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Abstract. We introduce an axiomatic definition for the Kodaira dimension and classify

Thurston geometries in dimensions ≤ 5 in terms of this Kodaira dimension. We show

that the Kodaira dimension is monotone with respect to the partial order defined by maps

of non-zero degree between 5-manifolds. We study the compatibility of our definition with

traditional notions of Kodaira dimension, especially the highest possible Kodaira dimension.

To this end, we establish a connection between the simplicial volume and the holomorphic

Kodaira dimension, which in particular implies that any smooth Kähler 3-fold with non-

vanishing simplicial volume has top holomorphic Kodaira dimension.

1. Introduction

The Kodaira dimension provides a very successful classification tool for complex manifolds.

This concept has been generalised by several authors to symplectic manifolds, especially in

dimensions two and four [39, 40, 41, 46, 47, 17], to almost complex manifolds [16], as well as

to manifolds with a geometric decomposition in the sense of Thurston in dimensions three

and four [66, 42]. Our first goal in the present article is to generalise the traditional notions

of Kodaira dimensions by introducing a more systematic study of the Kodaira dimension

κg for manifolds that carry a geometric structure, especially in the sense of Thurston, and

provide a complete classification in dimensions ≤ 5.

Our proposed approach takes into account both coarse geometric (e.g., curvature) and

group theoretic (e.g., fundamental group) structures of the manifold. On the one hand, man-

ifolds that contain factors with compact universal coverings are assigned the lowest possible

Kodaira dimension (−∞). On the other hand, the presence of some form of hyperbolic-

ity on the manifold, as generalised by the notion of irreducible locally symmetric spaces of

non-compact type (or the non-vanishing of the simplicial volume as we shall explain below),

motivates the highest possible value (half of the dimension). These values generalise the

well-known case of holomorphic Kodaira dimension for surfaces. Beyond the two ends, we

treat in a uniform way solvable (Euclidean-by-Euclidean) geometries and introduce a more

systematic consideration of half values as implied by the existence of fiber bundle structures

for spaces that do not fall into the two boundary values of the Kodaira dimension.
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A significant question in topology, suggested by Gromov [25] and Milnor-Thurston [48], is

whether a given numerical homotopy invariant ι ∈ [0,∞] is monotone with respect to maps

of non-zero degree, that is, whether the existence of a map of non-zero degree M −→ N

implies ι(M) ≥ ι(N). In [52, 66] this question was answered in the affirmative for the Kodaira

dimension of manifolds of dimension ≤ 3 and for geometric manifolds in dimension four. In

this paper we show the monotonicity of the Kodaira dimension of geometric 5-manifolds.

Theorem 1.1. Let M and N be two closed oriented geometric 5-manifolds. If there is a

map of non-zero degree from M to N , then κg(M) ≥ κg(N).

This clearly implies the following.

Corollary 1.2. Let M and N be two closed oriented geometric 5-manifolds. If there are

maps of non-zero degree M � N , then κg(M) = κg(N).

One of the most prominent examples of monotone invariants is the Gromov norm [24].

For a topological space X and a homology class α ∈ Hn(X;R), the Gromov norm of α is

defined to be

‖α‖1 := inf

{∑
j

|λj|
∣∣∣∣ ∑

j

λjσj ∈ Cn(X;R) is a singular cycle representing α

}
.

If X is a closed oriented n-dimensional manifold, then the Gromov norm or simplicial volume

ofX is given by ‖X‖ := ‖[X]‖1, where [X] denotes the fundamental class ofX. The simplicial

volume satisfies an even stronger condition than monotonicity: If f : M −→ N is a map of

degree deg(f), then

(1) ‖M‖ ≥ | deg(f)|‖N‖,

and equality holds when f is a covering map. The non-vanishing of the simplicial volume

is a powerful tool to show non-existence of maps of non-zero degree, and the classification

of Kodaira dimension suggests that manifolds with top Kodaira dimension are those with

non-vanishing simplicial volume. Results of Gromov for hyperbolic manifolds [24] and Lafont-

Schmidt [38] and Bucher [10] for irreducible locally symmetric spaces of non-compact type

will motivate one of our building axioms, namely to set the Kodaira dimension of a closed

manifold M in the above classes to be

κg(M) =
dimM

2
.

Together with vanishing results, our choice indeed establishes the following connection be-

tween top Kodaira dimension and simplicial volume.

Theorem 1.3. A closed geometric 5-manifold M has non-zero simplicial volume if and only

if κg(M) = 5
2
.

It is natural to examine the compatibility of our Kodaira dimension with the existing

notions of Kodaira dimensions, such as the holomorphic Kodaira dimension κh for complex
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2n-manifolds and the symplectic Kodaira dimension κs of minimal symplectic 4-manifolds.

As Theorem 1.3 suggests, for the top Kodaira dimension the positivity of the simplicial

volume is the connecting principle. We thus need to answer the following questions for the

holomorphic and symplectic Kodaira dimension respectively (in this paper we will concen-

trate on κh).

Question 1.4. ([66, Question 3.13]).

(1) Let M be a smooth 2n-dimensional complex manifold with non-vanishing simplicial

volume. Is κh(M) = n?

(2) Let M be a smooth 4-dimensional symplectic manifold with non-vanishing simplicial

volume. Is κs(M) = 2?

When M is a Kähler surface, the above question was positively answered by Paternain

and Petean [54], who showed that M admits an F -structure in the sense of Cheeger and

Gromov [15] if and only if the Kodaira dimension is different from two. The existence of

an F -structure implies the vanishing of the simplicial volume [15, 54]. Moreover, all known

examples of compact complex surfaces which are not of Kähler type have F -structure and

thus vanishing simplicial volume. In other words, the complex part of Question 1.4 for

complex surfaces is reduced to answering the following: Does every complex surface of Class

VII have vanishing simplicial volume?

Here, we will address the first part of Question 1.4, giving a uniform treatment in all

dimensions, and an affirmative answer for Kähler 3-folds will follow from results in algebraic

geometry.

Theorem 1.5.

(1) If M is a smooth complex projective n-fold with non-vanishing simplicial volume, then

κh(M) 6= n− 1, n− 2 or n− 3.

(2) If M is a smooth Kähler 3-fold with non-vanishing simplicial volume, then κh(M) = 3.

In fact, our argument shows that the first part of Question 1.4 for projective manifolds

follows from two well known conjectures in algebraic geometry, due to Mumford and Kollár

(Conjectures 4.3 and 4.4 respectively). When the complex dimension is no greater than three,

both conjectures are known to be true. The second part of Theorem 1.5 then follows from

algebraic approximations of compact Kähler 3-folds. Moreover, the first part of Theorem

1.5 is actually true for Moishezon manifolds and the second part works for complex 3-folds

of Fujiki class C.
The authors are very grateful to Michelle Bucher and Tian-Jun Li for very useful discus-

sions. Part of this work was carried out during collaborative visits of the first author at

the University of Warwick and the second author at the University of Geneva. The authors

would like to thank these institutions for their hospitality and stimulating environments. We

also thank the anonymous referees for their useful feedback.
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2. The Kodaira dimension for Thurston geometries

In this section we give a definition of the Kodaira dimension and classify in terms of this

notion closed manifolds that possess a Thurston geometry in dimensions ≤ 5.

Let Xn be a complete simply connected n-dimensional Riemannian manifold. We say that

a closed manifold M is an Xn-manifold, or that M is modeled on Xn, or that M possesses

the Xn geometry in the sense of Thurston, if it is diffeomorphic to a quotient of Xn by a

lattice Γ in the group of isometries of Xn (acting effectively and transitively). The group Γ

is the fundamental group of M . Two geometries Xn and Yn are the same whenever there

exists a diffeomorphism ψ : Xn −→ Yn and an isomorphism Isom(Xn) −→ Isom(Yn) which

sends each g ∈ Isom(Xn) to ψ ◦ g ◦ ψ−1 ∈ Isom(Yn).

2.1. Axiomatic definition. Let G be the smallest class of manifolds that contains all

• points;

• manifolds modeled on a compact geometry;

• solvable manifolds;

• irreducible symmetric manifolds of non-compact type;

• fiber bundles or manifolds modeled on fibered geometries, whose fiber and base (ge-

ometries) belong in G.

We define the Kodaira dimension κg of an n-manifold M ∈ G as follows:

(A0) If M is a point, then κg(M) = 0;

(A1) If M is modeled on a compact geometry, then κg(M) = −∞;

(A2) If M is solvable; then κg(M) = 0;

(A3) If M is irreducible symmetric of non-compact type, then κg(M) = n
2
;

(A4) If M is a fiber bundle or is modeled on a fibered geometry F → Xn → B, and does

not satisfy any of (A1)-(A3), then

κg(M) = sup
F,B
{κg(F ) + κg(B)},

where the supremum runs over all possible manifolds F and B that occur in a fibration

F → M → B or are modeled on F and B respectively, and which satisfy one of the

Axioms (A1)-(A3),

An immediate consequence of the above definition is the following.

Lemma 2.1. Let M ∈ G and suppose M → M is a finite covering. Then M ∈ G and

κg(M) = κg(M).

2.2. Classification in dimensions ≤ 5.

Dimension zero. The Kodaira dimension of a point is equal to zero by (A0).
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Dimension one. The only closed 1-manifold is the circle S1 = R/Z, i.e., it is modeled on

the real line. In particular, S1 is solvable satisfying (A2), hence

κg(S1) = 0.

Dimension two. Let Σh be a surface of genus h. If h = 0, then Σ0 = S2 satisfies (A1). If

h = 1, then Σ1 = T 2 = R2/Z2, i.e., it possesses the Euclidean geometry R2 which satisfies

(A2). Finally, if h ≥ 2, then Σh is hyperbolic, that is, it is modeled on H2 and satisfies (A3).

Hence, to summarise, we have

κg(Σh) =


−∞, if h = 0;

0, if h = 1;

1, if h ≥ 2.

Dimension three. By Thurston’s geometrization picture in dimension three, there ex-

ist eight geometries [60, 57]. The compact geometry S3 satisfies (A1), the geometries R3

(Euclidean), Nil3 (nilpotent) and Sol3 (solvable but not nilpotent) satisfy (A2), and the

hyperbolic geometry satisfies (A3). We are left with the three product geometries which

do not belong to (A1)-(A3). For the geometry S2 × R we have, according to (A4) and the

Kodaira dimensions for 1- and 2-manifolds,

κg(S2 × S1) = κg(S2) + κg(S1) = −∞.

Every 3-manifold M modeled on H2 ×R or S̃L2 is a finitely covered by a circle bundle over

a closed hyperbolic surface Σh. Hence, (A4), Lemma 2.1 and the Kodaira dimensions for the

circle and hyperbolic surfaces, give us

κg(M) = κg(S1) + κg(Σh) = 1.

Summarising,

κg(M) =


−∞, if M is modeled on S3, or S2 × R;

0, if M is modeled on R3, Nil3 or Sol3;

1, if M is modeled on H2 × R or S̃L2;
3
2
, if M is modeled on H3.

Dimension four. In his 1983 thesis, Filipkiewicz [20] classified the 4-dimensional geome-

tries. According to that, there exist nineteen geometries, eighteen of which have represen-

tatives which are compact manifolds. We now enumerate those geometries following our

Axiomatic Definition 2.1. For the notation and details on the structure of each geometry

and of manifolds modeled on them, we refer to Filipkiewicz’s thesis [20], as well as to papers

of Wall [62, 63] and Hillman’s monograph [27]; see also [50] for some new characterizations

for certain geometries of nilpotent and solvable type.

There are three compact geometries, namely S4, CP2 and S2×S2, and those satisfy (A1).

Thus, a manifold M modeled on any of those geometries has Kodaira dimension

κg(M) = −∞.
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There are six solvable geometries satisfying (A2): The Euclidean R4, the nilpotent Nil4

and Nil3 × R, and the three solvable but not nilpotent geometries Sol40, Sol
4
1 and Sol4m,n

(note that Sol4m,m = Sol3 × R). Hence for those geometries we have

κg(M) = 0.

Next, (A3) is satisfied by the real and complex hyperbolic geometries, H4 and H2(C)

respectively, as well as by the irreducible H2 × H2 geometry. We thus have for a manifold

M that possesses one of those geometries

κg(M) =
4

2
= 2.

Finally, we deal with the remaining seven geometries which satisfy (A4): If a manifold M

is modeled on one of the geometries S2 × R2, S2 × H2 or S3 × R, then it has a finite cover

which is fiber bundle with S2- or S3-fiber. Thus κg(M) = −∞, because κg(Sn) = −∞ for

n ≥ 2. A manifold M modeled on one of the geometries H2 × R2 or S̃L2 × R has Kodaira

dimension κg(M) = 1 by the corresponding classifications in lower dimensions, and, for the

same reason, if M is an H3 × R-manifold, then κg(M) = 3
2
. Finally, if M is modeled on

the reducible geometry H2 × H2, then it is virtually a product of two hyperbolic surfaces,

hence κg(M) = 2 by the fact that hyperbolic surfaces have Kodaira dimension one. Note

that κg(M) = 2 = 4
2

for irreducible H2 ×H2-manifolds, as we have seen above.

All this is summarised as follows

κg(M) =



−∞, if M is modeled on S4,CP2, S2 × X2 or S3 × R;

0, if M is modeled on R4, Nil4, Nil3 × R, Sol4m,n, Sol40 or Sol41;

1, if M is modeled on H2 × R2 or S̃L2 × R;
3
2
, if M is modeled on H3 × R;

2, if M is modeled on H4,H2(C) or H2 ×H2.

Dimension five. Recently, Geng [21] gave a classification of the 5-dimensional geometries.

According to Geng’s list, there exist fifty eight geometries, and fifty four of them are realised

by compact manifolds. (Counting from Geng’s list one finds fifty nine geometries, because

the geometry Sol3 ×R2, which is Sol4m,n ×R for m = n, is counted individually.) As before,

we will enumerate those geometries following Axioms (A0)-(A4). For a detailed description

of each geometry, as well as for the terminology, we refer to the three papers from Geng’s

thesis [21, 22, 23] and to related work; see the references in [21]. In particular, for the virtual

properties of a manifold modeled on each geometry, we refer to the individual sections/results

as given in the statements of [22, Theorem 1.1] and [23, Theorem 1.1]. These descriptions

will be used as well in Section 3. Furthermore, as it is remarked in [21, Section 4], a similar

classification for the Thurston geometries was partially done in dimensions six and seven

(and thus the Kodaira dimensions of those manifolds can be similarly determined).



GEOMETRIC STRUCTURES, THE GROMOV ORDER, KODAIRA DIMENSIONS & SIMPLICIAL VOLUME 7

Manifolds satisfying (A1). There are three compact geometries: the 5-sphere S5, the Wu

symmetric manifold SU(3)/SO(3) and the product S2 × S3. A manifold M modeled on

these geometries has Kodaira dimension

κg(M) = −∞.

Manifolds satisfying (A2). Naturally, this is one of the most rich classes of new geometries

with the various (irreducible) extensions of solvable-by-solvable geometries. There are two

nilpotent and six solvable but not nilpotent extensions of type R4 oR, denoted by

A5,1, A5,2 and Aa,b,−1−a−b5,7 , A1,−1−a,−1+a
5,7 , A1,−1,−1

5,7 , A−15,8, A
−1,−1
5,9 , A−15,15

respectively. There are two nilpotent geometries of type Nil4oR, denoted by A5,5 and A5,6.

There is one nilpotent and one solvable but not nilpotent geometry of type (R×Nil3)o R
denoted by A5,3 and A0

5,20 respectively. There is a solvable but not nilpotent extension

R3 o R2 denoted by A−1,−15,33 . The last irreducible solvable geometry is Nil5. The remaining

solvable geometries are built out of products of lower dimensional geometries: the Euclidean

R5, the nilpotent Nil3×R2, Nil4×R, and the solvable but not nilpotent Sol40×R, Sol41×R,

Sol4m,n × R (note that Sol4m,m × R = Sol3 × R2). A manifold M modeled on any of these

geometries has Kodaira dimension

κg(M) = 0.

Manifolds satisfying (A3). Any manifold modeled on one of the irreducible symmetric ge-

ometries of non-compact type H5 or SL(3,R)/SO(3) has Kodaira dimension

κg(M) =
5

2
.

Manifolds satisfying (A4). A manifold M modeled on any of the following geometries

S2 × S2 × R S2 × R3 S2 ×Nil3 S2 × Sol3

S2 ×H2 × R S2 × S̃L2 S2 ×H3, S2 ×H3

S3 × R2 S3 ×H2, S4 × R CP2 × R
Nil3 ×R S3 S̃L2 ×α S3 L(a, 1)×S1 L(b, 1) T 1(H3)

satisfies (A4) with fiber or base one of the compact geometries S2, S3, S4 or CP2. Hence

κg(M) = −∞ by the classification of Kodaira dimensions of manifolds of dimension ≤ 4.

Now, a manifold M modeled on one of the geometries

R3 ×H2 Nil3 ×H2 Sol3 ×H2

S̃L2 × R2 R2 o S̃L2 Nil3 ×R S̃L2

is fibered with involved geometries H2 and a solvable geometry. Hence κg(M) = 1.

Every representative M of the H3 × R2 geometry satisfies (A4), where the supremum is

achieved with the geometries H3 and R2, i.e., κg(M) = 3
2
.
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Next, we deal with 5-manifolds which are fibrations over a space of Kodaira dimension

two, namely they are modeled on one of geometries

H2 × S̃L2 H2 ×H2 × R S̃L2 ×α S̃L2

H4 × R H2(C)× R ˜U(2, 1)/U(2).

Indeed, those geometries are fibered over one of the geometries H2×H2, H2 or H2(C). Hence,

any 5-manifold modeled on the above geometries has Kodaira dimension κg(M) = 2.

Finally, a manifold M modeled on the product geometry H2×H3 has top Kodaira dimen-

sion κg(M) = 1 + 3
2

= 5
2
.

We summarise the Kodaira dimensions of geometric 5-manifolds below.

κg(M) =



−∞, if M is modeled on SU(3)/SO(3), S5, S2 × X3, S3 × X2, S4 × R,CP2 × R,
Nil3 ×R S3, S̃L2 ×α S3, L(a, 1)×S1 L(b, 1) or T 1(H3);

0, if M is modeled on R5,R4 oR,R3 oR2, Nil5, Nil4 oR, (R×Nil3)oR,
Nil4 × R, Nil3 × R2, Sol40 × R, Sol41 × R or

Sol4m,n × R;

1, if M is modeled on H2 × R3,H2 × Nil3,H2 × Sol3,R2 × S̃L2,R2 o S̃L2

or Nil3 ×R S̃L2;
3
2
, if M is modeled on H3 × R2;

2, if M is modeled on H2 × S̃L2, S̃L2 ×α S̃L2,H2 ×H2 × R,H4 × R,
H2(C)× R or ˜U(2, 1)/U(2);

5
2
, if M is modeled on H5, SL(3,R)/SO(3) or H3 ×H2.

2.3. Remarks on the definition and classification.

2.3.1. Half integers and bundle additivity. Half integers for the Kodaira dimension were

introduced in [66] for hyperbolic 3-manifolds. This is a natural development, taking into

account the known top Kodaira dimension for complex manifolds and the simplicial volume;

see also Section 4. Moreover, an additivity condition for fiber bundles was introduced in [44],

similarly to Axiom (A4). Hence, although in [66] the Kodaira dimension for H3 × R is

defined to be one, it seems natural to define it to be equal to 3
2
. Indeed, a closed 4-manifold

M modeled on H3 × R is finitely covered by a product F × S1, where F is a hyperbolic

3-manifold. Since solvable manifolds (in this case, the circle) have Kodaira dimension zero

(by (A2)), we obtain the value

κg(M) = κg(F ) + κg(S1) =
3

2
.

The requirement on the supremum in (A4) becomes now clear: If F is a mapping torus

of a pseudo-Anosov diffeomorphism of a hyperbolic surface Σ (every hyperbolic 3-manifold

is virtually of this form [2]), then M is a fiber bundle Σ → M → T 2. In that case, Σ

is irreducible locally symmetric of non-compact type, the 2-torus is solvable and therefore

κg(Σ) + κg(T 2) = 1. The supremum however is achieved with the fibration F →M → S1.
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Note that the monotonicity result for the Kodaira dimension of 4-manifolds with respect

to maps of non-zero degree given in [52, Theorem 1.2] is not affected with this new value

for H3 × R-manifolds. In fact, it reveals exactly the difference with the two 4-dimensional

geometries with Kodaira dimension one, namely H2 × R2 and S̃L2 × R: As shown in [52,

Theorem 1.1], not only no H3×R-manifold admits a map of non-zero degree from a manifold

modeled on one of the geometries H2 × R2 or S̃L2 × R, but, moreover, given any manifold

N which is modeled on one of the latter two geometries, then there is an H3 × R-manifold

M and a map M −→ N of non-zero degree.

2.3.2. Generalised Class VII surfaces. Our Kodaira dimension is compatible with the holo-

morphic one for Kähler manifolds. However, according to Axiom (A2), the Kodaira dimen-

sion for Sol40- and Sol41-manifolds is zero instead of −∞ as defined in [66]. This is again

compatible with Axiom (A4), because those geometries are solvable-by-solvable, and lower

dimensional solvable geometries have Kodaira dimension zero. In [66], the Kodaira dimen-

sion for Sol40- and Sol41-manifolds was defined to be −∞ following Wall’s scheme for complex

non-Kähler surfaces [63]. We could have required the Kodaira dimension of those manifolds,

as well as of Sol4m 6=n-manifolds, to be indeed −∞ as they have vanishing virtual second Betti

number and thus admit no symplectic structures. However, in this paper, we have chosen to

introduce the Kodaira dimension taking a unified value (zero) for solvable manifolds, keeping

thus our axiomatic approach natural with the least possible assumptions.

Remark 2.2. Axiom (A4) is also strongly related to the Iitaka conjecture [31], which states

that the holomorphic Kodaira dimension for an algebraic fibration F →M → B satisfies

κh(M) ≥ κh(F ) + κh(B).

In fact, our set of Axioms matches with the picture of Iitaka fibration in algebraic geometry,

which is applied to compute the simplicial volume in Section 4.

2.3.3. Geometries with no compact representatives. A phenomenon that appears in dimen-

sions four and above is that of geometries that have no compact representatives, but still

manifolds with finite volume. Being interested mostly in the monotonicity of the Kodaira

dimension with respect to non-zero degree maps, and thus in compact manifolds, we omitted

those geometries from our classification. It is nevertheless worth giving their values:

• In dimension four, the geometry F4 is realised by T 2-bundles over punctured hyper-

bolic surfaces [27]. According to our axioms, any manifold M modeled on F has

κg(M) = 1.

This coincides with the definition given in [66].

• In dimension five, one has the geometries F4 ×R, T 1(R1,2) = R3 o SO(1, 2)0/SO(2),

and two quotients of Nil3 o S̃L2, which are denoted by F50 and F51. A manifold M
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modeled on any of those geometries has virtually the structure of a circle bundle over

an F4-manifold [23], hence it has Kodaira dimension

κg(M) = 1.

2.3.4. Beyond Thurston’s geometries. The definition and classification of Kodaira dimen-

sion goes well beyond Thurston’s geometries. Such a classification was given in [66] for

3-manifolds, following the torus and sphere decompositions for 3-manifolds. One cannot

hope for such a general result in higher dimensions based on geometric structures, as there

exist manifolds that possess no geometric structures or decompositions. Moreover, there are

diffeomorphic Kähler n-folds with different Kodaira dimensions when n ≥ 3 [55]. Neverthe-

less, following decomposition results in dimension four [27] and developing a similar theory

for the recently classified geometries in dimension five one should be able to associate a nu-

merical homotopy invariant for a much wider class of manifolds that will contain Thurston’s

geometries which is monotone with respect to maps of non-zero degree. We might include

more manifolds by considering decomposition with pieces of Einstein manifolds.

Furthermore, our definition includes many more general classes that are not geometric.

For example, in dimension four, the Kodaira dimension of a (not necessarily geometric) fiber

bundle F →M → B is

κg(M) =



−∞, if one of F,B is S2 or finitely covered by #m≥0S
2 × S1;

0, if F = B = T 2, or one of F,B is a 3-manifold which is not finitely

covered by #m≥0S
2 × S1 and contains no H2 × R, S̃L2 or H3 pieces in its

torus or sphere decomposition;

1, if one of F,B is T 2 and the other is hyperbolic, or one of F,B is a

3-manifold which has at least one H2 × R or S̃L2 piece and no H3 pieces

in its torus or sphere decomposition;
3
2
, if one of B,F is a 3-manifold with at least one H3 piece in its torus or

sphere decomposition;

2, if both F and B are hyperbolic surfaces.

The connection to the simplicial volume suggested by Theorem 1.3 is apparent: For the

above fibration, ‖M‖ > 0 if and only if F and B are hyperbolic surfaces [12, Corollary 1.3].

Also, this definition should be absolutely compatible with maps of non-zero degree. Namely,

Gromov asks whether, given any manifold N , we can find a surface bundle M and a map

M −→ N of non-zero degree [26, pg. 753, Topological version of Bogomolov’s question].

3. The Gromov order

Given two closed oriented n-manifolds M and N , we say that M dominates N if there

is a map M −→ N of non-zero degree, and we denote this by M ≥ N . In 1978, Gromov

suggested studying the domination relation as a partial order [14]. In dimension two, the

domination relation is a total order given by the genus, as it can be easily seen that Σg ≥ Σh if
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and only if g ≥ h. In higher dimensions, however, such an order is impossible. Nevertheless,

various results have been obtained with respect to this order by many authors [3, 5, 14, 37,

52, 56, 64]. As suggested by the monotonicity of the simplicial volume (inequality (1)), one

hopes to be able to understand whether a numerical invariant is monotone with respect to

the domination relation; see Gromov [25] and Milnor-Thurston [48]. The Kodaira dimension

is indeed monotone in dimensions two (obviously), three [66] (see also [52] for an alternative

proof based on [64, 37]), and four [52].

We prove that the Kodaira dimension for geometric 5-manifolds is monotone with respect

to Gromov’s order.

Theorem 3.1. Let M and N be two closed oriented geometric 5-manifolds. If M ≥ N , then

κg(M) ≥ κg(N).

Before proceeding to our argument, let us first recall some tools and properties that we

will need at various stages of the proof.

Passing to finite coverings. We will use virtual properties of manifolds under consideration,

such as a desired product or fiber bundle structure. We will do that after lifting our maps as

follows: Given a (hypothetical) map of non-zero degree f : M −→ N , the group f∗(π1(M))

has finite index in π1(N), and so we can lift f to a π1-surjective map f̃ : M −→ Ñ , where

Ñ → N is the covering corresponding to f∗(π1(M)). Sometimes this alone is enough. If we

want to achieve further virtual properties, then we consider the finite covering p : N̂ → Ñ

(which is also a finite covering of N) that has the desired virtual property (e.g., N̂ has a

product or fiber bundle structure). Then there is a covering q : M̃ → M corresponding to

f̃−1∗ (p∗(π1(N̂))) such that f̃ ◦q lifts to a π1-surjective map f̂ : M̃ −→ N̂ . If M̃ has the desired

properties (e.g., product or fiber bundle structure), then we work with that map. Otherwise,

let q̂ : M̂ → M̃ be the finite covering with the desired properties and either we work with

the map f̂ ◦ q̂ : M̂ −→ N̂ or we lift further f̂ ◦ q̂ to a π1-surjective map.

Killing normal subgroups. In certain cases, after passing to finite covers as explained above,

the existence of a normal solvable subgroup in the fundamental group of the domain will

simplify the argument. For instance, let f : M −→ N be a π1-surjective map, where M and

N are aspherical n-manifolds. Moreover, suppose π1(M) has non-trivial center C(π1(M)),

such that π1(M)/C(π1(M)) has cohomological dimension < n. By π1-surjectivity, we obtain

f∗(C(π1(M))) ⊆ C(π1(N)). Thus, if C(π1(N)) = 1, then we immediately obtain that

Hn(f) = 0, because f factors, up to homotopy, through a space of lower cohomological

dimension. Hence, deg(f) = 0.

Realisation of homology classes by manifolds. Another tool in showing non-existence of cer-

tain maps of non-zero degree is given by Thom’s solution [58] of Steenrod’s realisation

problem [19]: If X is a topological space and α ∈ Hk(X;Z), then there is an integer

d > 0 and a closed k-manifold E, together with a continuous map g : E −→ X, such that



12 CHRISTOFOROS NEOFYTIDIS AND WEIYI ZHANG

Hk(g)([E]) = dα. For k ≤ 6, we can take d = 1. Suppose now f : M −→ N × B is a map

of non-zero degree, and let π : N × B → B be the projection to B, where dimB < dimM .

Then, by Poincaré Duality, there is a non-trivial homology class α ∈ HdimB(M ;Q) such

that HdimB(π ◦ f)(α) = [B]. Thom’s theorem [58] guarantees the existence of a manifold

E of dimension dimB together with a continuous map h = π ◦ f ◦ g : E −→ B, such that

HdimB(h)([E]) 6= 0 ∈ HdimB(B;Z). In particular, E ≥ B. Hence, if we knew that the latter

is not possible, i.e., E � B, then we arrive at a contradiction, and so deg(f) = 0.

Proof of Theorem 3.1. We will show that M � N , whenever κg(M) < κg(N). We organise

the proof according to the Kodaira dimension of M or N . More specifically, we first examine

the cases where κg(M) = −∞, 0, 1 or 3
2

and κg(N) 6= 5
2
. Then we give a uniform treatment

for the case κg(N) = 5
2
, using only the simplicial volume (although other of our arguments

would apply as well), proving in particular Theorem 1.3.

Case I: κg(M) = −∞. Let Bπ1(M) be the classifying space of π1(M) and denote by

cM : M −→ Bπ1(M) the classifying map. Since M is modeled on a geometry which is a

(possibly trivial) fibration with a compact fiber or base, we conclude that the induced ho-

momorphism H5(cM) : H5(M ;Q) −→ H5(Bπ1(M);Q) is zero. On the other hand, if N is a

manifold modeled on one of the other geometries with Kodaira dimension 0, 1, 1
2

or 2, then

N is aspherical and, thus, its classifying map is homotopic to the identity. Suppose now

f : M −→ N is a continuous map and let Bf∗ : Bπ1(M) −→ Bπ1(N) be the induced map

between the classifying spaces. Then there is a commutative diagram as follows.

H5(M ;Q)
H5(f) //

H5(cM )
��

H5(N ;Q)

H5(cN )
��

H5(Bπ1(M);Q)
H5(Bf∗)// H5(Bπ1(N);Q)

Since H5(cM) = 0 and H5(cN) = id, we conclude that

H5(f) = H5(cN ◦ f) = H5(Bf∗ ◦ cM) = 0,

which implies deg(f) = 0.

Case II: κg(M) = 0. Suppose M possesses a solvable geometry and let f : M −→ N be

a π1-surjective map, i.e., f∗(π1(M)) = π1(N). If N has Kodaira dimension 1, 3
2

or 2, then

π1(N) is not solvable, and thus deg(f) = 0 by the following group theoretic lemma whose

proof is left to the reader.

Lemma 3.2. Let H1, H2 be two groups and ϕ : H1 −→ H2 be a homomorphism. If H1 is

solvable, then ϕ(H1) ⊆ H2 is a solvable subgroup.
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Case III: κg(M) = 1. First, let M be a manifold modeled on one of the geometries H2×R3,

R2 × S̃L2 or R2 o S̃L2. Then, up to finite covers, M is a circle bundle over a (semi-)direct

product E of the 2-torus with a (possibly punctured) hyperbolic surface; see [23, Section

5], [23, Prop. 6.23 and Table 6.24] and [23, Prop. 6.17 and Tables 6.19 and 6.21] respectively.

In particular, π1(M) has non-trivial center.

Remark 3.3. Note that an aspherical 5-manifold M modeled on a non-solvable product

geometry X × Rk, 1 ≤ k ≤ 3, is virtually a product of an X-manifold with the k-torus by

arguments similar to those of [27]. Adapting the argument of [27, Theorem 9.3], given for

the 4-dimensional geometries H2 × R2, H3 × R and S̃L2 × R, the fundamental group of the

5-manifold M has (up to finite index subgroups) center C(π1(M)) ∼= Zl ×Zk, where l is the

maximum rank of the center of the fundamental group of a manifold N modeled on X, which

is H4, H2(C), H2 ×H2, H3, S̃L2 or H2 (i.e., l = 0 or 1). Then similarly to [27, Theorem 9.3]

the projection to the Euclidean factor maps C(π1(M)) injectively and π1(M) preserves the

foliation of the model space by copies of the Euclidean factor.

Every map from E to a 4-manifold B, which is modeled on one of the geometries H4,

H2(C) or H2 × H2, has degree zero, because ‖B‖ > 0 and ‖E‖ = 0 by [24, 38, 11]. Now,

every 5-manifold N of Kodaira dimension two is a circle bundle over a 4-manifold modeled

on one of the geometries H4, H2(C) or H2 × H2; see [23, Prop. 6.23 and Tables 6.24 and

6.29] for the geometries H2× S̃L2, S̃L2×α S̃L2 and H2×H2×R and [23, Prop. 4.1 and 4.2

and Table 4.3] for the geometries H4×R, H2(C)×R and ˜U(2, 1)/U(2). Hence, the following

lemma, which is a straightforward generalisation of [52, Lemma 5.1], tells us that any map

f : M −→ N has degree zero.

Lemma 3.4 ([52]). For i = 1, 2, let S1 → Mi → Bi be circle bundles over closed oriented

aspherical manifolds Bi of the same dimension, so that the center of π1(M2) remains infinite

cyclic in finite covers. If B1 � B2, then M1 �M2.

If N has Kodaira dimension 3
2
, then it is virtually a product F×T 2, where F is a hyperbolic

3-manifold; cf. [23, Section 5] or Remark 3.3. Since π1(M) contains Z2 as a normal subgroup

(which is moreover central for the geometries H2 × R3 and R2 × S̃L2), we deduce that any

π1-surjective map f : M −→ N factors through a map f : B −→ F , where B is a 3-manifold

modeled on the geometry H2 × R, when M is an H2 × R3-manifold, or on the geometry

S̃L2, when M is an R2 × S̃L2- or R2 o S̃L2-manifold. Hence, f factors through a surface,

which implies deg(f) = 0. By a statement similar to that of Lemma 3.4, we deduce that

deg(f) = 0.

Let now M be modeled on one of the geometries Nil3×H2 or Nil3×R S̃L2. In that case, M

is virtually a circle bundle over T 2×Σg, g ≥ 2; cf. [23, Prop. 6.23 and Tables 6.24 and 6.29].

Hence, as above, there is no map of non-zero degree from M to any manifold of Kodaira

dimension two. Suppose now that the target N has Kodaira dimension 3
2
, i.e., it is virtually a

product F×T 2, where F is a hyperbolic 3-manifold, and let f : M −→ F×T 2 be a continuous
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π1-surjective map. Let π : F × T 2 −→ F be the projection to the F -factor. Since the center

of π1(M) is infinite cyclic given by the S1-fiber, the composite map π ◦ f : M −→ F factors

through the bundle projection p : M −→ T 2 × Σg. If H3(p) = 0, then H3(f) = 0, which

means that deg(f) = 0, because otherwise H3(f) : H3(M) −→ H3(F × T 2;Q) 6= 0 would be

surjective. If H3(p) 6= 0 and deg(f) 6= 0, then there is an induced map f : T 2 × Σg −→ F ,

such that H3(f) 6= 0. Since

H3(T 2 × Σg) ∼= (H2(T 2)⊗H1(Σg))⊕ (H1(T 2)⊗H2(Σg)),

we conclude that there is a map of non-zero degree from T 3 or S1 × Σg to F (cf. [51, 58]),

which is impossible, as such a map would factor through a surface. Thus deg(f) = 0.

Finally, let M be a Sol3 × H2-manifold. We may assume (after passing to a finite cover,

if necessary) that M = E × Σg, where E is a mapping torus of an Anosov diffeomorphism

of T 2; cf. [23, Prop. 6.23 and Table 6.24] and [57]. We first observe that every map from

M to a manifold that possesses the geometry H3 × R2 has degree zero: Indeed, suppose

f : E × Σ −→ F × T 2 is a map of non-zero degree, where F is a hyperbolic 3-manifold.

Let the composition π ◦ f : E × Σ −→ F , where π : F × T 2 −→ F is the projection to the

F -factor. Since

H3(E × Σg) ∼= (H3(E)⊗H0(Σg))⊕ (H2(E)⊗H1(Σg))⊕ (H1(E)⊗H2(Σg)),

we conclude by [51, 58] that there is a map of non-zero degree from E or S1 × Σh (h ≥ 1)

to F , which is a contradiction, as such a map would factor through the circle or a surface

respectively. This means that deg(f) = 0. Similar arguments apply when the target N is

an S̃L2 × H2-manifold (see [52] and also [53] for a general characterisation regarding such

products, as well as [37] for projections to the geometry S̃L2) or N is modeled on H2×H2×R,

H4 × R or H2(C)× R; for the last three geometries note that any non-trivial class in

H4(E × Σg) ∼= (H3(E)⊗H1(Σg))⊕ (H2(E)⊗H2(Σg))

is realised either by the product of a Sol3-manifold with the circle or a by the product of

the 2-torus with a hyperbolic surface.

We are thus left with the cases where the target N is a virtually a non-trivial circle bundle

over a hyperbolic or an H2×H2-manifold. In those cases, we will apply the theory of groups

(not) infinite index presentable by products developed in [50].

Definition 3.5. A group H is called presentable by products if there exist two infinite ele-

mentwise commuting subgroups H1, H2 ⊆ H, such that the multiplication homomorphism

H1 ×H2 −→ H surjects onto a finite index subgroup of H. If both Hi can be chosen with

[H : Hi] =∞, then H is called infinite index presentable by products or IIPP.

The property IIPP is a sharp refinement between reducible groups, i.e., groups that have

a finite index subgroup which splits as a direct product of two infinite groups, and groups

presentable by products, which were introduced in [36]. The following gives a criterion such

that the conditions IIPP and reducible are equivalent for central extensions.
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Theorem 3.6. ([50, Theorem D]). Let Γ be a group with center C(Γ) such that the quotient

Γ/C(Γ) is not presentable by products. Then, Γ is reducible if and only if it is IIPP.

A prominent class of groups not presentable by products is given by non-elementary hy-

perbolic groups [36]. Hence Theorem 3.6 applies to the geometry ˜U(2, 1)/U(2), because if

N is an ˜U(2, 1)/U(2)-manifold, then, up to finite covers, N has the structure of a non-trivial

circle bundle over a closed complex hyperbolic 4-manifold B. Clearly π1(N) is not reducible,

hence, by Theorem 3.6, it is not IIPP. Thus, every map from a Sol3×H2-manifold to N has

degree zero, by the following theorem.

Theorem 3.7. ([50, Theorem B]). Let S1 → N → B be a circle bundle over a closed oriented

aspherical manifold B, so that π1(N) is not IIPP and its center remains infinite cyclic in

finite covers. Then P � N , for any non-trivial direct product P .

The same argument applies when the target N is a non-trivial circle bundle over a 4-

manifold B that possesses the irreducible H2×H2 geometry, because π1(B) is not presentable

by products and π1(N) is irreducible, and thus not IIPP [50].

The criterion of Theorem 3.6 is not anymore valid once we relax the condition on Γ/C(Γ)

being not presentable by products. Such an example is given by the fundamental group of

a Nil5-manifold N , which is irreducible and IIPP [50, Section 8], and fits into the central

extension

1 −→ Z −→ π1(N) −→ Z4 −→ 1.

As shown in [50, Section 8], N still does not admit maps of non-zero degree from products.

We will show below that a similar argument applies to the case of S̃L2 ×α S̃L2-manifolds.

Let N be modeled on S̃L2 ×α S̃L2, such that, after passing to finite covers, it is a non-

trivial S1-bundle over the product of two hyperbolic surfaces Σh1 ×Σh2 , and π1(N) fits into

the central extension

1 −→ Z −→ π1(N) −→ π1(Σh1)× π1(Σh2) −→ 1.

Since N is not modeled on S̃L2×H2 or H2×H2×R, we conclude that π1(N) is irreducible.

However, π1(N) is IIPP, and a presentation is given by the multiplication

H1 ×H2 −→ π1(N),

where Hi = 〈a1, b1, ..., ahi , bhi , z | [a1, b1] · · · [ahi , bhi ] = zt, t ∈ Z \ {0}〉.
Suppose, now, that there exists a π1-surjective map f : X1×X2 −→ N of non-zero degree,

where 0 < dim(Xi) < 5. We then obtain a short exact sequence

1 −→ Γ1 ∩ Γ2 −→ Γ1 × Γ2
ϕ−→ π1(N) −→ 1,(2)

where Γi := im(π1(f |Xi
)) ⊂ π1(N), Γ1 ∩ Γ2 ⊆ C(π1(N)) = Z and ϕ is the multiplication

homomorphism. Moreover, we obtain two non-trivial rational homology classes

αi := HdimXi
(Bπ1(f |Xi

) ◦ cXi
)([Xi]) 6= 0 ∈ HdimXi

(BΓi;Q),(3)
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where cXi
denote the classifying maps; see [36] or [50]. Since π1(N) is irreducible, Γ1 ∩ Γ2

is isomorphic to Z. Now both Z and π1(N) are Poincaré Duality groups of cohomological

dimension one and five respectively, hence Γ1 × Γ2 is a Poincaré Duality group of cohomo-

logical dimension cd(Γ1 × Γ2) = 6 and each Γi is a Poincaré Duality group [6, 32]. We need

to examine the cases where cd(Γ1) = 1, 2 or 3.

If cd(Γ1) = 1, then Γ1 = Z, and so BΓ1 ' BZ = S1. The non-vanishing of α1 ∈
HdimX1(S

1;Q) implies that dimX1 ≤ 1, that is, X1 = S1. Hence S1 × X2 ≥ N , which is

impossible by the following Factorization Lemma.

Lemma 3.8. ([50, Lemma 4.8]). Let S1 → N → B be a non-trivial circle bundle over a

closed oriented aspherical manifold B. Suppose that the Euler class of N is not torsion and

that the center of π1(N) remains infinite cyclic in finite covers. Then X × S1 � N for any

closed oriented manifold X.

If cd(Γ1) = 2, then Γ1 is a surface group [18]. Since Z = Γ1 ∩ Γ2 ⊆ C(Γ1), we conclude

that Γ1
∼= Z2. Since Z = Γ1∩Γ2 ⊆ C(Γ2), we deduce that rankC(Γ1×Γ2) ≥ 3. But Γ1×Γ2

fits into the short exact sequence (2), where C(Γ1 ∩ Γ2) = C(π1(N)) = Z. This gives us a

contradiction [50, Lemma 6.23].

The last case is cd(Γi) = 3. Since Γi are Poincaré Duality groups and C(Γi) 6= 1, we deduce

that Γi must be fundamental groups of closed 3-manifolds modeled on R3, Nil3, H2 × R or

S̃L2 by theorems of Bowditch [9] and Thomas [59]. The geometry R3 is excluded due to the

rank of the center as above. Hence BΓi are realised by closed manifolds. (Note that at least

one of them must be modeled on H2 × R or S̃L2, because π1(N) is not nilpotent [50].) We

have shown that there are two non-trivial homology classes αi ∈ HdimXi
(BΓi;Q) such that

H5(Bϕ)(α1 × α2) = deg(f)[N ].

For one of the αi, say α1, we have by (3) a continuous map

Bπ1(f |X1) ◦ cX1 : X1 −→ BΓ1,

where in our case X1 = E is a Sol3-manifold and BΓ1 is realised by a 3-manifold modeled on

Nil3, H2 × R or S̃L2. Since α1 6= 0, the above map is non-trivial in degree three homology.

This is a contradiction because, by the growth of first Betti number (see for example [57]),

there are no maps of non-zero degree from a Sol3-manifold to any 3-manifold possessing one

of the geometries Nil3, H2 × R or S̃L2. Therefore deg(f) = 0 as claimed.

Case IV: κg(M) = 3
2
. Let M be a manifold modeled on H3×R. We can assume that M is the

product of a hyperbolic 3-manifold F and the 2-torus. In particular, Z ⊂ Z2 = C(π1(M)).

Suppose f : M −→ N is a π1-surjective map, where N is a manifold of Kodaira dimension

two. In all cases, we can assume that N is a circle bundle whose base B is modeled on one

of the geometries H4, H2(C) or H2 × H2. In particular, C(π1(N)) = Z. Hence f∗ factors

through a surjection f∗ : π1(M)/Z −→ π1(B), where π1(M)/Z is realised by S1 × F . Since

S1 × F � B, Lemma 3.4 implies that deg(f) = 0.
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Case V: κg(N) = 5
2
. In this case, N is modeled on one of the geometries H5, SL(3,R)/SO(3)

or H3 × H2, which implies ‖N‖ > 0. This is a consequence of Gromov’s theorems [24] for

hyperbolic 5-manifolds and products of hyperbolic 2- and 3-manifolds, by the inequality

‖E1 × E2‖ ≥ ‖E1‖‖E2‖,

and a consequence of a theorem of Bucher [10] for SL(3,R)/SO(3). On the other hand,

any manifold M with Kodaira dimension −∞, 0, 1, 1
2

or 2 has zero simplicial volume. For

if M is modeled on a compact geometry, then the classifying space of π1(M) has virtual

dimension less than five (see also Case I) and thus Gromov’s Mapping theorem [24] tells us

that ‖M‖ = 0. If M is virtually a fiber bundle with amenable fiber, then ‖M‖ = 0 again

by Gromov [24]. For any manifold which is virtually a product with a factor that belongs

in the above cases (and thus has zero simplicial volume), it has zero simplicial volume by

Gromov’s inequality

‖E1 × E2‖ ≤

(
dim(E1 × E2)

dim(E1)

)
‖E1‖‖E2‖.

In the remaining cases, M virtually fibers over a compact geometry and thus ‖M‖ = 0 again

by the Mapping theorem [24]. By ‖N‖ > 0 and ‖M‖ = 0 we conclude that M � N ; cf.

inequality (1).

The proof is now complete. �

Remark 3.9. Note that Case V proves in particular Theorem 1.3.

4. Kähler manifolds with non-vanishing simplicial volume

In this section, we prove Theorem 1.5, giving, in particular, a complete answer to Question

1.4(1) for Kähler 3-folds. In fact, we will present a uniform treatment for all dimensions,

and, then, known results in algebraic geometry will imply an affirmative answer for Kähler

3-folds. This gives further evidence for the compatibility of our axiomatic Kodaira dimension

with other existing Kodaira dimensions for manifolds with non-zero simplicial volume.

We start with a lemma which shows that the simplicial volume is a birational invariant.

Lemma 4.1. Birationally equivalent smooth projective varieties (resp. bimeromorphic smooth

Kähler manifolds) have the same simplicial volume.

Proof. The Mapping theorem of [24] implies that if there is a continuous map f : X1 → X2

such that the induced homomorphism of fundamental groups is an isomorphism, then ‖X1‖ =

‖X2‖. In particular, it applies when f is a blowup. By the weak factorization theorem [1],

any bimeromorphic map between complex manifolds can be factored as a composition of

blowups and blowdowns at a smooth center, and each intermediate variety is a complex

manifold. Moreover, if we start with a birational map between smooth projective varieties,

then each intermediate variety is a smooth projective variety. Hence, birationally equivalent
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smooth projective varieties, resp. bimeromorphic Kähler manifolds, have the same simplicial

volume. �

We first deal with uniruled manifolds.

Proposition 4.2. Any uniruled manifold has vanishing simplicial volume.

Proof. For a uniruled n-fold X, there is a complex (n − 1)-fold Y and a dominant and

generically finite rational map f : Y × CP1 99K X. Up to blowups, we can choose Y to be

smooth.

By Hironaka’s resolution of singularities [28], there is a birational morphism g : Z →
Y ×CP1, obtained as the composition of blowups along smooth centers, such that f ◦ g is a

morphism.

Since CP1 ∼= S2, the product inequality for the simplicial volume implies ‖Y × CP1‖ = 0

(or by [24, 65] due to the circle action). By the Mapping theorem of [24], we have ||Z‖ =

‖Y ×CP1‖ = 0. Finally, since ‖Z‖ ≥ | deg(f ◦g)|‖X‖ ≥ ‖X‖, we conclude that ‖X‖ = 0. �

Apparently, any uniruled manifold has holomorphic Kodaira dimension κh = −∞. The

converse is one of the major open problems, often attributed to Mumford, in the classification

theory of projective manifolds (see e.g. [8]).

Conjecture 4.3 (Mumford). A smooth projective variety with κh = −∞ is uniruled.

This is known to be true for projective 3-folds [49]. In general, it follows from the Abun-

dance conjecture, which says that the Kodaira dimension agrees with the numerical Kodaira

dimension [35].

The key for the vanishing of the simplicial volume for smooth projective varieties with

0 ≤ κh(M) ≤ n − 1 is the case of κh = 0. We have the following conjecture (see for

example [34, (4.1.6)]).

Conjecture 4.4 (Kollár). Let X be a smooth and proper variety with κh(X) = 0. Then X

has a finite étale cover X ′ such that X ′ is birational to the product of an Abelian variety and

of a simply connected variety with κh = 0. In particular, π1(X) has a finite index Abelian

subgroup.

In particular, an affirmative solution to Conjecture 4.4 would imply that such X has

amenable (virtually Abelian) fundamental group and thus ‖X‖ = 0. In the following, we

show that any smooth projective n-fold with non-vanishing simplicial volume must have

κh = n, up to the above two well known conjectures.

Theorem 4.5. Up to (the second part of) Conjecture 4.4, any smooth 2n-dimensional com-

plex projective variety M with κh(M) ≥ 0 and ‖M‖ > 0 has κh(M) = n.

In particular, assuming Conjecture 4.3, then any smooth projective variety with non-

vanishing simplicial volume is of general type.
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Proof. When κh(M) > 0, then we know that M admits an Iitaka fibration. Precisely, M

is birationally equivalent to a projective manifold X which admits an algebraic fiber space

structure φ : X → Y over a normal projective variety Y such that the Kodaira dimension of a

very general fiber of φ has Kodaira dimension zero. By Lemma 4.1, we conclude ‖M‖ = ‖X‖.
We recall a vanishing result which is a corollary of the Mapping Theorem [24]: If a

closed manifold X can be mapped into a topological space Y whose covering dimension

dimY < dimX, such that the pullback of every point in Y has an amenable neighborhood

in X, then ‖X‖ = 0. In our situation, Y is a normal variety, which could be blown up to a

smooth projective variety Y ′. Since the blowup map is holomorphic, it is an open map by the

Open Mapping theorem in complex analysis. Moreover, we know that the smooth manifold

Y ′ has covering dimension dimY , by sending open subsets to Y through the surjective

birational morphism.

Hence, in our setting, the problem is reduced to showing that every fiber of an Iitaka

fibration has a neighborhood whose fundamental group is amenable.

A general fiber of an Iitaka fibration is a smooth projective variety of Kodaira dimension

zero, and therefore, by (the second part of) Conjecture 4.4, it has amenable fundamental

group. Thus any regular fiber has a product neighborhood which has the same fundamental

group as the fiber, thus amenable.

When 1 ≤ k = κh(M) < n, we know dimC Y = k. We are in the setting of [34, Theorem

2.12], which we recall below for the convenience of the reader.

Theorem 4.6. Let X and Y be irreducible normal complex spaces and f : X → Y a mor-

phism. Assume that there is a Zariski open dense set Y 0 ⊂ Y such that f : X0 := f−1(Y 0)→
Y 0 is a topological fiber bundle with connected fiber Xg. Let y ∈ Y be a point such that there

is an x ∈ f−1(y) satisfying dimx f
−1(y) = dimX − dimY . Then

(1) there is an open neighborhood y ∈ U ⊂ Y such that im[π1(Xg) → π1(f
−1(U))] has

finite index in π1(f
−1(U));

(2) if f is proper, then im[π1(Xg)→ π1(f
−1(y))] has finite index in π1(f

−1(y));

(3) if f is smooth at x, then im[π1(Xg)→ π1(f
−1(U))] is surjective.

In our case, we can apply Theorem 4.6(1). Since the fundamental group of a general fiber

is amenable, it implies that we can find a neighborhood U of p ∈ Y , such that π1(f
−1(U))

is amenable (in fact, by Theorem 4.6(2), we also know that any fiber of an Iitaka fibration

is amenable). Hence ‖M‖ = ‖X‖ = 0 by the above mentioned vanishing result of [24]. �

In dimension no greater than 3, both Conjectures 4.3 and 4.4 are known to be true, by [49]

and [34] respectively. Hence, we have the following.

Corollary 4.7. Let M be a smooth complex projective n-fold with non-vanishing simplicial

volume. Then κh(M) cannot be n− 1, n− 2 or n− 3. If, moreover, n = 3, then κh(M) = 3.

Proof. The fundamental group of a smooth projective n-fold, n ≤ 3, of Kodaira dimension

zero is amenable. The case of n = 1, 2 follows from the classification. By [34, (4.17.3)],
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the fundamental group of a smooth projective 3-fold of Kodaira dimension zero has a finite

index Abelian subgroup. In particular, it is amenable. Hence, the first part of our corollary

follows from the argument of Theorem 4.5.

We still need to show that any smooth complex projective 3-fold with κh(M) = −∞ must

have ‖M‖ = 0. It follows from [49] that any complex projective 3-fold has κh = −∞ if and

only if it is uniruled. Then Proposition 4.2 implies ‖M‖ = 0. �

We remark that Theorem 4.5 also provides an alternative argument that any smooth

Kähler surface with non-vanishing simplicial volume is a surface of general type: First, by

classification of complex surfaces, any Kähler surface can be deformed to, in particular it is

diffeomorphic to, a projective surface. By Theorem 4.5, any smooth projective surface with

non-vanishing simplicial volume and nonnegative Kodaira dimension must have κh = 2. On

the other hand, any Kähler surface with κh = −∞ is rational or ruled, which has vanishing

simplicial volume.

We can answer Question 1.4(1) for smooth Kähler 3-folds with the help of KX-MMP and

the Abundance conjecture which is established for Kähler 3-folds [29, 13]. In fact, by [4, 45],

we know that for any compact Kähler manifold X of complex dimension three, there exists a

bimeromorphic Kähler manifold X ′ which is deformation equivalent to a projective manifold.

Hence, by Lemma 4.1 and Corollary 4.7, we have

Theorem 4.8. If X is a smooth Kähler 3-fold with non-vanishing simplicial volume, then

κh(X) = 3.

Combining Corollary 4.7 and Theorem 4.8 we obtain Theorem 1.5. By Lemma 4.1, Corol-

lary 4.7 works for Moishezon manifolds and Theorem 4.8 works for complex 3-folds of Fujiki

class C.
Moreover, any smooth Kähler n-fold with κh = n − 1 must have vanishing simplicial

volume, since it satisfies the above mentioned version of algebraic approximation [4]. This

approach might be generalized to higher dimensional Kähler manifolds. Although there are

Voisin’s examples in each even complex dimension ≥ 8 of compact Kähler manifolds all of

whose smooth bimeromorphic models are homotopically obstructed to being a projective

variety [61], these examples are all uniruled. In fact, it is conjectured by Peternell that this

phenomenon cannot happen when the Kodaira dimension is non-negative [45].

There is a more direct approach. By running the MMP for a Kähler 3-fold X, we obtain a

Q-factorial bimeromorphic model Xmin of X with at worst (isolated) terminal singularities

whose canonical bundle KXmin
is nef. By the Abundance conjecture, which is known for

Kähler 3-folds, there is some positive number m such that mKXmin
is base-point free and

that the linear system |mKXmin
| defines a fibration with base dimension κh(X). We can blow

up the total space to get a fibered smooth Kähler manifold. The argument for Theorem 4.5

still applies.
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18. B. Eckmann, Poincaré duality groups of dimension two are surface groups, Combinatorial Group Theory

and Topology (eds. S.M. Gersten and J. Stallings), Annals of Math. Studies 111 (1987), Princeton Univ.

Press, Princeton, pp. 35–51.

19. S. Eilenberg, On the problems of topology, Ann. of Math. 50 (1949), 247–260.

20. R. Filipkiewicz, Four-dimensional geometries, PhD thesis, University of Warwick, 1983.

21. A. Geng, 5-dimensional geometries I: the general classification, Preprint: arXiv:1605.07545.

22. A. Geng, 5-dimensional geometries II: the non-fibered geometries, Preprint: arXiv:1605.07534.

23. A. Geng, 5-dimensional geometries III: the fibered geometries, Preprint: arXiv:1605.07546.

24. M. Gromov, Volume and bounded cohomology, Inst. Hautes Études Sci. Publ. Math. 56 (1982), 5–99.

25. M. Gromov, Metric Structures for Riemannian and Non-Riemannian Spaces, with appendices by

M. Katz, P. Pansu and S. Semmes, translated from the French by S. M. Bates, Progress in Math.
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55. R. Răsdeaconu, The Kodaira dimension of diffeomorphic Kähler threefolds, Proc. Amer. Math. Soc. 134

(2006), 3543–3553.

56. Y. W. Rong, Degree one maps between geometric 3-manifolds, Trans. Amer. Math. Soc. 332 (1992),

411–436.

57. P. Scott, The geometries of 3-manifolds, Bull. London Math. Soc. 15 (1983), 401–487.



GEOMETRIC STRUCTURES, THE GROMOV ORDER, KODAIRA DIMENSIONS & SIMPLICIAL VOLUME 23

58. R. Thom, Quelques propriétés globales des variétés différentiables, Comment. Math. Helv. 28 (1954),
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