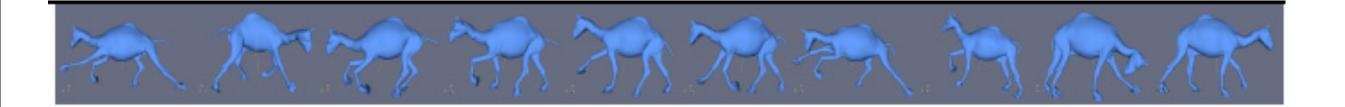
Gromov-Hausdorff distances in Euclidean Spaces

Facundo Mémoli

memoli@math.stanford.edu



The GH distance for Shape Comparison

- Regard shapes as (compact) metric spaces. Let \mathcal{X} denote set of all compact metric spaces. Define metric on \mathcal{X} , then $(\mathcal{X}, d_{\mathcal{GH}})$ is itself a metric space.
- The metric with which one endows the shapes depends on the desired invariance. For example, if invariance to
 - rigid isometries is desired, use Euclidean distance.
 - *bends* is desired, use "intrinsic" distance.
- GH distance provides reasonable framework for Shape Comparison: good theoretical properties.

Properties of GH distance:

1. Let (X, d_X) , (Y, d_Y) and (Z, d_Z) be metric spaces then

 $d_{\mathcal{GH}}(X,Y) \le d_{\mathcal{GH}}(X,Z) + d_{\mathcal{GH}}(Y,Z).$

- 2. If $d_{\mathcal{GH}}(X,Y) = 0$ and (X,d_X) , (Y,d_Y) are compact metric spaces, then (X,d_X) and (Y,d_Y) are isometric.
- 3. Let $\mathbb{X}_n = \{x_1, \dots, x_n\} \subset X$ be a finite subset of the compact metric space (X, d_X) . Then,

 $d_{\mathcal{GH}}(X, \mathbb{X}_n) \le d_{\mathcal{H}}(X, \mathbb{X}_n).$

4. For compact metric spaces (X, d_X) and (Y, d_Y) :

$$\frac{1}{2} |\operatorname{diam}(X) - \operatorname{diam}(Y)| \leq d_{\mathcal{GH}}(X, Y)$$
$$\leq \frac{1}{2} \max (\operatorname{diam}(X), \operatorname{diam}(Y))$$

In Euclidean spaces...

For $X, Y \subset \mathbb{R}^n$, we endow them with the Euclidean metric to form metric spaces $(X, \|\cdot\|)$ and $(Y, \|\cdot\|)$. Then, we have two possibilities:

 $d_{\mathcal{H},iso}^{\mathbb{R}^n}(X,Y)$ vs. $d_{\mathcal{GH}}(X,Y)$

In Euclidean spaces...

For $X, Y \subset \mathbb{R}^n$, we endow them with the Euclidean metric to form metric spaces $(X, \|\cdot\|)$ and $(Y, \|\cdot\|)$. Then, we have two possibilities:

$$\mathbf{EH} = d_{\mathcal{H},iso}^{\mathbb{R}^n}(X,Y) \quad \text{vs.} \quad d_{\mathcal{GH}}(X,Y) = \mathbf{GH}$$

- **EH** is the usual choice.. [GMO99]
- The works of [MS04,MS05] and [BBK06] raise the question of whether one could use the **GH** distance for matching sets in \mathbb{R}^n under Euclidean isometries
- Note that as n increases there may be some gain in using **GH** instead of **EH** (complexity of computing **GH** doesn't depend on n).
- Very important from Theoretical point of view: helps understanding more about the landscape of different metrics for shapes and their different properties and inter-relationships.

1. For all (compact) Euclidean metric spaces:

$\mathbf{GH} \leq \mathbf{EH}.$

2. Equality above doesn't hold in general: there exist sets in \mathbb{R}^n for which

$\mathbf{GH} < \mathbf{EH}.$

3. What about bounding $\mathbf{EH} \leq C \cdot \mathbf{GH}^t$ for some constant C = C(n) and some t > 0? In this respect, for any $\varepsilon > 0$, we find subsets of \mathbb{R}^2 for which

$$\mathbf{EH} \ge \sqrt{\varepsilon/2}$$
 and $\mathbf{GH} \le \varepsilon$

so t = 1 is not achievable in general!

$$\mathbf{GH} \le \mathbf{EH} \le C(n) \cdot \mathbf{GH}^{\frac{1}{2}}$$

1. For all (compact) Euclidean metric spaces:

```
\mathbf{GH} \leq \mathbf{EH}.
```

2. Equality above doesn't hold in general: there exist sets in \mathbb{R}^n for which

$\mathbf{GH} < \mathbf{EH}.$

3. What about bounding $\mathbf{EH} \leq C \cdot \mathbf{GH}^t$ for some constant C = C(n) and some t > 0? In this respect, for any $\varepsilon > 0$, we find subsets of \mathbb{R}^2 for which

$$\mathbf{EH} \ge \sqrt{\varepsilon/2}$$
 and $\mathbf{GH} \le \varepsilon$

so t = 1 is not achievable in general!

$$\mathbf{GH} \le \mathbf{EH} \le C(n) \cdot \mathbf{GH}^{\frac{1}{2}}$$

1. For all (compact) Euclidean metric spaces:

$\mathbf{GH} \leq \mathbf{EH}.$

2. Equality above doesn't hold in general: there exist sets in \mathbb{R}^n for which

$\mathbf{GH} < \mathbf{EH}.$

3. What about bounding $\mathbf{EH} \leq C \cdot \mathbf{GH}^t$ for some constant C = C(n) and some t > 0? In this respect, for any $\varepsilon > 0$, we find subsets of \mathbb{R}^2 for which

$$\mathbf{EH} \ge \sqrt{\varepsilon/2}$$
 and $\mathbf{GH} \le \varepsilon$

so t = 1 is not achievable in general!

$$\mathbf{GH} \le \mathbf{EH} \le C(n) \cdot \mathbf{GH}^{\frac{1}{2}}$$

1. For all (compact) Euclidean metric spaces:

$\mathbf{GH} \leq \mathbf{EH}.$

2. Equality above doesn't hold in general: there exist sets in \mathbb{R}^n for which

$\mathbf{GH} < \mathbf{EH}.$

3. What about bounding $\mathbf{EH} \leq C \cdot \mathbf{GH}^t$ for some constant C = C(n) and some t > 0? In this respect, for any $\varepsilon > 0$, we find subsets of \mathbb{R}^2 for which

$$\mathbf{EH} \ge \sqrt{\varepsilon/2}$$
 and $\mathbf{GH} \le \varepsilon$

so t = 1 is not achievable in general!

$$\mathbf{GH} \le \mathbf{EH} \le C(n) \cdot \mathbf{GH}^{\frac{1}{2}}$$

1. For all (compact) Euclidean metric spaces:

$\mathbf{GH} \leq \mathbf{EH}.$

2. Equality above doesn't hold in general: there exist sets in \mathbb{R}^n for which

$\mathbf{GH} < \mathbf{EH}.$

3. What about bounding $\mathbf{EH} \leq C \cdot \mathbf{GH}^t$ for some constant C = C(n) and some t > 0? In this respect, for any $\varepsilon > 0$, we find subsets of \mathbb{R}^2 for which

$$\mathbf{EH} \ge \sqrt{\varepsilon/2}$$
 and $\mathbf{GH} \le \varepsilon$

so t = 1 is not achievable in general!

4. In general, for all (compact) Euclidean metric spaces:

 $\mathbf{GH} \le \mathbf{EH} \le C(n) \cdot \mathbf{GH}^{\frac{1}{2}}$

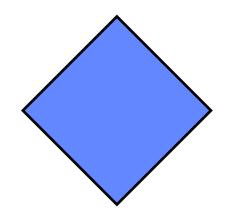
Background concepts

• Let E(n) denote the group of Euclidean isometries in \mathbb{R}^n .

•
$$\mathbf{EH} = d_{\mathcal{H},iso}^{\mathbb{R}^n}(X,Y)$$

 $:= \inf_{T \in E(n)} d_{\mathcal{H}}^{\mathbb{R}^n}(X,T(Y)).$

• **GH** admits several equivalent expressions:



Background concepts

• Let E(n) denote the group of Euclidean isometries in \mathbb{R}^n .

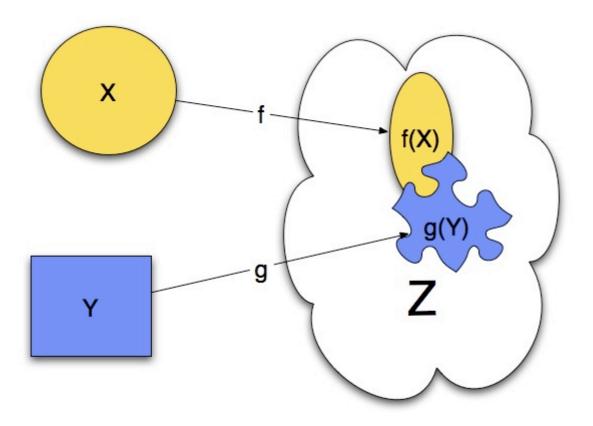
•
$$\mathbf{EH} = d_{\mathcal{H},iso}^{\mathbb{R}^n}(X,Y)$$

 $:= \inf_{T \in E(n)} d_{\mathcal{H}}^{\mathbb{R}^n}(X,T(Y)).$

• **GH** admits several equivalent expressions:

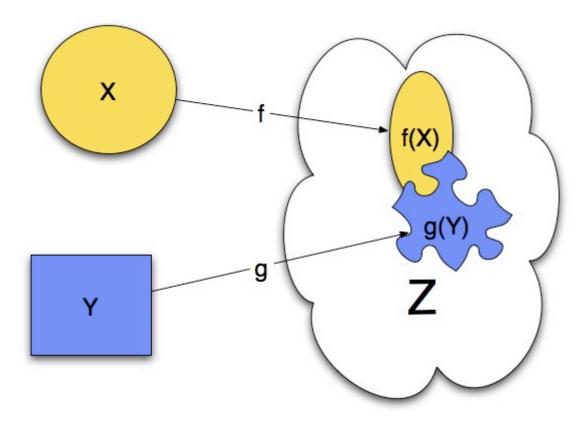
GH: original definition

$d_{\mathcal{GH}}(X,Y) = \inf_{Z,f,g} d_{\mathcal{H}}^Z(f(X),g(Y))$



GH: original definition

$d_{\mathcal{GH}}(X,Y) = \inf_{Z,f,g} d_{\mathcal{H}}^Z(f(X),g(Y))$



Notice that when X,Y are Euclidean, one can take $Z=\mathbb{R}^n$ and hence

 $\mathbf{GH}(X,Y) \le \mathbf{EH}(X,Y).$

GH: alternative expression

It is enough to consider $Z = X \sqcup Y$ and then we obtain

$$d_{\mathcal{GH}}(X,Y) = \inf_{d} d_{\mathcal{H}}^{(Z,d)}(X,Y)$$

where d is a metric on $X \sqcup Y$ that reduces to d_X and d_Y on $X \times X$ and $Y \times Y$, respectively. Denote by $\mathcal{D}(d_X, d_Y)$ the set of all such metrics.

$$\begin{array}{ccc} X & Y \\ X & \begin{pmatrix} d_X & \mathbf{D} \\ \mathbf{D}^T & d_Y \end{pmatrix} = d \end{array}$$

In other words: you need to **glue** X and Y in an optimal way: you need to minimize

$$J(\mathbf{D}) := \max(\max_{x} \min_{y} \mathbf{D}(x, y), \max_{y} \min_{x} \mathbf{D}(x, y)).$$

Note that **D** consists of $n_X \times n_Y$ positive reals that must satisfy $\sim n_X \cdot C_2^{n_Y} + n_Y \cdot C_2^{n_X}$ linear constraints.

GH: alternative expression

It is enough to consider $Z = X \sqcup Y$ and then we obtain

$$d_{\mathcal{GH}}(X,Y) = \inf_{d} d_{\mathcal{H}}^{(Z,d)}(X,Y)$$

where d is a metric on $X \sqcup Y$ that reduces to d_X and d_Y on $X \times X$ and $Y \times Y$, respectively. Denote by $\mathcal{D}(d_X, d_Y)$ the set of all such metrics.

$$\begin{array}{ccc} X & Y \\ X & \begin{pmatrix} d_X & \mathbf{D} \\ \mathbf{D}^T & d_Y \end{pmatrix} = d \end{array}$$

In other words: you need to **glue** X and Y in an optimal way: you need to minimize

$$J(\mathbf{D}) := \max(\max_{x} \min_{y} \mathbf{D}(x, y), \max_{y} \min_{x} \mathbf{D}(x, y)).$$

Note that **D** consists of $n_X \times n_Y$ positive reals that must satisfy $\sim n_X \cdot C_2^{n_Y} + n_Y \cdot C_2^{n_X}$ linear constraints.

GH: alternative expression

It is enough to consider $Z = X \sqcup Y$ and then we obtain

$$d_{\mathcal{GH}}(X,Y) = \inf_{d} d_{\mathcal{H}}^{(Z,d)}(X,Y)$$

where d is a metric on $X \sqcup Y$ that reduces to d_X and d_Y on $X \times X$ and $Y \times Y$, respectively. Denote by $\mathcal{D}(d_X, d_Y)$ the set of all such metrics.

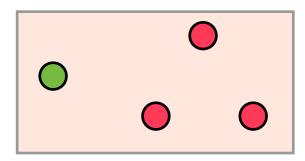
$$\begin{array}{ccc} X & Y \\ X & \begin{pmatrix} d_X & \mathbf{D} \\ \mathbf{D}^T & d_Y \end{pmatrix} = d \end{array}$$

In other words: you need to **glue** X and Y in an optimal way: you need to minimize

$$J(\mathbf{D}) := \max(\max_{x} \min_{y} \mathbf{D}(x, y), \max_{y} \min_{x} \mathbf{D}(x, y)).$$

Note that **D** consists of $n_X \times n_Y$ positive reals that must satisfy $\sim n_X \cdot C_2^{n_Y} + n_Y \cdot C_2^{n_X}$ linear constraints.

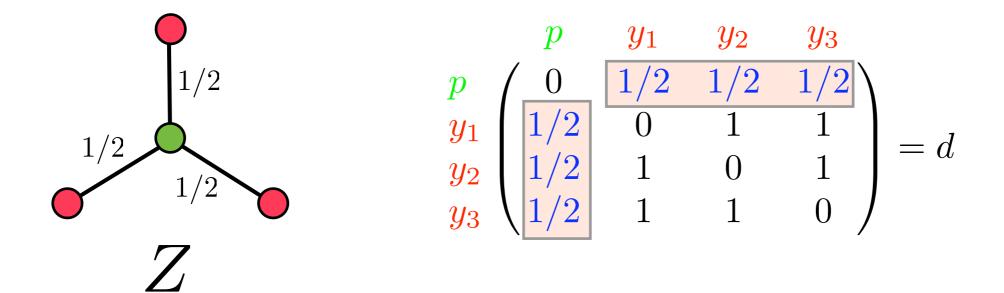
Question 1: Is EH = GH in general?



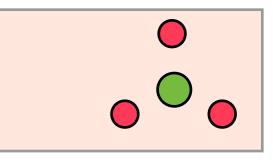
Answer is **no**.

Consider X and Y in \mathbb{R}^2 given by $X = \{p\}$ and $Y = \{y_1, y_2, y_3\}$, where y_i i = 1, 2, 3 are vertices of an equilateral triangle with side length 1. In this case

- $\mathbf{EH} = \frac{1}{\sqrt{3}}$. Indeed, the optimal Euclidean isometry takes p into the center of the triangle.
- $\mathbf{GH} = \frac{1}{2}$. Indeed, the optimal space Z is a tree-like metric space. Alternatively the optimal metric on $X \sqcup Y$ is



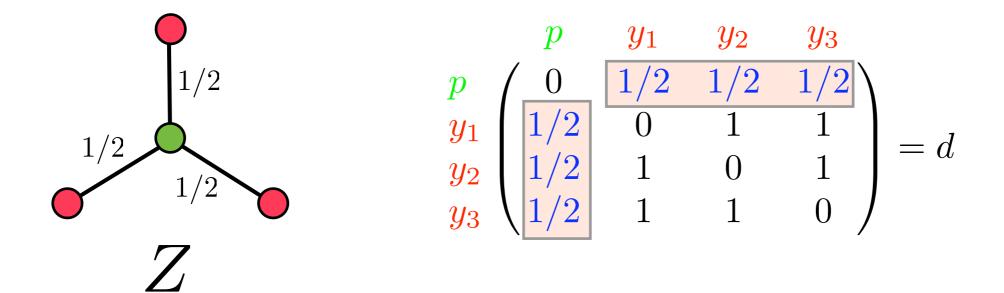
Question 1: Is EH = GH in general?

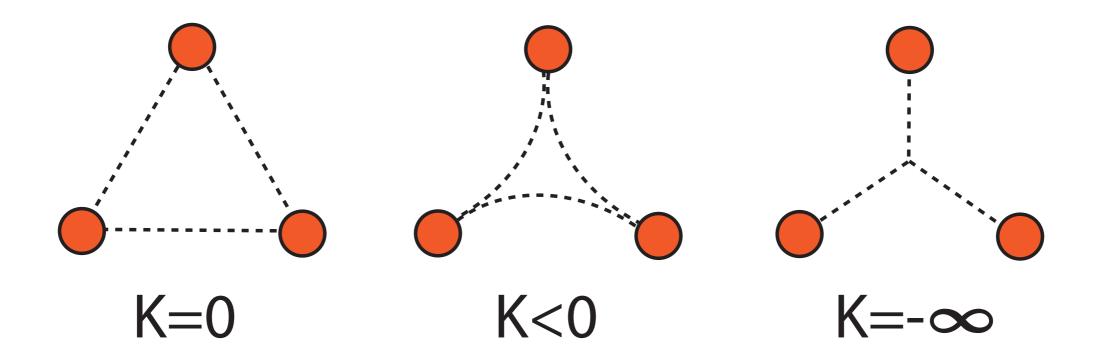


Answer is **no**.

Consider X and Y in \mathbb{R}^2 given by $X = \{p\}$ and $Y = \{y_1, y_2, y_3\}$, where y_i i = 1, 2, 3 are vertices of an equilateral triangle with side length 1. In this case

- $\mathbf{EH} = \frac{1}{\sqrt{3}}$. Indeed, the optimal Euclidean isometry takes p into the center of the triangle.
- $\mathbf{GH} = \frac{1}{2}$. Indeed, the optimal space Z is a tree-like metric space. Alternatively the optimal metric on $X \sqcup Y$ is

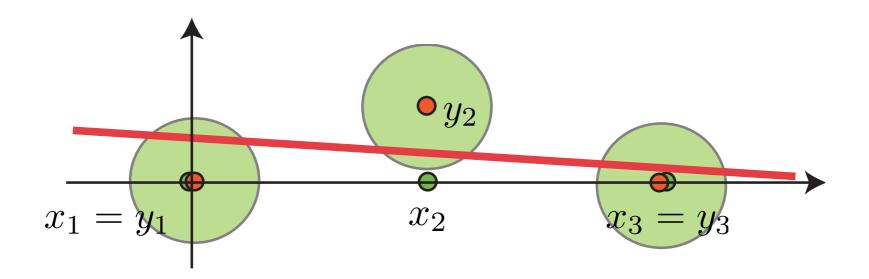




Question 2: What is the maximal t s.t. $\mathbf{EH} \leq C \cdot \mathbf{GH}^t$? Answer is $t \leq 1/2$.

Pick $\varepsilon > 0$. Consider X and Y as in the figure (X is in green, Y in red). The y-coordinate of y_2 equals $h := \sqrt{2\varepsilon}$.

- It is easy to check that $\mathbf{GH} \leq \varepsilon$.
- Let $\mathbf{EH} = \alpha$. Consider the light green balls of radius α around each y_i .
- Let T be the Euclidean isometry s.t. $d_{\mathcal{H}}^{\mathbb{R}^2}(T(X), Y) = \alpha$.
- T must map the x-axis into a line (the red line in the figure) intersecting the three balls (otherwise, one of the y_i wouldn't have a point in x within distance α). This forces $2\alpha \ge h$. This means, $\alpha \ge \sqrt{\varepsilon/2}$.
- We've found $\mathbf{GH} \leq \varepsilon$ and $\mathbf{EH} \geq \sqrt{\varepsilon/2}$.



Question 3: does t = 1/2 work in general?

Answer is **yes**!

Theorem 1. Let $X, Y \subset \mathbb{R}^n$ be compact. Then,

$$d_{\mathcal{GH}}(X,Y) \le d_{\mathcal{H},iso}^{\mathbb{R}^n}(X,Y) \le c_n \cdot M^{\frac{1}{2}} \cdot (d_{\mathcal{GH}}(X,Y))^{\frac{1}{2}}$$

where $M = \max(diam(X), diam(Y))$ and c_n is a constant that depends only on n.

Question 3: does t = 1/2 work in general? Answer is yes!

Theorem 1. Let $X, Y \subset \mathbb{R}^n$ be compact. Then,

$$d_{\mathcal{GH}}(X,Y) \le d_{\mathcal{H},iso}^{\mathbb{R}^n}(X,Y) \le c_n \cdot M^{\frac{1}{2}} \cdot (d_{\mathcal{GH}}(X,Y))^{\frac{1}{2}}$$

where $M = \max(diam(X), diam(Y))$ and c_n is a constant that depends only on n.

What is the source of the gap?

The problem is that we are allowing all the gluing metrics to be 'outside' of the set of metrics that can be *realized* in Euclidean spaces. In our first counterexample, d cannot be realized in any Euclidean space!

Closing the gap

Remember that

$$d_{\mathcal{GH}}(X,Y) = \inf_{d} d_{\mathcal{H}}^{(X \sqcup Y,d)}(X,Y)$$

where d is a metric on $X \sqcup Y$ that reduces to d_X and d_Y on $X \times X$ and $Y \times Y$, respectively. Denote by $\mathcal{D}(d_X, d_Y)$ the set of all such metrics.

$$\begin{array}{ccc} X & Y \\ X & \begin{pmatrix} d_X & \mathbf{D} \\ \mathbf{D}^T & d_Y \end{pmatrix} = d \end{array}$$

We have that d_X and d_Y are Euclidean.

Idea: Let's force d to be Euclidean as well. We need to be precise about what we mean by a Euclidean metric.

Definition 1. Let (Z,d) be a compact metric space. We say that the metric d is Euclidean if and only if there exist $d \in \mathbb{N}$ s.t. (Z,d) can be isometrically embedded into \mathbb{R}^n .

For a finite metric space (Z, d), let $Z = \{z_1, \ldots, z_\ell\}$ and $D^{(2)}$ be the matrix with elements $d^2(z_i, z_j)$. Let $\mathbf{1}_\ell = (1, 1, \ldots, 1)^T \in \mathbb{R}^\ell$ and \mathbf{I}_ℓ be the $\ell \times \ell$ identity matrix. Let $Q_\ell = \mathbf{I}_\ell - \frac{1}{\ell} \mathbf{1}_\ell$. Consider the map $\tau_\ell : \mathbb{R}^{\ell \times \ell} \to \mathbb{R}^{\ell \times \ell}$ given by $A \mapsto -\frac{1}{2} Q_\ell A Q_\ell$.

Proposition 1 (Blumenthal). A necessary and sufficient condition that a semimetric space $(Z,d), \#Z = \ell$, be isometrically embeddable in some \mathbb{R}^r $(r \in \mathbb{N})$ is that the matrix $\tau_{\ell}(D^{(2)})$ be positive semidefinite (PSD).

In the case of a finite Euclidean metric space $(Z, d), Z = \{z_1, \ldots, z_\ell\}$, one says that the matrix $d(z_i, z_j)$ is a Euclidean distance matrix (EDM).

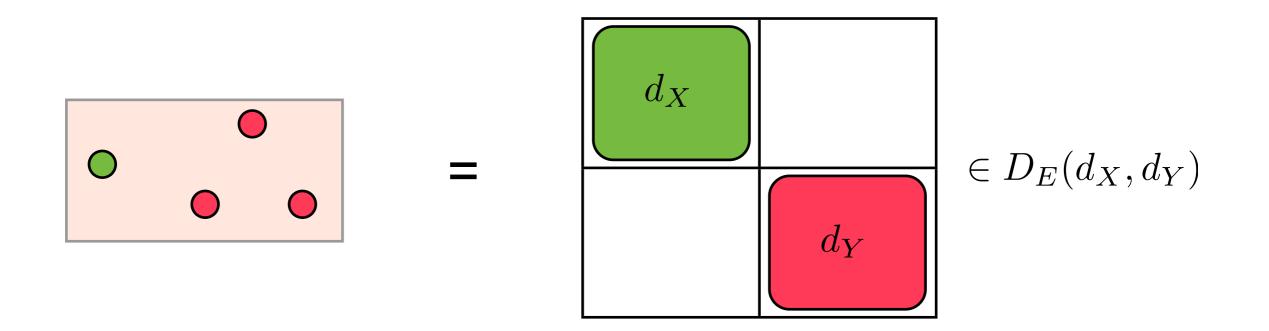
This gives us a direct *computational* way of checking whether a given distance matrix is an **EDM**.

For $X, Y \in \mathbb{R}^n$ let $\mathcal{D}_{\mathcal{E}}(X, Y)$ denote the set of metrics d on $X \sqcup Y$ such that d(x, x') = ||x - x'||, d(y, y') = ||y - y'|| for $x, x' \in X$ and $y, y' \in Y$, and d is *Euclidean*.

Let X and Y be *compact* subsets of \mathbb{R}^n endowed with the Euclidean metric. Consider the following *tentative* distance

$$d_{\mathcal{GH}}^E(X,Y) := \inf_{d \in \mathcal{D}_{\mathcal{E}}(X,Y)} d_{\mathcal{H}}^{(X \sqcup Y,d)}(X,Y)$$

Theorem 1. For $X, Y \subset \mathbb{R}^n$ compact, $d_{\mathcal{H},iso}^{\mathbb{R}^n}(X,Y) = d_{\mathcal{GH}}^E(X,Y)$.

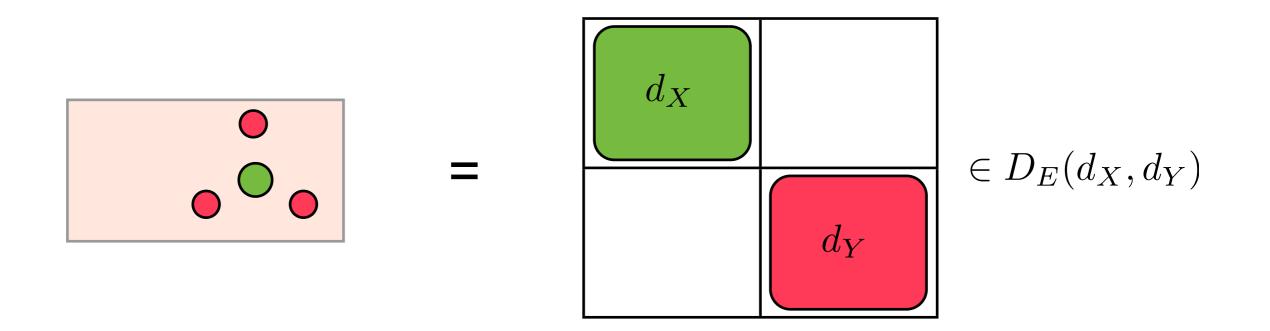


For $X, Y \in \mathbb{R}^n$ let $\mathcal{D}_{\mathcal{E}}(X, Y)$ denote the set of metrics d on $X \sqcup Y$ such that d(x, x') = ||x - x'||, d(y, y') = ||y - y'|| for $x, x' \in X$ and $y, y' \in Y$, and d is *Euclidean*.

Let X and Y be *compact* subsets of \mathbb{R}^n endowed with the Euclidean metric. Consider the following *tentative* distance

$$d_{\mathcal{GH}}^E(X,Y) := \inf_{d \in \mathcal{D}_{\mathcal{E}}(X,Y)} d_{\mathcal{H}}^{(X \sqcup Y,d)}(X,Y)$$

Theorem 1. For $X, Y \subset \mathbb{R}^n$ compact, $d_{\mathcal{H},iso}^{\mathbb{R}^n}(X,Y) = d_{\mathcal{GH}}^E(X,Y)$.

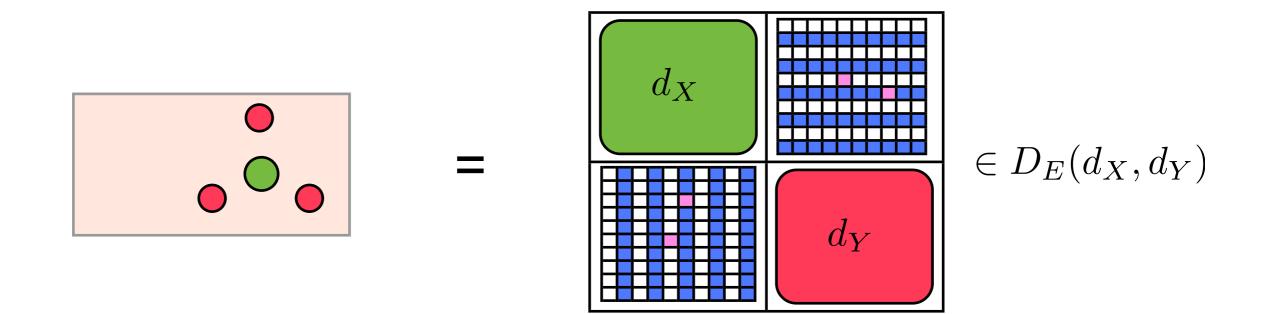


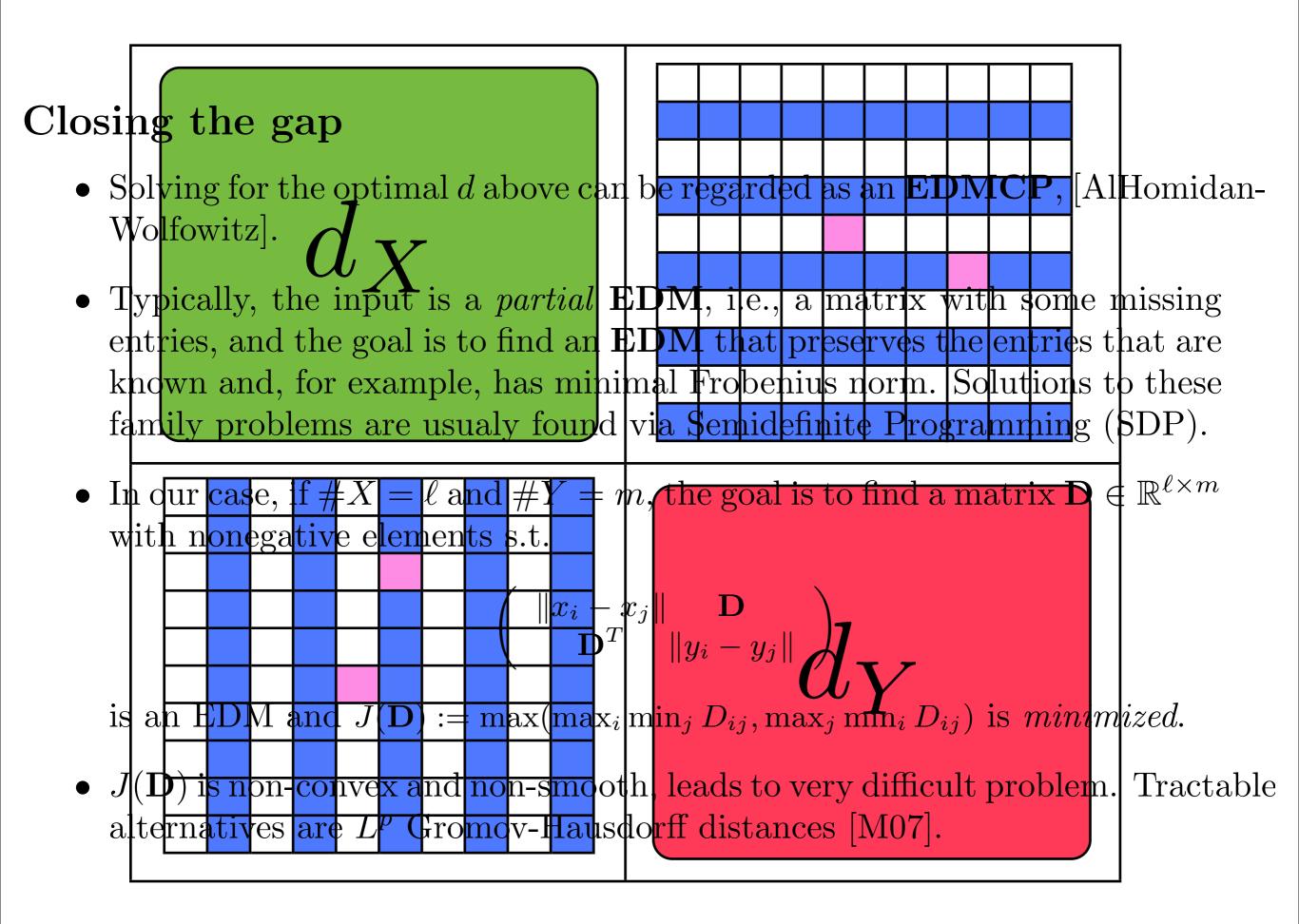
For $X, Y \in \mathbb{R}^n$ let $\mathcal{D}_{\mathcal{E}}(X, Y)$ denote the set of metrics d on $X \sqcup Y$ such that d(x, x') = ||x - x'||, d(y, y') = ||y - y'|| for $x, x' \in X$ and $y, y' \in Y$, and d is *Euclidean*.

Let X and Y be *compact* subsets of \mathbb{R}^n endowed with the Euclidean metric. Consider the following *tentative* distance

$$d_{\mathcal{GH}}^E(X,Y) := \inf_{d \in \mathcal{D}_{\mathcal{E}}(X,Y)} d_{\mathcal{H}}^{(X \sqcup Y,d)}(X,Y)$$

Theorem 1. For $X, Y \subset \mathbb{R}^n$ compact, $d_{\mathcal{H},iso}^{\mathbb{R}^n}(X,Y) = d_{\mathcal{GH}}^E(X,Y)$.





Closing the gap

- Solving for the optimal d above can be regarded as an **EDMCP**, [AlHomidan-Wolfowitz].
- Typically, the input is a *partial* **EDM**, i.e., a matrix with some missing entries, and the goal is to find an **EDM** that preserves the entries that are known and, for example, has minimal Frobenius norm. Solutions to these family problems are usually found via Semidefinite Programming (SDP).
- In our case, if $\#X = \ell$ and #Y = m, the goal is to find a matrix $\mathbf{D} \in \mathbb{R}^{\ell \times m}$ with nonegative elements s.t.

$$\left(\begin{array}{cc} \|x_i - x_j\| & \mathbf{D} \\ \mathbf{D}^T & \|y_i - y_j\| \end{array}\right)$$

is an EDM and $J(\mathbf{D}) := \max(\max_i \min_j D_{ij}, \max_j \min_i D_{ij})$ is minimized.

• $J(\mathbf{D})$ is non-convex and non-smooth, leads to very difficult problem. Tractable alternatives are L^p Gromov-Hausdorff distances [M07].

L^p - Gromov-Hausdorff distances in Euclidean spaces

- These distances [M07] provide a more general and more computationally tractable alternative than the standard **GH** distance.
- These distances are based on changing the Hausdorff part of the **GH** distance for the *Wasserstein* distance, a.k.a. Earth Mover's distance.
- In the context of Euclidean spaces, there are counterparts to **GH**, $d_{\mathcal{GH}}^E$ and **EH** distances.
- We've obtained a theoretical landscape parallel to that we've shown for **GH**.
- In the case of L^2 distances, the counterpart of $d_{\mathcal{GH}}^E$ we propose looking at is

$$\left(\min_{\mu,d}\sum_{x,y}d^2(x,y)\mu_{x,y}\right)^{1/2}$$

where μ is a linearly constrained variable (a measure coupling) and $d \in \mathcal{D}_E(d_X, d_Y)$. Since d must be Euclidean, this can be expressed as a PSD condition on the matrix $\tau((d^2(x, y)))$ that can be dealt with easily.

• This optimization problem is substantially easier than it's **GH** counterpart.

http://math.stanford.edu/~memoli

Bibliography

[AlHomidan-Wolkowicz] S. Al-Homidan and H.Wolkowicz. Approximate and exact completion problems for Euclidean distance matrices using semidefinite programming. Linear Algebra Appl., 406:109–141, 2005.

[Blumenthal] L. M. Blumenthal. Theory and applications of distance geometry. Second edition. Chelsea Publishing Co., New York, 1970.

[**BBK**] A. M. Bronstein, M. M. Bronstein, and R. Kimmel. Generalized multidimensional scaling: a framework for isometry-invariant partial surface matching. Proc. Natl. Acad. Sci. USA, 103(5):1168–1172 (electronic), 2006.

[Goodrich] M. Goodrich, J. Mitchell, and M. Orletsky. Approximate geometric pattern matching under rigid motions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 21(4):371–376, 1999.

[Gromov] M. Gromov. Metric structures for Riemannian and non-Riemannian spaces, volume 152 of Progress in Mathematics. Birkhauser Boston Inc., Boston, MA, 1999.

[Hutt] D. P. Huttenlocher, G. A. Klanderman, and W. J. Rucklidge. Comparing images using the hausdorff distance. IEEE Transactions on Pattern Analysis and Machine Intelligence, 15:9, 1993.

[M07] F.Memoli. On the use of gromov-hausdorff distances for shape comparison. In Proceedings of PBG 2007, Prague, Czech Republic, 2007.

[MS04] F. Memoli and G. Sapiro. Comparing point clouds. In SGP '04: Proceedings of the 2004 Eurographics/ACM SIGGRAPH symposium on Geometry processing, pages 32–40, New York, NY, USA, 2004. ACM.

[MS05] F. Memoli and G. Sapiro. A theoretical and computational framework for isometry invariant recognition of point cloud data. Found. Comput. Math., 5(3):313–347, 2005.