Some ideas for formalizing clustering schemes

Gunnar Carlsson and Facundo Mémoli

memoli@math.stanford.edu

http://comptop.stanford.edu
http://math.stanford.edu/~memoli

NIPS 2009

Clustering

- Clustering plays a central role in Data Analysis. It can give useful information about the structure of the data.
- Not much known about theoretical properties of clustering methods. Which methods are **stable**?
- In practice, when dealing with large datasets, one is forced to subsample the data: clustering the whole dataset is infeasible. How do the answers based on two different subsamples compare? Can I guarantee that we obtain similar answers when these subsamples are similar ?
- I'll describe work we've done in the last 3 years [CM08,CM09-um,CM-IFCS-09].

Standard Clustering

In this context, given a finite metric space (X, d), a clustering method f returns a partition of X:

 $f(X,d) \in \mathcal{P}(X).$

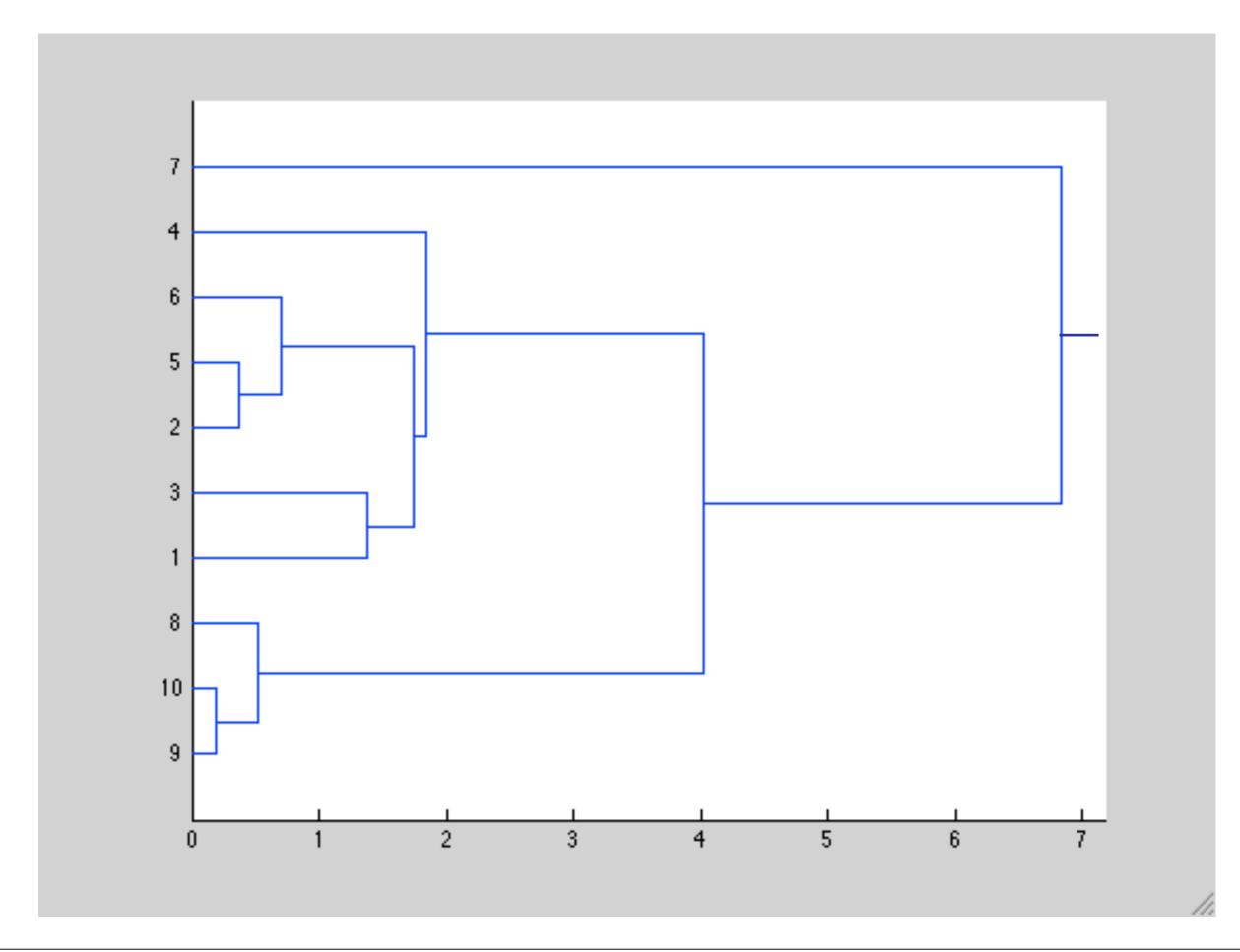
Hierarchical Clustering

Given a finite metric space (X, d), a clustering method f returns a nested family of partitions, or **dendrogram** (a.k.a. persistent set) of X:

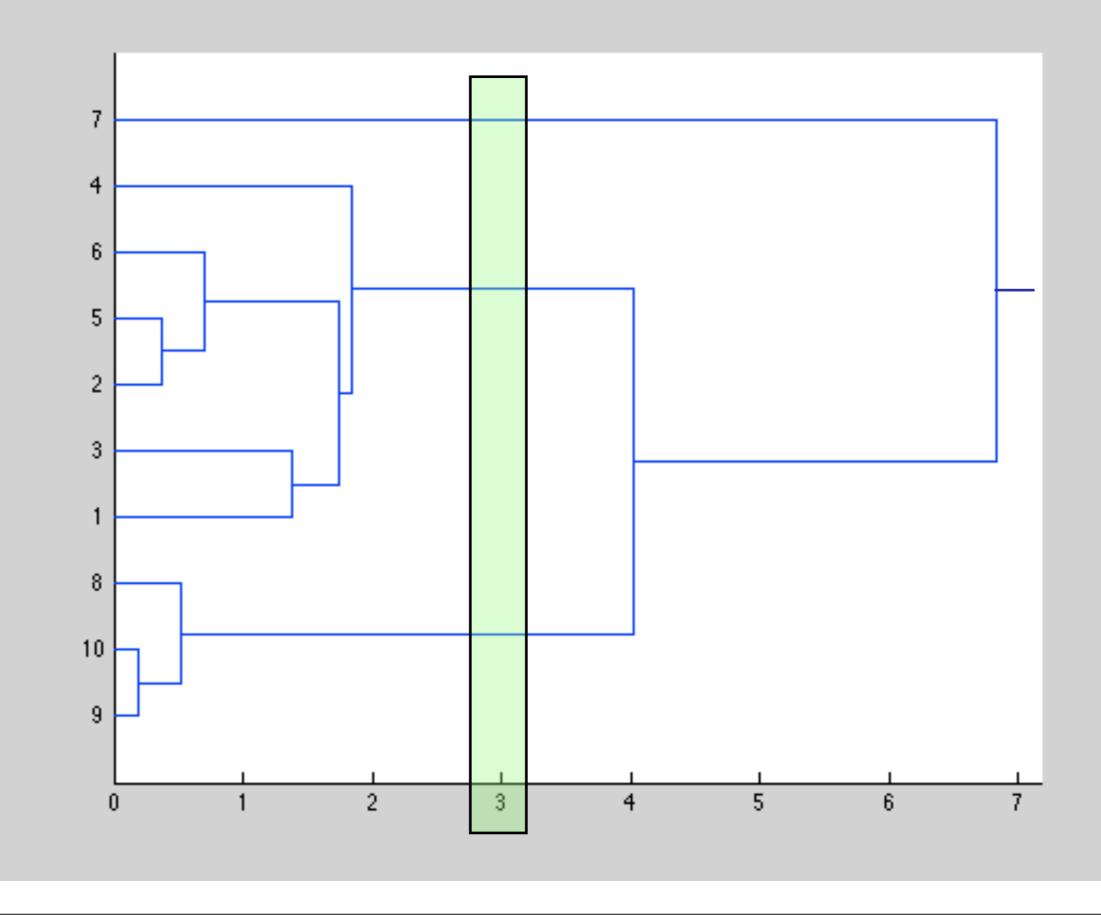
 $f(X,d) \in \mathcal{D}(X)$

where
$$\mathcal{D}(X) = \{(X, \theta) | \theta : [0, \infty) \to \mathcal{P}(X)\}$$
 s.t.

- 1. $\theta(0) = \{\{x_1\}, \dots, \{x_n\}\}\}.$
- 2. There exists t_0 s.t. $\theta(t)$ is the single block partition for all $t \ge t_0$.
- 3. If $r \leq s$ then $\theta(r)$ refines $\theta(s)$.
- 4. For all r there exists $\varepsilon > 0$ s.t. $\theta(r) = \theta(t)$ for $t \in [r, r + \varepsilon]$.



$\theta(3) = \{\{7\}, \{4, 6, 5, 2, 3, 1\}, \{8, 9, 10\}\}$



Standard Clustering: desirable properties $f(X, d) = \Gamma \in \mathcal{P}(X).$

- Scale Invariance: For all $\alpha > 0$, $f(X, \alpha \cdot d) = \Gamma$.
- **Richness**: Fix finite set X. Require that for all $\Gamma \in \mathcal{P}(X)$, there exists d_{Γ} , metric on X s.t. $f(X, d_{\Gamma}) = \Gamma$.
- Consistency: Let $\Gamma = \{B_1, \ldots, B_\ell\}$. Let \hat{d} be any metric on X s.t.
 - 1. for all $x, x' \in B_{\alpha}$, $\widehat{d}(x, x') \leq d(x, x')$ and 2. for all $x \in B_{\alpha}$, $x' \in B_{\alpha'}$, $\alpha \neq \alpha'$, $\widehat{d}(x, x') \geq d(x, x')$.

Then, $f(X, \hat{d}) = \Gamma$.

Kleinberg's Theorem: bad news

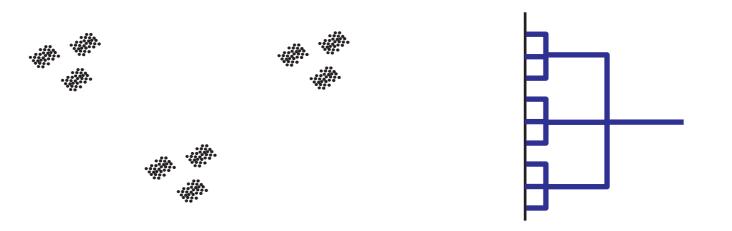
Theorem 1. There is no standard clustering algorithm satisfying scale invariance, richness and consistency.

Kleinberg's Theorem: bad news

Theorem 1. There is no standard clustering algorithm satisfying scale invariance, richness and consistency.

Comments

- This is one more reason why one may feel that it is more sensible to look at hierarchical clustering.
- Sometimes datasets have multiscale structure, so standard clustering may not be applicable.
- So we now concentrate on hierarchical clustering methods. We wil prove a theorem in the spirit of Kleinberg's but instead of non-existence, we'll obtain *uniqueness*.



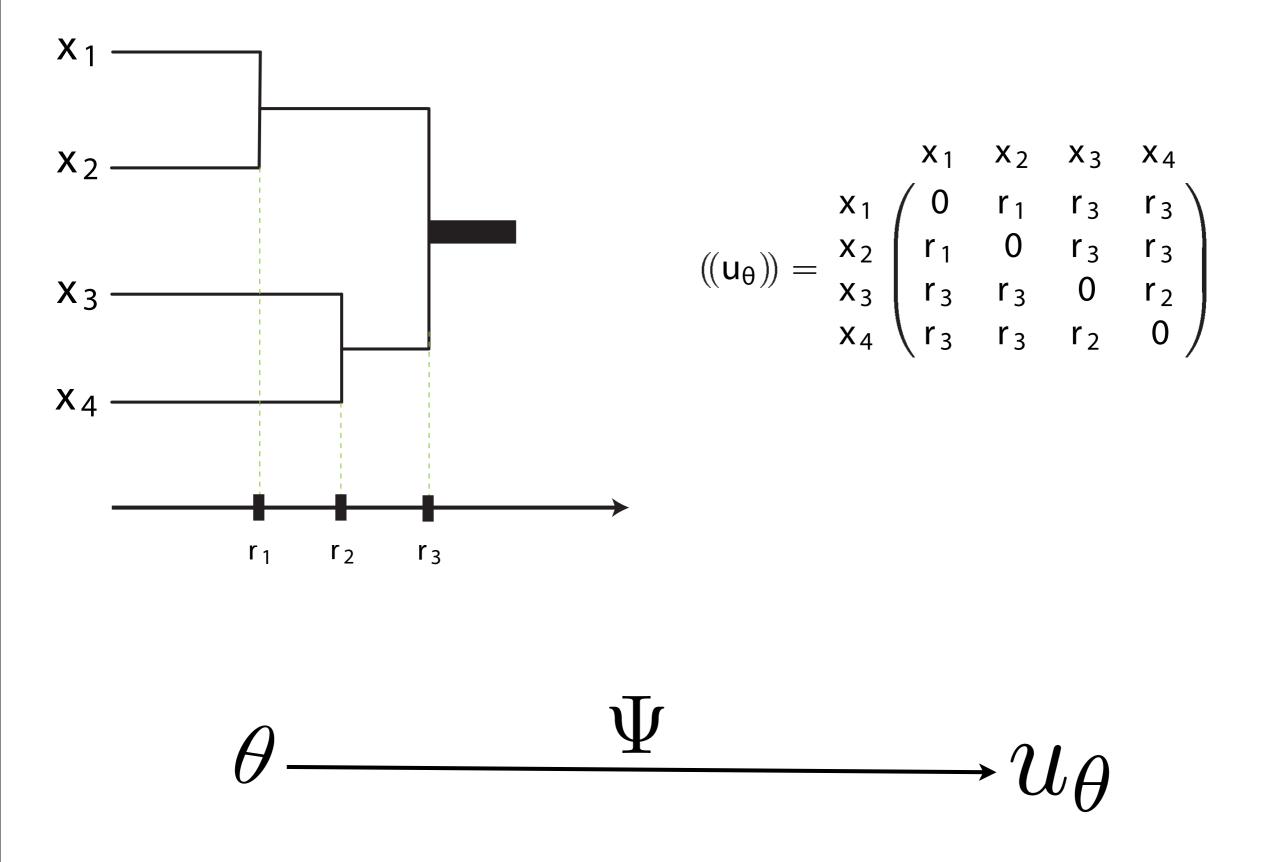
Hierarchical Clustering

We deal with agglomerative HC. For a finite metric space (X, d), its separation is

$$\sup(X,d) = \min_{x \neq x'} d(x,x').$$

- The idea is to start with the partition of X into singletons and then begin agglomerating blocks according to some rule.
- Well known methods/rules are those given by **single**, **average** and **complete linkage**.
- Continue agglomerating until you are left with one single block.
- Record the values of the **linkage parameter** for which there are mergings and obtain a hierarchical decomposition of X, i.e. a dendrogram over X.

From Dendrograms to Ultrametrics



HC methods: reformulation in terms of ultrametrics

• An ultrametric u on a set X is a function $u: X \times X \to \mathbb{R}^+$ s.t.

$$- u(x, x') = 0 \text{ if and only if } x = x'. - u(x, x') = u(x', x). - max(u(x, x'), u(x', x'')) ≥ u(x, x'') \text{ for all } x, x', x'' ∈ X.$$

• Let $\mathcal{U}(X)$ denote the collection of all ultrametrics on the set X.

HC methods: reformulation in terms of ultrametrics

• An ultrametric u on a set X is a function $u: X \times X \to \mathbb{R}^+$ s.t.

$$- u(x, x') = 0 \text{ if and only if } x = x'.$$

- u(x, x') = u(x', x).
- max(u(x, x'), u(x', x'')) ≥ u(x, x'') for all x, x', x'' ∈ X.

- Let $\mathcal{U}(X)$ denote the collection of all ultrametrics on the set X.
- It turns out that ultrametrics and dendrograms are **equivalent**.

Theorem. For any given finite set X, there exists a bijection $\Psi : \mathcal{D}(X) \longrightarrow \mathcal{U}(X)$ such that

$$x, x' \in B \in \theta(t) \iff \Psi(\theta)(x, x') \leqslant t$$

for all dendrograms θ .

Hierarchical clustering: formulation

We represent dendrograms (= rooted trees) as *ultrametric* spaces: (X, u) is an ultrametric space if and only if for all $x, x', x'' \in X$,

$$\max(u(x, x'), u(x', x'')) \ge u(x, x'').$$

Let $\mathcal{X} = \bigsqcup_{n \ge 1} \mathcal{X}_n$ denote set of all finite metric spaces and $\mathcal{U} = \bigsqcup_{n \ge 1} \mathcal{U}_n$ all finite ultrametric spaces. Then, a hierarchical clustering method can be regarded as a map

$$T: \mathcal{X} \to \mathcal{U}$$

s.t. $\mathcal{X}_n \ni (X, d) \mapsto (X, u) \in \mathcal{U}_n$.

Hierarchical clustering: formulation

We represent dendrograms (= rooted trees) as *ultrametric* spaces: (X, u) is an ultrametric space if and only if for all $x, x', x'' \in X$,

$$\max(u(x, x'), u(x', x'')) \ge u(x, x'').$$

Let $\mathcal{X} = \bigsqcup_{n \ge 1} \mathcal{X}_n$ denote set of all finite metric spaces and $\mathcal{U} = \bigsqcup_{n \ge 1} \mathcal{U}_n$ all finite ultrametric spaces. Then, a hierarchical clustering method can be regarded as a map

$$T: \mathcal{X} \to \mathcal{U}$$

s.t. $\mathcal{X}_n \ni (X, d) \mapsto (X, u) \in \mathcal{U}_n$.

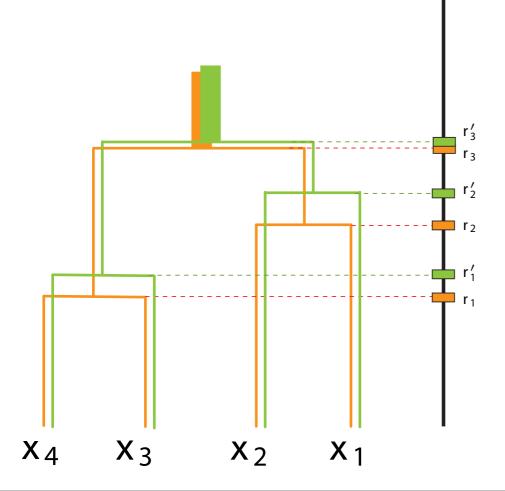
Remark. The interpretation is that u(x, x') measures the **effort** or **cost** of merging x and x' into the same cluster.

Example: measuring distance between dendrograms

One of the consequences of the flexibility offered by the ultrametric representation of dendrograms is that one can now define some useful notions of **distance between dendrgrams**. Consider for example the case when α and β are two dendrograms over a given set X. Then, the condition that

$$\max_{x,x'} |\Psi(\alpha)(x,x') - \Psi(\beta)(x,x')| \leq \eta$$

translates into the fact that the points at which x and x' merge are within η of eachother.

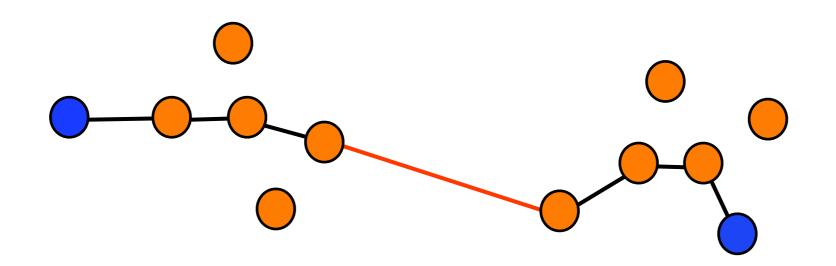


$$\max_i |r_i - r'_i| \leqslant \eta$$

Canonical construction

SL HC can be proved to be equivalent to the maximal subdominant ultrametric: $T^* : \mathcal{X} \to \mathcal{U}$ given by $T^*(X, d) = (X, u^*)$ where

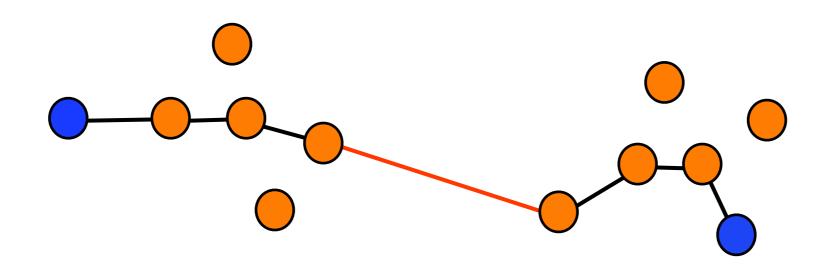
$$u^*(x, x') := \min\left\{\max_{0 \le i \le n-1} d(x_i, x_{i+1}); \ x = x_0, x_1, \dots, x_n = x'\right\}.$$



Canonical construction

SL HC can be proved to be equivalent to the maximal subdominant ultrametric: $T^* : \mathcal{X} \to \mathcal{U}$ given by $T^*(X, d) = (X, u^*)$ where

$$u^*(x, x') := \min\left\{\max_{0 \le i \le n-1} d(x_i, x_{i+1}); \ x = x_0, x_1, \dots, x_n = x'\right\}.$$



Indeed, one can prove that

Proposition. Let (X, d) be any finite metric space and write $T^*(X, d) = (X, u^*)$. Then, the dendrogram $\Psi^{-1}(u^*)$ is equal to the one produced by SL HC applied to (X, d).

A characterization theorem for SL, [CM08], [CM09-um]

Theorem 1. Let T be a clustering method s.t.

1. $T(\{p,q\}, \begin{pmatrix} 0 & \delta \\ \delta & 0 \end{pmatrix}) = (\{p,q\}, \begin{pmatrix} 0 & \delta \\ \delta & 0 \end{pmatrix})$ for all $\delta > 0$.

2. For all $X, Y \in \mathcal{X}$ and $\phi : X \to Y$ s.t. $d_X(x, x') \ge d_Y(\phi(x), \phi(x')),$ $u_X(x, x') \ge u_Y(\phi(x), \phi(x'))$

for all $x, x' \in X$, where $T(X, d_X) = (X, u_X)$ and $T(Y, d_Y) = (Y, u_Y)$. 3. For all $(X, d) \in \mathcal{X}$,

 $u(x, x') \ge sep(X, d) \text{ for all } x \neq x' \in X$

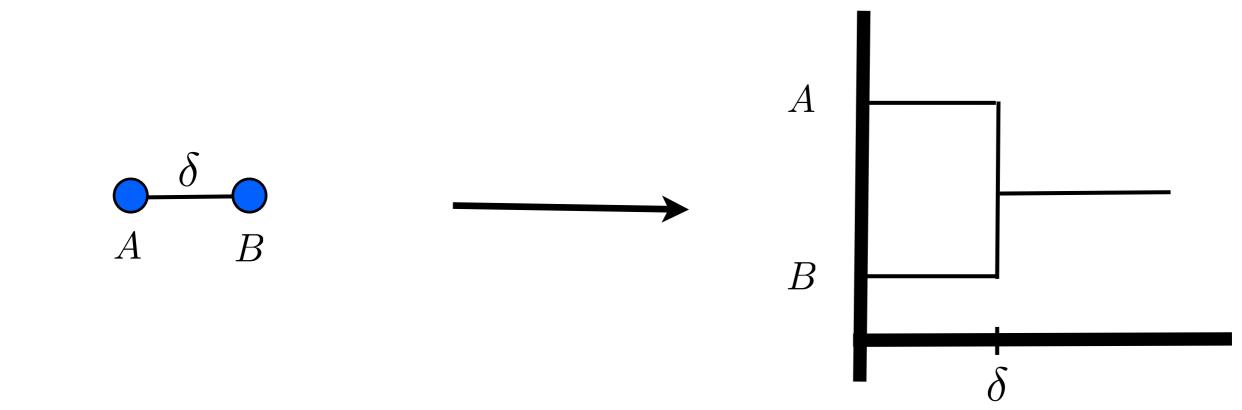
where T(X, d) = (X, u).

Then $T = T^*$.

In the theorem

Condition I:

for all $\delta > 0$



Standard Clustering: desirable properties $f(X, d) = \Gamma \in \mathcal{P}(X).$

- Scale Invariance: For all $\alpha > 0$, $f(X, \alpha \cdot d) = \Gamma$.
- **Richness**: Fix finite set X. Require that for all $\Gamma \in \mathcal{P}(X)$, there exists d_{Γ} , metric on X s.t. $f(X, d_{\Gamma}) = \Gamma$.

Consistency: Let Γ = {B₁,..., B_ℓ}. Let d̂ be any metric on X s.t.
1. for all x, x' ∈ B_α, d̂(x, x') ≤ d(x, x') and
2. for all x ∈ B_α, x' ∈ B_{α'}, α ≠ α', d̂(x, x') ≥ d(x, x').
Then, f(X, d̂) = Γ.

Let $X, Y \in \mathcal{X}$ and $\phi : X \to Y$ s.t. $d_X(x, x') \ge d_Y(\phi(x), \phi(x'))$ for all $x, x' \in X$. Then

$$u_X(x, x') \ge u_Y(\phi(x), \phi(x'))$$
 for all $x, x' \in X$.

This means roughly that decreasing the distances has the effect of reducing the **cost** of merging points.

Cf. Kleinberg's *consistency* property.

Let $X, Y \in \mathcal{X}$ and $\phi : X \to Y$ s.t. $d_X(x, x') \ge d_Y(\phi(x), \phi(x'))$ for all $x, x' \in X$. Then

$$u_X(x, x') \ge u_Y(\phi(x), \phi(x'))$$
 for all $x, x' \in X$.

This means roughly that decreasing the distances has the effect of reducing the **cost** of merging points.

Cf. Kleinberg's *consistency* property.

Let $X, Y \in \mathcal{X}$ and $\phi : X \to Y$ s.t. $d_X(x, x') \ge d_Y(\phi(x), \phi(x'))$ for all $x, x' \in X$. Then

$$u_X(x, x') \ge u_Y(\phi(x), \phi(x'))$$
 for all $x, x' \in X$.

This means roughly that decreasing the distances has the effect of reducing the **cost** of merging points.

Cf. Kleinberg's *consistency* property.

Let $X, Y \in \mathcal{X}$ and $\phi : X \to Y$ s.t. $d_X(x, x') \ge d_Y(\phi(x), \phi(x'))$ for all $x, x' \in X$. Then

$$u_X(x, x') \ge u_Y(\phi(x), \phi(x'))$$
 for all $x, x' \in X$.

This means roughly that decreasing the distances has the effect of reducing the **cost** of merging points.

Cf. Kleinberg's *consistency* property.

$$\begin{array}{c} (X, d_X) \xrightarrow{T} (X, u_X) \\ \phi \\ (Y, d_Y) \xrightarrow{T} (Y, u_Y) \end{array}$$
(1)

Let $X, Y \in \mathcal{X}$ and $\phi : X \to Y$ s.t. $d_X(x, x') \ge d_Y(\phi(x), \phi(x'))$ for all $x, x' \in X$. Then

$$u_X(x, x') \ge u_Y(\phi(x), \phi(x'))$$
 for all $x, x' \in X$.

This means roughly that decreasing the distances has the effect of reducing the **cost** of merging points.

Cf. Kleinberg's *consistency* property.

$$\begin{array}{cccc} (X, d_X) & \stackrel{T}{\longrightarrow} & (X, u_X) \\ \phi \\ \psi \\ (Y, d_Y) & \stackrel{T}{\longrightarrow} & (Y, u_Y) \end{array}$$
(1)

Let $X, Y \in \mathcal{X}$ and $\phi : X \to Y$ s.t. $d_X(x, x') \ge d_Y(\phi(x), \phi(x'))$ for all $x, x' \in X$. Then

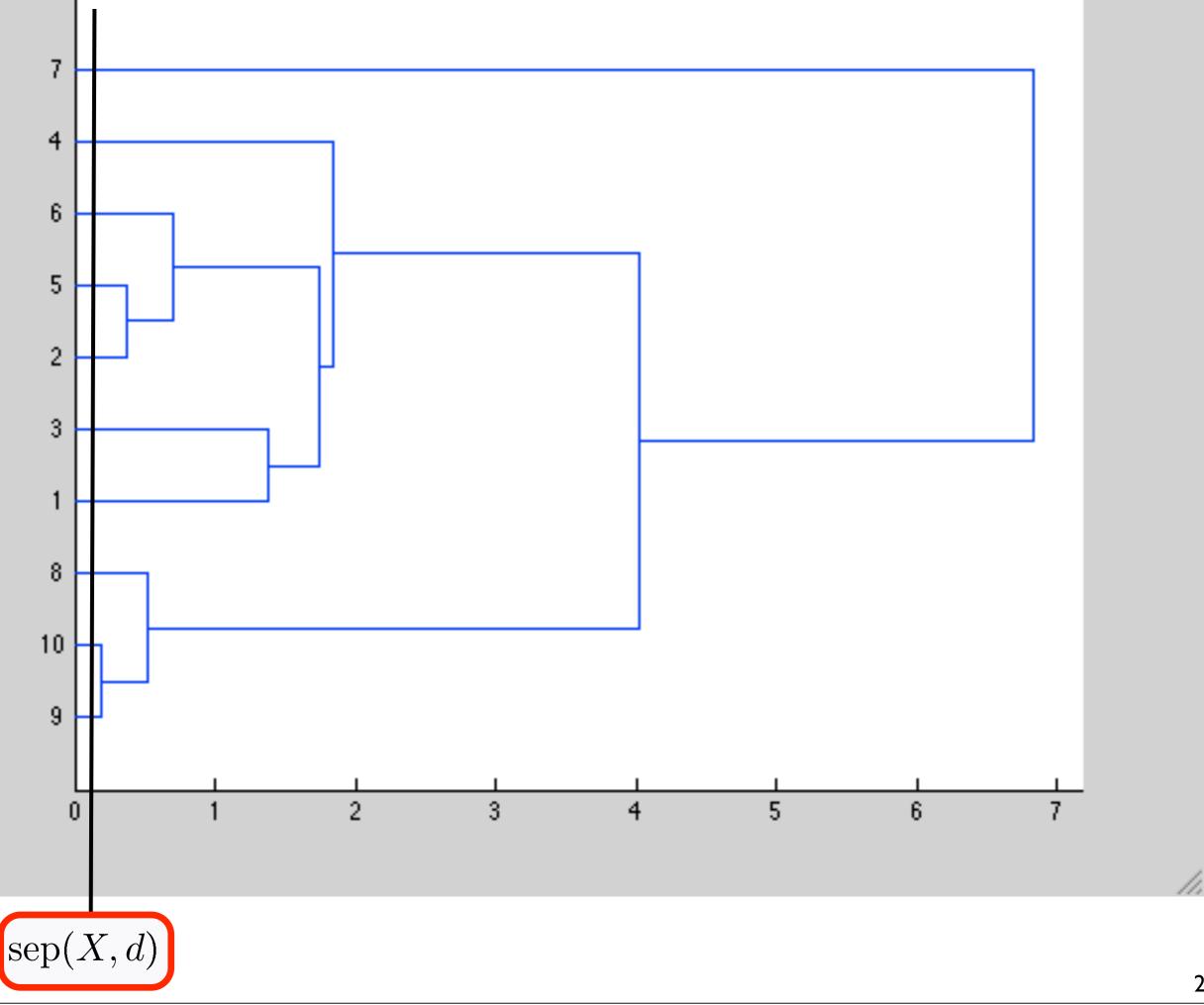
 $u_X(x, x') \ge u_Y(\phi(x), \phi(x'))$ for all $x, x' \in X$.

This means roughly that decreasing (not reducing) the distances has the effect of reducing (not increasing) the **cost** of merging points.

Condition III

 $u(x, x') \ge \operatorname{sep}(X, d)$ for all $x, x' \in X$.

This means roughly that the cost of merging to points has to be at least the *separation* of the space.



A characterization theorem for SL, [CM08], [CM09-um]

Theorem 1. Let T be a clustering method s.t.

1. $T(\{p,q\}, \begin{pmatrix} 0 & \delta \\ \delta & 0 \end{pmatrix}) = (\{p,q\}, \begin{pmatrix} 0 & \delta \\ \delta & 0 \end{pmatrix})$ for all $\delta > 0$.

2. For all $X, Y \in \mathcal{X}$ and $\phi : X \to Y$ s.t. $d_X(x, x') \ge d_Y(\phi(x), \phi(x')),$ $u_X(x, x') \ge u_Y(\phi(x), \phi(x'))$

for all $x, x' \in X$, where $T(X, d_X) = (X, u_X)$ and $T(Y, d_Y) = (Y, u_Y)$. 3. For all $(X, d) \in \mathcal{X}$,

 $u(x, x') \ge sep(X, d) \text{ for all } x \neq x' \in X$

where T(X, d) = (X, u).

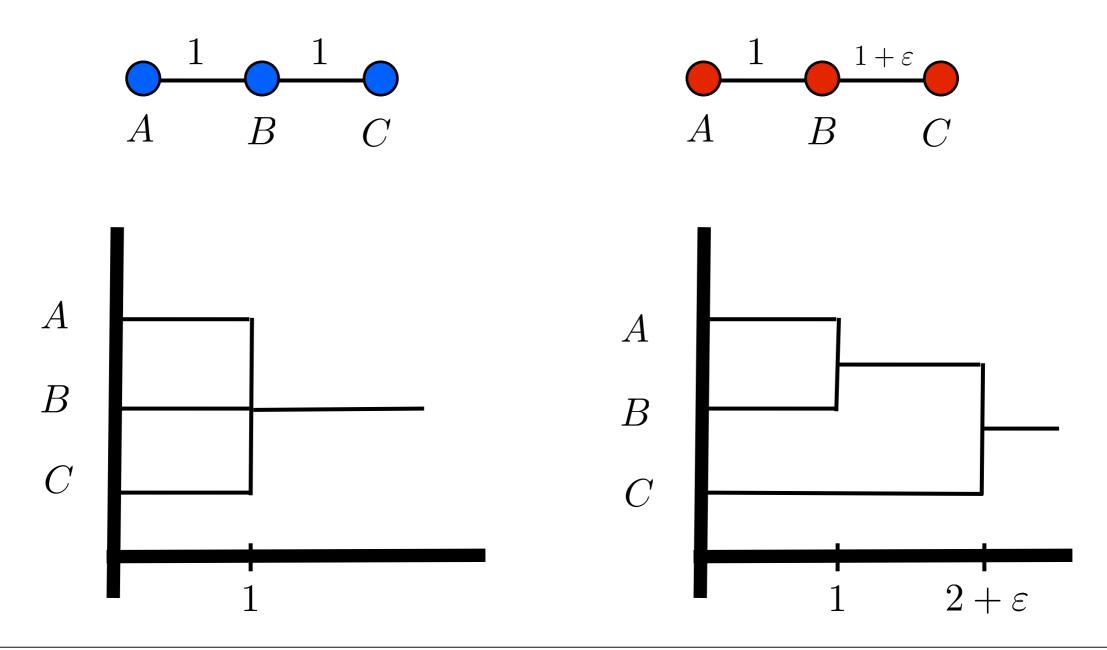
Then $T = T^*$.

Two other aspects of our work

- Stability
- Convergence

Stability properties of HC methods

- CL and AL are not stable!!
- SL is stable.



Stability of SL HC, [CM08], [CM09-um]

Proposition 1. For any finite metric spaces (X, d_X) and (Y, d_Y)

 $d_{\mathcal{GH}}((X, d_X), (Y, d_Y)) \ge d_{\mathcal{GH}}(T^*(X, d_X), T^*(Y, d_Y)).$

Moral: metrically similar subsets of my data will yield similar clustering results, when the clustering method is SL.

Stability of SL HC, [CM08], [CM09-um]

Proposition 1. For any finite metric spaces (X, d_X) and (Y, d_Y)

 $d_{\mathcal{GH}}((X, d_X), (Y, d_Y)) \ge d_{\mathcal{GH}}(T^*(X, d_X), T^*(Y, d_Y)).$

Moral: metrically similar subsets of my data will yield similar clustering results, when the clustering method is **SL**.

Consequence: Convergence

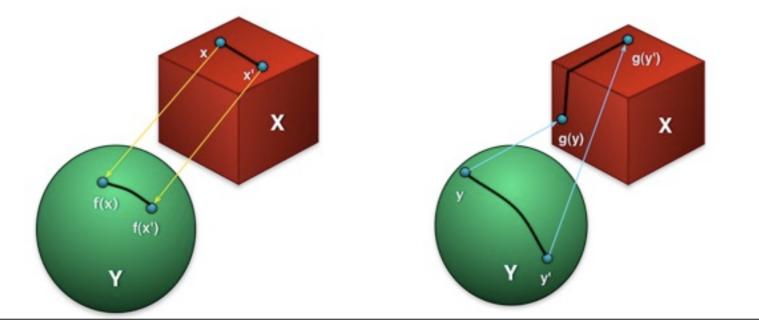
The Gromov-Hausdorff distance

- It is well studied and well understood notion of distance between metric spaces.
- It is insensitive to relabelling (actually to *isometries*)
- We view dendrogram as (ultra) metric spaces \Rightarrow we can use the GH distance to compare dendrograms.
- Roughly the definition is the following: $d_{\mathcal{GH}}(X,Y) \leq \eta$ if and only if there exist maps $f: X \to Y$ and $g: Y \to X$ with the property that

$$|d_X(x, x') - d_Y(f(x), f(x'))| \leq \eta$$
 for all $x, x' \in X$

and

$$|d_Y(y, y') - d_X(g(y), g(y'))| \leq \eta$$
 for all $y, y' \in Y$.



The Gromov-Hausdorff distance: dendrograms

In terms of dendrograms,

 $d_{\mathcal{GH}}(\Psi(\theta_X), \Psi(\theta_Y)) \leqslant \eta$

means that there exist f and g s.t.

- two points x, x' fall in the same same block of $\theta_X(t)$ implies that f(x) and f(x') fall in the same block of $\theta_Y(t')$ for some $t' \in [t \eta, t + \eta]$.
- two points y, y' fall in the same same block of $\theta_Y(t)$ implies that g(y) and g(y') fall in the same block of $\theta_X(t')$ for some $t' \in [t \eta, t + \eta]$.

Another aspect of our work: convergence

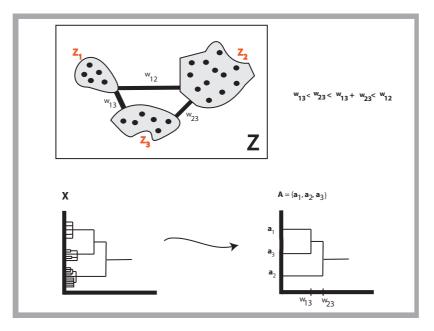
Say you are given finitely many random i.i.d. samples $X_n = \{x_1, x_2, \ldots, x_n\}$ from a metric space (Z, d_Z) , where each x_i is distributed according to a probability measure μ compactly supported on Z. Then, compute θ_{X_n} the SL dendrogram of X_n .

The question is: what does θ_{X_n} converge to (if at all)?

We answer this question in our work and generalize a classical result by Hartigan regarding the properties of SL. Namely, we prove that

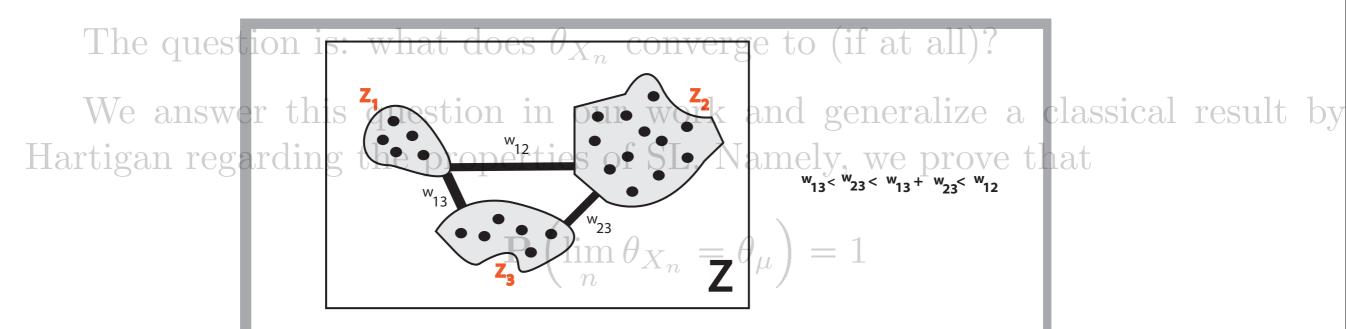
$$\mathbf{P}\left(\lim_{n}\theta_{X_{n}}=\theta_{\mu}\right)=1$$

for some dendrogram θ_{μ} that captures the multiscale structure of supp $[\mu]$.

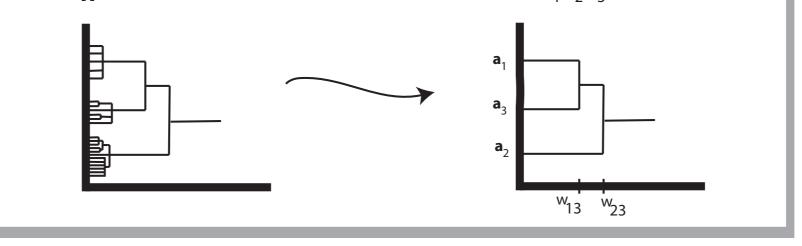


Another aspect of our work: convergence

Say you are given finitely many random i.i.d. samples $X_n = \{x_1, x_2, \ldots, x_n\}$ from a metric space (Z, d_Z) , where each x_i is distributed according to a probability measure μ compactly supported on Z. Then, compute θ_{X_n} the SL dendrogram of X_n .



for some dendrogram θ_{μ} that captures the multiscale structure of supp $[\mu]$. \mathbf{X} $\mathbf{A} = \{\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3\}$



Discussion

- SL HC is stable and enjoys all nice properties but it is derided by practicioners because of its insensitivity to density: **chaining effect**.
- AL, CL do exhibit sensitivity to density, yet they are theoretically unsound
 - The standard version: because it is not well behaved under permutations.
 - The "fixed" version: because it is unstable!
- As a solution we propose to look at **two-parameter clustering**: look at certain two-dimensional analogues of dendrograms **[CM-IFCS-09]**.
- Another line of work: study different trade-offs in the properties required from standard clustering.
- The underlying concepts in our work are **functoriality** and **metric ge-ometry**.

References

- [CM-IFCS-09] Gunnar Carlsson and Facundo Mémoli. Multiparameter clustering methods. In *IFCS 2009*, 2009.
- [Kl02] Jon M. Kleinberg. An impossibility theorem for clustering. In Suzanna Becker, Sebastian Thrun, and Klaus Obermayer, editors, NIPS, pages 446–453. MIT Press, 2002.
- [CM08] G. Carlsson and F. Mémoli. Persistent Clustering and a Theorem of J. Kleinberg. ArXiv e-prints, August 2008.
- [CM-SC] Gunnar Carlsson and Facundo Mémoli. Classifying clustering schemes. Technical report, 2009. In preparation.
- [CM09-um] Gunnar Carlsson and Facundo Mémoli. Characterization, stability and convergence of hierarchical clustering algorithms. Technical report, 2009.
- [JD88] Anil K. Jain and Richard C. Dubes. Algorithms for clustering data. Prentice Hall Advanced Reference Series. Prentice Hall Inc., Englewood Cliffs, NJ, 1988.

memoli@math.stanford.edu

http://comptop.stanford.edu
http://math.stanford.edu/~memoli