L^{p}-Grómov-Hausdorff distances for Shape Comparison

Facundo Mémoli
memoli@math.stanford.edu

The GH distance for Shape Comparison, [MS04,05]

- Regard shapes as (compact) metric spaces. Let \mathcal{X} denote set of all compact metric spaces. Define metric on \mathcal{X}, then $\left(\mathcal{X}, d_{\mathcal{G} \mathcal{H}}\right)$ is itself a metric space.
- The metric with which one endows the shapes depends on the desired invariance. For example, if invariance to
- rigid isometries is desired, use Euclidean distance.
- bends is desired, use "intrinsic" distance.
- GH distance provides reasonable framework for Shape Comparison: good theoretical properties.

Main Properties

(1.) Let $\left(X, d_{X}\right),\left(Y, d_{Y}\right)$ and $\left(Z, d_{Z}\right)$ be metric spaces then

$$
d_{\mathcal{G H}}(X, Y) \leq d_{\mathcal{G H}}(X, Z)+d_{\mathcal{G H}}(Y, Z) .
$$

2. If $d_{\mathcal{G H}}(X, Y)=0$ and $\left(X, d_{X}\right),\left(Y, d_{Y}\right)$ are compact metric spaces, then $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$ are isometric.
(3.) Let $\mathbb{X}_{n}=\left\{x_{1}, \ldots, x_{n}\right\} \subset X$ be a finite subset of the compact metric space $\left(X, d_{X}\right)$. Then,

$$
d_{\mathcal{G H}}\left(X, \mathbb{X}_{n}\right) \leq d_{\mathcal{H}}\left(X, \mathbb{X}_{n}\right) .
$$

4. For compact metric spaces $\left(X, d_{X}\right)$ and (Y, d_{Y}):

$$
\begin{aligned}
\frac{1}{2}|\operatorname{diam}(X)-\operatorname{diam}(Y)| & \leq d_{\mathcal{G H}}(X, Y) \\
& \leq \frac{1}{2} \max (\operatorname{diam}(X), \operatorname{diam}(Y))
\end{aligned}
$$

Stability

$$
\left|d_{\mathcal{G H}}(X, Y)-d_{\mathcal{G H}}\left(X_{n}, Y_{m}\right)\right| \leq r\left(X_{n}\right)+r\left(Y_{m}\right)
$$

for finite samplings $X_{n} \subset X$ and $Y_{m} \subset Y$, where $r\left(X_{n}\right)$ and $r\left(Y_{m}\right)$ are the covering radii.

Critique

- Was not able to show connections with (sufficiently many) pre-existing appraches
- Computationally hard: currently only two attempts have been made:
- [MS04,MS05] and [BBK06] only for surfaces.
- [MS05] gives probabilistic guarantees for estimator based on sampling parameters.
- Full generality leads to a hard combinatorial optimization problem: QAP.

Critique

- Was not able to show connections with (sufficiently many) pre-existing appraches
- Computationally hard: currently only two attempts have been made:
- [MS04,MS05] and [BBK06] only for surfaces.
- [MS05] gives probabilistic guarantees for estimator based on sampling parameters.
- Full generality leads to a hard combinatorial optimization problem: QAP.

Desiderata

- Obtain an L^{p} version of the GH distance that:
- retains theoretical underpinnings
- its implementation leads to easier (continuous, quadratic, with linear constraints) optimization problems
- can be related to pre-existing approaches (shape contexts, shape distributions, Hamza-Krim,..) via lower/upper bounds.

Gromov-Hausdorff

Gromov-Wasserstein

(Kantorovich, Rubinstein, Earth Mover's Distance, Mass Transportation)

correspondences and the Hausdorff distance

Definition [Correspondences]
For sets A and B, a subset $R \subset A \times B$ is a correspondence (between A and B) if and and only if

- $\forall a \in A$, there exists $b \in B$ s.t. $(a, b) \in R$
- $\forall b \in B$, there exists $a \in A$ s.t. $(a, b) \in R$

Let $\mathcal{R}(A, B)$ denote the set of all possible correspondences between sets A and B. Note that in the case $n_{A}=n_{B}$, correspondences are larger than bijections.

correspondences

Note that when A and B are finite, $R \in \mathcal{R}(A, B)$ can be represented by a matrix $\left(\left(r_{a, b}\right)\right) \in\{0,1\}^{n_{A} \times n_{B}}$ s.t.

$$
\begin{aligned}
& \sum_{a \in A} r_{a b} \geq 1 \quad \forall b \in B \\
& \sum_{b \in B} r_{a b} \geq 1 \quad \forall a \in A
\end{aligned}
$$

correspondences

Note that when A and B are finite, $R \in \mathcal{R}(A, B)$ can be represented by a matrix $\left(\left(r_{a, b}\right)\right) \in\{0,1\}^{n_{A} \times n_{B}}$ s.t.

$$
\begin{aligned}
& \sum_{a \in A} r_{a b} \geq 1 \quad \forall b \in B \\
& \sum_{b \in B} r_{a b} \geq 1 \quad \forall a \in A
\end{aligned}
$$

Proposition

Let (X, d) be a compact metric space and $A, B \subset X$ be compact. Then

$$
d_{\mathcal{H}}(A, B)=\inf _{R \in \mathcal{R}(A, B)}\|d\|_{L^{\infty}(R)}
$$

- Edges have weights: if $e=(i, j), w_{e}=d\left(a_{i}, b_{j}\right)$.
- Interpret A and B as two groups of people that know each other.
- Interpret the value of w_{e} as the degree of animosity between a_{i} and b_{j}.
- What is the subset L of edges that leaves no point in $A \cup B$ isolated that minimizes the maximal weight:

$$
\max _{e \in L} w_{e}
$$

that is

- We want minimize the maximal animosity.

correspondences and measure couplings

Let $\left(A, \mu_{A}\right)$ and $\left(B, \mu_{B}\right)$ be compact subsets of the compact metric space (X, d) and μ_{A} and μ_{B} be probability measures supported in A and B respectively.

Definition [Measure coupling] Is a probability measure μ on $A \times B$ s.t. (in the finite case this means $\left.\left(\left(\mu_{a, b}\right)\right) \in[0,1]^{n_{A} \times n_{B}}\right)$

- $\sum_{a \in A} \mu_{a b}=\mu_{B}(b) \forall b \in B$
- $\sum_{b \in B} \mu_{a b}=\mu_{A}(a) \forall a \in A$

Let $\mathcal{M}\left(\mu_{A}, \mu_{B}\right)$ be the set of all couplings of μ_{A} and μ_{B}. Notice that in the finite case, $\left(\left(\mu_{a, b}\right)\right)$ must satisfy $n_{A}+n_{B}$ linear constraints.

correspondences and measure couplings

Proposition [$(\mu \leftrightarrow R)$]

- Given $\left(A, \mu_{A}\right)$ and $\left(B, \mu_{B}\right)$, and $\mu \in \mathcal{M}\left(\mu_{A}, \mu_{B}\right)$, then

$$
R(\mu):=\operatorname{supp}(\mu) \in \mathcal{R}(A, B) .
$$

- König's Lemma. [gives conditions for $R \rightarrow \mu$]

Wasserstein distance

$$
\begin{gathered}
d_{\mathcal{H}}(A, B)=\inf _{R \in \mathcal{R}(A, B)}\|d\|_{L^{\infty}(R)} \\
\Downarrow(R \leftrightarrow \mu) \\
d_{\mathcal{W}, \infty}(A, B)=\inf _{\mu \in \mathcal{M}\left(\mu_{A}, \mu_{B}\right)}\|d\|_{L^{\infty}(R(\mu))} \\
\Downarrow\left(L^{\infty} \leftrightarrow L^{p}\right) \\
d_{\mathcal{W}, p}(A, B)=\inf _{\mu \in \mathcal{M}\left(\mu_{A}, \mu_{B}\right)}\|d\|_{L^{p}(A \times B, \mu)}
\end{gathered}
$$

Wasserstein distance

$$
d_{\mathcal{H}}(A, B)=\inf _{R \in \mathcal{R}(A, B)}\|d\|_{L^{\infty}(R)}
$$

$$
\Downarrow(R \leftrightarrow \mu)
$$

$$
d_{\mathcal{W}, \infty}(A, B)=\inf _{\mu \in \mathcal{M}\left(\mu_{A}, \mu_{B}\right)}\|d\|_{L^{\infty}(R(\mu))}
$$

$$
\Downarrow\left(L^{\infty} \leftrightarrow L^{p}\right)
$$

$$
d_{\mathcal{W}, p}(A, B)=\inf _{\mu \in \mathcal{M}\left(\mu_{A}, \mu_{B}\right)}\|d\|_{L^{p}(A \times B, \mu)}
$$

Wasserstein distance

$$
d_{\mathcal{H}}(A, B)=\inf _{R \in \mathcal{R}(A, B)}\|d\|_{L^{\infty}(R)}
$$

$$
\Downarrow(R \leftrightarrow \mu)
$$

$$
\begin{aligned}
d_{\mathcal{W}, \infty}(A, B) & =\inf _{\mu \in \mathcal{M}\left(\mu_{A}, \mu_{B}\right)}\|d\|_{L^{\infty}(R(\mu))} \\
& \Downarrow\left(L^{\infty} \leftrightarrow L^{p}\right) \\
d_{\mathcal{W}, p}(A, B) & =\inf _{\mu \in \mathcal{M}\left(\mu_{A}, \mu_{B}\right)}\|d\|_{L^{p}(A \times B, \mu)}
\end{aligned}
$$

Wasserstein distance

$$
\begin{gathered}
d_{\mathcal{H}}(A, B)=\inf _{R \in \mathcal{R}(A, B)}\|d\|_{L^{\infty}(R)} \\
\Downarrow(R \leftrightarrow \mu) \\
d_{\mathcal{W}, \infty}(A, B)=\inf _{\mu \in \mathcal{M}\left(\mu_{A}, \mu_{B}\right)}\|d\|_{L^{\infty}(R(\mu))} \\
\Downarrow\left(L^{\infty} \leftrightarrow L^{p}\right)
\end{gathered}
$$

$$
d_{\mathcal{W}, p}(A, B)=\inf _{\mu \in \mathcal{M}\left(\mu_{A}, \mu_{B}\right)}\|d\|_{L^{p}(A \times B, \mu)}
$$

The plan

GH distance

GH: definition

$$
d_{\mathcal{G H}}(X, Y)=\inf _{Z, f, g} d_{\mathcal{H}}^{Z}(f(X), g(Y))
$$

It is enough to consider $Z=X \sqcup Y$ and then we obtain

$$
d_{\mathcal{G H}}(X, Y)=\inf _{d} d_{\mathcal{H}}^{(Z, d)}(X, Y)
$$

Recall:
Proposition
Let (X, d) be a compact metric space and $A, B \subset X$ be compact. Then

$$
d_{\mathcal{H}}(A, B)=\inf _{R \in \mathcal{R}(A, B)}\|d\|_{L^{\infty}(R)}
$$

correspondences and GH distance

The GH distance between $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$ admits the following expression:

$$
d_{\mathcal{G} \mathcal{H}}^{(1)}(X, Y)=\inf _{d \in \mathcal{D}\left(d_{X}, d_{Y}\right)} \inf _{R \in \mathcal{R}(X, Y)}\|d\|_{L^{\infty}(R)}
$$

where $\mathcal{D}\left(d_{X}, d_{Y}\right)$ is a metric on $X \sqcup Y$ that reduces to d_{X} and d_{Y} on $X \times X$ and $Y \times Y$, respectively.

$$
\begin{gathered}
X \\
X \\
Y \\
Y
\end{gathered}\left(\begin{array}{cc}
Y \\
d_{X} & \mathbf{D} \\
\mathbf{D}^{T} & d_{Y}
\end{array}\right)=d
$$

In other words: you need to glue X and Y in an optimal way. Note that D consists of $n_{X} \times n_{Y}$ positive reals that must satisfy $\sim n_{X} \cdot C_{2}^{n_{Y}}+n_{Y} \cdot C_{2}^{n_{X}}$ linear constraints.

Another expression for the GH distance

For compact spaces $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$ let

$$
d_{\mathcal{G H}}^{(2)}(X, Y)=\frac{1}{2} \inf _{R} \max _{(x, y),\left(x^{\prime}, y^{\prime}\right) \in R}\left|d_{X}\left(x, x^{\prime}\right)-d_{Y}\left(y, y^{\prime}\right)\right|
$$

We write, compactly,

$$
d_{\mathcal{G} \mathcal{H}}^{(2)}(X, Y)=\frac{1}{2} \inf _{R}\left\|d_{X}-d_{Y}\right\|_{L^{\infty}(R \times R)}
$$

Equivalence thm:

Theorem [Kalton-Ostrovskii]
For all X, Y compact,

Relaxing the notion of correspondence

Now, one works with mm-spaces: triples (X, d, ν) where (X, d) is a compact metric space and ν is a Borel probability measure. Two mm-spaces are isomorphic iff there exists isometry $\Phi: X \rightarrow Y$ s.t. $\mu_{X}\left(\Phi^{-1}(B)\right)=\mu_{Y}(B)$ for all measurable $B \subset Y$.

Now, one works with mm-spaces: triples (X, d, ν) where (X, d) is a compact metric space and ν is a Borel probability measure. Two mm-spaces are isomorphic iff there exists isometry $\Phi: X \rightarrow Y$ s.t. $\mu_{X}\left(\Phi^{-1}(B)\right)=\mu_{Y}(B)$ for all measurable $B \subset Y$.

The first option, proposed and analyzed by K.L Sturm [St06], reads

$$
d_{\mathcal{G} \mathcal{W}, p}^{(1)}(X, Y)=\inf _{d \in \mathcal{D}\left(d_{X}, d_{Y}\right)} \inf _{\mu \in \mathcal{M}\left(\mu_{X}, \mu_{Y}\right)}\left(\sum_{x, y} d^{p}(x, y) \mu_{x, y}\right)^{1 / p}
$$

Now, one works with mm-spaces: triples (X, d, ν) where (X, d) is a compact metric space and ν is a Borel probability measure. Two mm-spaces are isomorphic iff there exists isometry $\Phi: X \rightarrow Y$ s.t. $\mu_{X}\left(\Phi^{-1}(B)\right)=\mu_{Y}(B)$ for all measurable $B \subset Y$.

The first option, proposed and analyzed by K.L Sturm [St06], reads

$$
d_{\mathcal{G} W, p}^{(1)}(X, Y)=\inf _{d \in \mathcal{D}\left(d_{X}, d_{Y}\right)} \inf _{\mu \in \mathcal{M}\left(\mu_{X}, \mu_{Y}\right)}\left(\sum_{x, y} d^{p}(x, y) \mu_{x, y}\right)^{1 / p}
$$

The second option reads [M07]

$$
d_{\mathcal{G} \mathcal{W}, p}^{(2)}(X, Y)=\inf _{\mu \in \mathcal{M}\left(\mu_{X}, \mu_{Y}\right)}\left(\sum_{x, y} \sum_{x^{\prime}, y^{\prime}}\left|d_{X}\left(x, x^{\prime}\right)-d_{Y}\left(y, y^{\prime}\right)\right|^{p} \mu_{x, y} \mu_{x^{\prime}, y^{\prime}}\right)^{1 / p}
$$

The first option,

$$
d_{\mathcal{G} \mathcal{W}, p}^{(1)}(X, Y)=\inf _{d \in \mathcal{D}\left(d_{X}, d_{Y}\right)} \inf _{\mu \in \mathcal{M}\left(\mu_{X}, \mu_{Y}\right)}\left(\sum_{x, y} d^{p}(x, y) \mu_{x, y}\right)^{1 / p}
$$

requires $\mathbf{2}\left(\mathbf{n}_{\mathbf{X}} \times \mathbf{n}_{\mathbf{Y}}\right)$ variables and $\mathbf{n}_{\mathbf{X}}+\mathbf{n}_{\mathbf{Y}}$ plus $\sim \mathbf{n}_{\mathbf{Y}} \cdot \mathbf{C}_{\mathbf{2}}^{\mathbf{n}_{\mathbf{X}}}+\mathbf{n}_{\mathbf{X}} \cdot \mathbf{C}_{\mathbf{2}}^{\mathbf{n}_{\mathbf{Y}}}$ linear constraints. When $p=1$ it yields a bilinear optimization problem.

Our second option,

$$
d_{\mathcal{G} \mathcal{W}, p}^{(2)}(X, Y)=\inf _{\mu \in \mathcal{M}\left(\mu_{X}, \mu_{Y}\right)}\left(\sum_{x, y} \sum_{x^{\prime}, y^{\prime}}\left|d_{X}\left(x, x^{\prime}\right)-d_{Y}\left(y, y^{\prime}\right)\right|^{p} \mu_{x, y} \mu_{x^{\prime}, y^{\prime}}\right)^{1 / p}
$$

requires $\mathbf{n}_{\mathbf{X}} \times \mathbf{n}_{\mathbf{Y}}$ variables and $\mathbf{n}_{\mathbf{X}}+\mathbf{n}_{\mathbf{Y}}$ linear constraints. It is a quadratic (generally non-convex :-() optimization problem (with linear and bound constraints) for all p.

Then one would argue for using $d_{\mathcal{G} \mathcal{W}, p}^{(2)}$.

Numerical Implementation

The numerical implementation of the second option leads to solving a QOP with linear constraints:

$$
\begin{gathered}
\min _{U} \frac{1}{2} U^{T} \boldsymbol{\Gamma} U \\
\text { s.t. } U_{i j} \in[0,1], U \mathbf{A}=\mathbf{b}
\end{gathered}
$$

where $U \in \mathbb{R}^{n_{X} \times n_{Y}}$ is the unrolled version of $\mu, \boldsymbol{\Gamma} \in \mathbb{R}^{n_{X} \times n_{Y} \times n_{X} \times n_{Y}}$ is the unrolled version of $\Gamma_{X, Y}$ and \mathbf{A} and \mathbf{b} encode the linear constrains $\mu \in \mathcal{M}\left(\mu_{X}, \mu_{Y}\right)$.

This can be approached for example via gradient descent. The QOP is non-convex in general!

Initialization is done via solving one of the several lower bounds (discussed ahead). All these lower bounds lead to solving LOPs.

For details see [M07].

Can GW (1) be equal to GW (2)?

- Using the same proof as in the Kalton-Ostrovskii Thm., one can prove that

$$
d_{\mathcal{G W}, \infty}^{(1)}=d_{\mathcal{G W}, \infty}^{(2)} .
$$

- Also, it is obvious that for all $p \geq 1$

$$
d_{\mathcal{G} \mathcal{W}, p}^{(1)} \geq d_{\mathcal{G} \mathcal{L}, p}^{(2)} .
$$

- But the equality does not hold in general. One counterexample is as follows: take $X=\left(\Delta_{n-1},\left(\left(d_{i j}=1\right)\right),\left(\nu_{i}=1 / n\right)\right)$ and $Y=(\{q\},((0)),(1))$. Then, for $p \in[1, \infty)$

$$
d_{\mathcal{G W}, p}^{(1)}(X, Y)=\frac{1}{2}>\frac{1}{2}\left(\frac{n-1}{n}\right)^{1 / p}=d_{\mathcal{G W}, p}^{(2)}(X, Y)
$$

- Furthermore, these two (tentative) distances are not equivalent!! This forces us to analyze them separately. The delicate step is proving that $\operatorname{dist}(X, Y)=0$ implies $X \simeq Y$.
- K. T. Sturm has analyzed GW (1).

$$
\left\{\Delta_{n}\right\}_{n=1}^{\infty}
$$

Properties of $d_{\mathcal{G W}, p}^{(2)}$

1. Let X, Y and Z mm-spaces then

$$
d_{\mathcal{G W}, p}(X, Y) \leq d_{\mathcal{G} \mathcal{W}, p}(X, Z)+d_{\mathcal{G} \mathcal{W}, p}(Y, Z)
$$

2. If $d_{\mathcal{G} \mathcal{W}, p}(X, Y)=0$ then X and Y are isomorphic.
3. Let $\mathbb{X}_{n}=\left\{x_{1}, \ldots, x_{n}\right\} \subset X$ be a subset of the mm-space (X, d, ν). Endow \mathbb{X}_{n} with the metric d and a prob. measure ν_{n}, then

$$
d_{\mathcal{G} \mathcal{W}, p}\left(X, \mathbb{X}_{n}\right) \leq d_{\mathcal{W}, p}\left(\nu, \nu_{n}\right)
$$

The parameter p is not superfluous

The simplest lower bound one has is based on the triangle inequality plus

$$
2 \cdot d_{\mathcal{G W}, p}^{(2)}(X,\{q\})=\left(\int_{X \times X} d_{X}\left(x, x^{\prime}\right) \nu(d x) \nu\left(d x^{\prime}\right)\right)^{1 / p}:=\operatorname{diam}_{p}(X)
$$

That is

$$
d_{\mathcal{G W}, p}^{(2)}(X, Y) \geq \frac{1}{2}\left|\operatorname{diam}_{p}(X)-\operatorname{diam}_{p}(Y)\right|
$$

For example, when $X=S^{n}$ (spheres with uniform measure and usual intrinsic metric):

- $p=\infty$ gives $\operatorname{diam}_{\infty}\left(S^{n}\right)=\pi$ for all $n \in \mathbb{N}$
- $p=1$ gives $\operatorname{diam}_{1}\left(S^{n}\right)=\pi / 2$ for all $n \in \mathbb{N}$
- $p=2$ gives $\operatorname{diam}_{2}\left(S^{1}\right)=\pi / \sqrt{3}$ and $\operatorname{diam}_{2}\left(S^{2}\right)=\sqrt{\pi^{2} / 2-2}$

Upper and Lower bounds Let (X, d, ν) be an mm-space.

- Shape Distributions [Osada-et-al]: construct histogram of interpoint distances, $F_{X}: \mathbb{R} \rightarrow[0,1]$ given by

$$
t \mapsto \nu \otimes \nu\left(\left\{\left(x, x^{\prime}\right) \mid d\left(x, x^{\prime}\right) \leq t\right\}\right)
$$

- Shape Contexts [SC]: at each $x \in X$, construct histogram of $d(x, \cdot)$, $C_{X}: X \times \mathbb{R} \rightarrow[0,1]$ given by

$$
(x, t) \mapsto \nu\left(\left\{x^{\prime} \mid d\left(x, x^{\prime}\right) \leq t\right\}\right)
$$

- Hamza-Krim [HK]: at each $x \in X$ compute mean distance to rest of points, $H_{X}: X \rightarrow \mathbb{R}$

$$
x \mapsto\left(\int_{X} d^{p}\left(x, x^{\prime}\right) \nu\left(d x^{\prime}\right)\right)^{1 / p}
$$

- Wasserstein under Euclidean isometries: consider $X, Y \subset \mathbb{R}^{d}$ and compute

$$
d_{\mathcal{W}, p}^{i s o}(X, Y)=\inf _{T} d_{\mathcal{W}, p}(X, T(Y))
$$

- Gromov-Hausdorff distance [MS04],[MS05]

Upper and Lower bounds Let (X, d, ν) be an mm-space.

- Shape Distributions [Osada-et-al]: construct histogram of interpoint distances, $F_{X}: \mathbb{R} \rightarrow[0,1]$ given by

$$
t \mapsto \nu \otimes \nu\left(\left\{\left(x, x^{\prime}\right) \mid d\left(x, x^{\prime}\right) \leq t\right\}\right)
$$

- Shape Contexts [SC]: at each $x \in X$, construct histogram of $d(x, \cdot)$, $C_{X}: X \times \mathbb{R} \rightarrow[0,1]$ given by

$$
(x, t) \mapsto \nu\left(\left\{x^{\prime} \mid d\left(x, x^{\prime}\right) \leq t\right\}\right)
$$

- Hamza-Krim [HK]: at each $x \in X$ compute mean distance to rest of points, $H_{X}: X \rightarrow \mathbb{R}$

$$
x \mapsto\left(\int_{X} d^{p}\left(x, x^{\prime}\right) \nu\left(d x^{\prime}\right)\right)^{1 / p}
$$

- Wasserstein under Euclidean isometries: consider $X, Y \subset \mathbb{R}^{d}$ and compute

$$
d_{\mathcal{W}, p}^{i s o}(X, Y)=\inf _{T} d_{\mathcal{W}, p}(X, T(Y))
$$

- Gromov-Hausdorff distance [MS04],[MS05]

Upper and Lower bounds Let (X, d, ν) be an mm-space.

- Shape Distributions [Osada-et-al]: construct histogram of interpoint distances, $F_{X}: \mathbb{R} \rightarrow[0,1]$ given by

$$
t \mapsto \nu \otimes \nu\left(\left\{\left(x, x^{\prime}\right) \mid d\left(x, x^{\prime}\right) \leq t\right\}\right)
$$

- Shape Contexts [SC]: at each $x \in X$, construct histogram of $d(x, \cdot)$, $C_{X}: X \times \mathbb{R} \rightarrow[0,1]$ given by

$$
(x, t) \mapsto \nu\left(\left\{x^{\prime} \mid d\left(x, x^{\prime}\right) \leq t\right\}\right)
$$

- Hamza-Krim [HK]: at each $x \in X$ compute mean distance to rest of points, $H_{X}: X \rightarrow \mathbb{R}$

$$
x \mapsto\left(\int_{X} d^{p}\left(x, x^{\prime}\right) \nu\left(d x^{\prime}\right)\right)^{1 / p}
$$

- Wasserstein under Euclidean isometries: consider $X, Y \subset \mathbb{R}^{d}$ and compute

$$
d_{\mathcal{W}, p}^{i s o}(X, Y)=\inf _{T} d_{\mathcal{W}, p}(X, T(Y))
$$

- Gromov-Hausdorff distance [MS04],[MS05]

Upper and Lower bounds Let (X, d, ν) be an mm-space.

- Shape Distributions [Osada-et-al]: construct histogram of interpoint distances, $F_{X}: \mathbb{R} \rightarrow[0,1]$ given by

$$
t \mapsto \nu \otimes \nu\left(\left\{\left(x, x^{\prime}\right) \mid d\left(x, x^{\prime}\right) \leq t\right\}\right)
$$

- Shape Contexts [SC]: at each $x \in X$, construct histogram of $d(x, \cdot)$, $C_{X}: X \times \mathbb{R} \rightarrow[0,1]$ given by

$$
(x, t) \mapsto \nu\left(\left\{x^{\prime} \mid d\left(x, x^{\prime}\right) \leq t\right\}\right)
$$

- Hamza-Krim [HK]: at each $x \in X$ compute mean distance to rest of points, $H_{X}: X \rightarrow \mathbb{R}$

$$
x \mapsto\left(\int_{X} d^{p}\left(x, x^{\prime}\right) \nu\left(d x^{\prime}\right)\right)^{1 / p}
$$

- Wasserstein under Euclidean isometries: consider $X, Y \subset \mathbb{R}^{d}$ and comput

$$
d_{\mathcal{W}, p}^{i s o}(X, Y)=\inf _{T} d_{\mathcal{W}, p}(X, T(Y))
$$

- Gromov-Hausdorff distance [MS04],[MS05]

Some Experiments

Some experimentation: ~ 70 models in 7 classes. Classification using 1-nn: $P_{e} \sim 2 \%$. Hamza-Krim gave $\sim 15 \%$ on same db with all same parameters etc.

Discussion

- Implementation is easy: Gradient descent or alternate opt.
- Solving lower bounds yields a seed for the gradient descent. These lower bounds are compatible with the metric in the sense that a layered recognition system is possible: given two shapes, (1) solve for a LB (this gives you a μ), if value small enough, then (2) solve for GW using the μ as seed for your favorite iterative algorithm.
- Easy extension to partial matching.
- Interest in relating GH/GW ideas to other methods in the literature. Interrelating methods is important also for applications: when confronted with N methods, how do they compare to each other? which one is better for the situation at hand?
- Latest developments:
- Partial matching [M08-partial].
- Euclidean case [M08-euclidean].
- Persistent Topology based methods (Frosini et al., Carlsson et al.)
- No difference between continuous and discrete. Probability measures take care of the 'transition'.

Bibliography

[BBI] Burago, Burago and Ivanov. A course on Metric Geometry. AMS, 2001
[EK] A. Elad (Elbaz) and R. Kimmel. On bending invariant signatures for surfaces, IEEE Trans. on PAMI, 25(10):1285-1295, 2003.
[BBK] A. M. Bronstein, M. M. Bronstein, and R. Kimmel. Generalized multidimensional scaling: a framework for isometry-invariant partial surface matching. Proc. Natl. Acad. Sci. USA, 103(5):1168-1172 (electronic), 2006.
[HK] A. Ben Hamza, Hamid Krim: Probabilistic shape descriptor for triangulated surfaces. ICIP (1) 2005: 1041-1044
[Osada-et-al] Robert Osada, Thomas A. Funkhouser, Bernard Chazelle, David P. Dobkin: Matching 3D Models with Shape Distributions. Shape Modeling International 2001: 154-166
[SC] S. Belongie and J. Malik (2000). "Matching with Shape Contexts". IEEE Workshop on Contentbased Access of Image and Video Libraries (CBAIVL2000).
[Goodrich] M. Goodrich, J. Mitchell, and M. Orletsky. Approximate geometric pattern matching under rigid motions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 21(4):371-376, 1999.
[M08-partial] F.Memoli. Lp Gromov-Hausdorff distances for partial shape matching, preprint.
[M08-euclidean]F. Mémoli. Gromov-Hausdorff distances in Euclidean spaces. NORDIA-CVPR-2008.
[M07] F.Memoli. On the use of gromov-hausdorff distances for shape comparison. In Proceedings of PBG 2007, Prague, Czech Republic, 2007.
[MS04] F. Memoli and G. Sapiro. Comparing point clouds. In SGP '04: Proceedings of the 2004 Eurographics/ACM SIGGRAPH symposium on Geometry processing, pages 32-40, New York, NY, USA, 2004. ACM.
[MS05] F. Memoli and G. Sapiro. A theoretical and computational framework for isometry invariant recognition of point cloud data. Found. Comput. Math., 5(3):313-347, 2005.
http://math.stanford.edu/~ memoli

