Gromov-Hausdorff stable signatures for shapes using persistence

joint with F. Chazal, D. Cohen-Steiner, L. Guibas and S. Oudot

Goal

- Shape discrimination is a very important problem in several fields.
- Isometry invariant shape discrimination has been approached with different tools, mostly via computation and comparison of invariant signatures, [HK03,Osada-02,Fro90,SC-00].
- The Gromov-Hausdorff distance (and certain variants) provides a rigorous and well motivated framework for studying shape matching under invariances [MS04,MS05,M07,M08].
- However, its direct computation leads to NP hard problems (BQAP: bottleneck quadratic assignment problems).

- Most of the effort has gone into finding lower bounds for the GH distance that use informative invariant signatures and lead to easier optimization problems [M07,M08].
- Using persistent topology [ELZ00], we obtain a new family of signatures and prove that they are stable w.r.t the GH distance: i.e., we obtain lower bounds for the GH distance!
- These lower bounds:
- perform very well in practical application of shape discrimination.
- lead to BAPs (bottleneck assignment problems) which can be solved in polynomial time.

visual summary

visual summary

visual summary

visual summary

- \mathcal{M} : collection of all shapes (finite metric spaces).
- \mathcal{D} : collection of all signatures (persistence diagrams).

shapes/spaces

$$
\left(\mathcal{M}, d_{\mathcal{G H}}\right)
$$

signatures (persistence diagrams)

$$
\left(\mathcal{D}, d_{B}^{\infty}\right)
$$

- \mathcal{M} : collection of all shapes (finite metric spaces).
- \mathcal{D} : collection of all signatures (persistence diagrams).

shapes/spaces

$\left(D_{h}, h \in \mathcal{H}\right.$
signatures (persistence diagrams)
X, Y

- \mathcal{M} : collection of all shapes (finite metric spaces).
- \mathcal{D} : collection of all signatures (persistence diagrams).

shapes/spaces

$\left(D_{h}, h \in \mathcal{H}\right.$
signatures (persistence diagrams)

$$
X, Y
$$

$$
D_{h}(X), D_{h}(Y) \quad h \in \mathcal{H}
$$

- M: collection of all shapes (finite metric spaces).
- \mathcal{D} : collection of all signatures (persistence diagrams).

shapes/spaces

$D_{h}, h \in \mathcal{H}$
signatures (persistence diagrams)

$$
\left(\mathcal{D}, d_{B}^{\infty}\right)
$$

X, Y

$$
D_{h}(X), D_{h}(Y)
$$

$$
h \in \mathcal{H}
$$

$d_{\mathcal{G H}}(X, Y)$

- M: collection of all shapes (finite metric spaces).
- \mathcal{D} : collection of all signatures (persistence diagrams).

$$
\left.\begin{array}{c}
\text { shapes/spaces } \\
\left(\mathcal{M}, d_{\mathcal{G H}}\right)
\end{array}\right) \xrightarrow{D_{h}, h \in \mathcal{H}} \begin{gathered}
\text { signatures (persistence diagrams) } \\
\left(\mathcal{D}, d_{B}^{\infty}\right)
\end{gathered}
$$

X, Y

$$
D_{h}(X), D_{h}(Y)
$$

$$
h \in \mathcal{H}
$$

- \mathcal{M} : collection of all shapes (finite metric spaces).
- \mathcal{D} : collection of all signatures (persistence diagrams).

shapes/spaces
 $\left(\mathcal{M}, d_{\mathcal{G H}}\right)$
 signatures (persistence diagrams)
 $$
\left(\mathcal{D}, d_{B}^{\infty}\right)
$$

X, Y

$$
D_{h}(X), D_{h}(Y) \quad h \in \mathcal{H}
$$

$d_{\mathcal{G}}{ }^{-1}(X, Y)$

$$
d_{B}^{\infty}\left(D_{h}(X), D_{h}(Y)\right)
$$

- \mathcal{M} : collection of all shapes (finite metric spaces).
- \mathcal{D} : collection of all signatures (persistence diagrams).

shapes/spaces
 $\left(\mathcal{M}, d_{\mathcal{G H}}\right)$
 signatures (persistence diagrams)
 $$
\left(\mathcal{D}, d_{B}^{\infty}\right)
$$

X, Y

$$
D_{h}(X), D_{h}(Y) \quad h \in \mathcal{H}
$$

$d_{\mathcal{G H}}(X, Y)$

\geqslant

$$
d_{B}^{\infty}\left(D_{h}(X), D_{h}(Y)\right)
$$

Shapes as metric spaces

Shapes as metric spaces

$$
\left(\begin{array}{ccccc}
0 & d_{12}^{\prime} & d_{13}^{\prime} & d_{14}^{\prime} & \cdots \\
d_{12}^{\prime} & 0 & d_{23}^{\prime} & d_{24}^{\prime} & \cdots \\
d_{13}^{\prime} & d_{23}^{\prime} & 0 & d_{34}^{\prime} & \cdots \\
d_{14}^{\prime} & d_{24}^{\prime} & d_{34}^{\prime} & 0 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

$$
\left(\begin{array}{ccccc}
0 & d_{12} & d_{13} & d_{14} & \ldots \\
d_{12} & 0 & d_{23} & d_{24} & \ldots \\
d_{13} & d_{23} & 0 & d_{34} & \ldots \\
d_{14} & d_{24} & d_{34} & 0 & \ldots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

then use Gromov-Hausdorff distance..

Choice of the metric: geodesic vs Euclidean

Invariance to isometric deformations (change in pose)

Invariance to isometric deformations (change in pose)

geodesic distance remains approximately constant

Invariance to isometric deformations (change in pose)

$\left(\begin{array}{ccccc}0 & d_{12} & d_{13} & d_{14} & \ldots \\ d_{12} & 0 & d_{23}^{\prime} & d_{24} & \ldots \\ d_{13} & d_{23} & 0 & d_{34} & \ldots \\ d_{14} & d_{24} & d_{34} & 0 & \ldots \\ \vdots & \vdots & \vdots & \vdots & \ddots\end{array}\right) \simeq\left(\begin{array}{ccccc}0 & d_{12}^{\prime} & d_{13}^{\prime} & d_{14}^{\prime} & \ldots \\ d_{12}^{\prime} & 0 & d_{23}^{\prime} & d_{24}^{\prime} & \ldots \\ d_{13}^{\prime} & d_{23}^{\prime} & 0 & d_{34}^{\prime} & \ldots \\ d_{14}^{\prime} & d_{24}^{\prime} & d_{34}^{\prime} & 0 & \ldots \\ \vdots & \vdots & \vdots & \vdots & \ddots\end{array}\right)$
geodesic distance remains approximately constant

Definition [Correspondences]

For finite sets A and B, a subset $C \subset A \times B$ is a correspondence (between A and B) if and and only if

- $\forall a \in A$, there exists $b \in B$ s.t. $(a, b) \in R$
- $\forall b \in B$, there exists $a \in A$ s.t. $(a, b) \in R$

Let $\mathcal{C}(A, B)$ denote all possible correspondences between sets A and B.

Definition [Correspondences]

For finite sets A and B, a subset $C \subset A \times B$ is a correspondence (between A and B) if and and only if

- $\forall a \in A$, there exists $b \in B$ s.t. $(a, b) \in R$
- $\forall b \in B$, there exists $a \in A$ s.t. $(a, b) \in R$

Let $\mathcal{C}(A, B)$ denote all possible correspondences between sets A and B.

0	1	1	0	0	1	1
1	1	0	1	0	1	1
1	0	1	0	0	1	0
0	1	0	1	1	0	1
1	0	1	1	0	1	0

Definition [Correspondences]

For finite sets A and B, a subset $C \subset A \times B$ is a correspondence (between A and B) if and and only if

- $\forall a \in A$, there exists $b \in B$ s.t. $(a, b) \in R$
- $\forall b \in B$, there exists $a \in A$ s.t. $(a, b) \in R$

Let $\mathcal{C}(A, B)$ denote all possible correspondences between sets A and B.

0	1	1	0	0	1	1
1	1	0	1	0	1	1
1	0	1	0	0	1	0
0	1	0	1	1	0	1
1	0	1	1	0	1	0

Definition [Correspondences]

For finite sets A and B, a subset $C \subset A \times B$ is a correspondence (between A and B) if and and only if

- $\forall a \in A$, there exists $b \in B$ s.t. $(a, b) \in R$
- $\forall b \in B$, there exists $a \in A$ s.t. $(a, b) \in R$

Let $\mathcal{C}(A, B)$ denote all possible correspondences between sets A and B.

Definition. [BBI] For finite metric spaces $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$, define the Gromov-Hausdorff distance between them by

$$
d_{\mathcal{G H}}(X, Y)=\frac{1}{2} \min _{C} \max _{(x, y),\left(x^{\prime}, y^{\prime}\right) \in C}\left|d_{X}\left(x, x^{\prime}\right)-d_{Y}\left(y, y^{\prime}\right)\right|
$$

Definition. [BBI] For finite metric spaces $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$, define the Gromov-Hausdorff distance between them by

$$
d_{\mathcal{G} \mathcal{H}}(X, Y)=\frac{1}{2} \min _{C} \max _{(x, y),\left(x^{\prime}, y^{\prime}\right) \in C}\left|d_{X}\left(x, x^{\prime}\right)-d_{Y}\left(y, y^{\prime}\right)\right|
$$

Construction of our signatures

- Our signatures take the form of persistence diagrams: we capture certain topological and metric information from the shape.
- First example: construction based on Rips filtrations: Let $\left(X, d_{X}\right)$ be a shape.
- Let $K_{d}(X)$ be the d-dimensional full simplicial complex on X.
- To each $\sigma=\left[x_{0}, x_{1}, \ldots, x_{k}\right] \in K_{d}(X)$ assign its filtration time

$$
F(\sigma):=\frac{1}{2} \max _{i, j} d_{X}\left(x_{i}, x_{j}\right)
$$

- This gives rise to a filtration $\left(K_{d}(X), F\right)$.
- Apply persistence algorithm [ELZ00] to summarize topological information in the filtration and obtain persistence diagram.
- Persistence diagrams are colored multi-subsets of the extended real plane.. can also be represented as barcodes.
- Let \mathcal{D} denote the collection of all persistence diagrams. Compare two different persistence diagrams with bottleneck distance \Longrightarrow view $\left(\mathcal{D}, d_{B}^{\infty}\right)$ as a metric space.

- Persistence diagrams are colored multi-subsets of the extended real plane.. can also be represented as barcodes.
- Let \mathcal{D} denote the collection of all persistence diagrams. Compare two different persistence diagrams with bottleneck distance \Longrightarrow view $\left(\mathcal{D}, d_{B}^{\infty}\right)$ as a metric space.

Example: Rips filtration on a torus

Example: Rips filtration on a torus

Our signatures: more richness

- Let's assume that in there is also a function defined on the shape: $\left(X, d_{X}, f_{X}\right)$. Then, we redefine the filtration values of $\sigma=\left[x_{0}, x_{1}, \ldots, x_{k}\right]$

$$
F(\sigma)=\max \left(\frac{1}{2} \max _{i, j} d_{X}\left(x_{i}, x_{j}\right), \max _{i} f_{X}\left(x_{i}\right)\right)
$$

- Again, this gives rise to a filtration: $\left(K_{d}(X), F\right) \Longrightarrow$ use persistence algorithm to obtain a persistence diagram.
- This increases discrimination power!
- We denote by \mathcal{H} a family of maps that attach a function to a given finite metric space.
- Then, for each $h \in \mathcal{H}$, we denote by $D_{h}(X)$ the persistence diagram arising from the filtration above. This constitutes our family projection onto \mathcal{D}.

Example (Eccentricity). To each finite metric space (X, d_{X}) one can assign the eccentricity function:

$$
\operatorname{ecc}_{X}(x)=\max _{x^{\prime} \in X} d_{X}\left(x, x^{\prime}\right)
$$

$h \in \mathcal{H}$

shapes/spaces

$$
\left(\mathcal{M}, d_{\mathcal{G H}}\right)
$$

signatures (persistence diagrams)

$$
\left(\mathcal{D}, d_{B}^{\infty}\right)
$$

$h \in \mathcal{H}$

shapes/spaces $\left(\mathcal{M}, d_{\mathcal{G H}}\right)$ signatures (persistence diagrams)
 $$
\left(\mathcal{D}, d_{B}^{\infty}\right)
$$

$$
X, Y
$$

$h \in \mathcal{H}$

shapes/spaces

$$
\left(\mathcal{M}, d_{\mathcal{G H}}\right)
$$

signatures (persistence diagrams)

$$
\left(\mathcal{D}, d_{B}^{\infty}\right)
$$

X, Y
$D_{h}(X), D_{h}(Y)$

$h \in \mathcal{H}$

shapes/spaces $\left(\mathcal{M}, d_{\mathcal{G H}}\right)$

signatures (persistence diagrams)

$$
\left(\mathcal{D}, d_{B}^{\infty}\right)
$$

X, Y
$D_{h}(X), D_{h}(Y)$
$d_{\mathcal{G H}}(X, Y)$

$h \in \mathcal{H}$

shapes/spaces $\left(\mathcal{M}, d_{\mathcal{G H}}\right)$

signatures (persistence diagrams)

$$
\left(\mathcal{D}, d_{B}^{\infty}\right)
$$

X, Y
$D_{h}(X), D_{h}(Y)$

$h \in \mathcal{H}$

shapes/spaces $\left(\mathcal{M}, d_{\mathcal{G H}}\right)$

 signatures (persistence diagrams)$$
\left(\mathcal{D}, d_{B}^{\infty}\right)
$$

$$
X, Y
$$

$$
D_{h}(X), D_{h}(Y)
$$

$d_{\mathcal{G}}{ }^{2}(X, Y)$

$$
d_{B}^{\infty}\left(D_{h}(X), D_{h}(Y)\right)
$$

Theorem (stability of our signatures). For all $X, Y \in \mathcal{M}$,

$$
d_{\mathcal{G H}}(X, Y) \geqslant C(h) \cdot d_{B}^{\infty}\left(D_{h}(X), D_{h}(Y)\right) .
$$

Theorem (stability of our signatures). For all $X, Y \in \mathcal{M}$,

$$
d_{\mathcal{G H}}(X, Y) \geqslant \quad C(h) \cdot d_{B}^{\infty}\left(D_{h}(X), D_{h}(Y)\right) .
$$

Theorem (stability of our signatures). For all $X, Y \in \mathcal{M}$,

$$
d_{\mathcal{G H}}(X, Y) \geqslant \sup _{h \in \mathcal{H}} C(h) \cdot d_{B}^{\infty}\left(D_{h}(X), D_{h}(Y)\right) .
$$

Theorem (stability of our signatures). For all $X, Y \in \mathcal{M}$,

$$
d_{\mathcal{G H}}(X, Y) \geqslant \sup _{h \in \mathcal{H}} C(h) \cdot d_{B}^{\infty}\left(D_{h}(X), D_{h}(Y)\right) .
$$

Remark.

- Proof relies on properties of the GH distance and new results on the stability of persistence diagrams [CCGGOo9].
- For a given h, the computation leads to a $\boldsymbol{B A P}$ which can be solved in polynomial time.
- There are adaptations one can do in practice to speed up, see paper.
- One can obtain more generality and discrimination power by working in the class of $m m$-spaces: shapes are represented as triples $\left(X, d_{X}, \mu_{X}\right)$ where μ_{X} are weights assigned to each point see [M07] and paper.
- Our results include stability of Rips persistence diagrams.

Some experiments

- Sumner database: 62 shapes total, 6 classes. Used graph estimate of the geodesic distance. Number of vertices ranged from 7 K to 30 K .

Some experiments

- Sumner database: 62 shapes total, 6 classes. Used graph estimate of the geodesic distance. Number of vertices ranged from 7 K to 30 K .
- Subsampled shapes and retained subsets of 300 points (farthest point sampling). Normalized distance matrices.
- Used the mm-space representation of shapes: weights were based on Voronoi regions.
- Used several functions $\pm \lambda \cdot h$ for λ in a finite subset of scales.
- Obtained 4% (or 2%) classification error in a 1-nn classification problem.

Discussion

- Summary of our proposal:
- Use the metric (or mm-space) representation of shapes.
- Formulate the shape matching problem using the Gromov-Hausdorff distance.
- Compute our signatures for shapes.
- Solve the BAP lower bounds: computationally easy! By our theorem, the computed quantities give lower bounds for the GH distance.
- Implications and Future directions:
- We do not need a mesh- general: can be applied to any dataset.
- We obtain stability of Rips persistence diagrams.
- Richness of the family \mathcal{H} ? how close can I get to the GH distance?
- Local signatures: more discrimination.
- Extension to partial shape matching: which (local) signatures are useful for this?

Acknowledgements

- ONR through grant N00014-09-1-0783
- NSF through grants ITR 0205671, FRG 0354543 and FODAVA 808515
- NIH through grant GM- 072970,
- DARPA through grant HR0011-05-1-0007.
- INRIA-Stanford associated TGDA team.

Bibliography
[BBI] Burago, Burago and Ivanov. A course on Metric Geometry. AMS, 2001
[HK-03] A. Ben Hamza, Hamid Krim: Probabilistic shape descriptor for triangulated surfaces. ICIP (1) 2005: 1041-1044
[Osada-02] Robert Osada, Thomas A. Funkhouser, Bernard Chazelle, David P. Dobkin: Matching 3D Models with/Shape Distributions. Shape Modeling International 2001: 154-166
[SC-00] S. Belongie and J. Malik (2000). "Matching with Shape Contexts". IEEE Workshop on Contentbased Access of Image and Video Libraries (CBAIVL-2000).
[CCGMO09] Chazal, Cohen-Steiner, Guibas, Memoli, Oudot. Gromov-Hausdorff stable signatures for shapes using persistence. SGP 2009.
[CCGGO09] Chazal, Cohen-Steiner, Guibas, Glissee, Oudot. Proximity of persistence modules and their diagrams. Proc. 25th ACM Symp. Comp. Geom., 2009.
[M08] F. Mémoli. Gromov-Hausdorff distances in Euclidean spaces. NORDIA-CVPR-2008.
[M07] F.Mémoli. On the use of gromov-hausdorff distances for shape comparison. In Proceedings of PBG 2007, Prague, Czech Republic, 2007.
[MS04] F. Mémoli and G. Sapiro. Comparing point clouds. In SGP '04: Proceedings of the 2004 Eurographics/ACM SIGGRAPH symposium on Geometry processing, pages 32-40, New York, NY, USA, 2004. ACM.
[MS05] F. Mémoli and G. Sapiro. A theoretical and computational framework for isometry invariant recognition of point cloud data. Found. Comput. Math., 5(3):313-347, 2005.

Let $X_{1}, X_{2} \subset Z$ be two different samples of the same shape Z, and Y another shape then

$$
\left|d_{\mathcal{G H}}\left(X_{1}, Y\right)-d_{\mathcal{G H}}\left(X_{2}, Y\right)\right| \leqslant d_{\mathcal{G H}}\left(X_{1}, X_{2}\right) \leqslant r_{1}+r_{2}
$$

