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An expansion of the real field R := (R,+, · ) is o-minimal if every definable set has only
finitely many connected components. For definitions and basic facts, see van den Dries
and Miller [6] (though some of the exposition there is now out of date). O-minimality
can be seen as a wide-ranging generalization of real-algebraic and subanalytic geometry. It
has developed to include applications in areas such as transcendental number theory (via
the celebrated Pila-Wilkie Theorem [12] and extensions thereof) and Hodge theory (e.g.,
Bakker et al. [2]), but here I address a basic question of o-minimal calculus.

A function h : U → R, with U open in Rn, is harmonic if it is twice differentiable and
its Laplacian, ∆h, is trivial, that is,

∑n
i=1 ∂

2h/∂x2
i = 0. For basic facts about harmonic

functions, see Axler et al. [1].

Theorem. If h : Rn → R is harmonic and (R, h) is o-minimal, then h is polynomial.

The statement is perhaps not surprising to readers familiar with both o-minimality and
harmonic functions. Heuristically, o-minimality tends to rule out oscillatory behavior, and
concrete examples from multivariable calculus of nonpolynomial total harmonic functions
tend to be visibly oscillatory, e.g.,

x 7→ p(x) +
∑

1≤j,k≤n
j ̸=k

(aj,ke
xj cosxk + bj,ke

xj sinxk) : Rn → R

where p is a harmonic polynomial and aj,k, bj,k ∈ R. But given any sequence (pk)k∈N with
each pk a homogeneous harmonic polynomial Rn → R of degree k, the sum of the pk
converges to a harmonic function Rn → R if

lim
k→+∞

max{ |pk(x)|1/k : |x| = 1 } = 0.

(Here and throughout, | | indicates the euclidean norm.) Hence, there are plenty of exotic
examples. And detecting oscillatory behavior is not always straightforward. Harmonic
functions are analytic, hence locally nonoscillatory. Indeed, the expansion of R by all re-
strictions of harmonic functions to compact subanalytic subsets of their domains is o-mini-
mal. (All restrictions of analytic functions to compact subanalytic subsets of their domains
are definable in the o-minimal structure Ran.) In particular, if h : Rn → R is harmonic,
then the expansion of R by all restrictions of h to bounded balls is o-minimal, and so any
oscillatory behavior of h must occur “at ∞”, say, the number of the (finitely many) con-
nected components of the sets {x ∈ Rn : |x| = r & h(x) = 0 } is unbounded as r → +∞
(which would violate o-minimality; see [6, 4.4]). Moreover, though the planar harmonic
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function ex1 sinx2 is not definable in any o-minimal structure (consider its zero set), if I
is a bounded interval in R and R is an o-minimal expansion of R, then the expansion of
R by the restriction of ex1 sinx2 to the strip R × I is o-minimal. (By Pfaffian closure,
(R, exp, arctan) is o-minimal; see Speissegger [13]. It is an exercise that (R, arctan) defines
the restriction of the sine function to any bounded interval.)

Before proceeding to the proof of the Theorem, let us consider some corollaries.

Corollary 1. Let f, g : Rn → R be twice differentiable and ∆f = ∆g. If (R, f, g) is
o-minimal, then f − g is a harmonic polynomial.

(The point is that if ϕ : Rn → R is definable in an o-minimal expansion of R, then modulo
the n-ary harmonic polynomials, there is at most one definable solution y to the equation
∆y = ϕ.)

Proof. The Laplacian is a linear operator, and thus f − g is harmonic. □

The Theorem fails (but not drastically) if there is a point in Rn where h is not harmonic.

Corollary 2. Let n ≥ 2 and h : Rn \ {0} → R be harmonic. If (R, h) is o-minimal and
lim
x→0

|x|n−1 h(x) ≥ 0, then there exist c ∈ R and a harmonic polynomial p : Rn → R such

that h = p+ c |x|2−n if n > 2, and h = p+ c log |x| if n = 2.

Proof. By the Generalized Bôcher Theorem ([1, 9.11]), there exist c ∈ R and a harmonic
g : Rn → R such that h = g + c |x|2−n if n > 2, and h = g + c log |x| if n = 2. Observe that
g is definable in (R, h, exp), which is o-minimal (by assumption and Pfaffian closure), and
apply the Theorem. □

Corollary 3. If f : Rm+n → R and (R, f) is o-minimal, then there exists d ∈ N such that
for all a ∈ Rm, if x 7→ f(a, x) : Rn → R is harmonic, then it is polynomial of degree at
most d.

Proof. If p : Rn → R is polynomial, then the function r 7→ max{ |p(x)| : |x| = r } (r > 0) is
ultimately differentiable, and if p is not identically 0, then there exists q ∈ Q such that

lim
r→+∞

r d
dr
max{ |p(x)| : |x| = r }

max{ |p(x)| : |x| = r }
= q.

By o-minimality, any set of rational numbers definable in (R, f) is finite. Thus, the result
reduces to the case m = 0 (that is, the Theorem). □

The statement of the Theorem makes sense over any ordered field. Next is a result for
model theorists.

Corollary 4. Let A be an o-minimal expansion of an ordered field (A,<,+, · ) and h : An →
A be harmonic and definable.

(1) If Th(A) has a model R with underlying set R, then h is polynomial.
(2) If the set of ∅-definable elements of A is archimedean as an ordered group, then h

is polynomial.
2



Proof. (1). There exist m ∈ N, b ∈ Am and a function f : Am+n → A ∅-definable in A such
that h = x 7→ f(b, x) and, for all a ∈ Am, the function x 7→ f(a, x) is harmonic. Apply
Corollary 3 to the realization of f in R; then there exists d ∈ N such that for each a ∈ Am,
the function x 7→ f(a, x) is polynomial of degree at most d. Hence, h is polynomial.
(2). By Laskowski and Steinhorn [10], the prime submodel of A then embeds elementarily

into an o-minimal expansion of R. Apply (1). □

We now establish the main result.

Proof of Theorem. Let h : Rn → R be harmonic and (R, h) be o-minimal. We show that h
is polynomial.

If n = 1, then ∆ is the ordinary second derivative, and so h is affine linear.
Let n = 2. The function F := (∂h/∂x,−∂h/∂y) : R2 → R2 is definable. By the Cauchy-

Riemann equations, F is complex differentiable as a map C → C. By o-minimality and the
Identity Theorem, either F is constant or all level sets of F are finite. By the “Big” Picard
Theorem, F is polynomial; by real planar calculus, h is polynomial.

Let n ≥ 3. For r > 0, put H(r) = max{ |h(x)| : |x| = r }. By the Harmonic Liouville
Theorem, it suffices to show that H(r) is polynomially bounded as r → +∞. (See, e.g.,
[1, Exercise 2.7]). Assume that h is not constant. By the Harmonic Maximum Principle,
H is positive and strictly increasing. Thus, it suffices now to show that H(r)/H(r/2) is
bounded as r → +∞. Without loss of generality, we may take h(0) = 0. Let µ indicate
(n− 1)-dimensional Hausdorff measure. As a special case of a result of Logunov et al. [11],
there exists c > 0 such that

(1) r > 0 =⇒ c
√
log2

(
H(r)/H(r/2)

)
≤ µ{x ∈ Rn : |x| ≤ 2 & h(rx) = 0 }.

(For each fixed r > 0, the function h◦rx is harmonic; apply [11, Theorem 1.2] with ϵ = 1/2.)
By, e.g., Yomdin and Comte [14, Corollary 5.2], there exists C ∈ R such that

(2) r > 0 =⇒ µ{x ∈ Rn : |x| ≤ 2r & h(x) = 0 } ≤ Crn−1.

(This uses only that the zero set of h has empty interior and is definable in an o-minimal
expansion of R.) Dividing by rn−1, we obtain

(3) r > 0 =⇒ µ{x ∈ Rn : |x| ≤ 2 & h(rx) = 0 } ≤ C.

Equations (1) and (3) yield that H(r)/H(r/2) is bounded as r → +∞, as desired. □

Remarks on the proof. An interesting alternate proof for n = 2 can be obtained from De
Carli and Hudson [5, Theorem 3.2].

It is possible to obtain equation (2) by just o-minimal multivariable calculus, but con-
ceptually, it is easier to see as a consequence of Uniform Bounds on Fibers [6, 4.4] and the
Cauchy-Crofton formula (as presented in [14]).

For n ≥ 3, the crucial point is that H(r)/H(r/2) is bounded as r → +∞. (Of course,
this fails in general for o-minimal real-entire functions, say, exp(|x|2).) As H is definable
in (R, h), it would be understandable for the reader to think this should not need the
substantial geometric measure theory behind equation (1). But currently I do not know
of any significantly easier proof. Though the functional analysis of harmonic functions has
long been fairly well understood, the analytic geometry has been refractory (see [5] and
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Enciso and Peralta-Salas [7, 8] for some details). An earlier and weaker version of [11,
Theorem 1.2], due to Logunov, is mentioned in [11]; it would suffice, but also must be
regarded as substantial geometric measure theory. (Thus, I might as well use here what
appears to be the current state of the art.)

Some open questions. If h : Rn → R is harmonic and not polynomial, does (R, h) de-
fine Z? (As far as I know, this is open even for n = 2.) Results from Hieronymi and
Miller [9] might be useful.

What can be said about harmonic h : {x ∈ Rn : |x| < 1 } → R if (R, h) is o-minimal? (Of
course, not much new can be said if h extends analytically to some {x ∈ Rn : |x| < 1+ ϵ },
as then h is definable in Ran. Hence, one should assume that h has at least one analytic
singularity on the unit sphere.)

What can be said about harmonic h : Rn−1 × (0,+∞) → R if (R, h) is o-minimal?
In Corollary 4, is h polynomial without assuming that Th(A) has a model with underlying

set R? (From a model-theoretic perspective, it is undesirable that my proof relies ultimately
on working over R.)

Acknowledgements and some history. I thank Georges Comte (Université de Savoie
Mont-Blanc) for useful information underlying equation (2), and Katherine St. John Ball
(BS Mathematics, University of California San Diego, 2013, currently working in the private
sector) for help with ChatGPT (to be described in the final paragraph below).

In the early 1990s, I conjectured the Theorem and established the planar case (n = 2).
With just a little more work that relies only on the planar case and some standard o-minimal
tricks, h is polynomial if n is even and h is the real (or imaginary) part of a holomorphic
function Cn/2 → C. Because the proofs of these special cases are so short and easy, I did
not attempt to publish them. And I could not see how to deal with the case n = 3, nor
with n = 4 and h is not the real (or imaginary) part of a holomorphic function C2 → C.
The conjecture then languished until recent joint work ([4]) with a PhD student, Tyler

Borgard: We confirmed the case that h is a real exponential term (more precisely, given by
a term in the structure (R,+, ·,−, exp, (r)r∈R)) via a proof that extends to any exponential
ordered field that satisfies the least upper bound property for unary definable sets. (Some
other miscellaneous examples are found in Borgard’s PhD thesis [3].)

I began to think again in earnest about the conjecture. As an amusement, I had my
friend K. Ball ask ChatGPT whether the conjecture was true. (I had no experience at all
with ChatGPT at that point, but Ball had plenty.) To my surprise, ChatGPT answered
yes, and that it was known “folklore”—but with no concrete references. Ball then helped
me attempt to obtain a proof from ChatGPT, but after a few of its suggested approaches
failed, I gave up. (Some seemed as though they might work, but there was always a devil
somewhere in the details.) Nevertheless, in trying to understand (and eventually debunk)
the suggested approaches, I became aware (more through MathSciNet than ChatGPT) of
the paper [11] and its Theorem 1.2. Hence, it seems fair to give ChatGPT some credit—but
not much.
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