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Clustering

• Clustering plays a central role in Data Analysis. It can give useful infor-
mation about the structure of the data.

• Not much known about theoretical properties of clustering methods. Which
methods are stable?

• In practice, when dealing with large datasets, one is forced to subsample
the data: clustering the whole dataset is infeasible. How do the answers
based on two different subsamples compare? Can I guarantee that we
obtain similar answers when these subsamples are similar ?

• I’ll describe work we’ve done in the last 3 years [CM08,CM09-um,CM-
IFCS-09].
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Standard Clustering

In this context, given a finite metric space (X, d), a clustering method f returns
a partition of X:

f(X, d) ∈ P(X).

Hierarchical Clustering

Given a finite metric space (X, d), a clustering method f returns a nested family
of partitions, or dendrogram (a.k.a. persistent set) of X:

f(X, d) ∈ D(X)

where D(X) = {(X, θ)| θ : [0,∞)→ P(X)} s.t.

1. θ(0) = {{x1}, . . . , {xn}}.

2. There exists t0 s.t. θ(t) is the single block partition for all t ≥ t0.

3. If r ≤ s then θ(r) refines θ(s).

4. For all r there exists ε > 0 s.t. θ(r) = θ(t) for t ∈ [r, r + ε].
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θ(3) = {{7}, {4, 6, 5, 2, 3, 1}, {8, 9, 10}}
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Standard Clustering: desirable properties

f(X, d) = Γ ∈ P(X).

• Scale Invariance: For all α > 0, f(X, α · d) = Γ.

• Richness: Fix finite set X. Require that for all Γ ∈ P(X), there exists
dΓ, metric on X s.t. f(X, dΓ) = Γ.

• Consistency: Let Γ = {B1, . . . , B!}. Let d̂ be any metric on X s.t.

1. for all x, x′ ∈ Bα, d̂(x, x′) ≤ d(x, x′) and

2. for all x ∈ Bα, x′ ∈ Bα′ , α #= α′, d̂(x, x′) ≥ d(x, x′).

Then, f(X, d̂) = Γ.
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Kleinberg’s Theorem: bad news

Theorem 1. There is no standard clustering algorithm satisfying scale invari-
ance, richness and consistency.

7
Friday, December 11, 2009



Kleinberg’s Theorem: bad news

Theorem 1. There is no standard clustering algorithm satisfying scale invari-
ance, richness and consistency.

Comments

• This is one more reason why one may feel that it is more sensible to look
at hierarchical clustering.

• Sometimes datasets have multiscale structure, so standard clustering may
not be applicable.

• So we now concentrate on hierarchical clustering methods. We wil prove
a theorem in the spirit of Kleinberg’s but instead of non-existence, we’ll
obtain uniqueness.
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Hierarchical Clustering

We deal with agglomerative HC. For a finite metric space (X, d), its separation
is

sep(X, d) = min
x!=x′

d(x, x′).

• The idea is to start with the partition of X into singletons and then begin
agglomerating blocks according to some rule.

• Well known methods/rules are those given by single, average and com-
plete linkage.

• Continue agglomerating until you are left with one single block.

• Record the values of the linkage parameter for which there are mergings
and obtain a hierarchical decomposition of X, i.e. a dendrogram over X.
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x 1 x 2 x 3 x 4

x 1 0 r 1 r 3 r 3
x 2 r 1 0 r 3 r 3
x 3 r 3 r 3 0 r 2
x 4 r 3 r 3 r 2 0

From Dendrograms to Ultrametrics
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HC methods: reformulation in terms of ultrametrics

• An ultrametric u on a set X is a function u : X X R s.t.

– u x, x 0 if and only if x x .
– u x, x u x , x .
– max u x, x , u x , x u x, x for all x, x , x X.

• Let U X denote the collection of all ultrametrics on the set X.

• It turns out that ultrametrics and dendrograms are equivalent.

Theorem. For any given finite set X, there exists a bijection
Ψ : D X U X such that

x, x B θ t Ψ θ x, x t

for all dendrograms θ.
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Hierarchical clustering: formulation

We represent dendrograms (= rooted trees) as ultrametric spaces: (X, u) is an
ultrametric space if and only if for all x, x′, x′′ ∈ X,

max(u(x, x′), u(x′, x′′)) ≥ u(x, x′′).

Let X = #n≥1Xn denote set of all finite metric spaces and U = #n≥1Un all finite
ultrametric spaces. Then, a hierarchical clustering method can be regarded as
a map

T : X → U

s.t. Xn % (X, d) &→ (X,u) ∈ Un.
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Hierarchical clustering: formulation

We represent dendrograms (= rooted trees) as ultrametric spaces: (X, u) is an
ultrametric space if and only if for all x, x′, x′′ ∈ X,

max(u(x, x′), u(x′, x′′)) ≥ u(x, x′′).

Let X = #n≥1Xn denote set of all finite metric spaces and U = #n≥1Un all finite
ultrametric spaces. Then, a hierarchical clustering method can be regarded as
a map

T : X → U

s.t. Xn % (X, d) &→ (X,u) ∈ Un.

Remark. The interpretation is that u x, x measures the effort or cost of
merging x and x into the same cluster.
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Example: measuring distance between dendrograms

One of the consequences of the flexibility offered by the ultrametric representa-
tion of dendrograms is that one can now define some useful notions of distance
between dendrgrams. Consider for example the case when α and β are two
dendrograms over a given set X. Then, the condition that

max
x,x

Ψ α x, x Ψ β x, x η

translates into the fact that the points at which x and x merge are within η of
eachother.

max
i

ri ri η
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Canonical construction

SL HC can be proved to be equivalent to the maximal subdominant ultra-
metric: T ∗ : X → U given by T ∗(X, d) = (X, u∗) where

u∗(x, x′) := min
{

max
0≤i≤n−1

d(xi, xi+1); x = x0, x1, . . . , xn = x′
}

.

14
Friday, December 11, 2009



Canonical construction

SL HC can be proved to be equivalent to the maximal subdominant ultra-
metric: T ∗ : X → U given by T ∗(X, d) = (X, u∗) where

u∗(x, x′) := min
{

max
0≤i≤n−1

d(xi, xi+1); x = x0, x1, . . . , xn = x′
}

.

Indeed, one can prove that

Proposition. Let X, d be any finite metric space and write T X, d X, u .
Then, the dendrogram Ψ 1 u is equal to the one produced by SL HC applied
to X, d .
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Theorem 1. Let T be a clustering method s.t.

1. T ({p, q},
(

0 δ
δ 0

)
) = ({p, q},

(
0 δ
δ 0

)
) for all δ > 0.

2. For all X, Y ∈ X and φ : X → Y s.t. dX(x, x′) ≥ dY (φ(x), φ(x′)),

uX(x, x′) ≥ uY (φ(x), φ(x′))

for all x, x′ ∈ X, where T (X, dX) = (X,uX) and T (Y, dY ) = (Y, uY ).

3. For all (X, d) ∈ X ,

u(x, x′) ≥ sep(X, d) for all x $= x′ ∈ X

where T (X, d) = (X,u).

Then T = T ∗.

A characterization theorem for SL, [CM08], [CM09-um]
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Condition I:

for all δ > 0

Interpretation of the conditions of the theorem
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Standard Clustering: desirable properties

f(X, d) = Γ ∈ P(X).

• Scale Invariance: For all α > 0, f(X, α · d) = Γ.

• Richness: Fix finite set X. Require that for all Γ ∈ P(X), there exists
dΓ, metric on X s.t. f(X, dΓ) = Γ.

• Consistency: Let Γ = {B1, . . . , B!}. Let d̂ be any metric on X s.t.

1. for all x, x′ ∈ Bα, d̂(x, x′) ≤ d(x, x′) and

2. for all x ∈ Bα, x′ ∈ Bα′ , α #= α′, d̂(x, x′) ≥ d(x, x′).

Then, f(X, d̂) = Γ.
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Condition II

Let X, Y X and φ : X Y s.t. dX x, x dY φ x , φ x for all x, x X.
Then

uX x, x uY φ x , φ x for all x, x X.

This means roughly that decreasing the distances has the effect of reducing
the cost of merging points.

Cf. Kleinberg’s consistency property.

X, dX
T !!

φ

""

X, uX

φ

""
Y, dY

T !! Y, uY

(1)

(this would be called functoriality)
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Condition II

Let X, Y X and φ : X Y s.t. dX x, x dY φ x , φ x for all x, x X.
Then

uX x, x uY φ x , φ x for all x, x X.

This means roughly that decreasing (not reducing) the distances has the
effect of reducing (not increasing) the cost of merging points.

Condition III

u x, x sep X, d for all x, x X.

This means roughly that the cost of merging to points has to be at least the
separation of the space.
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sep X, d
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Theorem 1. Let T be a clustering method s.t.

1. T ({p, q},
(

0 δ
δ 0

)
) = ({p, q},

(
0 δ
δ 0

)
) for all δ > 0.

2. For all X, Y ∈ X and φ : X → Y s.t. dX(x, x′) ≥ dY (φ(x), φ(x′)),

uX(x, x′) ≥ uY (φ(x), φ(x′))

for all x, x′ ∈ X, where T (X, dX) = (X,uX) and T (Y, dY ) = (Y, uY ).

3. For all (X, d) ∈ X ,

u(x, x′) ≥ sep(X, d) for all x $= x′ ∈ X

where T (X, d) = (X,u).

Then T = T ∗.

A characterization theorem for SL, [CM08], [CM09-um]
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Two other aspects of our work

Stability

Convergence
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Stability properties of HC methods

• CL and AL are not stable!!

• SL is stable.
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Proposition 1. For any finite metric spaces (X, dX) and (Y, dY )

dGH((X, dX), (Y, dY )) ≥ dGH(T ∗(X, dX), T ∗(Y, dY )).

Moral: metrically similar subsets of my data will yield similar clustering re-
sults, when the clustering method is SL.

Stability of SL HC, [CM08], [CM09-um]
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Proposition 1. For any finite metric spaces (X, dX) and (Y, dY )

dGH((X, dX), (Y, dY )) ≥ dGH(T ∗(X, dX), T ∗(Y, dY )).

Moral: metrically similar subsets of my data will yield similar clustering re-
sults, when the clustering method is SL.

Consequence: Convergence

Stability of SL HC, [CM08], [CM09-um]
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The Gromov-Hausdorff distance

• It is well studied and well understood notion of distance between metric
spaces.

• It is insensitive to relabelling (actually to isometries)

• We view dendrogram as (ultra) metric spaces we can use the GH dis-
tance to compare dendrograms.

• Roughly the definition is the following: dGH X,Y η if and only if there
exist maps f : X Y and g : Y X with the property that

dX x, x dY f x , f x η for all x, x X

and
dY y, y dX g y , g y η for all y, y Y .
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The Gromov-Hausdorff distance: dendrograms

In terms of dendrograms,

dGH Ψ θX ,Ψ θY η

means that there exist f and g s.t.

• two points x, x fall in the same same block of θX t implies that f x and
f x fall in the same block of θY t for some t t η, t η .

• two points y, y fall in the same same block of θY t implies that g y and
g y fall in the same block of θX t for some t t η, t η .
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Another aspect of our work: convergence

Say you are given finitely many random i.i.d. samples Xn x1, x2, . . . , xn

from a metric space Z, dZ , where each xi is distributed according to a prob-
ability measure µ compactly supported on Z. Then, compute θXn the SL
dendrogram of Xn.

The question is: what does θXn converge to (if at all)?

We answer this question in our work and generalize a classical result by
Hartigan regarding the properties of SL. Namely, we prove that

P lim
n

θXn θµ 1

for some dendrogram θµ that captures the multiscale structure of supp µ .
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Discussion

• SL HC is stable and enjoys all nice properties but it is derided by practi-
cioners because of its insensitivity to density: chaining effect.

• AL, CL do exhibit sensitivity to density, yet they are theoretically unsound

– The standard version: because it is not well behaved under permu-
tations.

– The ”fixed” version: because it is unstable!

• As a solution we propose to look at two-parameter clustering: look at
certain two-dimensional analogues of dendrograms [CM-IFCS-09].

• Another line of work: study different trade-offs in the properties required
from standard clustering.

• The underlying concepts in our work are functoriality and metric ge-
ometry.
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