ν(dx)ν(dx′)

)1/p

:= diamp(X)

That is
Dp(X, Y ) ≥ 1

2
|diamp(X)− diamp(Y )|

For example, when X = Sn (spheres with uniform measure and usual in-
trinsic metric):

• p =∞ gives diam∞(Sn) = π for all n ∈ N

• p = 1 gives diam1(Sn) = π/2 for all n ∈ N

• p = 2 gives diam2(S1) = π/
√

3 and diam2(S2) =
√

π2/2− 2



Connections with other approaches

• Shape Distributions [Osada-et-al]

• Shape contexts [SC]

• Hamza-Krim, Hilaga et al approach [HK]

• Rigid isometries invariant Hausdorff [Goodrich]

• Gromov-Hausdorff distance [MS04] [MS05]

• Elad-Kimmel idea [EK]

• Topology based methods
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Upper and Lower bounds Let (X, d, ν) be an mm-space.

• Shape Distributions [Osada-et-al]: construct histogram of interpoint
distances, FX : R → [0, 1] given by

t "→ ν ⊗ ν ({(x, x′)| d(x, x′) ≤ t})

• Shape Contexts [SC]: at each x ∈ X, construct histogram of d(x, ·),
CX : X × R → [0, 1] given by

(x, t) "→ ν ({x′| d(x, x′) ≤ t})

• Hamza-Krim [HK]: at each x ∈ X compute mean distance to rest of
points, HX : X → R

x "→
(∫

X
dp(x, x′)ν(dx′)

)1/p

• Wasserstein under Euclidean isometries: consider X, Y ⊂ Rd and
compute

diso
W,p(X, Y ) = inf

T
dW,p(X, T (Y ))

• Gromov-Hausdorff distance [MS04][MS05][BBK06]
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Upper and Lower bounds Let (X, d, ν) be an mm-space.

• Shape Distributions [Osada-et-al-01]: construct histogram of interpoint
distances, FX : R → [0, 1] given by

t "→ ν ⊗ ν ({(x, x′)| d(x, x′) ≤ t})

• Shape Contexts [Belongie-Malik-Puzicha-02]: at each x ∈ X , construct
histogram of d(x, ·), CX : X × R → [0, 1] given by

(x, t) "→ ν ({x′| d(x, x′) ≤ t})

• Hamza-Krim [HK-01]: at each x ∈ X compute mean distance to rest of
points, HX : X → R

x "→
(∫

X
dp(x, x′)ν(dx′)

)1/p

• Wasserstein under Euclidean isometries: consider X, Y ⊂ Rd and
compute

diso
W,p(X, Y ) = inf

T
dW,p(X, T (Y ))

• Gromov-Hausdorff distance



38

Upper and Lower bounds Let (X, d, ν) be an mm-space.

• Shape Distributions [Osada-et-al-01]: construct histogram of interpoint
distances, FX : R → [0, 1] given by

t "→ ν ⊗ ν ({(x, x′)| d(x, x′) ≤ t})

• Shape Contexts [Belongie-Malik-Puzicha-02]: at each x ∈ X , construct
histogram of d(x, ·), CX : X × R → [0, 1] given by

(x, t) "→ ν ({x′| d(x, x′) ≤ t})

• Hamza-Krim [HK-01]: at each x ∈ X compute mean distance to rest of
points, HX : X → R

x "→
(∫

X
dp(x, x′)ν(dx′)

)1/p

• Wasserstein under Euclidean isometries: consider X, Y ⊂ Rd and
compute

diso
W,p(X, Y ) = inf

T
dW,p(X, T (Y ))

• Gromov-Hausdorff distance







0 d12 d13 d14 . . .
d12 0 d23 d24 . . .
d13 d23 0 d34 . . .
d14 d24 d34 0 . . .
...

...
...

...
. . .





Hamza-Krim
j d1,j

N

j d2,j

N

j dN,j

N







0 d12 d13 d14 . . .
d12 0 d23 d24 . . .
d13 d23 0 d34 . . .
d14 d24 d34 0 . . .
...

...
...

...
. . .





Hamza-Krim
j d1,j

N

j d2,j

N

j dN,j

N







0 d12 d13 d14 . . .
d12 0 d23 d24 . . .
d13 d23 0 d34 . . .
d14 d24 d34 0 . . .
...

...
...

...
. . .





Hamza-Krim
j d1,j

N

j d2,j

N

j dN,j

N



40

Upper and Lower bounds Let (X, d, ν) be an mm-space.

• Shape Distributions [Osada-et-al-01]: construct histogram of interpoint
distances, FX : R → [0, 1] given by

t "→ ν ⊗ ν ({(x, x′)| d(x, x′) ≤ t})

• Shape Contexts [Belongie-Malik-Puzicha-02]: at each x ∈ X , construct
histogram of d(x, ·), CX : X × R → [0, 1] given by

(x, t) "→ ν ({x′| d(x, x′) ≤ t})

• Hamza-Krim [HK-01]: at each x ∈ X compute mean distance to rest of
points, HX : X → R

x "→
(∫

X
dp(x, x′)ν(dx′)

)1/p

• Wasserstein under Euclidean isometries: consider X, Y ⊂ Rd and
compute

diso
W,p(X, Y ) = inf

T
dW,p(X, T (Y ))

• Gromov-Hausdorff distance
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The bound for the H-K approach

Let p 1 for simplicity. For a mm-space X, dX , µX let sX : X R be given by

x
x X

µX x dX x, x (average distance to all other points).

The HK lower bound, denoted by LBHK X,Y is defined to be (the mass transportation problem)

LBHK X, Y : min
µ M µX ,µY x,y

µ x, y sX x sY y .

Proposition 1 ([M07]). For all mm-spaces X and Y ,

1
2
LBHK X,Y D1 X, Y

Proof is simple:
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Proof. Take any µ M µX , µY and write

x,y x ,y

dX x, x dY y, y µ x, y µ x , y

x,y x ,y

µ x , y dX x, x dY y, y µ x, y

x,y x ,y

µ x , y dX x, x dY y, y µ x, y

x ,y

µ x , y dX x, x
x

dX x, x
y

µ x , y
x

µX x dX x, x sX x

x,y

sX x sY y µ x, y

LBHK X, Y

The last inequality follows since µ was arbitrary and LBHK was defined as the minimum.
To finish the proof, take the min over all choices of µ inM µX , µY and recall definition of D1.



43

Some Experiments

Some experimentation: ∼ 70 models in 7 classes. Classification using 1-nn:
Pe ∼ 2%. Hamza-Krim gave ∼ 15% on same db with all same parameters etc.



Discussion

Identifying a notion of distance/metric between shapes is useful/important.

• When will you say that two shapes are the same? This is the zero of your
distance between shapes.

• Having a true metric on the space of shapes permits proving stability and
having a sampling theory.

• Understand hierarchy of lower/upper bounds. When is a particular LB
better than another? study highly symmetrical shapes.
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Discussion

• Implementation is easy: Gradient descent or alternate opt.

• Solving lower bounds yields a seed for the gradient descent. These lower
bounds are compatible with the metric in the sense that a layered recog-
nition system is possible: given two shapes, (1) solve for a LB (this gives
you a µ), if value small enough, then (2) solve for GW using the µ as seed
for your favorite iterative algorithm.

• Easy extension to partial matching– preprint available from my webpage
soon.

• Interest in relating GH/GW ideas to other methods in the literature. In-
terrelating methods is important also for applications: when confronted
with N methods, how do they compare to each other? which one is better
for the situation at hand?

– Euclidean case.
– Persistent Topology based methods (Frosini et al., Carlsson et al.)

• No difference between continuous and discrete. Probability measures take
care of the ’transition’.

http://math.stanford.edu/~memoli/ShapeComp/sc.html
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