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Abstract. Let n be a positive integer and f belong to the smallest ring of functions
Rn → R that contains all real polynomial functions of n variables and is closed under
exponentation. Then there exists d ∈ N such that for all m ∈ {0, . . . , n− 1} and c ∈ Rm,
if x 7→ f(c, x) : Rn−m → R is harmonic, then it is polynomial of degree at most d. In
particular, f is polynomial if it is harmonic.

Throughout, n ranges over the nonnegative integers, N.
Let En be the smallest ring of functions Rn → R that contains all real polynomial func-

tions of n variables and is closed under exponentation (with respect to base e). We identify
E0 with R. Put E =

⋃
n∈N En. We refer to elements of E as (real) exponential terms. (For

readers acquainted with basic first-order logic, En consists of the functions Rn → R given
by n-ary terms in the structure (R,+,−, ·, ex, (r)r∈R), with constants regarded as nullary
functions.)

If U ⊆ Rn is open, then a function f : U → R is harmonic if it is C2 (twice continuously
differentiable) and ∆f = 0, where ∆ denotes the Laplace operator

∑n
k=1 ∂

2/∂x2
k. Note that

∆ is linear.
Every affine linear function Rn → R is harmonic. More generally, for n ≥ 2, there are

infinitely many harmonic polynomials Rn → R of each degree. If j and k are distinct
positive integers bounded above by n, then exj sinxk and exj cosxk are harmonic functions
Rn → R, as are all R-linear combinations of such.

Here is the main result of this note.

Theorem. For all f ∈ En there exists d ∈ N such that for all m ∈ {0, . . . , n} and c ∈ Rm,
if x 7→ f(c, x) : Rn−m → R is harmonic, then it is polynomial of degree at most d.

As we shall see later, the crucial point is to establish the case m = 0, that is, every
harmonic exponential term is polynomial. In order to motivate our proof of this, we
illustrate some of the main ideas by first considering some special cases. Let f, g : Rn → R
be polynomial. Differential calculus yields

∆(feg) = eg(f |∇g|2 +∆f + 2∇f · ∇g + f∆g)

where ∇ indicates the gradient, | | indicates the Euclidean norm and · indicates scalar
product. Hence, if feg is harmonic, then

(∗) −f |∇g|2 = ∆f + 2∇f · ∇g + f∆g.
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A routine formal argument via degree yields f |∇g|2 = 0, and so either f = 0 or g is constant.
Hence, feg is polynomial. Now let J ∈ N and f1, . . . , fJ , g1, . . . , gJ be polynomial. Suppose
that

∑J
j=1 fje

gj is harmonic and {eg1 , . . . , egJ} is algebraically independent. By calculus and
linearity of ∆, each fje

gj is harmonic—hence polynomial—and so
∑J

j=1 fje
gj is polynomial.

It is natural to try to generalize the above argument, starting with arbitrary f, g ∈ En.
The formal complexity of f is less than that of feg, so if feg is harmonic and g is constant,
then we could conclude inductively that feg is polynomial. But in order to show that g must
be constant if f ̸= 0, we would have to deal with equation (∗), and it is not immediately
clear how to do so in this generality. Indeed, relative to extant facts about exponential
terms, this will be the most critical part of the proof of the Theorem.

Acknowledgments. The content of this paper will also be addressed in the doctoral thesis of
author Borgard, supervised by author Miller, with research conducted at The Ohio State
University.

We now proceed directly toward the proof of the theorem, postponing further discussion.
Fix n ∈ N. In order to avoid potential trivialities, let n ≥ 2. (Every solution on R to
y′′ = 0 is affine linear.) Routine induction on complexity yields that all elements of En
are (real-)analytic and that En is closed under taking partial derivatives. Thus, En is a
differential domain in the usual way, and we can employ techniques of formal differential
algebra.

We rely heavily on some work of van den Dries [3]; for convenience, we adopt some of
the notation used there. Put R−1 = R. Let R0 be the set of all real polynomial functions
Rn → R. Put A0 = { g ∈ R0 : g(0) = 0 }. Inductively, put Rk = Rk−1[ e

g : g ∈ Ak−1 ]

and let Ak be the set of all finite sums
∑J

j=1 fje
gj (J ranging over N) such that if J ̸= 0,

then each fj ∈ Rk−1 \ {0} and g1, . . . , gJ are pairwise distinct elements of Ak−1 \ {0}. A
routine induction on k yields that each Rk is contained in En and is closed under partial
differentiation. A routine induction on complexity of terms yields En ⊆

⋃
k∈N Rk. Hence,

the case m = 0 of the Theorem is equivalent to showing that for all k ∈ N, every harmonic
element of Rk lies in R0.

Important. In [3], the Rk and Ak are defined as formal algebraic objects, but by [3, 4.2],
the natural interpretation as functions Rn → R is an exponential-ring isomorphism; this has
important consequences for us. To illustrate, each element of Ak has a unique representation∑J

j=1 fje
gj (as described above).

Remark. In [3], elements of En would be called “exponential polynomial functions” (with
respect to (R,+, ·, 0, 1, ex)), but we prefer “exponential terms” in order to avoid any con-
fusion with R[x1, . . . , xn, e

x1 , . . . , exn ].

We shall employ some basic facts from differential calculus; proofs are exercises.

— If f, g ∈ C2(Rn,R), then ∆(feg) = eg(∆f + 2∇f · ∇g + f∆g + f |∇g|2).
— If f, g ∈ C2(Rn,R), then feg is harmonic iff f |∇g|2 +∆f + 2∇f · ∇g + f∆g = 0.
— If f1, . . . , fJ , g1, . . . , gJ ∈ C2(Rn,R) and {eg1 , . . . , egJ} is Z-linearly independent over

Z [fj,∇fj,∆fj,∇gj,∆gj : j = 1, . . . , J ],

then
∑J

j=1 fje
gj is harmonic iff each fje

gj is harmonic.

Next is a key technical result.
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Lemma. Let k ∈ N, f ∈ Rk \ {0} and g ∈ Ak \ {0}. Then feg is not harmonic.

Proof. We have already established this for k = 0 (that is, f and g are polynomial). Assume
now that k > 0. By [3, 1.7] (and [3, 4.2]), there is a finite P ⊆ Ak−1 such that { ep : p ∈ P }
is algebraically independent over Rk−1 and f, g ∈ Rk−1[ e

p, e−p : p ∈ P ].
For ease of notation, we first give details for the case that P contains only one element,

p. We have f =
∑

j∈Z fje
jp and g =

∑
j∈Z gje

jp, with each fj, gj ∈ Rk−1, and only finitely

many of them are nonzero. Since g ∈ Ak \ {0}, it is not in Rk−1 (recall the uniqueness
of representations), and so there exist nonzero j ∈ Z such that gj ̸= 0. If necessary, we
replace p with −p and re-index the sum so that there exist j > 0 with gj ̸= 0. Put
γ = max{ j ∈ Z : gj ̸= 0 } and ϕ = max{ j ∈ Z : fj ̸= 0 }. Note that γ > 0. Suppose,
toward a contradiction, that feg is harmonic; then f |∇g|2 + ∆f + 2∇f · ∇g + f∆g = 0.
Put α = ϕ+ 2γ. By basic differential algebra using that Rk−1 is a differential domain over
which ep is algebraically independent, and letting i, j and ℓ range over Z, we obtain

0 =2
∑

i+j=α

(∇fi + ifi∇p) · (∇gj + jgj∇p)

+
∑

i+j+ℓ=α

fi(∇gj + jgj∇p) · (∇gℓ + ℓgℓ∇p)

+ ∆fα + 2α∇fα · ∇p+ α2fα|∇p|2 + αfα∆p

+
∑

i+j=α

fi(∆gj + 2j∇gj · ∇p+ j2gj|∇p|2 + jgj∆p).

Now, α > ϕ, so fα = 0. And if i + j = α, then i + j > ϕ + γ, so fi = 0 or gj = 0.
Thus, the only nonzero terms occur in the second line when i = ϕ and j = ℓ = γ,
yielding fϕ|∇gγ + γgγ∇p|2 = 0. Since fϕ ̸= 0, we have ∇gγ + γgγ∇p = 0, hence also
0 = eγp(∇gγ+γgγ∇p) = ∇(gγe

γp). Thus, gγe
γp is constant, contradicting the independence

of ep over Rk−1 (because γ ̸= 0 and gγ ̸= 0). Hence, feg is not harmonic, as was to be
shown.

The argument for the case that P contains more than one element is essentially the same,
but with extra clerical details: Fix p0 ∈ P , take the fj and gj in Rk−1[ e

p, e−p : p ∈ P\{p0} ],
and proceed similarly as above. (The underlying idea is that, by independence, we can think
of ep0 as a distinguished variable with an associated notion of degree.) □

Proof of Theorem. Let f ∈ En. We must find d ∈ N such that for all m ∈ N ∩ [0, n] and
c ∈ Rm, if x 7→ f(c, x) : Rn−m → R is harmonic, then it polynomial of degree at at most
d. It suffices to fix m ∈ N and find such a d for m. The result is trivial for m = n, so let
m < n.

First, assume that m = 0 and f is harmonic. We show that f is polynomial. Let k
be minimal such that f ∈ Rk; we show that k = 0. Toward a contradiction, assume
that k > 0. By [3, 1.7], there is a finite P ⊆ Ak−1 of minimal cardinality N such that
f ∈ Rk−1[ e

p, e−p : p ∈ P ] and { ep : p ∈ P } is algebraically independent over Rk−1. By
minimality of k, we have N > 0.
Suppose N = 1, say, P = {p}. There exists J ∈ N such that f =

∑J
j=−J fje

jp with each
fj ∈ Rk−1. By the minimality of k, we have f ̸= f0, and so there exists ℓ ∈ Z such that
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0 < |ℓ| ≤ J and fℓ ̸= 0. As f is harmonic,

0 = ∆f =
∑
j∈Z

∆(fje
jp) =

∑
j∈Z

ejp[∆f + 2∇f · ∇p+ f(∆p+ |∇p|2)].

It follows from the independence of ep over Rk−1 that fℓe
ℓp is harmonic, contradicting the

Lemma.
If N > 1, then fix any p0 ∈ P and take the fj ∈ Rk−1[ e

p, e−p : p ∈ P \ {p0} ]. Observe
that f ̸= f0 and proceed as above. (This ends the proof of the case m = 0.)

Assume now that 0 < m < n. (This part of the proof requires some familiarity with
definability over the real field; see, e.g., van den Dries and Miller [4] for basics.) For
c ∈ Rm, let fc denote the function x 7→ f(c, x) : Rn−m → R. Note that fc ∈ En−m. The set
C := { c ∈ Rm : ∆fc = 0 & fc ̸= 0 } is definable (without parameters) in (R,+, ·, f). Let
c ∈ C. By the case m = 0, fc is polynomial, and so

deg fc = lim
r→+∞

r d
dr
max{ |f(c, x)| : |x| = r }

max{ |f(c, x)| : |x| = r }
.

Thus, the set D := { deg fc : c ∈ C } is a discrete subset of R definable in (R,+, ·, f). As
f is definable in the o-minimal (by Wilkie [8]) structure (R,+, ·, ex), so is D, which is thus
finite by o-minimality. Put d = maxD. (This ends the proof of the Theorem.) □

Harmonic functions on open sets are analytic, and harmonic functions on Rn have infinite
radius of convergence (see, e.g., Axler et al. [1]). Partial derivatives of harmonic functions
are harmonic. Hence:

Corollary. If u : Rn → R is harmonic and there exists N ∈ N such that, for each j =
1, . . . , n, the N -th partial derivative of u with respect to the j-th variable lies in En, then
u is polynomial. In particular, if ∇u ∈ En

n , then u is polynomial.

We conclude with some discussion of context, motivation and such.
In the early 1990s, author Miller realized that if u : R2 → R is harmonic and (R,+, ·, u)

is o-minimal, then u is polynomial. (The result fails over R2 \ {0}: consider log(x2 + y2),
which is definable in (R,+, ·, ex).) The proof is very easy relative to classical complex
analysis, but works only for n = 2, and so the result was never submitted for publication.
We sketch the proof. The map F := (∂u/∂x,−∂u/∂y) : R2 → R2 is definable in (R,+, ·, u).
By o-minimality, its zero set has only finitely many connected components. Identify F with
a function f : C → C; then the zero set of f has only finitely many connected components.
By Cauchy-Riemann equations, f is complex differentiable. Hence, by the “Big” Picard
Theorem, f is a complex polynomial, and so F is a real polynomial map. Basic calculus now
yields that u is polynomial. With only slightly more work (but we omit details), the result
can be extended somewhat: If u : R2m → R is the real part of a holomorphic f : Cm → C and
(R,+, ·, u) is o-minimal, then u is polynomial. The question arises: If n ≥ 3, u : Rn → R
is harmonic and (R,+, ·, u) is o-minimal, must u be polynomial? Degeneracy occurs if
(R,+, ·, u) is polynomially bounded, as then u is polynomial by the Harmonic Liouville
Theorem. Assume now that (R,+, ·, u) is o-minimal and not polynomially bounded. By
Growth Dichotomy [6], (R,+, ·, u) defines the function ex. Thus, it is natural that we
should first attempt to show that u is polynomial if it is definable in (R,+, ·, ex), beginning
with u ∈ En. Given the Theorem, we can revise the question: If n ≥ 3, u : Rn → R is
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harmonic and (R,+, ·, u) is o-minimal, must u be an exponential term? As of this writing,
even the case that n = 3 and u is definable in (R,+, ·, ex) is open. Work is ongoing.

Remark. It seems that the analytic geometry (as opposed to the function theory) of har-
monic functions R3 → R is poorly understood; see, e.g., De Carli and Hudson [2] and
Enciso and Peralta-Salas [5].

Let R be an o-minimal expansion of the real field and g : Rn → R be definable. We are
interested in definable solutions to the Poisson equation ∆y = g. The question of existence
is subtle, but suppose we have such a solution f ; then so is f + p for every n-ary harmonic
polynomial p (by linearity of ∆). We would like for there to be no other solutions, which
is equivalent to R not defining any nonpolynomial total n-ary harmonic functions. This is
true for n = 2 by Miller’s result mentioned earlier, and the Theorem yields another partial
result: Modulo harmonic polynomials, there is at most one solution in En. (Of course, if
g /∈ En, then there is no solution in En.)
Model theorists might wonder whether working over R is necessary, especially given the

general setting of [3]. It is easy to see that the conclusion of the Theorem is preserved
under elementary equivalence, (“transfer principle”), but more is true: By [3, 4.4] and
results from [7], our proofs yield that the Theorem holds over any nontrivial ordered ex-
ponential ring M := (M,<,+, ·, 0, 1, E) that satisfies the intermediate value theorem for
definable unary functions (equivalently, that M is “definably complete”), though the use of
o-minimality must be replaced with a model-theoretic compactness argument in order to
obtain the uniformity in parameters. However, the utility of this observation is question-
able, as we do not know of any examples of such M that are not elementarily equivalent
to (R, <,+, ·, 0, 1, ex). And there are limits to generalization: If c ∈ Cn \ {0} is such that∑n

j=1 c
2
j = 0 (e.g., c = (1, i, 0, . . . , 0)), then

∏n
j=1 e

cjzj is not polynomial—but it is a complex
exponential term that is harmonic with respect to complex differentiation. The proof of the
Lemma does show that if f and g are n-ary complex exponential terms and ∆(feg) = 0,
then f = 0 or ∇g ·∇g = 0. Thus, we could state some version of the Theorem (with m = 0)
over the complex exponential field, but it is unclear to us how useful it could be. (Indeed,
the notion of being harmonic with respect to complex differentiation seems to not occur
in the literature of several complex variables.) More generally, if (R,+,−, ·, 0, 1, E) is a
nontrivial exponential differential ring as defined in [3] and c ∈ Rn, then ∆(E(c · x)) = 0
iff c · c = 0, and is polynomial iff c · x = 0. Hence, in order for all of the harmonic terms to
be polynomial, the underlying ring must be totally real (“orderable”).
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