
INVARIANT INCOMPRESSIBLE SURFACES IN REDUCIBLE
3-MANIFOLDS

CHRISTOFOROS NEOFYTIDIS AND SHICHENG WANG

ABSTRACT. We study the effect of the mapping class group of a reducible
3-manifold M on each incompressible surface that is invariant under a self-
homeomorphism of M . As an application of this study we answer a question
of F. Rodriguez Hertz, M. Rodriguez Hertz and R. Ures: A reducible 3-manifold
admits an Anosov torus if and only if one of its prime summands is either the
3-torus, the mapping torus of −id, or the mapping torus of a hyperbolic auto-
morphism.

1. INTRODUCTION

A closed oriented connected 3-manifoldM is called irreducible if every embed-
ded 2-sphere in M bounds a 3-ball; otherwise M is called reducible. We say that
an embedded closed oriented connected surface F 6= S2 in M is incompressible if
whenever ∂D ∩ F = ∂D for an embedded disc D ⊂ M , then ∂D bounds a disc
in F ; equivalently the homomorphism π1(F ) → π1(M) induced by inclusion is
injective. We refer to [3] for standard notions and terminology on 3-manifolds.

If M is a reducible 3-manifold, then by the Kneser-Milnor theorem it can be
decomposed, uniquely up to diffeomorphism, into a finite connected sum

M = M1#M2# · · ·#Mn#(#mS
1 × S2),

where each Mi is irreducible and m ≥ 0.
The following fundamental result on the mapping class groups of reducible 3-

manifolds was first announced in [2]. An elegant proof of this theorem was given
by McCullough in [4, pp. 70–71]. As McCullough remarks, his proof is based on
an argument of Scharlemann which appeared in [1, Appendix A].

Theorem 1.1. ([4, page 69]). Let M be a compact oriented connected 3-manifold.
Then any orientation-preserving homeomorphism of M is isotopic to a composite
of the following four types of homeomorphisms:

(1) homeomorphisms preserving summands;
(2) interchanges of homeomorphic summands;
(3) spins of S1 × S2 summands;
(4) slide homeomorphisms.
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In fact, the proof of Theorem 1.1 presented in [4, pp. 70-71] contains a finer
form of that statement as follows:

Theorem 1.2. Let M be a compact oriented connected 3-manifold and f be an
orientation-preserving homeomorphism of M . Then

hf = g3g2g1,

where h is a finite composition of homeomorphisms of type 4 (slide homeomor-
phisms) and isotopies on M , and each gk is a composition of finitely many home-
omorphisms of type k on M .

Theorem 1.2 already implies that hf permutes the prime summands of M . The
main result of this paper is that h can be chosen so that its restriction on each
f -invariant incompressible surface is the identity.

Theorem 1.3. Let f : M →M be an orientation-preserving homeomorphism of a
closed oriented connected 3-manifold M . If F is an incompressible surface in M
with f(F ) = F , then h in Theorem 1.2 can be chosen to be the identity on F .

An immediate consequence of Theorem 1.3 and its proof is the following:

Corollary 1.4. Suppose f : M →M is an orientation-preserving homeomorphism
of a closed oriented connected 3-manifoldM and F an f -invariant incompressible
surface. Then F can be isotoped into a prime summand ofM so that hf : M →M
preserves this prime summand and F , where h is a finite composition of slide
homeomorphisms and isotopies.

Incompressible surfaces that are invariant under homeomorphisms play impor-
tant roles in the study of 3-manifolds, in particular with respect to the effect of the
induced action on their fundamental group. We say that an embedded 2-torus T in
a 3-manifold M is an Anosov torus if there exists a diffeomorphism f on M such
that f(T ) = T and the induced action of f over the fundamental group of T is
hyperbolic, or equivalently f |T is (isotopic to) an Anosov map.

Motivated by problems in partially hyperbolic dynamics, F. Rodriguez Hertz,
M. Rodriguez Hertz and R. Ures proved that only a few irreducible 3-manifolds
admit Anosov tori:

Theorem 1.5. ([5, Theorem 1.1]). A closed oriented connected irreducible 3-
manifold admits an Anosov torus if and only if it is one of the following:

(1) the 3-torus;
(2) the mapping torus of −id;
(3) the mapping torus of a hyperbolic automorphism.

As pointed out in [5], it is easy to construct arbitrarily many different reducible
3-manifolds that admit Anosov tori. Indeed, once a manifold M admits an Anosov
torus, then the connected sum of M with any other 3-manifold admits an Anosov
torus as well; see [5, Remark 2.6]. Thus, in view of Theorem 1.5, the following
interesting question arises, which was our inspiration for this paper:
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Question 1. ([5, Question 1.4]). LetM be a closed oriented connected reducible 3-
manifold. If M admits an Anosov torus, is one of its prime summands necessarily
one of the 3-manifolds listed in Theorem 1.5?

As an application of Theorem 1.3, we answer Question 1 in the affirmative:

Theorem 1.6. A closed oriented connected 3-manifold admits an Anosov torus if
and only if one of its prime summands is one of the following:

(1) the 3-torus;
(2) the mapping torus of −id;
(3) the mapping torus of a hyperbolic automorphism.

Outline. In Section 2 we recall the descriptions of the four types of homeomor-
phisms given in Theorem 1.1. In Section 3 we prove Theorem 1.3, Corollary 1.4
and Theorem 1.6.

2. MAPPING CLASS GROUPS OF REDUCIBLE 3-MANIFOLDS

In this section we recall the isotopy types of the orientation-preserving homeo-
morphisms of 3-manifolds given in Theorem 1.1. We follow McCullough’s survey
paper [4] for the description of the mapping class groups of reducible 3-manifolds.
Suppose M is a closed oriented reducible 3-manifold. By the Kneser-Milnor theo-
rem, M admits a non-trivial decomposition

M = M1#M2# · · ·#Mn#(#mS
1 × S2),

where the summands Mi are irreducible and m ≥ 0.
Consider the following construction of M : Remove n + 2m open 3-balls

from a 3-sphere to obtain a punctured 3-cell W with boundary components
S1, S2, ..., Sn, Sn+1,0, Sn+1,1, ..., Sn+m,0, Sn+m,1. For each summand Mi, i =
1, ..., n, choose a 3-ball Di and attach M ′i = Mi − int(Di) to Si along ∂Di. For
n+ 1 ≤ j ≤ n+m, let Sj × I be a copy of S2 × I attached to W by identifying
Sj × 0 with Sj,0 and Sj × 1 with Sj,1 to form an S1 × S2 summand.

Using the above construction, we now describe the four types of homeomor-
phisms of M given in Theorem 1.1. Note that two orientation-preserving homeo-
morphisms of W are isotopic if and only if they induce the same permutation on
the set of boundary components of W .

1. Homeomorphisms preserving summands. These are the homeomorphisms
that restrict to the identity on W . They form a subgroup of Homeo(M) isomor-
phic to Πn

i=1Homeo(Mi rel Di) × Πm
j=1Homeo(S2 × I rel S2 × ∂I). Note that

Homeo(S2×I rel S2×∂I) has two path components, that of the identity and that
of a rotation about S2 × 1/2.

2. Interchanges of homeomorphic summands. Suppose Mi and Mj are
orientation-preserving homeomorphic summands. Then we can construct a homeo-
morphism ofM fixing all other summands, leavingW invariant, and interchanging
M ′i and M ′j . Similarly, we can interchange two S1 × S2 summands, leaving W
invariant.
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3. Spins of S1×S2 summands. For each n+1 ≤ j ≤ n+m, we can construct a
homeomorphism ofM fixing all other summands, leavingW invariant, interchang-
ing Sj,0 and Sj,1, and restricting to an orientation-preserving homeomorphism that
interchanges the boundary components of Sj × I .

4. Slide homeomorphisms. For i ≤ n, let M̂ be obtained from M by replacing
Mi with a 3-cell E. Let α be an arc in M̂ meeting E only in its endpoints. Choose
an isotopy Jt of M̂ with J0 = id

M̂
and J1|E = idE , so that Jt moves E around

α. A slide homeomorphism on M that slides Mi around α is a homeomorphism
h : M → M defined by h|M−M ′

i
= J1|M̂−E and h|M ′

i
= id|M ′

i
. Choosing a

different Jt, it changes h by an isotopy and, possibly, by a rotation about Si. Thus
a choice of α might determine two isotopy classes of a slide homeomorphism.

Similarly, we can slide either end of Sj × I around an arc in M − Sj × (0, 1).
Note, finally, that if α1 and α2 are two arcs meeting E only in their endpoints,

and α is an arc representing the product of α1 and α2 in π1(M −M ′i , Si), then
a slide of Mi around α is isotopic to a composite of slides around α1 and α2.
Similarly for sliding ends of Sj × I’s. It follows that the subgroup of Diff(M)
generated by slide homeomorphisms is finitely generated.

3. CONTROLLED SLIDINGS AND ISOTOPIES

We now prove Theorem 1.3. Given a homeomorphism f onM , we will perform
slide homeomorphisms and isotopies, controlling their effect on each f -invariant
incompressible surface.

Proof of Theorem 1.3. Suppose F is an incompressible surface inM and f : M →
M is a homeomorphism so that f(F ) = F .

The proof of the following lemma is straightforward:

Lemma 3.1. For any homeomorphism ϕ : M →M , ϕ(F ) is an ϕfϕ−1-invariant
incompressible surface in M .

Let Σ be the union of the n+2m prime decomposition 2-spheres as described in
Section 2. By a standard argument in 3-manifold topology, there is an isotopy Ht

of M so that H1(F ) is disjoint from Σ. Thus we can assume that F ∩ Σ = ∅, and
so F lies in some M ′i , say in M ′1 (possibly after replacing f by H1fH

−1
1 and F by

H1(F ), according to Lemma 3.1). It is then clear thatM1 is not one of the S2×S1

summands. Also, F ∩Σ = ∅ implies that f(F )∩ f(Σ) = ∅. Since f(F ) = F , we
have both

F ∩ Σ = ∅ and F ∩ f(Σ) = ∅. (1)

We may assume that Σ and f(Σ) meet transversely. The major part of the proof
of Theorem 1.2 in [4] is to modify f to reduce the number of components of Σ ∩
f(Σ) by a sequence of slide homeomorphisms and isotopies so that Σ∩ f(Σ) = ∅,
and finally make a further isotopy so that Σ = f(Σ). And h in Theorem 1.2 is the
composition of those slides and isotopies.

Proposition 3.2. Each factor of h can be chosen so that it does not touch F during
its sliding/isotopy process.
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FIGURE 1. A controlled isotopy pulls E1 into W eliminating C.

Proof of Proposition 3.2. We are going to prove this claim by examining at each
step in the proof of Theorem 1.2 (Theorem 1.1) the effect of our choice of h on F .

Let C be a circle of intersection that is innermost on f(Σ), so that C bounds a
disc E1 in f(Σ) with int(E1) disjoint from Σ.

Case 1. If E1 ⊂Mi, then E1 separates a 3-ball B from M ′i (since Mi is a prime
factor) and ∂B = E1 ∪ E′, where E′ is a disk in Si − C. Since E1 ⊂ f(Σ) and
E′ ⊂ Σ, we conclude by (1) that F ∩ ∂B = ∅. Since F is incompressible, we
indeed have F ∩ B = ∅. We choose a regular neighborhood N(B) of B such that
F∩N(B) = ∅. Then there is an isotopy s pullingE1 intoW acrossB with support
inN(B), eliminatingC (and possibly other circles of intersection as well). Clearly
this isotopy process does not touch F , therefore (1) still holds when we replace f
with sf . For simplicity, we will continue using f to denote sf . We call the isotopy
that we just performed a controlled isotopy; see Figure 1.

Similarly, if E1 ⊂ Sj × I , n+ 1 ≤ j ≤ n+m, then C can be eliminated by a
controlled isotopy which does not affect F .

Case 2. Suppose now E1 ⊂ W and C ⊂ Si for some 1 ≤ i ≤ n. We may
assume that the interior of the other disc bounded by ∂E1 in f(Σ) intersects Σ,
otherwise it must lie in M ′i and so C can be eliminated by a controlled isotopy as
in Case 1. Thus we can choose an arc α0 in f(Σ) ∩M ′i with one endpoint in C
and the other endpoint in Si −C. Denote by E2 the disc in Si which is the closure
of the component of Si − C that does not contain the other endpoint of α0. The
2-sphere E1∪E2 bounds a punctured 3-cell W1 ⊂W . Suppose Mk (where k 6= i)
is attached to W1. There is an arc α with endpoints in Sk which consists of three
portions: First α travels in W1 to Si, then it goes through M ′i − f(Σ) emerging in
W −W1, following along near α0, and finally it travels through W back to Sk; see
Figure 2 (or Figure 1 in [4]).

Since F ∩ f(Σ) = ∅ and α0 ⊂ f(Σ), we can choose the second portion of α
close enough to α0 so that it does not touch F . Moreover, the first portion and the
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FIGURE 2. A controlled sliding along α supported in N(Sk ∪ α).

third portion of α also do not touch F , since they stay in W and meet the second
portion at its end points, and F lies in M ′1. So we conclude that α does not touch
F . By (1) we have F ∩ (Sk ∪ α) = ∅. Therefore we can further find a regular
neighborhood N(Sk ∪ α) (the region bounded by bold lines in Figure 2) such that
F ∩N(Sk ∪ α) = ∅. Now we quote the following fact whose proof follows rather
directly from the definition, and which has been carefully presented in [7] with a
fine figure illustration and precise formulas:

Lemma 3.3. If s is a slide homeomorphism along an arc α with ends in Sk, then s
is supported in a regular neighborhood N(Sk ∪ α).

Slide Mk around α, that is compose f with the slide homeomorphism s that
slides Mk around α, to reduce a puncture in W1. By Lemma 3.3 and the fact that
F ∩N(Sk∪α) = ∅, we have that the sliding s does not touch F . Therefore (1) still
holds when we replace f with sf . Again, for simplicity we still use f to denote
sf . We call the slide homeomorphism that we just performed a controlled sliding
(see Figure 2).

Similarly, we slide each end of an Sj × I attached to W1 without touching F .
We continue performing controlled slidings for each Mk attached to W1 and

each end of an Sj × I attached to W1 until we reach at the point where E1 ∪ E2

bounds a 3-ball in W . Now C can be eliminated by a controlled isotopy.
Finally, suppose C ⊂ Sj,0, for some n + 1 ≤ j ≤ n + m. If there is no arc

in f(Σ) ∩ (Sj × I) with one end in C and the other end in Sj,1, then C can be
eliminated by a controlled isotopy. If there is an arc in f(Σ) ∩ (Sj × I) with one
end in C and the other end in Sj,1, then we chooseE2 so that Sj,1 is not a boundary
component of W1 and slide as above summands Mk attached to W1 and each end
of an Sk × I attached to W1 until C is eliminated.

Repeating the above controlled slidings and controlled isotopies as far as
needed, we reach f(Σ) ∩ Σ = ∅.
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Note that no component of Σ (resp. of f(Σ)) can bound a 3-ball in M . For each
M ′i , there are two cases (similarly for each Sj × I):

• There is some f(Sk) ⊂ M ′i . Since Mi is a prime factor, each 2-sphere
in M ′i = Mi − int(Di) which does not bound a 3-ball must be parallel
to Si, that is to say, f(Sk) and Si bound a 3-manifold homeomorphic to
S2 × [0, 1] in M .
• M ′i ⊂ f(M ′k) for some k. By the same reason as above, f(Sk) must be

parallel to Si.
Both cases imply that Σ and f(Σ) bound a Σ × [0, 1], a disjoint union of n +

2m copies of S2 × [0, 1], in M . Clearly we can isotope f(Σ) to Σ by pushing
f(Σ) across the Σ × [0, 1] and then reach f(W ) = W . Since (1) holds and F is
incompressible, we have F ∩N(Σ× [0, 1]) = ∅ for some regular neighborhood of
Σ× [0, 1], therefore the last isotopy can be made without touching F . This finishes
the proof of Proposition 3.2. �

We have now completed the proof of Theorem 1.3. �

Proof of Corollary 1.4. Suppose F is an incompressible surface in

M = M1# · · ·#Mn#(#mS
2 × S1),

where each Mi is irreducible and m ≥ 0. As explained in the proof of Theorem
1.3 (cf. Lemma 3.1), we may assume that F lies in M ′1 = M1 − int(D1).

Let h be a composition of controlled slidings and isotopies as performed in
Theorem 1.3 so that

hf(Σ) = g3g2g1(Σ) = Σ.

This means that hf permutes the prime factors of M . Since moreover h restricts
to the identity on F and f(F ) = F , we deduce that hf(F ) = f(F ) = F . Since
F ⊂M ′1 we conclude that

hf(M ′1) = M ′1.

�

Proof of Theorem 1.6. Let M be a closed oriented connected 3-manifold and sup-
pose T ⊂ M is an Anosov torus, that is, there is a diffeomorphism f : M → M
such that f(T ) = T and the induced homomorphism f∗ : π1(T ) → π1(T ) is hy-
perbolic.

Since every Anosov torus is incompressible [6], we can assume that T lies in
some M ′i , say in M ′1 (cf. Lemma 3.1). By Theorem 1.3 and Corollary 1.4 there is
a finite composition h of slide homeomorphisms and isotopies so that

hf(T ) = T = f(T ) and hf(M ′1) = M ′1.

We extend hf |M ′
1

to a diffeomorphism g : M1 →M1. We have

g|T = hf |T = f |T ,

and so g|T : T → T is Anosov. Since M1 is irreducible, M1 must be one of the
three types of 3-manifolds listed in Theorem 1.5. This finishes the proof. �
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