Shape Matching using Gromov-Hausdorff distances

Facundo Mémoli

memoli@math.stanford.edu

Background concepts

• Metric Space. A metric space is a pair (X, d) where X is a set and $d: X \times X \to \mathbb{R}^+$ s.t.

1. For all
$$x, y, z \in X$$
, $d(x, y) \leq d(x, z) + d(z, y)$
2. For all $x, y \in X$, $d(x, y) = d(y, x)$.
3. $d(x, y) = 0$ if and only if $x = y$.

• Folklore Lemma. Let $\mathbb{X}_n = \{x_1, \dots, x_n\}$ and $\mathbb{Y}_n = \{y_1, \dots, y_n\}$ be points in \mathbb{R}^k . If

$$||x_i - x_j|| = ||y_i - y_j||$$

for all i, j, then there exists a rigid isometry $T : \mathbb{R}^k \to \mathbb{R}^k$ s.t.

 $T(x_i) = y_i$, for all i

Let $\mathbf{D}(\mathbb{X}_n)$ and $\mathbf{D}(\mathbb{Y}_m)$ be the Euclidean interpoint distance matrices of \mathbb{X}_n and \mathbb{Y}_m , respectively. Then, the Folklore Lemma tells us that

• Hausdorff distance. For (compact) subsets A, B of a (compact) metric space (Z, d), the Hausdorff distance between them, $d_{\mathcal{H}}^Z(A, B)$, is defined to be the infimal $\varepsilon > 0$ s.t.

$$A \subset B^{\varepsilon}$$

and

 $B \subset A^{\varepsilon}$

where $A^{\varepsilon} = \{ z \in Z | d(z, A) < \varepsilon \}.$

Equivalently,

$$d_{\mathcal{H}}^{Z}(A,B) = \max(\max_{b \in B} \min_{a \in A} d(a,b), \max_{a \in A} \min_{b \in B} d(a,b))$$

Geodesic distance vs Euclidean distance

Geodesic distance: invariance to 'bends'

The GH distance for Shape Comparison

- Regard shapes as (compact) metric spaces, [MS04], [MS05].
- The metric with which one endows the shapes depends on the desired invariance. For example, if invariance to
 - *rigid isometries* is desired, use Euclidean distance (remember Folklore Lemma).
 - bends is desired, use "geodesic" distance.
- Let \mathcal{X} denote set of all compact metric spaces. Define GH distance (metric) on \mathcal{X} , then $(\mathcal{X}, d_{\mathcal{GH}})$ is itself a metric space.
- GH distance provides reasonable framework for Shape Comparison: good theoretical properties.
- However, it leads to difficult optimization problems.

GH: definition

$d_{\mathcal{GH}}(X,Y) = \inf_{Z,f,g} d_{\mathcal{H}}^Z(f(X),g(Y))$

For maps $f: X \to Y$, and $g: Y \to X$ compute

$$dist(f) = \max_{x,x'} |d_X(x,x') - d_Y(f(x), f(x'))|$$

and

$$dist(g) = \max_{y,y'} |d_Y(y,y') - d_X(g(y),g(y'))|$$

For maps $f: X \to Y$, and $g: Y \to X$ compute

$$dist(f) = \max_{x,x'} |d_X(x,x') - d_Y(f(x), f(x'))|$$

and

$$dist(g) = \max_{y,y'} |d_Y(y,y') - d_X(g(y),g(y'))|$$

For maps $f: X \to Y$, and $g: Y \to X$ compute

$$dist(f) = \max_{x,x'} |d_X(x,x') - d_Y(f(x), f(x'))|$$

and

$$dist(g) = \max_{y,y'} |d_Y(y,y') - d_X(g(y),g(y'))|$$

For maps $f: X \to Y$, and $g: Y \to X$ compute

$$dist(f) = \max_{x,x'} |d_X(x,x') - d_Y(f(x), f(x'))|$$

and

$$dist(g) = \max_{y,y'} |d_Y(y,y') - d_X(g(y),g(y'))|$$

For maps $f: X \to Y$, and $g: Y \to X$ compute

$$dist(f) = \max_{x,x'} |d_X(x,x') - d_Y(f(x), f(x'))|$$

and

$$dist(g) = \max_{y,y'} |d_Y(y,y') - d_X(g(y),g(y'))|$$

Definition [Correspondences]

For sets A and B, a subset $R \subset A \times B$ is a *correspondence* (between A and B) if and only if

- $\forall a \in A$, there exists $b \in B$ s.t. $(a, b) \in R$
- $\forall b \in B$, there exists $a \in A$ s.t. $(a, b) \in R$

Let $\mathcal{R}(A, B)$ denote the set of all possible correspondences between sets A and B.

Note that in the case $n_A = n_B$, correspondences are larger than bijections.

0	I	I	0	0	I	I
I	I	0	I	0	I	I
I	0	I	0	0	I	0
0	I	0	I	I	0	I
I	0	I	I	0	I	0

Note that when A and B are finite, $R \in \mathcal{R}(A, B)$ can be represented by a matrix $((r_{a,b})) \in \{0,1\}^{n_A \times n_B}$ s.t.

0

0

0

Another expression for the GH distance

A theorem, [BuBuIv]

For compact metric spaces (X, d_X) and (Y, d_Y) ,

$$d_{\mathcal{GH}}(X,Y) = \frac{1}{2} \inf_{R} \max_{\substack{(\boldsymbol{x},\boldsymbol{y}),(\boldsymbol{x}',\boldsymbol{y}') \in R}} |d_X(\boldsymbol{x},\boldsymbol{x}') - d_Y(\boldsymbol{y},\boldsymbol{y}')|$$

Main Properties

1. Let (X, d_X) , (Y, d_Y) and (Z, d_Z) be metric spaces then

 $d_{\mathcal{GH}}(X,Y) \le d_{\mathcal{GH}}(X,Z) + d_{\mathcal{GH}}(Y,Z).$

- 2. If $d_{\mathcal{GH}}(X,Y) = 0$ and (X, d_X) , (Y, d_Y) are compact metric spaces, then (X, d_X) and (Y, d_Y) are isometric.
- 3. Let $\mathbb{X}_n = \{x_1, \ldots, x_n\} \subset X$ be a finite subset of the compact metric space (X, d_X) . Then,

 $d_{\mathcal{GH}}(X, \mathbb{X}_n) \le d_{\mathcal{H}}(X, \mathbb{X}_n).$

4. For compact metric spaces (X, d_X) and (Y, d_Y) :

-1

$$\frac{1}{2} |\operatorname{diam}(X) - \operatorname{diam}(Y)| \leq d_{\mathcal{GH}}(X, Y)$$
$$\leq \frac{1}{2} \max \left(\operatorname{diam}(X), \operatorname{diam}(Y) \right)$$

Main Properties

1. Let (X, d_X) , (Y, d_Y) and (Z, d_Z) be metric spaces then

 $d_{\mathcal{GH}}(X,Y) \le d_{\mathcal{GH}}(X,Z) + d_{\mathcal{GH}}(Y,Z).$

- 2. If $d_{\mathcal{GH}}(X,Y) = 0$ and (X, d_X) , (Y, d_Y) are compact metric spaces, then (X, d_X) and (Y, d_Y) are isometric.
- 3. Let $\mathbb{X}_n = \{x_1, \ldots, x_n\} \subset X$ be a finite subset of the compact metric space (X, d_X) . Then,

 $d_{\mathcal{GH}}(X, \mathbb{X}_n) \le d_{\mathcal{H}}(X, \mathbb{X}_n).$

4. For compact metric spaces (X, d_X) and (Y, d_Y) :

$$\frac{1}{2} |\operatorname{diam}(X) - \operatorname{diam}(Y)| \leq d_{\mathcal{GH}}(X, Y)$$
$$\leq \frac{1}{2} \max \left(\operatorname{diam}(X), \operatorname{diam}(Y) \right)$$

Main Properties

1. Let (X, d_X) , (Y, d_Y) and (Z, d_Z) be metric spaces then

 $d_{\mathcal{GH}}(X,Y) \le d_{\mathcal{GH}}(X,Z) + d_{\mathcal{GH}}(Y,Z).$

2. If $d_{\mathcal{GH}}(X,Y) = 0$ and (X,d_X) , (Y,d_Y) are compact metric spaces, then (X,d_X) and (Y,d_Y) are isometric.

3. Let $\mathbb{X}_n = \{x_1, \ldots, x_n\} \subset X$ be a finite subset of the compact metric space (X, d_X) . Then,

 $d_{\mathcal{GH}}(X, \mathbb{X}_n) \le d_{\mathcal{H}}(X, \mathbb{X}_n).$

4. For compact metric spaces (X, d_X) and (Y, d_Y) :

$$\frac{1}{2} |\operatorname{diam}(X) - \operatorname{diam}(Y)| \leq d_{\mathcal{GH}}(X, Y)$$
$$\leq \frac{1}{2} \max \left(\operatorname{diam}(X), \operatorname{diam}(Y) \right)$$

Stability, [MS05]

 $|d_{\mathcal{GH}}(X,Y) - d_{\mathcal{GH}}(\mathbb{X}_n,\mathbb{Y}_m)| \le r(\mathbb{X}_n) + r(\mathbb{Y}_m)$

$$|d_{\mathcal{GH}}(X,Y) - d_{\mathcal{GH}}(\mathbb{X}_n,\mathbb{Y}_m)| \le r(\mathbb{X}_n) + r(\mathbb{Y}_m)$$

$$|d_{\mathcal{GH}}(X,Y) - \frac{d_{\mathcal{GH}}(\mathbb{X}_n,\mathbb{Y}_m)}{d_{\mathcal{GH}}(\mathbb{X}_n,\mathbb{Y}_m)} \le r(\mathbb{X}_n) + r(\mathbb{Y}_m)$$

Stability, [MS05]

 $|d_{\mathcal{GH}}(X,Y) - d_{\mathcal{GH}}(\mathbb{X}_n,\mathbb{Y}_m)| \le r(\mathbb{X}_n) + r(\mathbb{Y}_m)$

Stability, [MS05]

 $|d_{\mathcal{GH}}(X,Y) - d_{\mathcal{GH}}(\mathbb{X}_n,\mathbb{Y}_m)| \le r(\mathbb{X}_n) + r(\mathbb{Y}_m)$

Stability, [MS05]

 $|d_{\mathcal{GH}}(X,Y) - d_{\mathcal{GH}}(\mathbb{X}_n,\mathbb{Y}_m)| \le r(\mathbb{X}_n) + r(\mathbb{Y}_m)$

Stability, [MS05]

 $|d_{\mathcal{GH}}(X,Y) - d_{\mathcal{GH}}(\mathbb{X}_n,\mathbb{Y}_m)| \le r(\mathbb{X}_n) + r(\mathbb{Y}_m)$

Stability, [MS05]

 $|d_{\mathcal{GH}}(X,Y) - d_{\mathcal{GH}}(\mathbb{X}_n,\mathbb{Y}_m)| \le r(\mathbb{X}_n) + r(\mathbb{Y}_m)$

Critique

- Was not able to show connections with (sufficiently many) pre-existing approaches such as Shape Distributions, Shape Contexts, Hamza-Krim, Frosini et al.
- Computationally hard: currently only two attempts have been made:
 - [MS04,MS05] and [BBK06] only for surfaces.
 - [MS05] gives probabilistic guarantees for estimator based on sampling parameters.
 - Full generality leads to a hard combinatorial optimization problem: QAP.

Critique

- Was not able to show connections with (sufficiently many) pre-existing approaches such as Shape Distributions, Shape Contexts, Hamza-Krim, Frosini et al.
- Computationally hard: currently only two attempts have been made:
 - [MS04,MS05] and [BBK06] only for surfaces.
 - [MS05] gives probabilistic guarantees for estimator based on sampling parameters.
 - Full generality leads to a hard combinatorial optimization problem: QAP.

Desiderata

- Obtain an L^p version of the GH distance that:
 - retains theoretical underpinnings
 - its implementation leads to easier (continuous, quadratic, with linear constraints) optimization problems
 - can be related to pre-existing approaches (shape contexts, shape distributions, Hamza-Krim,..) via lower/upper bounds.

First attempt: naive relaxation

Remember that

$$d_{\mathcal{GH}}(X,Y) = \frac{1}{2} \inf_{R} \max_{(\boldsymbol{x},\boldsymbol{y}),(\boldsymbol{x}',\boldsymbol{y}')\in R} |d_X(\boldsymbol{x},\boldsymbol{x}') - d_Y(\boldsymbol{y},\boldsymbol{y}')|$$

where $R \in \mathcal{R}(X, Y)$. Using the matricial representation of R one can write

$$d_{\mathcal{GH}}(X,Y) = \frac{1}{2} \inf_{R} \max_{x,x',y,y'} |d_X(x,x') - d_Y(y,y')| r_{x,y} r_{x',y'}$$

where $R = ((r_{x,y})) \in \{0,1\}^{n_X \times n_B}$ s.t.

$$\sum_{x \in X} r_{xy} \ge 1 \ \forall y \in Y$$

$$\sum_{y \in Y} r_{xy} \ge 1 \ \forall x \in X$$

First attempt: naive relaxation

Remember that

$$d_{\mathcal{GH}}(X,Y) = \frac{1}{2} \inf_{R} \max_{(\boldsymbol{x},\boldsymbol{y}),(\boldsymbol{x}',\boldsymbol{y}')\in R} |d_X(\boldsymbol{x},\boldsymbol{x}') - d_Y(\boldsymbol{y},\boldsymbol{y}')|$$

where $R \in \mathcal{R}(X, Y)$. Using the matricial representation of R one can write

$$d_{\mathcal{GH}}(X,Y) = \frac{1}{2} \inf_{R} \max_{\substack{x,x',y,y' \\ x,x',y,y'}} |d_X(x,x') - d_Y(y,y')| r_{x,y}r_{x',y'}$$

where $R = ((r_{x,y})) \in \{0,1\}^{n_X \times n_B}$ s.t.

$$\sum_{x \in X} r_{xy} \ge 1 \ \forall y \in Y$$

$$\sum_{y \in Y} r_{xy} \ge 1 \ \forall x \in X$$

First attempt: naive relaxation (continued)

- The idea would be to use L^p norm instead of L^{∞} (max max)
- relax $r_{x,y}$ to be in [0,1] (!)

Then, the idea would be to compute (for some $p \ge 1$):

$$\widehat{d}_{\mathcal{GH}}(X,Y) = \frac{1}{2} \inf_{R} \left(\sum_{\boldsymbol{x},\boldsymbol{x'},\boldsymbol{y},\boldsymbol{y'}} |d_X(\boldsymbol{x},\boldsymbol{x'}) - d_Y(\boldsymbol{y},\boldsymbol{y'})|^{\mathbf{p}} r_{\boldsymbol{x},\boldsymbol{y}} r_{\boldsymbol{x'},\boldsymbol{y'}} \right)^{1/\mathbf{p}}$$

where $R = ((r_{x,y})) \in [\mathbf{0},\mathbf{1}]^{n_X \times n_B}$ s.t.

$$\sum_{x \in X} r_{xy} \ge 1 \ \forall y \in Y$$

$$\sum_{y \in Y} r_{xy} \ge 1 \ \forall x \in X$$

First attempt: naive relaxation (continued)

- The idea would be to use L^p norm instead of L^{∞} (max max)
- relax $r_{x,y}$ to be in [0,1] (!)

Then, the idea would be to compute (for some $p \ge 1$):

$$\widehat{d}_{\mathcal{GH}}(X,Y) = \frac{1}{2} \inf_{R} \left(\sum_{\boldsymbol{x},\boldsymbol{x}',\boldsymbol{y},\boldsymbol{y}'} |d_X(\boldsymbol{x},\boldsymbol{x}') - d_Y(\boldsymbol{y},\boldsymbol{y}')|^{\mathbf{p}} r_{\boldsymbol{x},\boldsymbol{y}} r_{\boldsymbol{x}',\boldsymbol{y}'} \right)^{1/\mathbf{p}}$$

where $R = ((r_{x,y})) \in [0, 1]^{n_X \times n_B}$ s.t.

$$\sum_{x \in X} r_{xy} \ge 1 \ \forall y \in Y$$

$$\sum_{y \in Y} r_{xy} \ge 1 \ \forall x \in X$$

First attempt: naive relaxation (continued)

- The idea would be to use L^p norm instead of L^{∞} (max max)
- relax $r_{x,y}$ to be in [0,1] (!)

Then, the idea would be to compute (for some $p \ge 1$):

$$\widehat{d}_{\mathcal{GH}}(X,Y) = \frac{1}{2} \inf_{R} \left(\sum_{\substack{x,x',y,y' \\ x,x',y,y'}} |d_X(x,x') - d_Y(y,y')|^{\mathbf{p}} \underbrace{r_{x,y}r_{x',y'}}_{x,y'} \right)^{1/\mathbf{p}}$$

where $R = ((r_{x,y})) \in [\mathbf{0},\mathbf{1}]^{n_X \times n_B}$ s.t.
$$\sum_{x \in X} r_{xy} \ge 1 \quad \forall y \in Y$$
$$\sum_{y \in Y} r_{xy} \ge 1 \quad \forall x \in X$$

• The resulting problem is a continuous variable QOP with linear constraints, but..

• there is no limit problem.. this discretization cannot be connected to the GH distance..

we need to identify the **correct** relaxation of the GH distance. More precisely, the correct notion of *relaxed correspondence*.

More background

Consider a finite set $A = \{a_1, \ldots, a_n\}$. A set of weights, $W = \{w_1, \ldots, w_n\}$ on A is called a *probability measure* on A if $w_i \ge 0$ and $\sum_i w_1 = 1$.

Probability measures can be interpreted as a way of assigning (relative) importance to different points.

There is a more general definition that we do not need.

correspondences and measure couplings

Let A and B be compact subsets of the compact metric space (X, d) and μ_A and μ_B be **probability measures** supported in A and B respectively.

Definition [Measure coupling] Is a probability measure μ on $A \times B$ s.t. (in the finite case this means $((\mu_{a,b})) \in [0,1]^{n_A \times n_B}$)

- $\sum_{a \in A} \mu_{ab} = \mu_B(b) \ \forall b \in B$
- $\sum_{b \in B} \mu_{ab} = \mu_A(a) \quad \forall a \in A$

Let $\mathcal{M}(\mu_A, \mu_B)$ be the set of all couplings of μ_A and μ_B . Notice that in the finite case, $((\mu_{a,b}))$ must satisfy $n_A + n_B$ linear constraints.

		0.30	0.30	0.40
X	0.25	0.25	0	0
	0.25	0	0.15	0.10
	0.25	0	0.1	0.15
	0.25	0.05	0.05	0.15

Y

Y

Y

		0.30	0.30	0.40
X	0.25	0.25	0	0
	0.25	0	0.15	0.10
	0.25	0	0.1	0.15
	0.25	0.05	0.05	0.15

L^p Gromov-Hausdorff distances [M07]

Compute (for some $p \ge 1$):

$$\mathbf{D}_{p}(X,Y) = \frac{1}{2} \inf_{\mu} \left(\sum_{\boldsymbol{x},\boldsymbol{x'},\boldsymbol{y},\boldsymbol{y'}} |d_{X}(\boldsymbol{x},\boldsymbol{x'}) - d_{Y}(\boldsymbol{y},\boldsymbol{y'})|^{p} \,\mu_{\boldsymbol{x},\boldsymbol{y}} \,\mu_{\boldsymbol{x'},\boldsymbol{y'}} \right)^{1/p}$$

where $\mu = ((\mu_{x,y})) \in [0, 1]^{n_X \times n_Y}$ s.t.

$$\sum_{x \in X} \mu_{x,y} = \mu_Y(y) \ \forall y \in Y$$

$$\sum_{y \in Y} \mu_{x,y} = \mu_X(x) \ \forall x \in X$$

This is a QOP with linear constrains! Also, thanks to concepts from measure theory, there is a continuous conterpart (sampling theory)

L^p Gromov-Hausdorff distances [M07]

Compute (for some $p \ge 1$):

$$\mathbf{D}_{p}(X,Y) = \frac{1}{2} \inf_{\mu} \left(\sum_{\boldsymbol{x},\boldsymbol{x}',\boldsymbol{y},\boldsymbol{y}'} |d_{X}(\boldsymbol{x},\boldsymbol{x}') - d_{Y}(\boldsymbol{y},\boldsymbol{y}')|^{p} \mu_{\boldsymbol{x},\boldsymbol{y}} \mu_{\boldsymbol{x}',\boldsymbol{y}'} \right)^{1/p}$$

where $\mu = ((\mu_{x,y})) \in [0, 1]^{n_X \times n_Y}$ s.t.

$$\sum_{x \in X} \mu_{x,y} = \mu_Y(y) \ \forall y \in Y$$

$$\sum_{y \in Y} \mu_{x,y} = \mu_X(x) \ \forall x \in X$$

This is a QOP with linear constrains! Also, thanks to concepts from measure theory, there is a continuous conterpart (sampling theory)

L^p Gromov-Hausdorff distances [M07]

Compute (for some $p \ge 1$):

$$\mathbf{D}_{p}(X,Y) = \frac{1}{2} \inf_{\mu} \left(\sum_{\boldsymbol{x},\boldsymbol{x}',\boldsymbol{y},\boldsymbol{y}'} |d_{X}(\boldsymbol{x},\boldsymbol{x}') - d_{Y}(\boldsymbol{y},\boldsymbol{y}')|^{p} \mu_{\boldsymbol{x},\boldsymbol{y}} \mu_{\boldsymbol{x}',\boldsymbol{y}'} \right)^{1/p}$$

where $\mu = ((\mu_{x,y})) \in [0, 1]^{n_X \times n_Y}$ s.t.

$$\sum_{x \in X} \mu_{x,y} = \mu_Y(y) \ \forall y \in Y$$

$$\sum_{y \in Y} \mu_{x,y} = \mu_X(x) \ \forall x \in X$$

This is a QOP with linear constrains! Also, thanks to concepts from measure theory, there is a continuous conterpart (sampling theory)

Numerical Implementation

• The numerical implementation of the second option leads to solving a continuous variable **QOP** with linear constraints:

$$\min_{U} \frac{1}{2} U^T \mathbf{\Gamma} U$$

s.t. $U_{ij} \in [0, 1], U\mathbf{A} = \mathbf{b}$

where $U \in \mathbb{R}^{n_X \times n_Y}$ is the unrolled version of μ , $\Gamma \in \mathbb{R}^{n_X \times n_Y \times n_X \times n_Y}$ is the unrolled version of $\Gamma_{X,Y}$ and **A** and **b** encode the <u>linear</u> constrains $\mu \in \mathcal{M}(\mu_X, \mu_Y)$.

- This can be approached for example via gradient descent. The QOP is non-convex in general!
- Initialization is done via solving one of the several *lower bounds* (discussed ahead). All these lower bounds lead to solving **LOP**s.

Shapes as mm-spaces, [M07]

- Now we are talking of triples (X, d_X, μ_X) where X is a set, d_X a metric on X and μ_X a probability measure on X.
- These objects are called *measure metric spaces*, or mm-spaces for short.
- two mm-spaces X and Y are deemed equal or isomorphic whenever there exists an isometry $\Phi: X \to Y$ s.t. $\mu_Y(B) = \mu_X(\Phi^{-1}(B))$ for all (measurable) sets $B \subset Y$.

 (X, d_X, μ_X)

$\begin{array}{ccc} \mathbf{GH} & \mathbf{GW} \\ -\mathbf{H} & = & -\mathbf{W} \\ \mathbf{H} & \mathbf{W} \end{array}$

Properties of D_p , [M07]

1. Let X, Y and Z mm-spaces then

$\mathbf{D}_p(X,Y) \le \mathbf{D}_p(X,Z) + \mathbf{D}_p(Y,Z).$

- 2. If $D_p(X, Y) = 0$ if and only if X and Y are isomorphic.
- 3. Let $X_n = \{x_1, \ldots, x_n\} \subset X$ be a subset of the mm-space (X, d, ν) . Endow X_n with the metric d and a prob. measure ν_n , then

 $\mathbf{D}_p(X, \mathbb{X}_n) \le d_{\mathcal{W}, p}(\nu, \nu_n).$

The parameter p is not superfluous

The simplest lower bound one has is based on the triangle inequality plus

$$2 \cdot \mathbf{D}_p(X, \{q\}) = \left(\int_{X \times X} d_X(x, x') \,\nu(dx) \nu(dx') \right)^{1/p} := \operatorname{diam}_p(X)$$

That is

$$\mathbf{D}_p(X,Y) \ge \frac{1}{2} |\mathbf{diam}_p(X) - \mathbf{diam}_p(Y)|$$

For example, when $X = S^n$ (spheres with uniform measure and usual intrinsic metric):

- $p = \infty$ gives $\operatorname{diam}_{\infty}(S^n) = \pi$ for all $n \in \mathbb{N}$
- p = 1 gives $\operatorname{diam}_1(S^n) = \pi/2$ for all $n \in \mathbb{N}$

•
$$p = 2$$
 gives $\operatorname{diam}_2(S^1) = \pi/\sqrt{3}$ and $\operatorname{diam}_2(S^2) = \sqrt{\pi^2/2 - 2}$

Connections with other approaches

- Shape Distributions [Osada-et-al]
- Shape contexts **[SC]**
- $\bullet\,$ Hamza-Krim, Hilaga et al approach $[\mathbf{HK}]$
- Rigid isometries invariant Hausdorff [Goodrich]
- \bullet Gromov-Hausdorff distance $[\mathbf{MS04}]$ $[\mathbf{MS05}]$
- Elad-Kimmel idea **[EK]**
- Topology based methods

 $\begin{pmatrix} 0 & d_{12} & d_{13} & d_{14} \\ d_{12} & 0 & d_{23} & d_{24} \\ d_{13} & d_{23} & 0 & d_{34} \\ d_{14} & d_{24} & d_{34} & 0 \\ \vdots & \vdots & \vdots & \vdots \\ \end{pmatrix}$

Shape Distributions [Osada-et-al]

• Shape Distributions [Osada-et-al]: construct histogram of interpoint distances, $F_X : \mathbb{R} \to [0, 1]$ given by

$$t \mapsto \nu \otimes \nu \left(\{ (x, x') | d(x, x') \le t \} \right)$$

• Shape Contexts [SC]: at each $x \in X$, construct histogram of $d(x, \cdot)$, $C_X : X \times \mathbb{R} \to [0, 1]$ given by

$$(x,t) \mapsto \nu\left(\{x' | d(x,x') \le t\}\right)$$

• Hamza-Krim [HK]: at each $x \in X$ compute mean distance to rest of points, $H_X : X \to \mathbb{R}$

$$x \mapsto \left(\int_X d^p(x, x')\nu(dx')\right)^{1/p}$$

• Wasserstein under Euclidean isometries: consider $X, Y \subset \mathbb{R}^d$ and compute

$$d_{\mathcal{W},p}^{iso}(X,Y) = \inf_{T} d_{\mathcal{W},p}(X,T(Y))$$

• Gromov-Hausdorff distance [MS04][MS05][BBK06]

• Shape Distributions [Osada-et-al]: construct histogram of interpoint distances, $F_X : \mathbb{R} \to [0, 1]$ given by

$$t \mapsto \nu \otimes \nu \left(\left\{ (x, x') | d(x, x') \le t \right\} \right)$$

• Shape Contexts [SC]: at each $x \in X$, construct histogram of $d(x, \cdot)$, $C_X : X \times \mathbb{R} \to [0, 1]$ given by

$$(x,t) \mapsto \nu\left(\{x' \mid d(x,x') \le t\}\right)$$

• Hamza-Krim [HK]: at each $x \in X$ compute mean distance to rest of points, $H_X : X \to \mathbb{R}$

$$x \mapsto \left(\int_X d^p(x, x')\nu(dx')\right)^{1/p}$$

• Wasserstein under Euclidean isometries: consider $X, Y \subset \mathbb{R}^d$ and compute

$$d_{\mathcal{W},p}^{iso}(X,Y) = \inf_{T} d_{\mathcal{W},p}(X,T(Y))$$

• Gromov-Hausdorff distance [MS04][MS05][BBK06]

• Shape Distributions [Osada-et-al-01]: construct histogram of interpoint distances, $F_X : \mathbb{R} \to [0, 1]$ given by

$$t \mapsto \nu \otimes \nu \left(\left\{ (x, x') | d(x, x') \le t \right\} \right)$$

• Shape Contexts [Belongie-Malik-Puzicha-02]: at each $x \in X$, construct histogram of $d(x, \cdot), C_X : X \times \mathbb{R} \to [0, 1]$ given by

$$(x,t) \mapsto \nu\left(\{x' \mid d(x,x') \le t\}\right)$$

• Hamza-Krim [HK-01]: at each $x \in X$ compute mean distance to rest of points, $H_X : X \to \mathbb{R}$

$$x \mapsto \left(\int_X d^p(x, x')\nu(dx')\right)^{1/p}$$

• Wasserstein under Euclidean isometries: consider $X, Y \subset \mathbb{R}^d$ and compute

$$d_{\mathcal{W},p}^{iso}(X,Y) = \inf_{T} d_{\mathcal{W},p}(X,T(Y))$$

• Shape Distributions [Osada-et-al-01]: construct histogram of interpoint distances, $F_X : \mathbb{R} \to [0, 1]$ given by

$$t \mapsto \nu \otimes \nu \left(\left\{ (x, x') | d(x, x') \le t \right\} \right)$$

• Shape Contexts [Belongie-Malik-Puzicha-02]: at each $x \in X$, construct histogram of $d(x, \cdot), C_X : X \times \mathbb{R} \to [0, 1]$ given by

$$(x,t)\mapsto \nu\left(\{x'|\,d(x,x')\leq t\}\right)$$

• Hamza-Krim [HK-01]: at each $x \in X$ compute mean distance to rest of points, $H_X : X \to \mathbb{R}$

$$x \mapsto \left(\int_X d^p(x, x') \nu(dx') \right)^{1/p}$$

• Wasserstein under Euclidean isometries: consider $X, Y \subset \mathbb{R}^d$ and compute

$$d_{\mathcal{W},p}^{iso}(X,Y) = \inf_{T} d_{\mathcal{W},p}(X,T(Y))$$

Hamza-Krim

 $\frac{\sum_j d_{1,j}}{N}$

 $\begin{pmatrix} 0 & d_{12} & d_{13} & d_{14} & \dots \\ d_{12} & 0 & d_{23} & d_{24} & \dots \\ d_{13} & d_{23} & 0 & d_{34} & \dots \\ d_{14} & d_{24} & d_{34} & 0 & \dots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$

 $\frac{\sum_j d_{2,j}}{N}$ 000000

 $\frac{\sum_j d_{N,j}}{N}$

Hamza-Krim

$\left(\begin{array}{c} 0 \end{array} \right)$	d_{12}	d_{13}	d_{14}	
d_{12}	0	d_{23}	d_{24}	•••
d_{13}	d_{23}	0	d_{34}	
d_{14}	d_{24}	d_{34}	0	
	•	•	• •	· .]

 $\frac{\sum_j d_{2,j}}{N}$

 $\frac{\sum_j d_{N,j}}{N}$

Hamza-Krim

 $\frac{\sum_j d_{1,j}}{N}$

 $\begin{pmatrix} 0 & d_{12} & d_{13} & d_{14} & \dots \\ d_{12} & 0 & d_{23} & d_{24} & \dots \\ d_{13} & d_{23} & 0 & d_{34} & \dots \\ d_{14} & d_{24} & d_{34} & 0 & \dots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$

 $\frac{\sum_j d_{2,j}}{N}$ 000000

 $\frac{\sum_j d_{N,j}}{N}$

• Shape Distributions [Osada-et-al-01]: construct histogram of interpoint distances, $F_X : \mathbb{R} \to [0, 1]$ given by

$$t \mapsto \nu \otimes \nu \left(\left\{ (x, x') | d(x, x') \le t \right\} \right)$$

• Shape Contexts [Belongie-Malik-Puzicha-02]: at each $x \in X$, construct histogram of $d(x, \cdot), C_X : X \times \mathbb{R} \to [0, 1]$ given by

$$(x,t)\mapsto\nu\left(\left\{x'|\,d(x,x')\leq t\right\}\right)$$

• Hamza-Krim [HK-01]: at each $x \in X$ compute mean distance to rest of points, $H_X : X \to \mathbb{R}$

$$x \mapsto \left(\int_X d^p(x, x') \nu(dx') \right)^{1/p}$$

• Wasserstein under Euclidean isometries: consider $X, Y \subset \mathbb{R}^d$ and compute

$$d_{\mathcal{W},p}^{iso}(X,Y) = \inf_{T} d_{\mathcal{W},p}(X,T(Y))$$

• Shape Distributions [Osada-et-al-01]: construct histogram of interpoint distances, $F_X : \mathbb{R} \to [0, 1]$ given by

$$t \mapsto \nu \otimes \nu \left(\left\{ (x, x') | d(x, x') \le t \right\} \right)$$

• Shape Contexts [Belongie-Malik-Puzicha-02]: at each $x \in X$, construct histogram of $d(x, \cdot), C_X : X \times \mathbb{R} \to [0, 1]$ given by

$$(x,t)\mapsto \nu\left(\{x'|\,d(x,x')\leq t\}\right)$$

• Hamza-Krim [HK-01]: at each $x \in X$ compute mean distance to rest of points, $H_X : X \to \mathbb{R}$

$$x \mapsto \left(\int_X d^p(x, x')\nu(dx')\right)^{1/p}$$

• Wasserstein under Euclidean isometries: consider $X, Y \subset \mathbb{R}^d$ and compute $d^{iso}_{\mathcal{W},p}(X,Y) = \inf_T d_{\mathcal{W},p}(X,T(Y))$

• Shape Distributions [Osada-et-al-01]: construct histogram of interpoint distances, $F_X : \mathbb{R} \to [0, 1]$ given by

$$t \mapsto \nu \otimes \nu \left(\left\{ (x, x') | d(x, x') \le t \right\} \right)$$

• Shape Contexts [Belongie-Malik-Puzicha-02]: at each $x \in X$, construct histogram of $d(x, \cdot), C_X : X \times \mathbb{R} \to [0, 1]$ given by

$$(x,t)\mapsto\nu\left(\left\{x'|\,d(x,x')\leq t\right\}\right)$$

• Hamza-Krim [HK-01]: at each $x \in X$ compute mean distance to rest of points, $H_X : X \to \mathbb{R}$

$$x \mapsto \left(\int_X d^p(x, x')\nu(dx')\right)^{1/p}$$

• Wasserstein under Euclidean isometries: consider $X, Y \subset \mathbb{R}^d$ and compute

$$d_{\mathcal{W},p}^{iso}(X,Y) = \inf_{T} d_{\mathcal{W},p}(X,T(Y))$$

The bound for the H-K approach

Let p = 1 for simplicity. For a mm-space (X, d_X, μ_X) let $s_X : X \to \mathbb{R}^+$ be given by $x \mapsto \sum_{x' \in X} \mu_X(x') d_X(x, x')$ (average distance to all other points).

The HK lower bound, denoted by $LB_{HK}(X,Y)$ is defined to be (the mass transportation problem)

$$LB_{HK}(X,Y) := \min_{\mu \in \mathcal{M}(\mu_X,\mu_Y)} \sum_{x,y} \mu(x,y) |s_X(x) - s_Y(y)|.$$

Proposition 1 ([M07]). For all mm-spaces X and Y,

$$\frac{1}{2}LB_{HK}(X,Y) \leq \mathbf{D}_1(X,Y)$$

Proof is simple:

The bound for the H-K approach

Let p = 1 for simplicity. For a mm-space (X, d_X, μ_X) let $s_X : X \to \mathbb{R}^+$ be given by $x \mapsto \sum_{x' \in X} \mu_X(x') d_X(x, x')$ (average distance to all other points).

The HK lower bound, denoted by $LB_{HK}(X,Y)$ is defined to be (the mass transportation problem)

$$LB_{HK}(X,Y) := \min_{\mu \in \mathcal{M}(\mu_X,\mu_Y)} \sum_{x,y} \mu(x,y) |s_X(x) - s_Y(y)|.$$

Proposition 1 ([M07]). For all mm-spaces X and Y,

 $\frac{1}{2}LB_{HK}(X,Y) \leq \mathbf{D}_1(X,Y)$

Proof is simple:

Proof. Take any $\mu \in \mathcal{M}(\mu_X, \mu_Y)$ and write

$$\sum_{x,y} \sum_{x',y'} |d_X(x,x') - d_Y(y,y')| \,\mu(x,y) \,\mu(x',y') =$$

$$\sum_{x,y} \sum_{x',y'} |\mu(x',y') \, (d_X(x,x') - d_Y(y,y'))| \,\mu(x,y) \ge$$

$$\sum_{x,y} \left| \sum_{x',y'} \mu(x',y') \, (d_X(x,x') - d_Y(y,y')) \right| \,\mu(x,y) =$$

$$\left\{ \sum_{x',y'} \mu(x',y') \, d_X(x,x') = \sum_{x'} d_X(x,x') \sum_{y'} \mu(x',y') = \sum_{x'} \mu_X(x') \, d_X(x,x') = s_X(x) \right\}$$

$$\sum_{x,y} |s_X(x) - s_Y(y)| \,\mu(x,y) \ge$$

$$LB_{HK}(X,Y)$$

The last inequality follows since μ was arbitrary and LB_{HK} was defined as the minimum. To finish the proof, take the min over all choices of μ in $\mathcal{M}(\mu_X, \mu_Y)$ and recall definition of \mathbf{D}_1 .

Some Experiments

Some experimentation: ~ 70 models in 7 classes. Classification using 1-nn: $P_e \sim 2\%$. Hamza-Krim gave ~ 15% on same db with all same parameters etc.

Discussion

Identifying a notion of **distance/metric** between shapes is useful/important.

- When will you say that two shapes are the same? This is the zero of your distance between shapes.
- Having a true metric on the space of shapes permits proving *stability* and having a *sampling theory*.
- Understand hierarchy of lower/upper bounds. When is a particular LB better than another? study highly symmetrical shapes.

Discussion

- Implementation is easy: Gradient descent or alternate opt.
- Solving lower bounds yields a seed for the gradient descent. These lower bounds are compatible with the metric in the sense that a layered recognition system is possible: given two shapes, (1) solve for a LB (this gives you a μ), if value small enough, then (2) solve for GW using the μ as seed for your favorite iterative algorithm.
- Easy extension to **partial matching** preprint available from my webpage soon.
- Interest in relating GH/GW ideas to other methods in the literature. Interrelating methods is important also for applications: when confronted with N methods, how do they compare to each other? which one is better for the situation at hand?
 - Euclidean case.
 - Persistent Topology based methods (Frosini et al., Carlsson et al.)
- No difference between continuous and discrete. Probability measures take care of the 'transition'.

http://math.stanford.edu/~memoli/ShapeComp/sc.html

Bibliography

[BBI] Burago, Burago and Ivanov. A course on Metric Geometry. AMS, 2001

[EK] A. Elad (Elbaz) and R. Kimmel. On bending invariant signatures for surfaces, IEEE Trans. on PAMI, 25(10):1285-1295, 2003.

[BBK] A. M. Bronstein, M. M. Bronstein, and R. Kimmel. Generalized multidimensional scaling: a framework for isometry-invariant partial surface matching. Proc. Natl. Acad. Sci. USA, 103(5):1168–1172 (electronic), 2006.

 $[{\rm HK}]$ A. Ben Hamza, Hamid Krim: Probabilistic shape descriptor for triangulated surfaces. ICIP (1) 2005: 1041-1044

[Osada-et-al] Robert Osada, Thomas A. Funkhouser, Bernard Chazelle, David P. Dobkin: Matching 3D Models with Shape Distributions. Shape Modeling International 2001: 154-166

[SC] S. Belongie and J. Malik (2000). "Matching with Shape Contexts". IEEE Workshop on Contentbased Access of Image and Video Libraries (CBAIVL-2000).

[Goodrich] M. Goodrich, J. Mitchell, and M. Orletsky. Approximate geometric pattern matching under rigid motions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 21(4):371–376, 1999.

[M08-partial] F.Memoli. Lp Gromov-Hausdorff distances for partial shape matching, preprint.

[M08-euclidean]F. Mémoli. Gromov-Hausdorff distances in Euclidean spaces. NORDIA-CVPR-2008.

[M07] F.Memoli. On the use of gromov-hausdorff distances for shape comparison. In Proceedings of PBG 2007, Prague, Czech Republic, 2007.

[MS04] F. Memoli and G. Sapiro. Comparing point clouds. In SGP '04: Proceedings of the 2004 Eurographics/ACM SIGGRAPH symposium on Geometry processing, pages 32–40, New York, NY, USA, 2004. ACM.

[MS05] F. Memoli and G. Sapiro. A theoretical and computational framework for isometry invariant recognition of point cloud data. Found. Comput. Math., 5(3):313–347, 2005.

http://math.stanford.edu/~memoli