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The GH distance for Shape Comparison

• Regard shapes as (compact) metric spaces. Let X denote set of all com-
pact metric spaces. Define metric on X , then (X , dGH) is itself a metric
space.

• The metric with which one endows the shapes depends on the desired
invariance. For example, if invariance to

– rigid isometries is desired, use Euclidean distance.
– bends is desired, use ”intrinsic” distance.

• GH distance provides reasonable framework for Shape Comparison: good
theoretical properties.
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Properties of GH distance:

1. Let (X, dX), (Y, dY ) and (Z, dZ) be metric spaces then

dGH(X, Y ) ≤ dGH(X, Z) + dGH(Y, Z).

2. If dGH(X, Y ) = 0 and (X, dX), (Y, dY ) are compact metric spaces, then
(X, dX) and (Y, dY ) are isometric.

3. Let Xn = {x1, . . . , xn} ⊂ X be a finite subset of the compact metric space
(X, dX). Then,

dGH(X, Xn) ≤ dH(X, Xn).

4. For compact metric spaces (X, dX) and (Y, dY ):

1
2
|diam(X)− diam(Y )| ≤ dGH(X, Y )

≤ 1
2

max (diam(X),diam(Y ))
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In Euclidean spaces...

For X,Y ⊂ Rn, we endow them with the Euclidean metric to form metric spaces
(X, ‖ ·‖ ) and (Y, ‖ ·‖ ). Then, we have two possibilities:

dRn

H,iso(X, Y ) vs. dGH(X, Y )
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In Euclidean spaces...

For X,Y ⊂ Rn, we endow them with the Euclidean metric to form metric spaces
(X, ‖ ·‖ ) and (Y, ‖ ·‖ ). Then, we have two possibilities:

EH = dRn

H,iso(X, Y ) vs. dGH(X, Y ) = GH

• EH is the usual choice.. [GMO99]

• The works of [MS04,MS05] and [BBK06] raise the question of whether
one could use the GH distance for matching sets in Rn under Euclidean
isometries

• Note that as n increases there may be some gain in using GH instead of
EH (complexity of computing GH doesn’t depend on n).

• Very important from Theoretical point of view: helps understanding more
about the landscape of different metrics for shapes and their different
properties and inter-relationships.
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What we are going to prove: spoiler

1. For all (compact) Euclidean metric spaces:

GH ≤ EH.

2. Equality above doesn’t hold in general: there exist sets in Rn for which

GH < EH.

3. What about bounding EH ≤ C · GHt for some constant C = C(n) and
some t > 0? In this respect, for any ε > 0, we find subsets of R2 for which

EH ≥
√

ε/2 and GH ≤ ε

so t = 1 is not achievable in general!

4. In general, for all (compact) Euclidean metric spaces:

GH ≤ EH ≤ C(n) · GH
1
2
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Background concepts

• Let E(n) denote the group of Euclidean isometries in Rn.

• EH = dRn

H,iso(X, Y )
:= inf

T∈E(n)
dRn

H (X,T (Y )).

• GH admits several equivalent expressions:
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dGH(X, Y ) = inf
Z,f,g

dZ
H(f(X), g(Y ))

GH: original definition

8
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dGH(X, Y ) = inf
Z,f,g

dZ
H(f(X), g(Y ))

GH: original definition

9

Notice that when X, Y are Euclidean, one can
take Z = Rn and hence

GH(X, Y ) ≤ EH(X, Y ).
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GH: alternative expression
It is enough to consider Z = X ! Y and then we obtain

dGH(X,Y ) = inf
d

d(Z,d)
H (X,Y )

where d is a metric on X ! Y that reduces to dX and dY on X ×X and Y × Y ,
respectively. Denote by D(dX , dY ) the set of all such metrics.

( X Y

X dX D
Y DT dY

)
= d

In other words: you need to glue X and Y in an optimal way: you need to
minimize

J(D) := max(max
x

min
y

D(x, y),max
y

min
x

D(x, y)).

Note that D consists of nX × nY positive reals that must satisfy ∼ nX ·CnY
2 +

nY · CnX
2 linear constraints.
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1/2
1/2

1/2

Z

Question 1: Is EH = GH in general?

Answer is no.

Consider X and Y in R2 given by X = {p} and Y = {y1, y2, y3}, where yi

i = 1, 2, 3 are vertices of an equilateral triangle with side length 1.
In this case

• EH = 1√
3
. Indeed, the optimal Euclidean isometry takes p into the center

of the triangle.

• GH = 1
2 . Indeed, the optimal space Z is a tree-like metric space. Alter-

natively the optimal metric on X ! Y is





p y1 y2 y3

p 0 1/2 1/2 1/2
y1 1/2 0 1 1
y2 1/2 1 0 1
y3 1/2 1 1 0



 = d
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K=0 K<0 K=-!
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x1 = y1 x3 = y3x2

y2

Question 2: What is the maximal t s.t. EH ≤ C · GHt?

Answer is t ≤ 1/2.

Pick ε > 0. Consider X and Y as in the figure (X is in green, Y in red). The
y-coordinate of y2 equals h :=

√
2ε.

• It is easy to check that GH ≤ ε.

• Let EH = α. Consider the light green balls of radius α around each yi.

• Let T be the Euclidean isometry s.t. dR2

H (T (X), Y ) = α.

• T must map the x-axis into a line (the red line in the figure) intersecting
the three balls (otherwise, one of the yi wouldn’t have a point in x within
distance α). This forces 2α ≥ h. This means, α ≥

√
ε/2.

• We’ve found GH ≤ ε and EH ≥
√

ε/2.
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Question 3: does t = 1/2 work in general?

Answer is yes!

Theorem 1. Let X, Y ⊂ Rn be compact. Then,

dGH(X,Y ) ≤ dRn

H,iso(X, Y ) ≤ cn · M
1
2 · (dGH(X, Y ))

1
2

where M = max(diam(X), diam(Y )) and cn is a constant that depends only on
n.
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Z





p y1 y2 y3

p 0 1/2 1/2 1/2
y1 1/2 0 1 1
y2 1/2 1 0 1
y3 1/2 1 1 0



 = d1/2

1/2

1/2

Question 3: does t = 1/2 work in general?

Answer is yes!

Theorem 1. Let X, Y ⊂ Rn be compact. Then,

dGH(X,Y ) ≤ dRn

H,iso(X, Y ) ≤ cn · M
1
2 · (dGH(X, Y ))

1
2

where M = max(diam(X), diam(Y )) and cn is a constant that depends only on
n.

What is the source of the gap?

The problem is that we are allowing all the gluing metrics to be ’outside’ of the
set of metrics that can be realized in Euclidean spaces. In our first counterex-
ample, d cannot be realized in any Euclidean space!
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Closing the gap

Remember that

dGH(X, Y ) = inf
d

d(X!Y,d)
H (X, Y )

where d is a metric on X ! Y that reduces to dX and dY on X ×X and Y × Y ,
respectively. Denote by D(dX , dY ) the set of all such metrics.

( X Y

X dX D
Y DT dY

)
= d

We have that dX and dY are Euclidean.

Idea: Let’s force d to be Euclidean as well. We need to be precise about what
we mean by a Euclidean metric.
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Definition 1. Let (Z, d) be a compact metric space. We say that the metric
d is Euclidean if and only if there exist d ∈ N s.t. (Z, d) can be isometrically
embedded into Rn.

For a finite metric space (Z, d), let Z = {z1, . . . , z!} and D(2) be the matrix
with elements d2(zi, zj). Let 1! = (1, 1, . . . , 1)T ∈ R! and I! be the !×! identity
matrix. Let Q! = I! − 1

!1!. Consider the map τ! : R!×! → R!×! given by
A %→ − 1

2Q!AQ!.

Proposition 1 (Blumenthal). A necessary and sufficient condition that a semi-
metric space (Z, d), #Z = !, be isometrically embeddable in some Rr (r ∈ N) is
that the matrix τ!(D(2)) be positive semidefinite (PSD).

In the case of a finite Euclidean metric space (Z, d), Z = {z1, . . . , z!}, one
says that the matrix d(zi, zj) is a Euclidean distance matrix (EDM).

This gives us a direct computational way of checking whether a given distance
matrix is an EDM.
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For X, Y ∈ Rn let DE(X, Y ) denote the set of metrics d on X " Y such that
d(x, x′) = ‖x − x′‖, d(y, y′) = ‖y − y′‖ for x, x′ ∈ X and y, y′ ∈ Y , and d is
Euclidean.

Let X and Y be compact subsets of Rn endowed with the Euclidean metric.
Consider the following tentative distance

dE
GH(X, Y ) := inf

d∈DE(X,Y )
d(X#Y,d)
H (X, Y )

Theorem 1. For X, Y ⊂ Rn compact, dRn

H,iso(X, Y ) = dE
GH(X, Y ).

dX

dY

= ∈ DE(dX , dY )

18



For X, Y ∈ Rn let DE(X, Y ) denote the set of metrics d on X " Y such that
d(x, x′) = ‖x − x′‖, d(y, y′) = ‖y − y′‖ for x, x′ ∈ X and y, y′ ∈ Y , and d is
Euclidean.

Let X and Y be compact subsets of Rn endowed with the Euclidean metric.
Consider the following tentative distance

dE
GH(X, Y ) := inf

d∈DE(X,Y )
d(X#Y,d)
H (X, Y )

Theorem 1. For X, Y ⊂ Rn compact, dRn

H,iso(X, Y ) = dE
GH(X, Y ).

dX

dY

= ∈ DE(dX , dY )

18



For X, Y ∈ Rn let DE(X, Y ) denote the set of metrics d on X " Y such that
d(x, x′) = ‖x − x′‖, d(y, y′) = ‖y − y′‖ for x, x′ ∈ X and y, y′ ∈ Y , and d is
Euclidean.

Let X and Y be compact subsets of Rn endowed with the Euclidean metric.
Consider the following tentative distance

dE
GH(X, Y ) := inf

d∈DE(X,Y )
d(X#Y,d)
H (X, Y )

Theorem 1. For X, Y ⊂ Rn compact, dRn

H,iso(X, Y ) = dE
GH(X, Y ).

dX

dY

= ∈ DE(dX , dY )

18



dX

dY

Closing the gap

• Solving for the optimal d above can be regarded as an EDMCP, [AlHomidan-
Wolfowitz].

• Typically, the input is a partial EDM, i.e., a matrix with some missing
entries, and the goal is to find an EDM that preserves the entries that are
known and, for example, has minimal Frobenius norm. Solutions to these
family problems are usualy found via Semidefinite Programming (SDP).

• In our case, if #X = ! and #Y = m, the goal is to find a matrix D ∈ R!×m

with nonegative elements s.t.
(

‖xi − xj‖ D
DT ‖yi − yj‖

)

is an EDM and J(D) := max(maxi minj Dij , maxj mini Dij) is minimized.

• J(D) is non-convex and non-smooth, leads to very difficult problem. Tractable
alternatives are Lp Gromov-Hausdorff distances [M07].
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Lp- Gromov-Hausdorff distances in Euclidean spaces

• These distances [M07] provide a more general and more computationally
tractable alternative than the standard GH distance.

• These distances are based on changing the Hausdorff part of the GH
distance for the Wasserstein distance, a.k.a. Earth Mover’s distance.

• In the context of Euclidean spaces, there are counterparts to GH, dE
GH

and EH distances.

• We’ve obtained a theoretical landscape parallel to that we’ve shown for
GH.

• In the case of L2 distances, the counterpart of dE
GH we propose looking at

is (
min
µ,d

∑

x,y

d2(x, y)µx,y

)1/2

where µ is a linearly constrained variable (a measure coupling) and
d ∈ DE(dX , dY ). Since d must be Euclidean, this can be expressed as a
PSD condition on the matrix τ((d2(x, y))) that can be dealt with easily.

• This optimization problem is substantially easier than it’s GH counter-
part.
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http://math.stanford.edu/~memoli
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