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This is not a preprint; please do not refer to it as such.

We have some updates and corrections to [5] (which we assume the reader to have at
hand).

Disclaimer

The copy editor(s) of the publishers of the journal are responsible for any awkwardly
repetitive statements such as:

— “Rather more difficult, and one of our main results, is the following result.”
— “By combining these two results with known technology, we obtain the following

result.”
— “These results are sharpened by the following result.”

In each case, the terminal phrase “the following result” was not our original text. (Pre-
sumably, they would edit what we say above to something like: “. . . for any awkwardly
repetitive statements such as the following awkwardly repetitive statements”.)

1. Antiderivatives in RG

We first answer a question about RG: Which unary definable functions have a definable
antiderivative at +∞?

Suppose that R is a polynomially bounded o-minimal expansion of R. Let f : R → R be
definable in R. Then f either has an asymptotic expansion

∑
k∈N akx

rk at +∞ where each
ak ̸= 0 and each power function xrk is definable, or f is ultimately equal to a finite sum∑
akx

rk where each ak ̸= 0 and each power function xrk is definable. If some rk = −1, then
f has no definable antiderivative at +∞. Thus, the question arises as to whether f has a
definable antiderivative at +∞ if no such k exists. This is not true in general. (Consider
R = R and f = 1/(1 + x2).) We now show that it is indeed true for R = RG. It is more
convenient to work at 0+.

1.1. If u is a unary primitive function of RG, then there is a unary primitive function v of
RG such that v↾(0, 1) is an antiderivative of u↾(0, 1).

Proof. Let R > 1. Let S(R, ϕ, κ) and G(R, ϕ, κ) be as on [3, p. 514]. Let f ∈ G(R, ϕ, κ).
For every z ∈ S(R, ϕ, κ), the complex line segment [1, z] is contained in S(R, ϕ, κ). Define

g : S(R, ϕ, κ) → C by g(z) =

∫
[1,z]

f(w) dw; then g is holomorphic and g′ = f . Observe
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that |g(z)| ≤ R sup |f |, lim
z→0

g(z) = −
∫ 1

0

f(t) dt and

g(n+1)(z)

(n+ 1)!
=

1

n+ 1
· f

(n)(z)

n!
, n ∈ N.

Hence, g ∈ G(R, ϕ, κ). The result now follows by chasing definitions and a change of
variable. □

Remark. If u↾[0, 1] is analytic, then so is v↾[0, 1].

1.2. If f : R → R is definable in RG and bounded at 0+, then f has a definable antiderivative
at 0+.

Proof. By [3, Theorem A], there is a nonzero d ∈ N such that f ◦ xd is given at 0+ by a
unary primitive of RG. Put g = dx1−1/df ; then g ◦ xd is also a unary primitive. By 1.1,
g ◦ xd has a definable antiderivative v at 0+; then (v ◦ x1/d)′ = f at 0+. □

Another consequence of [3, Theorem A]:

1.3. If f : (0,∞) → R is definable in RG, then there exist a finite A ⊆ R\{0} and a function

ρ : A→ (0,∞) such that f −
∑
a∈A

ax−ρ(a) is bounded at 0 and each xρ(a) is definable.

Hence, f has a definable antiderivative at 0+ iff 1 /∈ ρ(A). (We have now finished
answering the question.)

Note. That we can take A to be finite in 1.3 is not just because RG is polynomially bounded
and o-minimal: there are such structures for which this fails, e.g., Ran∗ (as defined in [2]).

For use in the next section, we record a restatement of 1.2.

1.4. If f : R → R is definable in RG and x2f is bounded at +∞, then f has a definable
antiderivative at +∞.

2. The case s < 1

As in [5], we let s and x range over positive real numbers, and whether x is regarded as
fixed or variable depends upon context. We did not know quite how to deal with Ws for
s < 1. We have resolved the situation.

2.1. If s < 1, then (RG, e
x) defines Ws. If moreover 1/s /∈ N, then (RG, x

s) defines W ′
s/Ws.

This is essentially immediate from 1.4 and

2.2. Let s < 1 and p be the integer part of 1/s. Then there exist R > 0, A,B ∈ R and
f : R → R definable in RG such that limt→+∞ f(t) ∈ R \ {0} and

(logWs)
(p+1) =

A

xp+1−1/s
+

B

xp+1
+

f

xp+2
, x > R.

(The holds also if s ≥ 1, but we already knew this in [5].)
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Proof of 2.1 from 2.2. First, suppose that 1/s /∈ N. By 2.2 and iterating 1.4, there exist
A1, B1 ∈ R, P ∈ R[x], and g : R → R definable in RG such that

logWs = A1x
1/s +B1 log x+ P (x) + g, x > R.

(Aside. By the Barnes formulas, we know exactly what are A1, B1 and P .) Recall that
logWs↾(0, R] is definable in Ran. The argument is almost the same for 1/s ∈ N, but instead
of A1x

1/s we get the product of A with a (p + 1)-fold antiderivative of 1/x. All iterated
antiderivatives of 1/x are definable in (R, ex). □

Sketch of proof of 2.2. By direct computation from the Weierstrass factorization of Ws(z),
we have

(logWs)
(p+1)(z) = (−1)pp!

∑
n>0

1

(z + ns)p+1
,

and the convergence is absolute and uniform on compact subsets of C \ {−ns : n > 0 }.1
The rest of the proof is similar to that of the conjunction of the proofs of 2.1 and 2.2 of [5],
but easier in some ways (we will not be building in the construction of an antiderivative,
and the least integer greater than s is 1). Put

ϕs(x) = −2

∫ ∞

0

Im

[
1

(x+ (it)s)p+1

]
dt

e2πt − 1
;

then ∑
n>0

1

(x+ ns)p+1
=

∫ ∞

0

dt

(1 + ts)p+1
· 1

xp+1−1/s
− 1

2xp+1
+ ϕs(x).

Let Rs(z) be the rational function

2
∑p+1

k=1

(
p+1
k

)
sin(skπ/2)zk

[(1 + isz)(1 + i−sz)]p+1
.

Note that Rs has a zero of order one at the origin, poles exactly at eiπ(1±s/2), and for r > 0
we have

Rs(r
s) = −2 Im

[
1

(1 + (ir)s)p+1

]
.

Thus,

ϕs(1/x) = xp+2
∑
n>0

∫ ∞

0

[Rs(t
sx)/x]e−2πnt dt.

Since [Rs(z)/z](0) ̸= 0, it suffices now to show that

ψs(x) :=
∑
n>0

∫ ∞

0

[Rs(t
sx)/x]e−2πnt dt

is given on some (0, ϵ) by a unary primitive. As in the proof of [5, 2.2], proceed by verifying
that the machinery from Balser ([1]) applies to ψs(1/x

s)/xs. Note that we may take N = 1.
(We leave the details as an exercise.) □

1Thanks to Ovidiu Costin for the suggestion to differentiate the formal series
∑

n>0 1/(z + ns) until it

becomes convergent.
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3. More on W1

In [5], we dealt with the case s = 1 by observing that W1 is interdefinable over R with
Γ (restricted to (0,∞)) and then applying the result from [3] that (RG, e

x) defines Γ, the
proof of which relied on existing classical results about the Stirling series. We can now give
a more direct proof that (RG, e

x) defines W1 (hence also Γ). By arguing as before,

(logW1)
′′ = −

∑
n≥0

1

(x+ n)2
.

By the Abel-Plana formula,∑
n≥0

1

(x+ n)2
=

1

x
+

1

2x2
− 2

∫ ∞

0

Im

[
1

(x+ it)2

]
dt

e2πt − 1
.

Now argue as for the case s < 1 (but take N = 2).

Remark. (logW1)
′′(x) = −ζ(2, x), where ζ is the Hurwitz zeta function.

4. Corrections to the proof of [5, 1.5]

The constant term
2π2 + (log s)2

12 log s
is missing from the statement of Littlewood’s formula

for logFs, but as it disappears after differentiation, it plays no role in the proof.
Asserted in the proof of part (ii) is that the zero set of the function

f(x) =
∑
m>0

bmm
2 sin(πmx)

is equal to Z. This is too optimistic; there will be trouble if the sequence (bmm
2) takes

too long to manifest its ultimate decay rate, and this depends on s. (More on this at the
end of this section.) In any case, the assertion is not actually needed. By periodicity,
analyticity and that f ′(0) ̸= 0, the set of zeros of f that are neither local maxima nor local
minima is a nonempty union of finitely many cosets of 2Z. With a little more calculus and
basic definability, the proof of 1.5(ii) still works. Let c ∈ R. We show that d3 logFs↾(c,∞)
defines sZ over R. Like many of the results in [5], the argument is asymptotic and essentially
independent of c, so we take c = 1 for convenience. (Recall that the Littlewood formulas
are stated for x > 1.) It suffices to show that the zero set of d3 logFs↾(1,∞) defines sZ

over (R>0, <, · ), and for this, it suffices to show that the zero set of d3 logFs ◦ s−x/2↾(0,∞)
defines Z over (R, <,+). Put

g(x) = −(log s)3

4π3

∑
m>0

amm
2s−x/2

and X = {x > 0 : g(x) = f(x) }. By the Littlewood formulas, it suffices now to show
that (R, <,+, X) defines Z. Observe that X is closed, discrete and unbounded above (by
analyticity of f − g and periodicity of f). Let σ be the successor function on X. (All
we have done so far is to recapitulate the argument from [5] in more detail.) There exist
positive δ and R0 such that, for all x ∈ X ∩ (R0,∞), we have σ(x) ≤ x + δ if and only
if there exists y ∈ (x, σ(x)) such that f(y) = 0 and f has a local minimum at y. Put
X ′ := {x ∈ X : σ(x) ≤ x + δ } and X ′′ = X \ (X ′ ∪ σ(X ′)). As X ′′ is definable in
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(R, <,+, X), it suffices now to show that (R, <,+, X ′′) defines Z. Let E be the set of zeros
of f that are neither local minima nor local maxima of f . Then:

∀ϵ > 0,∃R ∈ R,∀x ∈ X ′′ ∩ (R,∞), ∃!y ∈ E, |x− y| < ϵ.

As E is the union of 2Z and finitely many cosets of 2Z, we are done by the following result.

4.1. Let G be a cyclic subgroup of (R,+) and E be a nonempty finite union of cosets of G.
Let D ⊆ R be such that

(∗) ∀ϵ > 0,∃R ∈ R,∀x ∈ D ∩ (R,∞),∃!y ∈ E, |x− y| < ϵ.

Then G is definable in (R, <,+, D).

This is known in some form or other by at least some model theorists other than us, but
perhaps only indirectly or as folklore. Thus, we provide a

Proof. The result is trivial if G = {0}. For ease of notation, let G = Z. There is an R0 ∈ R
such that D ∩ [R0,∞) is closed, discrete and unbounded above. Let (dn)n∈N be a strictly
increasing enumeration of D ∩ [R0,∞). Let N be the number of cosets of Z comprising E.
We proceed by induction on N .

If N = 1, then limn→∞(dn+1 − dn) = 1, and so the result is immediate by asymptotic
extraction of groups [4, AEG] (and its proof).

Let N > 1 and assume the result for all lower values of N . Let 0 ≤ r1 < · · · < rN < 1
and E be the union of the rk+Z. Consider the set { exp(i2πrk) : k = 1, . . . , N } as a subset
of the unit circle. Among the arcs between these points, there are some of maximal length,
and there is a maximal number J of contiguous arcs of maximal length. If all of the arcs
have the same length, then limn→∞(dn+1−dn) = 1/N . By asymptotic extraction of groups,
(R, <,+, D) defines (1/N)Z, hence also Z. Assume that not all of the arcs have the same
length. Let σ denote the successor function on E, and σj denote the j-th compositional
iterate. Put c = max{r2 − r1, . . . , rN − rN−1, 1 + r1 − rN}. Then the set

E ′ :=

{
x ∈ E :

J∧
j=1

σj(x) = x+ jc

}
is nonempty and the union of finitely many, but not all, of the rk + Z. Let τ denote the
successor function on D, and τj denote the j-th compositional iterate. There exists δ > 0
such that the set

D′ :=

{
x ∈ D :

J∧
j=1

|τj(x)− (x+ jc)| ≤ δ

}
satisfies property (∗) with respect to E ′. Inductively, (R, <,+, D′) defines Z. As D′ is
definable in (R, <,+, D), we are done. □

Having now repaired the proof of Theorem 1.5, let us analyze the problematic assertion

that the zero set of
∑
m>0

bmm
2 sin(πmx) is equal to Z. Suppose that the sequence (bmm2)m>0

is strictly decreasing, and at a “fast enough” rate. The sum starts with b1 sin(πx), which
has only integer zeros. The next term, 4b2 sin(2πx), contributes positivity on (0, 1/2), but
some negativity on (1/2, 1). Nevertheless, if 22b2 < b1, then no new zeros arise. Continuing
in this fashion yields at least a plausibility argument that no new zeros will arise in the
infinite sum. But this idea cuts both ways. Recall that bm = csch(2π2m/ log s). Thus,
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we have only asymptotic exponential decay for the sequence (bmm
2), and the larger is s,

the longer it takes for the exponential decay to set in. Instead of starting with b1 sin(πx)

above, we should use
M∑

m=1

bmm
2 sin(πmx) for some sufficiently large M . As this might have

noninteger zeros, the same will probably be true of good approximations.
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