
ON A PROBLEM OF HOPF FOR CIRCLE BUNDLES OVER
ASPHERICAL MANIFOLDS WITH HYPERBOLIC FUNDAMENTAL GROUPS

CHRISTOFOROS NEOFYTIDIS

ABSTRACT. We prove that a circle bundle over a closed oriented aspherical manifold with hyper-
bolic fundamental group admits a self-map of absolute degree greater than one if and only if it is
virtually trivial. This generalizes in every dimension the case of circle bundles over hyperbolic sur-
faces, for which the result was known by the work of Brooks and Goldman on the Seifert volume.
As a consequence, we verify the following strong version of a problem of Hopf for the above class
of manifolds: Every self-map of non-zero degree of a circle bundle over a closed oriented aspherical
manifold with hyperbolic fundamental group is either homotopic to a homeomorphism or homotopic
to a non-trivial covering and the bundle is virtually trivial. As another application, we derive the first
examples of non-vanishing numerical invariants that are monotone with respect to the mapping de-
gree on non-trivial circle bundles over aspherical manifolds with hyperbolic fundamental groups in
any dimension.

1. INTRODUCTION

A long-standing question of Hopf (cf. Problem 5.26 in Kirby’s list [14]) asks the following:

Problem 1.1. (Hopf). Given a closed oriented manifold M , is every self-map f : M −→ M of
degree ±1 a homotopy equivalence?

A complete solution to Hopf’s problem seems to be currently out of reach. Nevertheless, some
affirmative answers are known for certain classes of manifolds and dimensions, most notably for
simply connected manifolds (by Whitehead’s theorem), for manifolds of dimension at most four
with Hopfian fundamental groups [13] (recall that a group is called Hopfian if every surjective en-
domorphism is an isomorphism), and for aspherical manifolds with hyperbolic fundamental groups
(e.g. negatively curved manifolds). The latter groups are Hopfian [19, 27], thus, the asphericity
assumption together with the simple fact that any map of degree ±1 is π1-surjective, answer in the
affirmative Problem 1.1 for closed manifolds with hyperbolic fundamental manifolds.

In fact, the assumption about degree ±1 is unnecessary in answering in the affirmative Prob-
lem 1.1 for aspherical manifolds with non-elementary hyperbolic fundamental groups, because
those manifolds cannot admit self-maps of degree other than ±1 or zero [5, 26, 27, 20, 21]; cf.
Section 3.1. Hence, every self-map of non-zero degree of a closed oriented aspherical manifold
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with non-elementary hyperbolic fundamental group is a homotopy equivalence. Of course, the lat-
ter statement does not hold for all (aspherical) manifolds, because, for example, the circle admits
self-maps of any degree. Nevertheless, every self-map of the circle of degree greater than one is ho-
motopic to a (non-trivial) covering. The same is true for every self-map of nilpotent manifolds [3]
and for certain solvable mapping tori of homeomorphisms of the n-dimensional torus [29, 23]. In
addition, every non-zero degree self-map of a 3-manifold M is either a homotopy equivalence or
homotopic to a covering map, unless the fundamental group of each prime summand of M is finite
or cyclic [30]. The above results suggest the following question for aspherical manifolds:

Problem 1.2 (Strong version of Hopf’s problem for aspherical manifolds). Is every non-zero de-
gree self-map of a closed oriented aspherical manifold either a homotopy equivalence or homo-
topic to a non-trivial covering?

In dimension three, hyperbolic manifolds and manifolds containing a hyperbolic piece in their
JSJ decomposition do not admit any self-map of degree greater than one1 due to the positivity of
the simplicial volume [11]. (Recall that the simplicial volume ‖·‖ satisfies ‖M ′‖ ≥ | deg(f)|·‖M‖
for every map f : M ′ −→ M .) The other classes of aspherical 3-manifolds which do not admit
self-maps of degree greater than one are S̃L2-manifolds [6] and graph manifolds [10], since those
manifolds have another (virtually) positive invariant that is monotone with respect to mapping
degrees, namely the Seifert volume (introduced in [6] by Brooks and Goldman). In particular, non-
trivial circle bundles over closed hyperbolic surfaces (which are modeled on the S̃L2 geometry)
do not admit self-maps of degree greater than one. At the other end, it is clear that trivial circle
bundles over (hyperbolic) surfaces, i.e. products S1×Σ, admit self-maps of any degree (and those
maps are either homotopy equivalences or homotopic to non-trivial coverings [30]).

Recall that a circle bundle M π−→ N is classified by its Euler class e ∈ H2(N ;Z); in particular,
M is virtually trivial if and only if e is torsion. For a circle bundle M over a closed oriented
surface Σ, its Euler class e ∈ H2(Σ) = Z is either zero and the bundle is trivial (i.e. M = S1×Σ)
or e is not zero and non-torsion and the bundle is not virtually trivial. The main result of this
paper is that the non-existence of self-maps of degree greater than one on non-trivial circle bundles
over closed oriented hyperbolic surfaces (i.e. over closed oriented aspherical 2-manifolds with
hyperbolic fundamental groups) can be extended in any dimension. In fact, we prove the following
stronger statement:

Theorem 1.3. An oriented circle bundle over a closed oriented aspherical manifold with hyper-
bolic fundamental group admits a self-map of absolute degree greater than one if and only if it is
virtually trivial.

The “if” direction holds more generally without any assumption on the hyperbolicity of the
fundamental group of the base:

1Equivalently, of absolute degree greater than one, by taking f2 whenever deg(f) < −1.
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Example 1.4. Let M be a virtually trivial oriented circle bundle over a closed oriented manifold
N . Then its Euler class e ∈ H2(N) is k-torsion for some k. Since M is fiberwise oriented, M is
a principal U(1)-bundle and thus M can be viewed as the (associated) complex line bundle whose
first Chern class is the Euler class e. Consider the tensor product M ⊗ · · · ⊗M of k + 1 copies of
M . Then the first Chern class of M ⊗ · · · ⊗M is

c1(M ⊗ · · · ⊗M) = (k + 1)c1(M) = c1(M),

and so M ⊗ · · · ⊗M is isomorphic to M . Taking the k + 1 power of a section of M gives us a
fiberwise map

f : M →M ⊗ · · · ⊗M,

which has degree k + 1 on the fibers and degree one on the base N . Thus deg(f) = k + 1.

Outline of the proof of the main theorem. In view of Example 1.4, the proof of Theorem 1.3
amounts in showing that if an oriented circle bundle M over a closed oriented aspherical manifold
N with π1(N) hyperbolic admits a self-map f of degree greater than one, thenM must be virtually
trivial. We will show that such f is in fact homotopic to a fiberwise non-trivial self-covering of M ,
and thus the powers of f induce a purely decreasing sequence

(1) π1(M) ) f∗(π1(M)) ) · · · ) fm∗ (π1(M)) ) fm+1
∗ (π1(M)) ) · · · .

Using this sequence, we will be able to obtain an infinite index subgroup of π1(M) given by

G := ∩
m
fm∗ (π1(M)).

The last part of the proof uses the concept of groups infinite index presentable by products (IIPP)
and characterizations of groups fulfilling this condition [22]. More precisely, we will see that the
multiplication map

ϕ : C(π1(M))×G −→ π1(M)

defines a presentation by products for π1(M), where both G and the center C(π1(M)) have infi-
nite index in π1(M). This will lead us to the conclusion that π1(M) has a finite index subgroup
isomorphic to a product and M is virtually trivial.

Remark 1.5. In the proof of Theorem 1.3 we will use the fact that the base is an aspherical manifold
which does not admit self-maps of degree greater than one, and its fundamental group is Hopfian
with trivial center. Thus we can extend Theorem 1.3 (and its consequences, cf. Section 2) to any
circle bundle over a closed oriented manifold N that fullfils the aforementioned properties. For
instance, if N is an irreducible locally symmetric space of non-compact type, then it is aspherical,
it has positive simplicial volume [16, 7] (and thus does not admit self-maps of degree greater than
one), and π1(N) is Hopfian [19] without center [25].

Remark 1.6. A decreasing sequence (1) exists whenever an aspherical manifold M admits a self-
map f of degree greater than one and π1(M) is Hopfian for every finite cover M of M (which is
conjectured to be true, cf. Section 2). This gives further evidence towards an affirmative answer to
Problem 1.2, since the existence of such a sequence is a necessary condition for f to be homotopic
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to a non-trivial covering. Now, every finite index subgroup of the fundamental group of a circle
bundle over a closed aspherical manifold with hyperbolic fundamental group is indeed Hopfian
and therefore this gives us an alternative way of obtaining sequence (1). We will discuss the Hopf
property for those circle bundles and Problem 1.2 more generally in Section 5.

Acknowledgments. I would like to thank Michelle Bucher, Pierre de la Harpe, Jean-Claude Haus-
mann, Wolfgang Lück, Jason Manning, Dennis Sullivan and Shmuel Weinberger for useful com-
ments and discussions. I am especially thankful to Wolfgang Lück for suggesting to extend the
results of a previous version of this paper to circle bundles over aspherical manifolds with hyper-
bolic fundamental groups. Also, I am grateful to an anonymous referee for suggesting Example
1.4, which pointed out a mistake in a previous version of this paper. The support of the Swiss
National Science Foundation is gratefully acknowledged.

2. APPLICATIONS OF THE MAIN RESULT

Before proceeding to the proof of Theorem 1.3, let us mention a few consequences of Theorem
1.3 or of parts of its proof.

It is a long-standing question (motivated by Problem 1.1) whether the fundamental group of
every closed aspherical manifold is Hopfian (see [24] for a discussion). If this is true, then every
self-map of an aspherical manifold of degree ±1 is a homotopy equivalence. In the course of the
proof of Theorem 1.3, we will see that every self-map of a circle bundle over a closed oriented
aspherical manifold with hyperbolic fundamental group is homotopic to a fiberwise covering map,
and this alone shows that Problem 1.1 and, in most of the cases, Problem 1.2 have indeed affir-
mative answers for self-maps of those manifolds. More interestingly, Theorem 1.3 implies the
following complete characterization with respect to Problem 1.2:

Corollary 2.1. Every self-map of non-zero degree of an oriented circle bundle over a closed ori-
ented aspherical manifold with hyperbolic fundamental group either is a homotopy equivalence
or is homotopic to a fiberwise non-trivial covering (and to a non-trivial covering in dimensions
different that four and five) and the bundle is virtually trivial.

Remark 2.2 (The Borel conjecture: From homotopy equivalences to homeomorphisms). In most
cases, an even stronger conclusion holds for the homotopy equivalences of Corollary 2.1. Recall
that the Borel conjecture asserts that any homotopy equivalence between two closed aspherical
manifolds is homotopic to a homeomorphism. (Note that the Borel conjecture does not hold in the
smooth category or for non-aspherical manifolds; see for example the related references in the sur-
vey paper [18] and the discussion in [28].) A complete affirmative answer to the Borel conjecture
is known in dimensions less than four (see again [18] for a survey). Moreover, by [1, 2], the fun-
damental group of a circle bundle M over a closed aspherical manifold N with π1(N) hyperbolic
and dim(N) 6= 3, 4 satisfies the Farrell-Jones conjecture, and therefore the Borel conjecture, and
so every homotopy equivalence of such a circle bundle is in fact homotopic to a homeomorphism.
(See also [5] for self-maps of the base N .)
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Beyond the Seifert volume for non-trivial circle bundles over hyperbolic surfaces [6], no other
non-vanishing monotone invariant respecting the degree seemed to be known on higher dimen-
sional circle bundles over aspherical manifolds with hyperbolic fundamental groups (note that the
simplicial volume vanishes as well [11]). A consequence of Theorem 1.3 is that such a monotone
invariant exists and it is given by the domination semi-norm. Recall that the domination semi-norm
is defined by

νM(M ′) := sup{| deg(f)| | f : M ′ −→M},
and it was introduced in [9]. Theorem 1.3 implies the following:

Corollary 2.3. If M is a not virtually trivial circle bundle over a closed oriented aspherical man-
ifold with hyperbolic fundamental group, then νM(M) = 1.

However, the domination semi-norm is not finite in general, because M might admit maps of
infinitely many different degrees from another manifold M ′. Nevertheless, Theorem 1.3 and the
non-vanishing of the Seifert volume for non-trivial circle bundles over hyperbolic surfaces suggest
the following:

Conjecture 2.4. In every dimension n, there is a homotopy n-manifold numerical invariant In sat-
isfying the inequality In(M) ≥ | deg(f)| · In(N) for each map f : M −→ N , which is positive and
finite on every not virtually trivial circle bundle over a closed aspherical manifold with hyperbolic
fundamental group.

3. INFINITE SEQUENCES OF COVERINGS

In this section, we reduce our discussion to self-coverings of a circle bundle over a closed ori-
ented aspherical manifold with hyperbolic fundamental group and thus obtain a purely decreasing
sequence of finite index subgroups of the fundamental group of this bundle.

3.1. Self-maps of aspherical manifolds with hyperbolic fundamental groups. First, we ob-
serve that the hyperbolicity of the fundamental group of the base implies strong restrictions on the
possible degrees of its self-maps:

Proposition 3.1. ([5]). Every self-map of non-zero degree of a closed aspherical manifold with
non-elementary hyperbolic fundamental group is a homotopy equivalence.

Proof. There are two ways to see this. The first one (given in [5]) is purely algebraic, using the
co-Hopf property of torsion-free, non-elementary hyperbolic groups [26, 27]. The other way uses
bounded cohomology and the simplicial volume; cf. [20, 21] and [12].

Let N be a closed oriented aspherical manifold whose fundamental group is non-elementary
hyperbolic and f : N −→ N be a map of non-zero degree. By [26, 27] (see also [5, Lemma
4.2]), π1(N) is co-Hopfian (i.e. every injective endomorphism is an isomorphism), and so by the
asphericity of N it suffices to show that f∗ is injective. Suppose the contrary, and let a non-trivial
element x ∈ ker(f∗). Since f∗(π1(N)) has finite index in π1(N), there is some n ∈ N such
that xn ∈ f∗(π1(N)), i.e. there is some y ∈ π1(N) such that f∗(y) = xn. Clearly, xn 6= 1,
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because π1(N) is torsion-free, and so y /∈ ker(f∗). Now, f 2
∗ (y) = f∗(x

n) = 1, which means that
y ∈ ker(f 2

∗ ). By iterating this process, we obtain a purely increasing sequence

ker(f∗) ( ker(f 2
∗ ) ( · · · ( ker(fm∗ ) ( ker(fm+1

∗ ) ( · · · .

But the latter sequence contradicts Sela’s result [26, 27] that for every endomorphism ψ of a
torsion-free hyperbolic group, there exists m0 ∈ N such that ker(ψk) = ker(ψm0) for all k ≥ m0.
We deduce that f∗ is injective, and therefore an isomorphism as required.

Alternatively to the above argument, since π1(M) is non-elementary hyperbolic, the comparison
map from bounded cohomology to ordinary cohomology

ψπ1(M) : Hn
b (π1(M);R) −→ Hn(π1(M);R)

is surjective; cf. [20, 21, 12]. Thus, by the duality of the simplicial `1-semi-norm and the bounded
cohomology `∞-semi-norm (cf. [11]), we deduce that M has positive simplicial volume. This
implies that every non-zero degree map f : M −→ M has degree ±1. In particular, f is π1-
surjective, and thus an isomorphism, because π1(M) is Hopfian [19, 27]. �

3.2. Fundamental group and finite covers. LetM π−→ N be an oriented circle bundle, whereN
is a closed oriented aspherical manifold with π1(N) hyperbolic. We may assume that dim(N) ≥ 2,
otherwise we deal with the well-known case of T 2. The fundamental group of M fits into the
central extension (cf. [4, 8])

1 −→ C(π1(M)) −→ π1(M)
π∗−→ π1(N) −→ 1,

where C(π1(M)) = Z (note that C(π1(N)) = 1, because π1(N) is torsion-free, non-elementary
hyperbolic).

It is easy to observe that every finite covering of M is of the same type. More precisely:

Lemma 3.2. ([22, Lemma 4.6]). Every finite cover M
p−→M is a circle bundle M π−→ N , where

N
p−→ N is a finite covering.

In particular, p is a generalised bundle map covering p and the (infinite cyclic) center of π1(M)

is mapped under p∗ into the center of π1(M).

3.3. Reduction to fiberwise covering maps. Now, let f : M −→M be a map of non-zero degree.
We observe that f is homotopic to a fiberwise covering map:

Proposition 3.3. f is homotopic to a fiberwise covering where the induced map fS1 : S1 −→ S1

has degree ± deg(f).

Proof. Let the composite map π ◦ f : M −→ N and the induced homomorphism

(π ◦ f)∗ : π1(M) −→ π1(N).

Since the center of π1(N) is trivial, we derive, after lifting f to a π1-surjective map f : M −→ M

(where M
p−→ M corresponds to f∗(π1(M))), that the center of π1(M) is mapped under (π ◦ f)∗
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to the trivial element of π1(N); cf. Section 3.2. Thus f factors up to homotopy through a self-map
g : N −→ N , i.e. π ◦ f = g ◦ π (up to homotopy).

Clearly, deg(g) 6= 0, otherwise f would factor through the degree zero map from the pull-back
bundle of g along π to M , which is impossible because deg(f) 6= 0. Now, Proposition 3.1 implies
that g is a homotopy equivalence of N (in particular deg(g) = ±1). Hence, the induced map fS1

on the S1 fiber is homotopic to a self-covering of degree

deg(fS1) = ± deg(f).

�

Since every map of degree ±1 is π1-surjective, every self-map of M of degree ±1 is a homo-
topy equivalence, answering thus in the affirmative Problem 1.1. More interestingly, the above
proposition gives the following strong affirmative answer to Problem 1.2; cf. Remark 2.2:

Corollary 3.4. Let M be an oriented circle bundle over a closed oriented aspherical manifold N
with hyperbolic fundamental group and dim(N) 6= 3, 4. Every self-map of M of non-zero degree
is either homotopic to a homeomorphism or homotopic to a non-trivial covering.

Consider now the iterates

fm : M −→M, m ≥ 1.

By Proposition 3.3, each fm is homotopic to a fiberwise covering of degree

(deg(f))m = [π1(M) : fm∗ (π1(M))],

i.e. for each m, the homomorphism

fm∗ : π1(M) −→ π1(M)

maps every element x ∈ C(π1(M)) = Z = 〈z〉 to x± deg(fm) ∈ C(π1(M)) and induces an
isomorphism on π1(N) = π∗(π1(M)). In particular, when deg(f) > 1, we obtain the following:

Corollary 3.5. If f : M −→ M has degree greater than one, then there is a purely decreasing
infinite sequence of subgroups of π1(M) given by

(2) π1(M) ) f∗(π1(M)) ) · · · ) fm∗ (π1(M)) ) fm+1
∗ (π1(M)) ) · · · .

4. DISTINGUISHING BETWEEN TRIVIAL AND NON-TRIVIAL BUNDLE

Now we will show that the existence of sequence (2) implies that π1(M) has a finite index
subgroup which is isomorphic to a direct product and thus M is virtually trivial. To this end, we
will construct a presentation of π1(M) by a product of two infinite index subgroups.
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4.1. Groups infinite index presentable by products. An infinite group Γ is said to be infinite
index presentable by products or IIPP if there exist two infinite subgroups Γ1,Γ2 ⊂ Γ that commute
elementwise, such that [Γ : Γi] =∞ for both Γi and the multiplication homomorphism

Γ1 × Γ2 −→ Γ

surjects onto a finite index subgroup of Γ.
The notion of groups IIPP was introduced in [22] in the study of maps of non-zero degree from

direct products to aspherical manifolds with non-trivial center. The concept of groups presentable
by products (i.e. without the constraint on the index) was introduced in [15]. It is clear that when
Γ is a reducible group, that is, virtually a product of two infinite groups, then Γ is IIPP. Thus,
a natural problem is to determine when these two properties are equivalent. In general, they are
not equivalent as shown in [22, Section 8], however their equivalence is achieved under certain
assumptions:

Theorem 4.1. ([22, Theorem D]). Suppose Γ fits into a central extension

1 −→ C(Γ) −→ Γ −→ Γ/C(Γ) −→ 1,

where Γ/C(Γ) is not presentable by products. Then Γ is IIPP if and only if it is reducible.

The following theorem characterizes aspherical circle bundles, when the fundamental group of
the base is not presentable by products:

Theorem 4.2. ([22, Theorem C]). Let M π−→ N be a circle bundle over a closed aspherical
manifold N whose fundamental group π1(N) is not presentable by products. Then the following
are equivalent:

(1) M admits a map of non-zero degree from a direct product;
(2) M is finitely covered by a product S1 ×N , for some finite cover N −→ N ;
(3) π1(M) is reducible;
(4) π1(M) is IIPP.

Since non-elementary hyperbolic groups are not presentable by products [15], each circle bundle
M over a closed aspherical manifold N with π1(N) hyperbolic fulfills the assumptions of Theo-
rems 4.1 and 4.2. Using this, we will be able to deduce that M is virtually trivial. Furthermore,
our presentation by products for π1(M) will have trivial kernel; see Remark 4.3.

4.2. An infinite index presentation by products. Under the assumption of the existence of
fm : M −→ M with deg(fm) = (deg(f))m > 1 for all m ≥ 1, and thus of sequence (2), we
consider the subgroup of π1(M) defined by

G := ∩
m
fm∗ (π1(M)).

First, we observe the general fact (i.e. without using the specific form of each fm∗ (π1(M))) that
G has infinite index in π1(M). Let us suppose the contrary, i.e. that [π1(M) : G] <∞. Then by

[π1(M) : fm∗ (π1(M))] ≤ [π1(M) : G]
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for all m, and the fact that π1(M) contains only finitely many subgroups of a fixed index, we
deduce that there exists n such that fn∗ (π1(M)) = fk∗ (π1(M)) for all k ≥ n. This is however
impossible by Corollary 3.5. Now, we will show that π1(M) admits a presentation by the product
C(π1(M))×G. Let

(3) ϕ : C(π1(M))×G −→ π1(M)

be the multiplication map. Since each element of C(π1(M)) commutes with every element of G,
we deduce that ϕ is in fact a well-defined homomorphism.

We claim that ϕ surjects onto a finite index subgroup of π1(M), i.e. that C(π1(M))G has finite
index in π1(M). To this end, we will use the specific description of fm and fm∗ (π1(M)). In Section
3.3, we have seen that for every m, the composite fm is a fiberwise covering of degree deg(fm) on
the fibers that induces an isomorphism on π1(N), and even more it induces a homotopy equivalence
of N . In particular, for every m ≥ 1 we obtain a short exact sequence

1 −→ 〈zdeg(f)m〉 −→ fm∗ (π1(M)) −→ π1(Nm) −→ 1,

where π1(Nm) ∼= π1(N). Hence, π1(M)/fm∗ (π1(M)) ∼= Z/ deg(f)mZ, for all m ≥ 1, and so
π1(M)/G ∼= Z. Thus, we obtain a short exact sequence (induced by π∗)

1 −→ (C(π1(M))G)/G −→ π1(M)/G
π∗−→ π1(N)/π∗(G) −→ 1.

Since (C(π1(M))G)/G ∼= Z, we conclude that π∗(G) is a finite index subgroup of π1(N).
Let now x ∈ π1(M). If x = zs ∈ C(π1(M)) = 〈z〉, then ϕ(x, 1) = x. If x /∈ C(π1(M)), then

π∗(x) is not trivial in π1(N) and so there exists t ≥ 0 such that π∗(xt) ∈ π∗(G), i.e. π∗(xt) = π∗(g)

for some g ∈ G. Thus xt = zag for some a ∈ Z, and so ϕ(za, g) = xt. We conclude that
ϕ(C(π1(M))×G) = C(π1(M))G has finite index in π1(M).

Since moreover C(π1(M)) and G have infinite index in π1(M), we conclude that the presenta-
tion given in (3) is an infinite index presentation by products. Theorem 4.2 implies that π1(M) is
reducible and M is virtually a trivial circle bundle.

This finishes the proof of Theorem 1.3.

Remark 4.3. The kernel of ϕ must be trivial, because it is isomorphic to C(π1(M)) ∩ G which
is trivial. Thus C(π1(M))G is isomorphic to the fundamental group of a trivial circle bundle
that covers M . In particular, the property of π1(N) that is not presentable by products was not
necessary for our proof.

An alternative way to see that C(π1(M)) ∩G is trivial is to observe that

[C(π1(M)) : C(π1(M)) ∩G] = [π1(M) : G] =∞.

Together with the fact that C(π1(M)) = Z, we conclude that C(π1(M)) ∩G is trivial.

The proof of Corollary 2.1 is now straightforward:

Proof of Corollary 2.1. Let M be a circle bundle over a closed oriented aspherical manifold N
with π1(N) hyperbolic and f : M −→ M be a map of non-zero degree. As we have seen in



10 CHRISTOFOROS NEOFYTIDIS

Section 3.3, if deg(f) = ±1, then f is a homotopy equivalence and, if deg(f) 6= ±1, then f is
homotopic to a non-trivial fiberwise covering (and to a non-trivial covering when dim(N) 6= 3, 4;
see Remark 2.2). In the latter case, Theorem 1.3 implies moreover that M is virtually S1 ×N for
some finite covering N → N . �

Remark 4.4. When M has torsion Euler class e ∈ H2(N), we have seen in Example 1.4 that M
admits a self-map f of degree greater than one. Recall that a product finite covering S1×N −→M

is obtained by pulling back M π−→ N along the finite covering N → N that corresponds to the
finite index subgroup

H := ker(π1(N)
h−→ H1(N)

πT−→ TorH1(N)) ⊆ π1(N),

where h denotes the Hurewicz map and πT is the projection to the torsion of H1(N). (Note that e
lies in TorH1(M) by the Universal Coefficient Theorem.) The groups H and π∗(G) are commen-
surable in π1(N) because

[π∗(G) : π∗(G) ∩H] ≤ [π1(N) : H] <∞ and [H : π∗(G) ∩H] ≤ [π1(N) : π∗(G)] <∞.

5. THE HOPF PROPERTY AND THE STRONG VERSION OF HOPF’S PROBLEM

In this section we discuss the Hopf property for circle bundles over aspherical manifolds with
hyperbolic fundamental groups and Problem 1.2 more generally.

5.1. The Hopf property. First, we show that the fundamental groups of circle bundles over as-
pherical manifolds with hyperbolic fundamental groups are Hopfian:

Proposition 5.1. IfM is a circle bundle over a closed oriented aspherical manifold with hyperbolic
fundamental group, then every finite index subgroup of π1(M) is Hopfian.

Proof. Let M π−→ N be a circle bundle, where N is a closed oriented aspherical manifold with
π1(N) hyperbolic. (As before, we can assume that π1(N) is not cyclic.) Since every finite covering
of M is of the same type (cf. Lemma 3.2), it suffices to show that π1(M) is Hopfian.

Let φ : π1(M) −→ π1(M) be a surjective homomorphism. Then φ(C(π1(M))) ⊆ C(π1(M)),
and so the composite homomorphism π∗ ◦ φ : π1(M) −→ π1(N) maps C(π1(M)) to the trivial
element of π1(N). In particular, there exists a surjective homomorphism φ : π1(N) −→ π1(N)

such that φ ◦ π∗ = π∗ ◦ φ. Now φ is injective as well (and so an isomorphism), because π1(N)

is Hopfian, being hyperbolic and torsion-free [19, 27]. Then, using again the surjectivity of φ, we
deduce that

φ|C(π1(M)) : C(π1(M)) −→ C(π1(M))

is also surjective. Since C(π1(M)) = Z is Hopfian, we conclude that φ|C(π1(M)) is in fact an
isomorphism. Now, the five-lemma for the commutative diagram in Figure 1 implies that φ is an
isomorphism as well. �
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1 // C(π1(M))

φ|C(π1(M))

��

// π1(M)

φ

��

π∗ // π1(N)

φ
��

// 1

1 // C(π1(M)) // π1(M)
π∗ // π1(N) // 1

FIGURE 1. The Hopf property for π1(M).

In this way, we obtain also an alternative proof of the fact that every self-map of M of degree
±1 is a homotopy equivalence. Of course, the above group theoretic argument uses the same
line of argument as the proof of Proposition 3.3, with the difference that it starts with a stronger
assumption, namely that φ is surjective.

5.2. Infinite decreasing sequences and Problem 1.2. The fact that every finite index subgroup of
the fundamental group of a circle bundle over an aspherical manifoldN with hyperbolic π1(N) has
the Hopf property is actually conjectured to be true for all aspherical manifolds. Beyond that this
would immediately verify Problem 1.1 for every aspherical manifold, it also gives evidence for an
affirmative answer to Problem 1.2. Namely, let f : M −→ M be a map of degree deg(f) > 1 and
suppose that every finite index subgroup of π1(M) is Hopfian. Then, as in the case of non-trivial
coverings, there is a purely decreasing infinite sequence

π1(M) ) f∗(π1(M)) ) · · · ) fm∗ (π1(M)) ) fm+1
∗ (π1(M)) ) · · · .

The proof of this claim can be found along the lines of the proof of Theorem 14.40 of [17], but
let us give the details for completeness: Suppose the contrary, i.e. that there is some n such that
fn∗ (π1(M)) = fk∗ (π1(M)) for all k ≥ n. LetMn

pn−→M be the finite covering ofM corresponding
to fn∗ (π1(M)) and denote by fn : M −→Mn the lift of fn, which induces a surjection on π1. Since
fn∗ (π1(M)) = f 2n

∗ (π1(M)), we deduce that the composite map fn ◦ pn : Mn −→ Mn induces a
surjection

(fn ◦ pn)∗ : π1(Mn) −→ π1(Mn).

Since π1(Mn) is Hopfian, we deduce that (fn ◦ pn)∗ is an isomorphism, and so a homotopy equiv-
alence, because Mn is aspherical. In particular, we obtain

deg(fn), deg(pn) ∈ {±1},

which leads to the absurd conclusion that deg(f) = ±1.
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9. D. Crowley and C. Löh, Functorial seminorms on singular homology and (in)flexible manifolds, Algebr. Geom.

Topol. 15 no. 3 (2015), 1453–1499.
10. P. Derbez and S. Wang, Graph manifolds have virtually positive Seifert volume, J. Lond. Math. Soc. 86 (2012),

17–35.
11. M. Gromov, Volume and bounded cohomology, Inst. Hautes Études Sci. Publ. Math. 56 (1982), 5–99.
12. M. Gromov, Hyperbolic groups, in “Essays in Group Theory”, Math. Sci. Res. Inst. Publ., Springer, New York-

Berlin 8 (1987), 75–263.
13. J.-C. Hausmann, Geometric Hopfian and non-Hopfian situations, Lecture notes in Pure and Applied Math. 105

(1987), 157–165.
14. R. Kirby, Problems in low-dimensional topology, Berkeley 1995.
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