A TAMENESS CONDITION ON EXPANSIONS OF DEFINABLY COMPLETE ORDERED FIELDS

CHRIS MILLER

May 28, 2023

This is not a preprint; please do not refer to it as such.

The following observation is due essentially to Harvey Friedman.

Proposition A. Let $\mathfrak{R} := (R, <, ...)$ be an o-minimal expansion of a dense linear order without endpoints. Let $I \subseteq R$ be an open interval, $n \in \mathbb{N}$ and $f: I^2 \to R^n$ be definable. Then there is a subinterval J of I such that $f(J^2)$ is not dense. If moreover \mathfrak{R} defines a binary operation + such that (R, <, +) is an ordered group, then for every r > 0 there is a subinterval J of I such that $f(J^2)$ avoids an open box of side length r.

The case of primary interest to Friedman is that \mathfrak{R} be an expansion of the real field. Nevertheless, the proof of the more general statement is straightforward (Monotonicity Theorem and Cell Decomposition). Perhaps less obvious is that o-minimality of \mathfrak{R} is not necessary, say, it is enough that the open core of \mathfrak{R} (that is, the structure generated by its open definable sets) be o-minimal and \mathfrak{R} define no unary function whose graph is somewhere dense. I show here that these conditions are necessary over definably complete expansions of ordered fields. (See [1,2] for definitions, properties and some examples.) For convenience, I give details only over the reals.

Proposition B. Let \mathfrak{R} be an expansion of the real field. Suppose that for each definable $f: \mathbb{R}^2 \to \mathbb{R}$ there is an interval J such that $f(J^2)$ is not dense. Then \mathfrak{R} has o-minimal open core and the graph of each unary definable function is nowhere dense.

Proof. We show that \mathfrak{R} has o-minimal open core. Let $A \subseteq \mathbb{R}$ be definable and discrete. By [2] (or [1]), it suffices to show that A is finite. Suppose otherwise. By a rational transformation, we may take $A \subseteq (0,1)$ and assume that 0 is a limit point of A. Put $U = (0,1) \setminus \text{cl } A$. Define functions $\lambda, \rho, \mu \colon U \to \mathbb{R}$ by $\lambda(x) = \inf\{t \in \mathbb{R} : (t,x) \subseteq U\}$, $\rho(x) = \sup\{t \in \mathbb{R} : (t,x) \subseteq U\}$ and $2\mu(x) = \lambda(x) + \rho(x)$. Define $h \colon \mathbb{R}^2 \to \mathbb{R}$ by

$$h(x,y) = \begin{cases} \frac{\mu(x)}{(x-\lambda(x))(\rho(x)-x)}, & x \in U\\ 0, & x \notin U. \end{cases}$$

If $B \subseteq \mathbb{R}^2$ is any open ball that intersects the vertical axis, then $h(B) = \mathbb{R}$. Hence, there is a definable $f \colon \mathbb{R}^2 \to \mathbb{R}$ such that $f(J^2) = \mathbb{R}$ for every interval J, contradicting assumptions.

Let $g: \mathbb{R} \to \mathbb{R}$ be definable. Suppose, toward a contradiction, that its graph is somewhere dense; by a rational transformation, we may take its graph to be dense. Define $f: \mathbb{R}^2 \to \mathbb{R}$ by f(x, y) = g(x) if x = y and f(x, y) = 0 if $x \neq y$. Then $f(J^2)$ is dense for every interval J, contradicting assumptions.

References

- A. Dolich, C. Miller, and C. Steinhorn, Structures having o-minimal open core, Trans. Amer. Math. Soc. 362 (2010), no. 3, 1371–1411. MR2563733
- [2] C. Miller and P. Speissegger, Expansions of the real line by open sets: o-minimality and open cores, Fund. Math. 162 (1999), no. 3, 193–208. MR1736360

Department of Mathematics, The Ohio State University, 231 West 18th Avenue, Columbus, Ohio 43210, USA

Email address: miller@math.osu.edu URL: https://people.math.osu.edu/miller.1987