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D. KOTSCHICK, C. LÖH, AND C. NEOFYTIDIS

ABSTRACT. We show that non-domination results for targets that are not
dominated by products are stable under Cartesian products.

1. MOTIVATION

If M and N are closed oriented manifolds of the same dimension, we
say that M dominates N, and we write M ≥ N, if there is a continuous
map f : M −→ N of non-zero degree. The existence of such a dominant
map is a property of the homotopy types of M and N, and it has been
known since the pioneering work of Hopf [11] that for such a map f the
pullback f ∗ is an injection of rational cohomology algebras, and that f∗
is virtually surjective on the fundamental group. However, the existence
of an injective algebra homomorphism H∗(N; Q) −→ H∗(M; Q) and of a
virtually surjective homomorphism π1(M) −→ π1(N) is usually far from
sufficient for M ≥ N.

Motivated by the work of Gromov [7, 8] in particular, (non-)domination
between manifolds has in recent years been studied in several different con-
texts, using a variety of techniques from topology, geometry, and group
theory; see for example [7, 4, 8, 5, 12] and the references given there. An
idea due to Thurston [16] and Gromov [7] is to study numerical invariants
I of manifolds that are monotone under maps of non-zero degree, so that
M ≥ N implies I(M) ≥ I(N). Then, whenever one can compute or esti-
mate I and prove I(M) < I(N) for some specific manifolds, one concludes
that M does not dominate N. The simplest example of such an invariant
is the cuplength in rational cohomology, which is montone by the result
of Hopf mentioned before. A more subtle monotone invariant – of geo-
metric rather than algebraic origin – is the simplicial volume ‖ · ‖ defined
by Gromov [7]. In general, monotone invariants are closely connected to
functorial semi-norms on homology [8, 6, 15].
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According to Gromov, the simplicial volume has a major deficiency: its
lack of multiplicativity. In fact, he proved in [7] that the simplicial volume
is approximately multiplicative for Cartesian products, and it is known that
it is not strictly multiplicative [3]. However, approximate multiplicativity is
not good enough to obtain stable non-domination results. Indeed, suppose
that 0 < ‖M‖ < ‖N‖ for some specific M and N. Then M � N, but it is
unclear whether the d-fold product M×d may dominate N×d for some d ≥
2, or not. The approximate multiplicativity does not rule out the possibility
that, as a function of the number of factors, the simplicial volume of direct
products of M might grow faster than that of direct products of N, so that
the former eventually surpasses the latter.

Invariants that are strictly multiplicative – or strictly additive, like the
cuplength – do not have this deficiency: if I(M) < I(N), then I(M×d) <
I(N×d), so that M×d � N×d for all d ≥ 1. In this case the non-domination
result M � N is stable under Cartesian products.

Gromov [8] suggested that many manifolds N might have the property
that they cannot be dominated by a non-trivial product M = M1×M2. This
conjecture has since been verified [12], and there are now lots of examples
of manifolds that are known not to be dominated by products [12, 13, 14,
17]. We will see here that in general non-domination results for targets that
cannot be dominated by products are stable under Cartesian products. This
is interesting in its own right, and also has geometric applications [17].

Conventions. Throughout this paper, the word manifold means a con-
nected closed oriented non-empty topological manifold; we denote the ra-
tional fundamental class of a manifold M by [M]. A product of manifolds
is always a non-trivial product, so no factor is a point.

2. RESULTS

Our first result is that for targets that are not dominated by products,
the loss of information in taking products discussed in the previous section
does not occur.

Theorem 2.1. Suppose M and N are n-manifolds, and that N is not dominated
by a product. Then for any d ≥ 2 we have M×d ≥ N×d if and only if M ≥ N.

In a similar spirit, taking Cartesian products with arbitrary manifolds
preserves non-domination for targets that are not dominated by products.

Theorem 2.2. Suppose M and N are n-manifolds, and that N is not dominated
by a product. Then for any manifold W, we have M×W ≥ N ×W if and only if
M ≥ N.

Note that W may very well have trivial simplicial volume. Even if one
deduces M � N from ‖M‖ < ‖N‖, this theorem shows that multiply-
ing with W preserves non-domination, while killing the simplicial volume
if ‖W‖ = 0.
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Finally, controlling the dimensions of the factors in a product, we have
the following:

Theorem 2.3. Let N be an n-manifold that is not dominated by a product. Then
there is no manifold V for which the product N×V can be dominated by a product
P = X1 × . . .× Xs that satisfies dim Xj < n for all j ∈ {1, . . . , s}.

3. PROOFS

The proofs of the above theorems all use the following lemma, which is
a consequence of Thom’s work [18] on the Steenrod problem.

Lemma 3.1. Let N be an n-manifold that is not dominated by a product. If

f : M1 ×M2 −→ N

is a continuous map, then for all i ∈ {1, . . . , n− 1} the map

f∗ : Hi(M1; Q)⊗ Hn−i(M2; Q) −→ Hn(N; Q)

induced by the homological cross-product and f is the zero map.

Proof. Because elements of Hi(M1; Q)⊗ Hn−i(M2; Q) are finite linear com-
binations of decomposable elements, and f∗ is linear, it suffices to show
f∗(α ⊗ β) = 0 for all α ∈ Hi(M1; Q) and all β ∈ Hn−i(M2; Q). Again by
the linearity of f∗, there is no loss of generality in replacing α and β by
non-zero multiples. Thus we may assume that these are integral homology
classes. By Thom’s result [18], after replacing the integral classes α and β
by suitable non-zero multiples, there are continuous maps gj : Xj −→ Mj
defined on manifolds Xj of dimensions i and n − i respectively, such that
(g1)∗[X1] = α and (g2)∗[X2] = β. It follows that

f∗(α⊗ β) =
(

f ◦ (g1 × g2)
)
∗[X1 × X2] .

This must vanish, because otherwise the map f ◦ (g1× g2) : X1×X2 −→ N
would have non-zero degree, contradicting the assumption on N. �

Using Lemma 3.1, we now prove the theorems stated in the previous
section.

Proof of Theorem 2.1. If M ≥ N, then clearly M×d ≥ N×d for all d ≥ 2. Con-
versely, suppose that g : M×d −→ N×d has non-zero degree for some d ≥ 2.
We consider the composition f = p1 ◦ g, where p1 is the projection to
the first factor. Then f∗ is surjective in rational homology. Since we as-
sumed that N is not dominated by a product, Lemma 3.1 tells us that,
in degree n, the map f∗ vanishes on tensor products of homology vector
spaces of non-zero degree. It follows that for at least one of the inclusions
i : M −→ M×d of a factor of M×d, the composition f ◦ i has non-zero de-
gree, and thus M ≥ N. �
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Proof of Theorem 2.2. If M ≥ N, then clearly M×W ≥ N ×W for all man-
ifolds W. Conversely, suppose that f : M ×W −→ N ×W has non-zero
degree for some W. We consider the induced map f∗ on Hn( · ; Q) in terms
of the Künneth decompositions of the domain and of the target:

f∗ : Hn(M; Q)⊕M1 ⊕ Hn(W; Q) −→ Hn(N; Q)⊕M2 ⊕ Hn(W; Q) ,

where Mi denotes the direct sum of tensor products of homology vector
spaces in non-zero degrees.

Since we assumed that N is not dominated by a product, Lemma 3.1
tells us that f∗(M1) is contained in M2 ⊕ Hn(W; Q). If we assume for a
contradiction that M � N, then the same is true for f∗(Hn(M; Q)).

Because f∗ is surjective, we conclude that there is an α0 ∈ Hn(W; Q) such
that f∗(α0) = [N] 6= 0 holds in the quotient vector space

Q = Hn(N ×W; Q)/ f∗(Hn(M; Q)⊕M1) .

Note that Q is of finite, non-zero, dimension.
Now we think of α0 as being in the target of f∗. By surjectivity of f∗,

the class α0 is in its image, so there exists an α1 ∈ Hn(W; Q) satisfying
f∗(α1) = α0 in Q (though not necessarily in Hn(N ×W; Q)). We proceed
inductively to find αi+1 ∈ Hn(W; Q) with the property that f∗(αi+1) = αi in
Q. The assumptions that N is not dominated by a product, or by M, imply
at every step that αi does not vanish in the quotient Q.

Since Q is finite-dimensional, there is a minimal k ∈N such that α0, . . . , αk
are linearly dependent in Q. There are then λi ∈ Q with λk 6= 0 such that

λkαk + . . . + λ0α0 = 0 ∈ Q .

We now take the left-hand-side of this equation, considered as an element
of Hn(W; Q) ⊂ Hn(M×W; Q), and apply f∗ to it to obtain

λkαk−1 + . . . + λ1α0 + λ0[N] ∈ f∗(Hn(M; Q)⊕M1) .

If λ0 = 0, then this contradicts the minimality of k. If λ0 6= 0, then we
reach the conclusion that in Hn(N ×W; Q) the generator [N] ∈ Hn(N; Q)
is a linear combination of λkαk−1 + . . . + λ1α0 ∈ Hn(W; Q) and of elements
in

f∗
(

Hn(M; Q)⊕M1
)
⊂M2 ⊕ Hn(W; Q) .

This contradicts the Künneth decomposition, and hence proves M ≥ N.
�

Proof of Theorem 2.3. Suppose g : X1 × . . .× Xs −→ N × V is a continuous
map, and consider the composition f = p1 ◦ g. The assumptions that N is
not dominated by a product and that dim Xj < n for all j imply, as in the
proof of Lemma 3.1, that f∗ is the zero map in degree n. Therefore, g has
degree zero. �
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4. DISCUSSION

4.1. Applications of the cuplength. It is not clear to what extent the as-
sumption that N is not dominated by a product is necessary in the above
theorems. While it is crucial for our proofs, this could be an artefact of our
method. Indeed, there are cases of targets N which are dominated by prod-
ucts, and still one can prove our results for them. We now do this for tori,
using the cuplength.

Recall that the cuplength of M, denoted cl(M), is the maximal number k
for which there are classes α1, . . . , αk ∈ H∗(M; Q) of positive degrees with
the property that α1 ∪ . . . ∪ αk 6= 0 ∈ H∗(M; Q). This is monotone un-
der maps of non-zero degree by [11]1. The compatibility of the Künneth
decomposition with the cup product implies

(1) cl(M×W) = cl(M) + cl(W) .

The following is easy and well known.

Lemma 4.1. An n-manifold M dominates Tn if and only if there is an injective
algebra homomorphism H∗(Tn; Q) −→ H∗(M; Q), equivalently, if cl(M) = n.

So this is a case where the algebraic necessary condition for domination
derived from rational cohomology is also sufficient.

Lemma 4.1 combined with (1) tells us that Theorem 2.2 holds for N = Tn.
Furthermore, we have:

Proposition 4.2. If M1 and M2 are manifolds of dimensions m1 and m2 respec-
tively, then M1 ×M2 ≥ Tm1+m2 if and only if M1 ≥ Tm1 and M2 ≥ Tm2 .

In particular, Theorem 2.1 also holds for N = Tn.

4.2. Infinite products. Gromov has suggested that some non-domination
results should extend to infinite products, following his perspective on in-
finite products and related topics [1, 9, 2][10, Section 5].

By increasing the number d of factors in P×d, one would naively end
up with a countably infinite product P×∞, without any extra structure. A
better way of looking at infinite products is probably to pick a (discrete,
countable) group Γ, and to look at the space PΓ = Map(Γ, P), equipped
with the natural shift action of Γ. Now in formulating what PΓ � NΓ might
mean, one should only consider Γ-equivariant continuous maps between
these product spaces.

The main issue is of course that for maps between these infinite-dimen-
sional manifolds there is no naive, geometric, notion of degree. Instead, one
should make full use of equivariance and define domination via surjectivity
in a suitable homology theory, perhaps without necessarily attempting to
define a degree.

1Hopf did not use cohomology, but formulated the conclusion in terms of the Umkehr
map on intersection rings.



6 D. KOTSCHICK, C. LÖH, AND C. NEOFYTIDIS
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