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Abstract. Given two closed oriented manifolds M,N of the same dimension, we denote

the set of degrees of maps from M to N by D(M,N). The set D(M,N) always contains

zero. We show the following (non-)realisability results:

(i) There exists an infinite subsetA of Z containing 0 which cannot be realised asD(M,N),

for any closed oriented n-manifolds M,N .

(ii) Every finite arithmetic progression of integers containing 0 can be realised as D(M,N),

for some closed oriented 3-manifolds M,N .

(iii) Together with 0, every finite geometric progression of positive integers starting from 1

can be realised as D(M,N), for some closed oriented manifolds M,N .
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1. Introduction

Let M,N be two closed oriented manifolds of the same dimension. The mapping degree of

a map f : M → N , denoted by deg(f), is probably one of the oldest and most fundamental

concepts in topology. The set of degrees of maps from M to N , defined by

D(M,N) := {d ∈ Z | ∃ f : M → N, deg(f) = d}.

builds a bridge from topology to number theory: Each ordered pair of manifolds M,N as

above gives a subset D(M,N) of the integers.

Calculating or estimating D(M,N) for various classes of manifolds (M,N) is a topic

with a long history and applications, and it is still very active to date. Some fairly recent

examples include computations for infinite self-mapping degree sets of 3-manifolds [SWWZ],
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computations and estimates for self-mapping degrees for products together with connections

to the individual self-mapping degrees of their factors [Ne1], as well as for simply connected

targets, such as the conjectured unboundedness of some D(M,N) for each simply connected

manifold N [CMV]. For a much richer discussion and results, we refer the reader to the

references in the aforementioned papers.

Conversely, the problem of realising arbitrary sets of integers as mapping degrees does not

seem to have been rigorously addressed thus far. More precisely, the following question is

widely open:

Problem 1.1. Given a set A ⊆ Z with 0 ∈ A, are there closed oriented manifolds M and

N such that D(M,N) = A?

Remark 1.2. Note that the condition 0 ∈ A is clearly necessary, because the constant map

M → N realises 0 ∈ D(M,N) for any M,N . Another, more restrictive question related to

Problem 1.1 is about self-mapping degrees: Given a set A ⊆ Z with 0, 1 ∈ A and ab ∈ A

whenever a, b ∈ A, is there a closed oriented manifold M such that D(M,M) = A? Again,

the additional requirements 1 ∈ A and ab ∈ A whenever a, b ∈ A, are clearly necessary,

because 1 ∈ D(M,M) is realised by the identity map, and ab ∈ D(M,M) is realised by

composing two self-maps of M of degrees a and b.

Problem 1.1 has been circulated for years; among other, the first two authors have been

asked or have asked this question several times while delivering public lectures on the topic of

mapping degree. However, no answer had been given. In our first result, we answer Problem

1.1 in the negative.

Theorem 1.3. There exists an infinite subset A ⊆ Z containing zero which cannot be realized

as D(M,N), for any closed oriented n-manifolds M,N .

Our result is in fact stronger, contrasting the amount of arbitrary sets of integers with

those that arise from purely topological data (i.e. homotopy types and mapping degrees),

showing thus that “most” arbitrary infinite subsets of Z (containing zero) are not realizable

as mapping degree sets. Thus, we suggest a refined version of Problem 1.1:

Problem 1.4. Suppose A is a finite set of integers containing zero. Does A = D(M,N) for

some closed n-manifolds M and N?

To obtain some better intuition for D(M,N), we review several simple cases in the fol-

lowing example. For a finite set A, we use |A| to denote the cardinality of A.

Example 1.5. Suppose M and N are closed oriented n-manifolds.

(i) If n = 1, then D(M,N) = Z.

(ii) If n = 2, then D(M,N) is either Z or the integer interval [−k, k] for some k ≥ 0.

(iii) If N is covered by the n-sphere Sn, then

D(M,N) = {d+ |π1(N)|Z | for some integers d ∈ [1, |π1(N)|]}.
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The above results are known. We give an argument for the less well-known case (iii) (see

also [Ol] or [SWWZ, Theorem 1]): The degree of the covering Sn → N is |π1(N)|. Since

D(Sn, Sn) = Z, we obtain |π1(N)|Z ⊆ D(Sn, N). If l ∈ D(M,N), then l + |π1(N)|Z ⊆
D(M,N), because M = M#Sn (see Lemma 3.5). Thus, D(M,N) = {l + |π1(N)|Z |l ∈
D(M,N)}. Since for each l ∈ Z, {l+ |π1(N)|Z} = {d+ |π1(N)|Z} for some d ∈ [1, |π1(N)|],
case (iii) follows.

Cases (i) and (ii) in Example 1.5 are arithmetic progressions (infinite or finite) of constant

difference 1, and case (iii) is a union of finitely many infinite arithmetic progressions of

constant difference |π1(N)|. These observations motivate the following question – also a

refinement of Problem 1.1 – from a number theoretic point of view:

Problem 1.6. Can every arithmetic progression containing zero be realised as D(M,N) for

some closed oriented n-manifolds M,N?

We give an affirmative answer to Problem 1.6 for finite sets:

Theorem 1.7. Every finite arithmetic progression of integers containing zero can be realised

as D(M,N) for some closed oriented 3-manifolds M,N .

Theorem 1.7 will be a corollary of the more general realisation Theorem 3.1, which is

probably somehow involved to be stated in the introduction. As we shall see in Section 3,

Theorem 3.1 has also other consequences concerning Problem 1.4.

Prompted by Problem 1.6 and Theorem 1.7, we further ask the following:

Problem 1.8. Together with 0, can every geometric progression of integers be realised as

D(M,N) for some closed oriented n-manifolds M,N?

We give a slightly more restrictive (compared to the case of arithmetic progressions), but

still substantial, answer to Problem 1.8:

Theorem 1.9. Together with 0, every finite geometric progression of positive integers start-

ing from 1 can be realised as D(M,N) for some closed oriented manifolds M,N .

Theorem 1.9 will also follow from a more general realisation result (Theorem 4.1).

Ideas of the proofs: The ideas for the proofs of the above results can be outlined quickly:

(i) The proof of Theorem 1.3 is based on the idea of using countability; (ii) Both 3-manifolds

M and N in Theorem 3.1 (Theorem 1.7) will be connected sums of certain circle bundles

over surfaces with non-zero Euler classes, which in turn determine the mapping degree sets

between those circle bundles (Lemma 3.4); (iii) Both manifolds M and N in Theorem 4.1

(Theorem 1.9) will be products of 3-manifolds which are of the forms stated in (ii). As we

shall see in the course of the proofs, both the constructions and verifications in (ii) and (iii)

are somewhat delicate, especially for Theorem 4.1.

Remark 1.10. Since in all of the constructions in this paper we will be using aspherical 3-

manifolds as building blocks, our manifolds will have non-trivial fundamental groups. Thus,
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a further natural refinement of Problem 1.1 and of its variations would be to consider similar

realisability questions for simply connected manifolds.

Acknowledgments. When parts of this project were carried out in the summer of 2021,

C. Neofytidis was visiting MPIM Bonn and the University of Geneva, S.C. Wang and Z.Z.

Wang were visiting IASM of Zhejiang University. We thank all these institutes.
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manifolds. Subsequently, Professors Jean-François Lafont and Shmuel Weinberger pointed

out that this latter fact is a theorem of M. Mather [Ma]. We thank all of them.

Finally, we thank the anonymous referees for their suggestions.

2. Non-realisability for infinite sets

Theorem 1.3, a negative answer to Problem 1.1, now follows quickly from the idea of using

countability. In fact, if we restrict to closed oriented smooth manifolds, the proof becomes

very elementary.

Proof of Theorem 1.3. Let Z∗ be the set of all non-zero integers. Since Z∗ has uncountably

many subsets and countably many finite sets, it has uncountably many infinite subsets. In

particular, Z has uncountably many infinite subsets containing zero. Thus, in order to prove

Theorem 1.3, we only need to prove the following:

Claim: For every n, there are only countably many integer sets D(M,N) of pairs of closed

oriented n-manifolds (M,N).

We first prove the Claim for triangulable closed oriented n-manifolds, which is elementary,

and already contains all closed oriented smooth or piecewise linear manifolds.

First, fix the dimension n. For each integer k ≥ 0, there are only finitely many simplical

complexes consisting of k simplices. In particular, there are only finitely many closed n-

manifolds consisting of k simplices. By induction on k, there are only countably many

closed triangulable n-manifolds. Thus, there are only countably many pairs (M,N) of closed

triangulable n-manifolds. Then, by induction on n, there are only countably many pairs

(M,N) of closed triangulable n-manifolds in all dimensions n. It follows that there are only

countably many integer sets D(M,N) of closed oriented triangulable n-manifolds (M,N) in

all dimensions n.

Now we discuss the general case. Let M , N , X and Y be closed oriented n-manifolds.

Suppose X and Y are homotopy equivalent to M and N respectively. Then

D(M,N) = D(X, Y ).

Following the argument given in the triangulable case, we need to prove that there are

only countably many homotopy classes of closed oriented n-manifolds. This is a theorem of

Mather [Ma, Corollary, p. 93]. �
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3. Realisability for finite arithmetic progressions

Theorem 1.7 is a special case of the following more general realisation result, which will

be proven in the end of this section.

Theorem 3.1. For any k ∈ N+ and any integers

d1, d2, ..., dk > 0 and n1, n
′
1, n2, n

′
2, ..., nk, n

′
k ≥ 0,

there exist closed oriented 3-manifolds M,N such that

D(M,N) = {d ∈ Z | d =
k∑
i=1

midi, −n′i ≤ mi ≤ ni}.

Corollary 3.2 below is a general form of Theorem 1.7. A finite sequence of integer intervals

{[bi, ci], i = 1, 2, ..., l}

is called arithmetic, if the lengths of all [bi, ci] are equal, and all the differences bi+1 − bi are

equal. When bi = ci, we obtain a usual finite arithmetic progression.

Corollary 3.2 (Theorem 1.7). Every finite arithmetic sequence of integer intervals contain-

ing zero can be realised as D(M,N) for some closed 3-manifolds M,N . In particular, every

finite arithemetic progression containing zero is realisable as a mapping degree set.

Proof. Suppose {[bi, ci], i = 1, 2, ..., l} is a finite arithmetic sequence of integer intervals,

where bi ≤ ci < bi+1, and 0 ∈ [bk, ck] for some 1 ≤ k ≤ l. Let

n1 = ck, n
′
1 = −bk, d2 = b2 − b1, n2 = l − k, n′2 = k − 1.

Since {bi, i = 1, ..., l} is an arithmetic sequence with constant difference d2, we have bi =

bk + d2(i− k) = −n′1 + d2(i− k). Similarly, ci = ck + d2(i− k) = n1 + d2(i− k). Thus,

A =
l⋃

i=1

[bi, ci] =
l⋃

i=1

[−n′1 + d2(i− k), n1 + d2(i− k)]

=
l−k⋃

j=1−k

[−n′1 + d2j, n1 + d2j]

=

n2⋃
j=−n′2

[−n′1 + d2j, n1 + d2j]

=

n2⋃
j=−n′2

{d ∈ Z | d = m1 + jd2, −n′1 ≤ m1 ≤ n1}

=

n2⋃
m2=−n′2

{d ∈ Z | d = m1 +m2d2, −n′1 ≤ m1 ≤ n1}

= {d ∈ Z | d = m1 +m2d2, −n′i ≤ mi ≤ ni}.
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The proof follows by Theorem 3.1 for k = 2 and d1 = 1. �

Another consequence of Theorem 3.1 is the following:

Corollary 3.3. Let A = {d1, ..., dl} be a finite set of integers containing zero. There are

closed oriented 3-manifolds M and N such that

D(M,N) =

{∑
j∈S

dj | S ⊆ {1, ...l}
}
.

Proof. Set n′1 = · · · = n′k = 0, n1 = · · · = nk = 1 in Theorem 3.1. �

Now we are going to prove Theorem 3.1. We need some more preparations.

Given a circle bundle S1 → K → Σ, where Σ is a closed oriented surface, the Euler number

of K is defined by the Kronecker product

ê(K) = 〈e(K), [Σ]〉,

where e(K) ∈ H2(Σ;Z) = Z denotes the Euler class of K.

The following lemma determines the mapping degree sets when running over all Euler

numbers for a fixed hyperbolic surface.

Lemma 3.4. Let Σ be a closed oriented hyperbolic surface and Ki
pi−→ Σ be the circle bundle

with Euler number ê(Ki) = i. Then

(1) D(Ki, Kj) =


{0, j

i
}, if i | j

{0}, if i - j.

Moreover, all of the non-zero degree maps are homotopic to coverings.

Proof. For s = i, j, we have a surjection π1(Ks)
ps∗−→ π1(Σ) with kernel Z = [t] represented by

an S1 fiber t (see [Sc, Lemma 3.2]), so that this normal subgroup Z ⊆ π1(Ks) belongs to the

center Z(π1(Ks)) of π1(Ks); see [He, p. 118]. Now, if x ∈ Z(π1(Ks)), then ps∗(x) ∈ Z(π1(Σ)).

Since Σ is a hyperbolic surface, Z(π1(Σ)) is trivial, therefore x is in the kernel of ps∗, that

is, x ∈ Z. Thus, Z(π1(Ks)) = π1(S
1) = Z. Note that this fact can be also obtained from

[Br, Sec. IV. 3].

Let f : Ki → Kj be a map of non-zero degree. Since the center of π1(Σ) is trivial, after

lifting f to a π1-surjective map Ki → Kj (where Kj is the cover of Kj corresponding to

f∗(π1(Ki))), we deduce that the center of π1(Ki) is mapped trivially in π1(Σ) under the

induced homomorphism (p2 ◦ f)∗ : π1(Ki) → π1(Σ). Thus, by the asphericity of our spaces,

there is a map f̄ : Σ→ Σ such that f̄ ◦ p1 = p2 ◦ f up to homotopy.

Since deg(f) 6= 0, we conclude that deg(f̄) 6= 0. Hyperbolic surfaces do not admit self-

maps of degree greater than one, hence deg(f̄) = ±1. In particular f̄ is π1-surjective. Since

π1(Σ) is Hopfian, we conclude that f̄ induces an isomorphism on π1(Σ) and thus, since Σ is

aspherical, f̄ is a homotopy equivalence. The Borel conjecture is true for aspherical surfaces,
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hence f̄ is homotopic to a homeomorphism. Since every self-map of the circle is homotopic

to a covering map, we deduce that f is homotopic to a fiber-preserving covering of degree

deg(f) = deg(f̄) deg(f |S1) = ± deg(f |S1).

Moreover, by [NR] (see [Sc, Theorem 3.6]), we obtain

ê(Ki) = ê(Kj)
deg(f̄)

deg(f |S1)
=

ê(Kj)

deg(f)
.

This can happen only if i | j. We deduce that

D(Ki, Kj) ⊆
{

0,
j

i

}
, if i | j, and D(Ki, Kj) = {0}, if i - j.

We still need to show that j
i
∈ D(Ki, Kj), whenever j

i
∈ Z (see [Ne2, Example 1.4]): Since Ki

is fiberwise oriented, it is a principal U(1)-bundle, and hence can be viewed as the associated

complex line bundle whose first Chern number is c1(Ki) = ê(Ki) = i. The tensor product of
j
i

copies of Ki has first Chern number

c1(⊗
j
iKi) =

j

i
c1(Ki) =

j

i
ê(Ki) = j = ê(Kj).

Hence, ⊗ j
iKi
∼= Kj. The j

i
-th power of a section of Ki gives us a fiberwise covering map

f : Ki → ⊗
j
iKi,

which is of degree j
i

on the S1-fibers and of degree one on Σ. In particular,

deg(f) =
j

i
∈ D(Ki, Kj),

showing (1). �

Recall that given sets of integers Ai, i = 1, ..., k, the sum of Ai is defined to be

k∑
i=1

Ai =

{ k∑
i=1

ai | ai ∈ Ai
}
.

When A1, ..., Ak are equal to the same A, we often denote
∑k

i=1Ai by
∑k A.

The next lemma provides a connection between D(M1#M2, N) and D(M1, N)+D(M2, N).

Lemma 3.5. Let M1,M2 and N be closed oriented manifolds of dimension n. Then

(2) D(M1, N) +D(M2, N) ⊆ D(M1#M2, N),

with equality if πn−1(N) = 0.

Proof. For i = 1, 2, let fi : Mi → N be maps of degree di. Consider the following composite

map

f : M1#M2
q−→M1 ∨M2

f1∨f2−→ N ∨N h−→ N,
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where q is the map that pinches the connecting Sn−1 to a point and h is a homeomorphism

that maps each copy of N to itself. Then in degree n homology

Hn(f)([M1#M2]) = Hn(h) ◦Hn(f1 ∨ f2) ◦Hn(q)([M1#M2])

= Hn(h) ◦Hn(f1 ∨ f2)([M1], [M2])

= Hn(h)(d1[M1], d2[M2])

= (d1 + d2)[N ],

which shows inclusion (2).

Suppose now πn−1(N) = 0 and let f : M1#M2 → N be a map of non-zero degree. Since

any map Sn−1 → N is null-homotopic, we deduce that f factors through the pinch map

q : M1#M2 → M1 ∨ M2, that is, there is a continuous map g : M1 ∨ M2 → N such that

f = g ◦ q. Hence, in degree n homology we have

deg(f)[N ] = Hn(f)([M1#M2])

= Hn(g) ◦Hn(q)([M1#M2])

= Hn(g)([M1], [M2])

= (d1 + d2)[N ],

where Hn(g|Mi
)([Mi]) = di[N ], i.e. di ∈ D(Mi, N), for i = 1, 2. This shows the inclusion

D(M1#M2, N) ⊆ D(M1, N) +D(M2, N).

�

We are now ready to prove Theorem 3.1:

Proof of Theorem 3.1. Set

d′ = d1d2...dk, and d′i = d′/di, i = 1, ..., k.

Let

N = Kd′ , Mi = Kd′i
and M ′

i = K−d′i
be circle bundles over a closed oriented hyperbolic surface Σ with Euler numbers

ê(N) = d′, ê(Mi) = d′i and ê(M ′
i) = −d′i

respectively.

Since d′/d′i = di, Lemma 3.4 tells us that

(3) D(Mi, N) = D(Kd′i
, Kd′) = {0, di}.

Similarly,

(4) D(M ′
i , N) = {−di, 0}.

Let

M = #k
i=1((#ni

Mi)#(#n′i
M ′

i)).

Since N is aspherical, in particular π2(N) = 0, we apply Lemma 3.5 successively to obtain
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D(M,N) =
k∑
i=1

(

ni∑
ji=1

D(Mi, N) +

n′i∑
ji=1

D(M ′
i , N)).

By (3) and (4),
∑ni

ji=1D(Mi, N) +
∑n′i

ji=1D(M ′
i , N) is the sum of ni copies of {0, di} and of

n′i copies of {0,−di}. Hence,

ni∑
ji=1

D(Mi, N) +

n′i∑
ji=1

D(M ′
i , N) = {midi | − n′i ≤ mi ≤ ni}.

We conclude that

D(M,N) = {d ∈ Z | d =
k∑
i=1

midi, −n′i ≤ mi ≤ ni},

finishing the proof of Theorem 3.1. �

4. Realisability for finite geometric progressions

Theorem 1.9 about finite geometric progressions is a straightforward consequence of the

following more general realisability result.

Theorem 4.1. Given integers 1 ≤ d1 ≤ d2 ≤ · · · ≤ dl, there exist closed oriented 3l-

manifolds M and N such that

D(M,N) = {0, 1} ∪
{∏
j∈S

dj | ∅ 6= S ⊆ {1, 2, ..., l}
}
.

Proof of Theorem 1.9 from Theorem 4.1. Let d1 = d2 = · · · = dl = d. Then Theorem 4.1

implies

D(M,N) = {0, 1, d, d2, ..., dl}.
�

We will devote the rest of this section to the proof of Theorem 4.1.

For brevity, we say that a closed oriented n-manifold M dominates (resp. 1-dominates)

another closed oriented n-manifold N if there exists a map f : M → N of non-zero degree

(resp. of degree one).

We begin with some easy observations:

Lemma 4.2. Given any closed oriented n-manifolds M and N , there is a 1-domination

M#N → N .

Proof. This follows from Lemma 3.5; in fact it is contained in the proof of Lemma 3.5.

Namely, consider the following composite map

M#N
q−→M ∨N h−→ N,

where q pinches the connecting Sn−1 to a point, and h sends M to that point. �
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We denote the degree 1 map M#N → N in Lemma 4.2 by p and also call it a pinch map.

Lemma 4.3. Let M,N1 and N2 be closed oriented n-manifolds. Then

D(M,N1#N2) ⊆ D(M,N1).

Proof. Suppose l ∈ D(M,N1#N2) and f : M → N1#N2 be a map of degree l. Let the

composition

M
f−→ N1#N2

p−→ N1,

where p is the pinch map given by Lemma 4.2. Then p◦f is of degree l, so l ∈ D(M,N1). �

The following result is a special case of Theorem 4.1, as well as a crucial step to prove

Theorem 4.1.

Theorem 4.4. For any integer d > 1, there exist closed oriented 3-manifolds Q and P such

that D(Q,P ) = {0, 1, d}.

Proof. Let q > d be a prime number, and consider the following manifolds, where, as in

Section 3, Ki denotes the S1-bundle over a fixed hyperbolic surface with Euler number i:

Q = (#dKq)#Kd#Kd2 and P = Kq#Kd2 .

Let Q1 = (#dKq)#Kd. By Lemma 3.4, Kd is a d-fold covering of Kd2 , and so we obtain a

covering

(5) Q1 = (#dKq)#Kd → Kq#Kd2 = P

of degree d. Note that

Q = P#(#d−1Kq)#Kd = Q1#Kd2 .

By Lemma 4.2, there are 1-dominations Q→ Q1 and Q→ P . Together with (5), we deduce

(6) {0, 1, d} ⊆ D(Q,P ).

We will now show the converse inclusion. Lemma 4.3 implies that

(7) D(Q,P ) ⊆ D(Q,Kq) ∩D(Q,Kd2).

Since Kq is aspherical, in particular π2(Kq) = 0, Lemma 3.5 implies that

D(Q,Kq) =
d∑
D(Kq, Kq) +D(Kd, Kq) +D(Kd2 , Kq).

Since d and q are coprime, Lemma 3.4 tells us that

D(Kq, Kq) = {0, 1},

D(Kd, Kq) = D(Kd2 , Kq) = {0},
and thus

(8) D(Q,Kq) = {0, 1, ..., d}.
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Applying the same argument we obtain

(9) D(Q,Kd2) = {0, 1, d, d+ 1}.

Then by (7), (8) and (9) we have

(10) D(Q,P ) ⊆ {0, 1, ..., d} ∩ {0, 1, d, d+ 1} = {0, 1, d}.

The theorem follows by (6) and (10). �

Equipped with Theorem 4.4, we will be able to prove Theorem 4.1 by using products of

suitable 3-manifolds. To do this we still need some preparations.

Recall that given sets of integers Ai, i = 1, ..., k, the product of Ai is defined to be

k∏
i=1

Ai =

{ k∏
i=1

ai | ai ∈ Ai
}
.

When A1, ..., Ak are equal to the same A, we often denote
∏k

i=1Ai by
∏k A.

We begin with a straightforward observation:

Lemma 4.5. Given closed oriented n-manifolds M,N and m-manifolds W,Z, we have

D(M,N) ·D(W,Z) ⊆ D(M ×W,N × Z).

Proof. Let f : M → N and g : W → Z be maps of degree k and l respectively. By taking

products of manifolds and maps, we obtain a map f × g : M ×W → N ×Z of degree kl. �

The converse inclusion to Lemma 4.5 fails in general [Ne1, Example 1.2]. Nevertheless,

Theorem 4.6 below, which is a generalisation of [Ne1, Theorem 1.4], gives some sufficient

conditions so that equality holds. This will be important in proving Theorem 4.1.

Theorem 4.6. Let M,N be two closed oriented manifolds of dimension n and W,Z of

dimension m. Suppose

(i) N is not dominated by direct products, and

(ii) for any map W → N , the induced homomorphism Hn(W,Q)→ Hn(N ;Q) is trivial.

Then D(M ×W,N × Z) = D(M,N) ·D(W,Z).

Before giving the proof of Theorem 4.6, we first make some remarks, mostly around Thom’s

work [Th] on Steenrod’s realisation problem.

Remark 4.7.

(1) In [Ne1, Theorem 1.4], condition (ii) is stated in cohomology, while in Theorem 4.6

we chose to state condition (ii) in homology, since it is more direct in its application

to the proof of Theorem 4.1, and also Thom’s Realisation Theorem [Th], which is

needed in the proof Theorem 4.6, arises naturally in homology.
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(2) Recall that Thom’s Realisation Theorem states the following: Let X be a topological

space. For each ω ∈ Hn(X;Z), there is an integer d > 0 and a map f : M → X,

where M is a closed oriented n-manifold, such that Hn(f)([M ]) = dω. In particular,

each ω ∈ Hn(X;Q) can be realised by a closed oriented n-manifold.

(3) Even though Thom’s Realization Theorem is crucial for the proof of Theorem 4.6, it

will not be essential for the the proof of Theorem 4.1, since in Theorem 4.1 one can

see directly that each homology class can be realised by a closed oriented manifold.

Next, we fix some notation for the proof of Theorem 4.6: [M ] and [M ]∗ denote the integer

fundamental classes of Hn(M ;Q) and Hn(M ;Q) respectively. Also, let ιM : M ↪→ M ×W
be the inclusion, pM : M ×W −→ M the projection, and denote [M ] ⊗ 1 = Hn(ιM)([M ])

and ωM = Hn(pM)([M ]∗). Similar notation will be used for W,N and Z.

Proof of Theorem 4.6. By Lemma 4.5, it suffices to show the inclusion D(M ×W,N ×Z) ⊆
D(M,N) ·D(W,Z). Let f : M ×W → N × Z be a map of degree d 6= 0. We have

Hl(f) : Hl(M ×W ;Q)→ Hl(N × Z;Q) and H l(f) : H l(N × Z;Q)→ H l(M ×W ;Q)

for l ∈ {0, 1, ...,m+ n}. By the Künneth formula in homology, we have

(11)
Hn(M ×W ;Q) = ⊕ni=0(Hn−i(M ;Q)⊗Hi(W ;Q)) = Q < [M ]⊗ 1 > ⊕VM ,
Hn(N × Z;Q) = ⊕ni=0(Hn−i(N ;Q)⊗Hi(Z;Q)) = Q < [N ]⊗ 1 > ⊕VN ,

where VM = ⊕ni=1(Hn−i(M ;Q)⊗Hi(W ;Q)) and VN = ⊕ni=1(Hn−i(N ;Q)⊗Hi(Z;Q)).

Consider the composition

M ×W f−→ N × Z pN−→ N.

The restriction of Hn(pN ◦ f) to ⊕n−1i=1 (Hn−i(M ;Q)⊗Hi(W ;Q)) maps trivially to Hn(N ;Q)

by condition (i) and Thom’s Realisation Theorem, and the restriction to Hn(W ;Q) maps

trivially to Hn(N ;Q) by condition (ii). Hence, we have that Hn(pN ◦ f)(VM) = 0, which

implies that

(12) Hn(f)(VM) ⊆ VN .

Suppose now

(13) Hn(f)([M ]⊗ 1) = κ · [N ]⊗ 1 + δ,

for some κ ∈ Z and δ ∈ VN . Then κ ∈ D(M,N) and a map of degree κ is given by

M
ιM
↪→M ×W f−→ N × Z pN−→ N.

We are going to verify that (12) and (13) imply that

(14) Hn(f)(ωN) = κ · ωM .

Since pM and pN are projections, we have

Hn(pM)(VM) = 0 and Hn(pN)(VN) = 0.
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Thus,

(15) 〈ωM , VM〉 = 〈Hn(pM)([M ]∗), VM〉 = 〈[M ]∗, Hn(pM)(VM)〉 = 0

and

(16) 〈ωN , VN〉 = 〈Hn(pN)([N ]∗), VN〉 = 〈[N ]∗, Hn(pN)(VN)〉 = 0,

where by 〈ωX , VX〉 we mean the Kronecker product of ωX with any class in VX , for X = M

and N in (15) and (16) respectively. In particular,

(17) 〈ωN , δ〉 = 0.

By (13) and (17) Hn(f)(ωN) and κ · ωM coincide on [M ]⊗ 1:

(18)

〈Hn(f)(ωN), [M ]⊗ 1〉 = 〈ωN , Hn(f)([M ]⊗ 1)〉
= 〈ωN , κ · [N ]⊗ 1 + δ〉
= 〈ωN , κ · [N ]⊗ 1〉+ 〈ωN , δ〉
= κ = 〈κ · ωM , [M ]⊗ 1〉.

By (12), (15) and (16), we have

(19) 〈Hn(f)(ωN), VM〉 = 〈ωN , Hn(f)(VM)〉 = 0 = 〈κ · ωM , VM〉.

Hence, by (11), (18) and (19), we have

〈Hn(f)(ωN), z〉 = 〈κ · ωM , z〉,

for all z ∈ Hn(M ×W ;Q). By algebraic duality, we obtain (14). Note that (14) guarantees

also that κ 6= 0, because H∗(f) with Q-coefficients is injective, since deg(f) = d 6= 0.

The Künneth formula in cohomology tells us that

Hm(M ×W ;Q) = ⊕mi=0(H
m−i(M ;Q)⊗H i(W ;Q)).

We have

(20) Hm(pZ ◦ f)(ωZ) =
m∑
i=0

λi(xm−i × yi) ∈ Hm(M ×W ;Q),

where xm−i ∈ Hm−i(M ;Q), yi ∈ H i(W ;Q) and λi ∈ Q.

By (14), (20), the naturality of the cup product and the definition of d, we obtain

d · ωM × ωW = Hm+n(f)(ωN × ωZ)

= Hn(f)(ωN)×Hm(f)(ωZ)

= κ · ωM ×
m∑
i=0

λi(xm−i × yi)

= κλm · ωM × ωW .

Hence, d = κλm, and λm is realised as a mapping degree in D(W,Z) by the map

W
ιW
↪→M ×W f−→ N × Z pZ−→ Z,
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Since d ∈ D(M ×W,N × Z), κ ∈ D(M,N) and λm ∈ D(W,Z), we conclude

D(M ×W,N × Z) ⊆ D(M,N) ·D(W,Z).

�

The following fact is also needed to prove Theorem 4.1.

Lemma 4.8. [Wa, Theorem 1], [KN, Theorem 1] Ki is dominated by the product of a surface

and the circle if and only if i = 0.

Now we describe a basis for the third homology group of products of 3-manifolds.

Proposition 4.9. Let Q1, ..., Qs be closed oriented 3-manifolds and Q =
∏s

i=1Qi be their

product. Then there is a basis of H3(Q;Q), which is represented by the following three classes

of closed oriented 3-manifolds in Q:

(i) Q1, ..., Qs.

(ii) P1, ..., Pr, where each Pi is a product of a closed orientable surface and the circle.

(iii) Each 3-manifold which is the 3-dimensional torus (product of three circles).

Proof. Let [Qi] ∈ H3(Q;Q) be the integer homology (fundamental) class presented by Qi in

the Q. Denote the first Betti number b1(Qi) by ni. Suppose that for each 1 ≤ i ≤ s

Σi,1,Σi,2, ...,Σi,ni

is a basis for H2(Qi;Q) and

ci,1, ci,2, ..., ci,ni

is a basis for H1(Qi;Q). By the Künneth formula in homology we have

H3(Q1 ×Q2 × ....×Qs;Q) =⊕si=1 (H3(Qi;Q)

⊕ ( ⊕
1≤i,j≤s
i 6=j

H2(Qi;Q)⊗ (H1(Qj;Q))

⊕ ( ⊕
1≤i<j<k≤s

H1(Qi;Q)⊗H1(Qj;Q)⊗H1(Qk;Q)),

and the following three homology classes is a basis for H3(Q;Q):

(i) [Qi], 1 ≤ i ≤ s;

(ii) Σi,i′ ⊗ cj,j′ , 1 ≤ i, j ≤ s, i 6= j , 1 ≤ i′ ≤ ni, 1 ≤ j′ ≤ nj;

(iii) ci,i′ ⊗ cj,j′ ⊗ ck,k′ , 1 ≤ i < j < k ≤ s, 1 ≤ i′ ≤ ni, 1 ≤ j′ ≤ nj, 1 ≤ k′ ≤ nk.

We can always choose Σi,1,Σi,2, ...,Σi,ni
and ci,1, ci,2, ..., ci,ni

to be integer homology classes,

and it is known that in the 3-manifold Qi any integer homology class Σi,i′ of dimension two

can be presented by a closed orientable embedded surface Fi,i′ and each homology class ci,i′

of dimension one can be presented by an embedded circle Ci,i′ . Then

Σi,i′ ⊗ cj,j′ = [Fi,i′ × Cj,j′ ],

ci,i′ ⊗ cj,j′ ⊗ ck,k′ = [Ci,i′ × Cj,j′ × Ck,k′ ].
This finishes the proof of Proposition 4.9. �
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We are now ready to prove Theorem 4.1.

Proof of Theorem 4.1. Let

ql > ql−1 > ql−2 > · · · > q2 > q1

be prime numbers such that q1 > dl.

Following the proof of Theorem 4.4, let for all i = 1, ..., l

Qi = (#diKqi)#Kdi#Kd2i
and Pi = Kqi#Kd2i

.

Note that qi > di. By (the proof of) Theorem 4.4, we obtain

D(Qi, Pi) = {0, 1, di}, i = 1, ..., l.

Let the closed oriented 3l-manifolds given by the products

M = Q1 ×Q2 × · · · ×Ql, and N = P1 × P2 × · · · × Pl.

By taking products of maps (see Lemma 4.5), we obtain

{0, 1} ∪
{∏
j∈S

dj | ∅ 6= S ⊆ {1, 2, ..., l}
}
⊆ D(M,N).

We thus only need to show that

D(M,N) ⊆ {0, 1} ∪
{∏
j∈S

dj | ∅ 6= S ⊆ {1, 2, ..., l}
}
.

Claim 1: For each 1 ≤ i ≤ l − 1, any map

fi : Q1 ×Q2 × · · · ×Qi → Pi+1

induces the trivial homomorphism

H3(fi) : H3(Q1 ×Q2 × · · · ×Qi;Q)→ H3(Pi+1;Q).

Proof. Suppose the contrary; then there exists a homology class h3 ∈ H3(Q1×Q2×· · ·×Qi;Q)

and a nonzero integer d such that H3(fi)(h3) = d[Pi+1]. We will show that this is impossible.

By Proposition 4.9 (and following the notation used in its proof), h3 is a linear combination

of the homology classes presented by Qj, 1 ≤ j ≤ i, Fj,j′ × Cu,u′ and Cj,j′ × Cu,u′ × Cv,v′ ,
where j, j′;u, u′; v, v′ run over the range as indicated in the proof of Proposition 4.9.

Since Pi+1 is not dominated by a direct product according to Lemma 4.8, we have

H3(fi)([Fj,j′ × Cu,u′ ]) = 0 and H3(fi)([Cj,j′ × Cu,u′ × Cv,v′ ]) = 0.

Thus, there exists 1 ≤ r ≤ i such that

H3(fi)([Qr]) = d′[Pi+1]

for some nonzero integer d′, that is, there is a d′-domination Qr → Pi+1. In particular,

Lemma 4.3 implies that

(21) 0 6= d′ ∈ D(Qr, Pi+1) = D(Qr, Kqi+1
#Kd2i+1

) ⊆ D(Qr, Kqi+1
).
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Since Kqi+1
is aspherical, and so π2(Kqi+1

) = 0, Lemma 3.5 implies that

D(Qr, Kqi+1
) = D((#drKqr)#Kdr#Kd2r

, Kqi+1
)

=
dr∑
D(Kqr , Kqi+1

) +D(Kdr , Kqi+1
) +D(Kd2r

, Kqi+1
).

Note that the pairs (qi+1, qr), (qi+1, dr) and (qi+1, d
2
r) are all coprime and qr, dr, d

2
r > 1. Hence,

by Lemma 3.4 we obtain

D(Kqr , Kqi+1
) = D(Kdr , Kqi+1

) = D(Kd2r
, Kqi+1

) = {0},

and so D(Qr, Kqi+1
) = {0}, which contradicts (21). �

Claim 2: For each 1 ≤ i ≤ l,

(∗) D(Q1 ×Q2 × · · · ×Qi, P1 × P2 × · · · × Pi) = {0, 1} ∪
{∏
j∈S

dj | ∅ 6= S ⊆ {1, 2, ..., i}
}
.

Proof. We prove the claim by induction. For i = 1, Theorem 4.4 tells us

D(Q1, P1) = {0, 1} ∪ {d1},

therefore (∗) holds.

Suppose that (∗) holds for i− 1, that is,

D(Q1 ×Q2 × · · · ×Qi−1, P1 × P2 × · · · × Pi−1) = {0, 1} ∪
{∏
j∈S

dj | S ⊆ {1, 2, ..., i− 1}
}
.

Note that Pi is not dominated by a direct product (for example because Kqi is not dominated

by products; cf. Lemmas 4.8 and 4.2), and, by Claim 1, any map

fi : Q1 ×Q2 × · · · ×Qi−1 → Pi,

induces the trivial homomorphism

H3(fi) : H3(Q1 ×Q2 × · · · ×Qi−1;Q)→ H3(Pi;Q).

Thus, Pi satisfies conditions (i) and (ii) of Theorem 4.6 (for W = Q1 × · · · × Qi−1), and

therefore Theorem 4.6 implies (for Z = P1 × · · · × Pi−1)

D(Q1×Q2×· · ·×Qi, P1×P2×· · ·×Pi) = D(Q1×Q2×· · ·×Qi−1, P1×P2×· · ·×Pi−1)·D(Qi, Pi).

By the induction hypothesis and Theorem 4.4, it follows that

D(Q1 ×Q2 × · · · ×Qi, P1 × P2 × · · · × Pi)

=

(
{0, 1} ∪

{∏
j∈S

dj | S ⊆ {1, 2, ..., i− 1

})
·{0, 1, di}

= {0, 1} ∪
{∏
j∈S

dj | S ⊆ {1, 2, ..., i}
}
.

Hence (∗) holds for i. This finishes the proof of Claim 2. �
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Theorem 4.1 follows as a special case of Claim 2 for i = l. �
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