
ANOSOV DIFFEOMORPHISMS OF PRODUCTS I.
NEGATIVE CURVATURE AND RATIONAL HOMOLOGY SPHERES

CHRISTOFOROS NEOFYTIDIS

ABSTRACT. We show that various classes of products of manifolds do not support transitive Anosov
diffeomorphisms. Exploiting the Ruelle-Sullivan cohomology class, we prove that the product of a
negatively curved manifold with a rational homology sphere does not support transitive Anosov
diffeomorphisms. We extend this result to products of finitely many negatively curved manifolds
of dimensions at least three with a rational homology sphere that has vanishing simplicial volume.
As an application of this study, we obtain new examples of manifolds that do not support transitive
Anosov diffeomorphisms, including certain manifolds with non-trivial higher homotopy groups and
certain products of aspherical manifolds.

1. INTRODUCTION

A diffeomorphism f on a closed oriented smooth n-dimensional manifold M is called Anosov if
there exist constants µ ∈ (0, 1) and C > 0, together with a df -invariant splitting TM = Es ⊕ Eu

of the tangent bundle of M , such that for all m ≥ 0

‖dfm(v)‖ ≤ Cµm‖v‖, v ∈ Es,

‖df−m(v)‖ ≤ Cµm‖v‖, v ∈ Eu.

The invariant distributions Es and Eu are called the stable and unstable distributions. An
Anosov diffeomorphism f is called a codimension k Anosov diffeomorphism if either fiber Es

or Eu has dimension k with k ≤ [n/2], and is called transitive if there exists a point whose orbit is
dense in M .

All examples of Anosov diffeomorphisms known to date are conjugate to affine automorphisms
of infranilmanifolds, and it is a long-standing question, going back to Anosov and Smale, whether
there exist any other manifolds that support Anosov diffeomorphisms. In particular, Smale sug-
gested that every manifold which supports an Anosov diffeomorphism must be covered by a Eu-
clidean space [20]. Obstructions to the existence of (transitive) Anosov diffeomorphisms have been
developed mainly using co-homological and coarse geometric methods. In the following theorem
we gather some of those obstructions and some major examples of manifolds that do not support
(transitive) Anosov diffeomorphisms:

Theorem 1.1.
(a) (Franks [5], Newhouse [14]). If a manifold supports a codimension one Anosov diffeomor-

phism, then it is homeomorphic to a torus.
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(b) (Ruelle-Sullivan [17]). If M supports a codimension k transitive Anosov diffeomorphism
f with orientable invariant distributions, then there is a non-trivial cohomology class α ∈
Hk(M ;R) and a positive λ 6= 1 such that f ∗(α) = λ · α. In particular, Hk(M ;R) 6= 0.

(c) (Shiraiwa [18]). If f : M −→ M is an Anosov diffeomorphism, then there is some k such
that the induced homomorphism f ∗ : Hk(M ;Q) −→ Hk(M ;Q) is not the identity. In
particular, rational homology spheres do not support Anosov diffeomorphisms.

(d) (Yano [24]). A manifold with negative sectional curvature does not support transitive
Anosov diffeomorphisms.

In the sequel, we will refer to the cohomology class of Theorem 1.1 (b) as Ruelle-Sullivan
cohomology class. In Section 2.1, we will see how this class can be used to rule out transitive
Anosov diffeomorphisms on negatively curved manifolds, which is Yano’s Theorem 1.1 (d). We
note that in dimensions higher than two the transitivity assumption in Yano’s result is in fact not
needed as explained in [7, Cor. 4.5]; we will discuss this briefly in Section 2.2.

In recent years, there have been several attempts to extend the above non-existence results to
Cartesian products:

Question 1.2. Let M and N be two closed manifolds such that at least one of them does not
support Anosov diffeomorphisms. Does M ×N support an Anosov diffeomorphism?

Concerning, in one direction, manifolds with non-trivial higher homotopy groups, and, in an-
other direction, aspherical manifolds, the following results were proven recently:

Theorem 1.3.
(a) (Gogolev-Rodriguez Hertz [6]). Let M be a closed m-dimensional manifold. If n > m,

then the product M × Sn does not support transitive Anosov diffeomorphisms. Moreover,
if n is odd, then M × Sn does not support Anosov diffeomorphisms.

(b) (Gogolev-Lafont [7]). Let N be a closed infranilmanifold and M be a closed smooth as-
pherical manifold such that π1(M) is Hopfian, the outer automorphism group Out(π1(M))

is finite, and the intersection of all maximal nilpotent subgroups of π1(M) is trivial. Then
M ×N does not support Anosov diffeomorphisms.

Our goal is to provide further evidence towards a positive answer to the Anosov-Smale question,
by extending the classes of product manifolds that do not support (transitive) Anosov diffeomor-
phisms. In this paper, we consider products of negatively curved manifolds with a rational ho-
mology sphere. In particular, we obtain new examples of manifolds that do not support transitive
Anosov diffeomorphisms, including certain manifolds with non-trivial higher homotopy groups
and certain aspherical manifolds. Our first result concerns products of a negatively curved mani-
fold with a rational homology sphere:

Theorem 1.4. If M is a closed negatively curved manifold and N is a rational homology sphere,
then the product M × N does not support transitive Anosov diffeomorphisms with orientable
invariant distributions.

In particular, we obtain the following immediate consequence that includes manifolds with non-
trivial higher homotopy groups; compare Theorem 1.3 (a):
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Corollary 1.5. For any negatively curved manifold M , the product M × Sn does not support
transitive Anosov diffeomorphisms.

Ruelle-Sullivan [17] suggested that the study of Anosov diffeomorphisms on a manifold can
hopefully be reduced to the study of the algebraic topology of that manifold. In order to prove
Theorem 1.4, we will study the cohomology ring of M ×N and show that a Ruelle-Sullivan class
cannot exist for those products. To this end, we will use several properties that are implied by
the presence of the negatively curved factor M . Among those properties is the fact that every
non-trivial homology class α ∈ Hk(M ;R) has non-zero simplicial semi-norm when k > 1 [8, 9].
Also, we will show that such a class α cannot be realized by products of homology classes of lower
degrees; cf. Corollary 3.5. Furthermore, an important tool is that the outer automorphism group
Out(π1(M)) is finite when dimM ≥ 3; see Section 2.2.

Theorem 1.4 should still hold if we replace M with a finite product M1×· · ·×Ms of negatively
curved manifolds. Passing however to M1× · · · ×Ms, s ≥ 2, the positivity of the simplicial semi-
norm of non-trivial homology classes of degrees greater than one does not hold anymore [8, 9],
and, of course, homology classes in Hk(M1 × · · · ×Ms;R) can be products themselves. Never-
theless, every homology class of each factor Mi is still not realizable by products and has non-zero
simplicial semi-norm (in degrees > 1). Moreover, when dim(Mi) ≥ 3 for all i = 1, ..., s, then
Out(π1(M1 × · · · ×Ms)) remains finite; cf. Section 2.2. With the additional assumption that the
rational homology sphere has vanishing simplicial volume we obtain the following:

Theorem 1.6. Let M1, ...,Ms be closed negatively curved manifolds of dimensions greater than
two andN be a rational homology sphere which has vanishing simplicial volume. Then the product
M1× · · · ×Ms×N does not support transitive Anosov diffeomorphisms with orientable invariant
distributions.

Since spheres have vanishing simplicial volume we obtain:

Corollary 1.7. Let M1, ...,Ms be closed negatively curved manifolds of dimensions greater than
two. Then the product M1 × · · · ×Ms × Sn does not support transitive Anosov diffeomorphisms.

Remark 1.8. Note that removing the assumption on the dimensions of theMi in Theorem 1.6 seems
to be more subtle than removing the assumption on the simplicial volume of N . Namely, it is still
an open question whether the product of two hyperbolic surfaces or, more generally, of a hyper-
bolic surface with a higher dimensional negatively curved manifold supports (transitive) Anosov
diffeomorphisms; cf. [7, Section 7.2]. Using Theorem 1.4 we will be able to obtain examples of
products of negatively curved manifolds that do not support transitive Anosov diffeomorphisms,
where one of the factors can be a hyperbolic surface; see Section 4.2.

Outline of the paper. In the next section we overview briefly some basic obstructions to the exis-
tence of (transitive) Anosov diffeomorphisms. In Section 3, we discuss realizability of homology
classes of negatively curved manifolds by products of homology classes. In Sections 4 and 5 we
prove Theorems 1.4 and 1.6 respectively and obtain examples of manifolds that do not support
transitive Anosov diffeomorphisms.
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2. SIMPLICIAL SEMI-NORM AND OUTER AUTOMORPHISM GROUPS

In this preliminary section we recall some basic obstructions to the existence of (transitive)
Anosov diffeomorphisms that apply in particular to negatively curved manifolds and partially to
their products.

2.1. Simplicial semi-norm. Let X be a topological space and α ∈ Hk(X;R). The simplicial
semi-norm (or Gromov’s norm) of α is defined by

‖α‖1 := inf
c

{∑
j

|λj|
∣∣∣∣ c =

∑
j

λjσj ∈ Ck(X;R) is a cycle representing α
}
.

If M is a closed oriented manifold and [M ] ∈ HdimM(M) denotes its fundamental class, then
‖M‖ := ‖[M ]‖1 is called the simplicial volume of M .

An important property of the simplicial semi-norm is that it is functorial, i.e. f∗ : H∗(X) −→
H∗(Y ) is not increasing under any continuous map f : X −→ Y . Especially, if f : M −→ N is a
map of degree d, then ‖M‖ ≥ |d| ·‖N‖. This means that manifolds that admit a self-map of degree
greater than one have vanishing simplicial volume. For instance, since for each n the sphere Sn

has infinite set of self-mapping degrees (in fact, equal to Z), we deduce that ‖Sn‖ = 0.
A prominent result of Gromov [8] and Inoue-Yano [9] states that the simplicial semi-norm of

homology classes of a negatively curved manifold M is positive in all degrees greater than one.
Using this and the Ruelle-Sullivan Theorem 1.1 (b), Yano [24] proved that negatively curved man-
ifolds do not support transitive Anosov diffeomorphisms (Theorem 1.1 (d)): First, by Theorem
1.1 (a), we may assume that dimM ≥ 3 and that the codimension k of each Anosov diffeomor-
phism f : M −→ M is greater than one. Now, if k is the dimension of the stable bundle Es,
then λ = e−htop(f) < 1 in Theorem 1.1 (b), where htop(f) is the topological entropy of f ; cf. [17,
pg. 326]. Thus, the Poincaré dual β ∈ HdimM−k(M ;R) of the Ruelle-Sullivan class α satisfies
f∗(β) = ± 1

λ
· β. Since 1

λ
> 1, we deduce that ‖β‖1 = 0, which is impossible because M is

negatively curved and dimM − k > 1 (since dimM ≥ 3 and k ≤ [dimM
2

]). Thus k cannot be
the dimension of Es and so it must be the dimension of the unstable bundle Eu. In that case,
λ = ehtop(f) > 1 and so the Kronecker dual b ∈ Hk(M ;R) of α has zero simplicial semi-norm.
This contradiction completes the proof.

2.2. Outer automorphism groups. As explained1 by Gogolev-Lafont [7], aspherical manifolds
whose fundamental group has torsion outer automorphism group do not support transitive Anosov
diffeomorphisms. For let M be an aspherical manifold with torsion Out(π1(M)) and suppose that
there exists an Anosov diffeomorphism f : M −→M . Since Out(π1(M)) is torsion, there is some
l such that (π1(f))l is an inner automorphism of π1(M), and so ((π1(f))l)∗ : H∗(π1(M);R) −→
H∗(π1(M);R) is the identity. Since M is aspherical, the commutative diagram in Figure 1 implies
that (f l)∗ must be the identity on H∗(M ;R). This is however impossible by Ruelle-Sullivan’s

1See the arXiv preprint of [7], version 1511.00261v1, Lemma 2.1.
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H∗(M ;R)

'

��

f∗ // H∗(M ;R)

'

��
H∗(π1(M);R)

(π1(f))∗
// H∗(π1(M);R)

FIGURE 1. Anosov diffeomorphisms of aspherical manifolds on the level of group cohomology.

Theorem 1.1 (b) or by Shiraiwa’s Theorem 1.1 (c) (note that, after passing to finite coverings if
necessary, we may assume that f has orientable invariant distributions).

In fact, the above result holds without the transitivity assumption (using the Lefschetz num-
ber), as pointed out for instance by Gogolev and Lafont [7, Lemma 4.1]. Appealing furthermore
to results of Paulin [15], Bestvina-Feighn [2] and Bowditch [3], Gogolev-Lafont then deduced
that negatively curved manifolds of dimension greater than two do not support Anosov diffeo-
morphisms, waving thus the transitivity assumption in Yano’s Theorem 1.1 (d). An important
observation in [7] is that this result can be extended to direct products of finitely many negatively
curved manifolds of dimensions greater than two. For let Γ be the fundamental group of a prod-
uct of negatively curved manifolds M1 × · · · × Ms and denote by Γi the fundamental group of
each factor Mi, i = 1, ..., s. Since each Γi is hyperbolic and thus does not contain any subgroup
isomorphic to Z2, every automorphism ϕ : Γ −→ Γ permutes those Γi. In particular, there is a ho-
momorphism from the automorphism group Aut(Γ) to the symmetric group Sym(s), which clearly
gives rise to a homomorphism Out(Γ) −→ Sym(s). The kernel of the latter homomorphism is
Out(Γ1)×· · ·×Out(Γs), which implies that Out(Γ) is finite since each Out(Γi) is finite (because
Γi is hyperbolic; cf. [15, 2]).

Using the finiteness of the outer automorphism group in showing non-existence of Anosov dif-
feomorphisms on direct products of negatively curved manifolds of dimensions at least three is par-
ticularly important, because the simplicial semi-norm of a homology class inHk(M1×· · ·×Ms;R)

might be zero when

k <

s∑
i=1

dimMi − min
1≤i≤s

{dimMi}+ 2

(see [9, 8]), and thus cannot contradict the existence of a Ruelle-Sullivan class.

3. REALIZATION OF HOMOLOGY CLASSES BY PRODUCTS

In this section we discuss briefly Thom’s work on realizing co-homology classes by closed
oriented manifolds, and obtain a result about the non-realizability of co-homology classes of neg-
atively curved manifolds by products of co-homology classes of lower dimensions.

3.1. Thom’s Realization Theorem. Given a topological space X , Steenrod [4, Problem 25]
raised the question of whether every integral homology class α ∈ Hk(X;Z) can be realized by
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a manifold, i.e. whether there is a closed oriented k-dimensional manifold M together with a con-
tinuous map f : M −→ X such that f∗([M ]) = α. Thom [21] answered affirmatively Steenrod’s
question in degrees up to six and in any degree in homology with Z2 coefficients. However, he
showed that there exists a 7-dimensional integral homology class which is not realizable by a man-
ifold (since then, other non-realizability results have been obtained). Nevertheless, Thom proved
that in all degrees some multiple of every integral homology class is realizable by a closed oriented
smooth manifold. In particular, every real homology class in any degree k is realizable by a closed
oriented smooth k-dimensional manifold M .

Thom’s Realization Theorem [21] reads as follows in cohomology:

Theorem 3.1 (Thom’s Realization Theorem in cohomology). For every α ∈ Hk(X;Z), there
exists an integer d > 0 and a closed oriented smooth k-dimensional manifold M together with
a continuous map f : M −→ X so that Hk(f)(α) = d · ωM , where ωM ∈ Hk(M) denotes the
cohomological fundamental class of M .

In the proof of Theorems 1.4 and 1.6 we will use this form of Thom’s theorem.

3.2. Homology classes not realizable by products. A special case of Steenrod’s realizability
question is whether a given homology class α ∈ Hk(X;R) can be realized by a non-trivial direct
product of manifolds. In the light of Thom’s theorem, this question is equivalent to asking whether
α is realizable by a product of homology classes.

Definition 3.1. Let X be a topological space. A homology class α ∈ Hk(X;R) is said to be
realizable (or representable) by products if there exist spaces X1, X2 together with a continuous
map f : X1 × X2 −→ X such that f∗(αi × αk−i) = α for some αi ∈ Hi(X1;R) and αk−i ∈
Hk−i(X2;R).

Remark 3.2. Similarly, we say that a cohomology class x ∈ Hk(X;R) is realizable by products if
there exist spaces X1, X2 together with a continuous map f : X1 ×X2 −→ X such that f ∗(x) =

xi × xk−i for some xi ∈ H i(X1;R) and xk−i ∈ Hk−i(X2;R).

When α is an integral homology class, then we ask about realizability of α up to multiples, i.e.
whether there are spaces X1, X2 together with a continuous map f : X1 × X2 −→ M such that
f∗(αi × αk−i) = d · α, where d is a non-zero integer. In particular, when X = M is a closed
oriented k-dimensional manifold and α = [M ], then the question is whether M is dominated by
products, i.e. whether M admits a map of non-zero degree from a non-trivial direct product.

Domination by products has been studied extensively during the last decade. One of the initial
attempts to find obstructions to the existence of such maps for large classes of manifolds was made
by Kotschick and Löh [10], who introduced a group theoretic property for essential manifolds, i.e.
closed oriented manifolds M satisfying

HdimM(cM)([M ]) 6= 0 ∈ HdimM(Bπ1(M)),

where cM : M −→ Bπ1(M) classifies the universal covering of M . That group theoretic property
reads as follows:
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X1 ×X2

(Bπ1(f |X1
)◦cX1

)×(Bπ1(f |X2
)◦cX2

)

��

f // M

cM'idM

��
BΓ1 ×BΓ2

Bϕ // Bπ1(M)

FIGURE 2. Realizability by products on the level of classifying spaces.

Definition 3.2. An infinite group Γ is called not presentable by products if, for every homomor-
phism ϕ : Γ1×Γ2 −→ Γ onto a finite index subgroup of Γ, the restriction of ϕ to one of the factors
Γi has finite image ϕ(Γi).

The main result of [10] is that any rationally (equiv. really) essential manifold with fundamen-
tal group not presentable by products cannot be dominated by products. Prominent examples of
(rationally) essential manifolds whose fundamental group is not presentable by product are non-
positively curved manifolds of dimension at least two that are not covered by products.

Given a rationally essential manifold M with fundamental group not presentable by products, it
is natural to ask whether homology classes in degrees less than dimM are realizable by products.
In general, the answer is negative as one can see in the following example:

Example 3.3. Let M be the mapping torus of a hyperbolic automorphism of the 2-torus T 2. Then
M is a closed aspherical 3-manifold (modelled on the geometry Sol3) and thus (rationally) essen-
tial. Also, π1(M) is not presentable by products; see for example [11]. Thus M is not dominated
by products. However the image of the fiber T 2 of M represents a non-trivial product homology
class in H2(M).

As in the situation of the above example, observe that a continuous map f : X1×X2 −→M with
f∗([X1 ×X2]) = α ∈ Hk(M ;R), where dimX1 + dimX2 < dimM , is in general far away from
being π1-surjective, and thus cannot induce a presentation by products for π1(M) (in Example 3.3
we have X1 = X2 = S1 and f is the inclusion). Nevertheless, such a map still produces two
commuting subgroups of π1(M). For aspherical manifolds with hyperbolic fundamental group
this alone provides an obstruction to realizability by products in any degree:

Theorem 3.4. Suppose M is a closed oriented aspherical manifold with hyperbolic fundamental
group. Then any non-trivial class α ∈ Hk(M ;R) is not realizable by products.

The proof follows the argument of [10, Theorem 1.4] with the basic difference that it applies to
homology classes of any degree and not just the top degree. Also, the asphericity assumption on
M is required to ensure that, for all k, the classifying map of the universal covering sends each
non-trivial homology class of Hk(M ;R) to a non-trivial element in Hk(Bπ1(M);R) (namely, to
itself in this case).

Proof of Theorem 3.4. Clearly, we can assume that dimM ≥ 2 and so π1(M) is not (virtually)
cyclic. Let α ∈ Hk(M ;R) be a non-trivial homology class. By Thom’s realization theorem (cf.
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Section 3.1), it suffices to show that there are no closed oriented manifolds X1, X2 of positive
dimensions with dimX1 + dimX2 = k and a continuous map f : X1 × X2 −→ M such that
f∗[X1 ×X2] = α.

Suppose that such manifolds X1, X2 exist and let π1(f) : π1(X1) × π1(X2) −→ π1(M) be the
π1-induced map. Set Γi := im(π1(f |Xi

)) ⊂ π1(M) for the images under π1(f) of the restrictions
of f to the two factors Xi. Then the multiplication map ϕ : Γ1 × Γ2 −→ π1(M) is a well-defined
homomorphism because the Γi commute elementwise.

Let now cXi
: Xi −→ Bπ1(Xi) be the classifying maps of the universal coverings of the Xi and

the maps Bπ1(f |Xi
) : Bπ1(Xi) −→ BΓi induced by π1(f |Xi

) on the level of classifying spaces.
Moreover, let Bϕ : BΓ1 × BΓ2 −→ Bπ1(M) be the map induced by ϕ between the classifying
spaces (here we use the fact that BΓ1 × BΓ2 is homotopy equivalent to B(Γ1 × Γ2)). We then
have for i = 1, 2 the composite maps Bπ1(f |Xi

) ◦ cXi
: Xi −→ BΓi and the corresponding real

homology classes

(1) αi := HdimXi
(Bπ1(f |Xi

) ◦ cXi
)([Xi]) ∈ HdimXi

(BΓi;R).

Since M is aspherical, and therefore the classifying map cM : M −→ Bπ1(M) is homotopic
to the identity, the commutative diagram in Figure 2 (cf. [10, Prop. 2.2]) implies that in degree k
homology we have

0 6= α = (cM ◦ f)∗[X1 ×X2] = (Bϕ)∗(α1 × α2).

This means that the αi are not trivial and therefore the Γi are both infinite. Since π1(M) is not
cyclic, we conclude that there exist elements gi ∈ Γi of infinite order such that

Z× Z = 〈g1〉 × 〈g2〉 ⊂ π1(M).

But this contradicts the fact that π1(M) is hyperbolic and finishes the proof. �

Since negatively curved manifolds are aspherical and have hyperbolic fundamental group, we
obtain the following consequence:

Corollary 3.5. If M is a negatively curved manifold, then any non-trivial element α ∈ Hk(M ;R)

is not realizable by products.

4. PROOF OF THEOREM 1.4

In this section we prove Theorem 1.4 and give examples of manifolds that do not support tran-
sitive Anosov diffeomorphisms.

4.1. Proof of Theorem 1.4. Let M be a negatively curved manifold of dimension m and N be
a rational homology sphere of dimension n. Suppose f : M × N −→ M × N is a codimension
k transitive Anosov diffeomorphism with orientable invariant distributions. By Theorem 1.1 (b),
there exists a (non-trivial) Ruelle-Sullivan class α ∈ Hk(M × N ;R) and a positive λ 6= 1 such
that

(2) f ∗(α) = λ · α, where 0 < k ≤
[
m+ n

2

]
.

Moreover, Theorem 1.1 (a) implies that k 6= 1.
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Since N is a rational homology sphere, the Künneth theorem implies that the cohomology
groups of M ×N in degree k are given by

(3) Hk(M ×N ;R) ∼=


Hk(M ;R), for k < n

Hn(M ;R)⊕Hn(N ;R), for k = n

Hk(M ;R)⊕ (Hk−n(M ;R)⊗Hn(N ;R)), for k > n.

M is a hyperbolic surface. Before dealing with arbitrary dimensions, we examine the case when
M = Σ is a hyperbolic surface. Since k ≤ [(n+ 2)/2], we deduce that k ≤ 2. Thus k = 2 and so
n ≥ 2. If n > 2, then by (3) the Ruelle-Sullivan class α has the form

(4) α = ξ · (ωΣ × 1) ∈ H2(Σ;R), ξ ∈ R.

Also, since n > 2 and ‖Σ‖ > 0, the effect of f on ωΣ is given by

(5) f ∗(ωΣ × 1) = ±(ωΣ × 1).

By (2), (4) and (5), we reach the absurd conclusion that λ = ±1. Thus we may assume that n = 2,
i.e. N = S2 is the 2-sphere. In that case, the Ruelle-Sullivan class α has the form

(6) α = ξ1 · (ωΣ × 1) + ξ2 · (1× ωS2), ξ1, ξ2 ∈ R.

Since ‖Σ‖ > 0 and ‖S2‖ = 0, we deduce that (5) holds. Also, the effect of f on ωS2 is given by

(7) f ∗(1× ωS2) = ζ · (ωΣ × 1)± (1× ωS2),

where ζ ∈ R and the coefficient ±1 of 1 × ωS2 is because deg(f) = ±1. By (2), (6), (5) and (7),
we deduce that ξ2 = 0, because λ 6= ±1. But then α = ξ1 · (ωΣ × 1), which is impossible as
explained above.

We have now shown that the product of a hyperbolic surface with a rational homology sphere
does not support transitive Anosov diffeomorphisms. From now on, we assume that m ≥ 3.

M and N have different dimensions. First, let us assume that m 6= n. Since M is negatively
curved, we conclude thatM is not dominated by products [10]. Thus, Thom’s Realization Theorem
3.1 implies that the effect of f on the cohomological fundamental class of M is

(8) f ∗(ωM × 1) = a · (ωM × 1), a ∈ Z.

Also, since H l(N ;Q) = 0 for all l 6= 0, n, the effect of f on the cohomological fundamental class
of N is

(9) f ∗(1× ωN) = (αnM × 1) + c · (1× ωN), αnM ∈ Hn(M ;R), c ∈ Z.

In particular, ac = deg(f) = ±1 which means that

(10) a, c ∈ {±1}.

We now claim that the image under f ∗ of every cohomology class of H∗(M ;R) remains in
H∗(M ;R).

Proposition 4.1. f ∗(xuM × 1) ∈ Hu(M ;R) for each xuM ∈ Hu(M ;R).
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Proof. By (8) and (10), we know that f ∗(ωM × 1) = ±(ωM × 1), hence we may assume that
u < m. We have

(11) f ∗(xuM × 1) = (yuM × 1) + (yu−nM × ωN) ∈ Hu(M ;R)⊕ (Hu−n(M ;R)⊗Hn(N ;R)).

If u < n, then the claim holds trivially. If u = n, then (11) becomes

f ∗(xnM × 1) = (ynM × 1) + ξ · (1× ωN) ∈ Hn(M ;R)⊕Hn(N ;R),

for some ξ ∈ R. By Poincaré duality there exists xm−nM ∈ Hm−n(M ;R) such that xnM ∪ xm−nM =

ωM . We have

f ∗(xm−nM × 1) = (ym−nM × 1) + (ym−2n
M × ωN) ∈ Hm−n(M ;R)⊕ (Hm−2n(M ;R)⊗Hn(N ;R)).

By (8), (10) and the above last two equations we obtain

(12)

± ωM × 1 = f ∗(ωM × 1)

= f ∗(xnM × 1) ∪ f ∗(xm−nM × 1)

= ((ynM × 1) + ξ · (1× ωN)) ∪ ((ym−nM × 1) + (ym−2n
M × ωN).

This implies that ynM ∪ ym−nM = ± ωM (in particular, ynM and ym−nM are not trivial) and ξ = 0. This
proves the proposition for u = n.

Finally, let us assume that u > n. In this case yu−nM = 0 in equation (11), otherwise xuM would
be realizable by products by Thom’s Realization Theorem 3.1, which is impossible by Corollary
3.5 because M is negatively curved. This finishes the proof. �

We split the proof into three cases, according to the possible values of k.

Case I: k < n. By (3) we have that α ∈ Hk(M ;R). But this is impossible becauseM is negatively
curved of dimension m > 2, which means that Out(π1(M)) is finite and thus (2) cannot hold.
Indeed, recall that, by (8) and (10), f induces a self-map of M of degree ±1, given by

M
ιM
↪→M ×N f−→M ×N pM−→M,

where ιM and pM denote inclusion and projection respectively; see [13] for further discussion. In
particular, (pM ◦ f ◦ ιM)∗ : π1(M) −→ π1(M) is surjective. Now since M is negatively curved,
π1(M) is hyperbolic and thus Hopfian, i.e. every surjective endomorphism of π1(M) is an isomor-
phism, and so (pM ◦f ◦ιM)∗ is an automorphism. But Out(π1(M)) is finite and, by (2), pM ◦f ◦ιM
scales α by λ in cohomology of degree k. This is a contradiction; see Section 2.2 for details.

Case II: k = n. By (3) we have that

α = (xnM × 1) + ν · (1× ωN) ∈ Hn(M ;R)⊕Hn(N ;R),

for some ν ∈ R. We observe that α /∈ Hn(M ;R) and α /∈ Hn(N ;R). Indeed, first we see that
α /∈ Hn(M ;R) for the same reason as in Case I (because M is negatively curved and m > 2).
Second, α /∈ Hn(N ;R), because otherwise (2), (9) and (10) would imply λ·(1×ωN) = ±(1×ωN),

and so λ = ±1 which is impossible.
Thus, using again (2), (9) and (10), we obtain

(13) λ · (xnM × 1) + λν · (1× ωN) = f ∗(xnM × 1) + ν · (αnM × 1)± ν · (1× ωN).
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By Proposition 4.1, equation (13) becomes

(14) λ · (xnM × 1) + λν · (1× ωN) = (ynM × 1) + ν · (αnM × 1)± ν · (1× ωN),

which implies that λ = ±1. This contradiction finishes the proof for k = n.

Case III: k > n. By (3) we have that

α = (xkM × 1) + (xk−nM × ωN) ∈ Hk(M ;R)⊕ (Hk−n(M ;R)⊗Hn(N ;R)).

As in Case I, we have α /∈ Hk(M ;R) because M is negatively curved and m > 2. Next, we
will show that α /∈ Hk−n(M ;R) ⊗Hn(N ;R). Suppose the contrary, i.e. that α = xk−nM × ωN ∈
Hk−n(M ;R)⊗Hn(N ;R). By (2) we have

(15) λ · (xk−nM × ωN) = f ∗(xk−nM × ωN).

Thus, by Theorem 1.1 (b), there exists a Ruelle-Sullivan class xm−k+n
M ∈ Hm−k+n(M ;R) such that

f ∗(xm−k+n
M × 1) = ±1

λ
· (xm−k+n

M × 1),
1

λ
6= 1.

However, the latter equation is impossible because M is negatively curved and m > 2 (cf. Section
2.2). This proves that α /∈ Hk−n(M ;R)⊗Hn(N ;R).

Thus (2) has the form

(16) λ · (xkM × 1) + λ · (xk−nM × ωN) = f ∗(xkM × 1) + f ∗(xk−nM × ωN).

By Proposition 4.1, (9) and (10), equation (16) becomes

λ · (xkM × 1) + λ · (xk−nM × ωN) = f ∗(xkM × 1) + f ∗(xk−nM × 1) ∪ f ∗(1× ωN)

= (ykM × 1) + ((yk−nM ∪ αnM)× 1)± (yk−nM × ωN).

We deduce that yk−nM = ±λ · xk−nM , and so

(17) f ∗(xk−nM × 1) = ±λ · (xk−nM × 1).

As before, the last conclusion is impossible because M is negatively curved and m > 2. This
completes the proof for the case k > n.

We have now finished the proof of Theorem 1.4 for m 6= n.

M and N have the same dimension. Let us now assume that m = n. Then k ≤ n, because
k ≤ [(m+ n)/2].

If k < n, then the result follows as in Case I above, so we can assume that k = n. Then the
Ruelle-Sullivan class α has the form

(18) α = ξ1 · (ωM × 1) + ξ2 · (1× ωN) ∈ Hm(M ;R)⊕Hn(N ;R).

The effect of f on the cohomological fundamental classes of M and N respectively is

(19) f ∗(ωM × 1) = a · (ωM × 1) + a′ · (1× ωN)

and

(20) f ∗(1× ωN) = c′ · (ωM × 1) + c · (1× ωN).
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Possibly after replacing f with f 2, we may assume that deg(f) = 1, and so (19) and (20) give

(21) ac+ (−1)ma′c′ = 1.

If ac 6= 0, then a′c′ = 0 because ‖M‖ > 0. In particular, a = c = 1 or a = c = −1. By (18),
(19) and (20), equation (2) becomes

λξ1 · (ωM × 1) + λξ2 · (1× ωN) = ξ1 · f ∗(ωM × 1) + ξ2 · f ∗(1× ωN)

=


ξ1a · (ωM × 1) + (ξ1a

′ + ξ2c) · (1× ωN), a′ 6= 0

ξ1a · (ωM × 1) + ξ2c · (1× ωN), a′, c′ = 0

(ξ1a+ ξ2c
′) · (ωM × 1) + ξ2c · (1× ωN), c′ 6= 0.

All three cases yield the absurd conclusion that λ = ±1.
If a′c′ 6= 0, then N dominates M and so ‖N‖ > 0. Similarly as above we deduce that ac = 0.

If a = c = 0, then (2), (18), (19) and (20) imply that

λξ1 = ξ2c
′ and λξ2 = ξ1a

′.

Thus λ2 = ±1 by (21). This is impossible, and so exactly one of a and c is zero. If m is even, then
a′c′ = 1 by (21). When a 6= 0, then a = ±1, and by (19) and (20) we obtain

(f 2)∗(ωM × 1) = 2 · (ωM × 1)± (1× ωN).

This implies that M admits a self-map of degree two, which contradicts the fact that ‖M‖ > 0.
When c 6= 0, then similarly we obtain a self-map of N of degree two, which is a contradiction
because ‖N‖ > 0. Finally, if m is odd, then (21) implies that a′c′ = −1. Since exactly one of a
and c is zero, (2), (18), (19) and (20) imply that

λ+
1

λ
= ±1,

which is impossible. This finishes the proof of Theorem 1.4 for m = n.
The proof of Theorem 1.4 is now complete.

4.2. Examples. Using Theorem 1.4 we can construct new classes of manifolds which do not
support transitive Anosov diffeomorphisms.

As a first application, we obtain examples of manifolds with non-trivial higher homotopy groups
that do support transitive Anosov diffeomorphisms. Corollary 1.5 gives already such examples,
when N is a sphere. Every simply connected rational homology sphere of dimension at most four
must be a sphere itself. Nevertheless, simply connected rational homology spheres that are not
spheres exist in dimensions ≥ 5. Below we obtain examples of manifolds that do not support
transitive Anosov diffeomorphisms using simply connected 5-manifolds:

Example 4.2 (Higher homotopy). Let N be a simply connected 5-manifold which does not contain
any S3-bundles over S2 in its prime decomposition. Then N is a rational homology sphere by the
classification of simply connected 5-manifolds of Barden [1] and Smale [19]. Hence, Theorem 1.4
implies thatM×N does not support transitive Anosov diffeomorphisms for any negatively curved
manifold M . In particular, for any hyperbolic surface Σ, the product Σ × N does not support
transitive Anosov diffeomorphisms.
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Concerning manifolds with trivial homotopy groups πk for k ≥ 2 (i.e. aspherical manifolds),
Gogolev-Lafont [7] proved that the product of an infranilmanifold with finitely many negatively
curved manifolds which have dimensions at least three does not support Anosov diffeomorphisms
(the product of such negatively curved manifolds satisfies the properties of M in Theorem 1.3
(b)). Especially, as mentioned in Section 2.2, the product of two negatively curved manifolds
of dimensions at least three does not support Anosov diffeomorphisms. Under the transitivity
assumption, Theorem 1.4 provides further examples of products of aspherical manifolds that do not
support Anosov diffeomorphisms, including products of hyperbolic surfaces with certain higher
dimensional negatively curved manifolds:

Example 4.3 (Aspherical products). Let N be a negatively curved manifold of dimension at least
three which is a rational homology sphere. For instance, certain surgeries on hyperbolic knots in
S3 give infinitely many examples of hyperbolic integral homology spheres in dimension three [22,
23]. In dimension four, examples of aspherical rational (but not integral) homology spheres were
given in [12] and of aspherical integral homology spheres in [16]. Now, Theorem 1.4 implies that
for any negatively curved manifold M , the product M × N does not support transitive Anosov
diffeomorphisms. In particular, if M = Σ is a hyperbolic surface, then the product Σ × N does
not support transitive Anosov diffeomorphisms.

5. PROOF OF THEOREM 1.6

We now prove Theorem 1.6, which extends Theorem 1.4 (and the examples of Section 4.2)
under additional assumptions on the dimensions of the negatively curved factors and the vanishing
of the simplicial volume of the rational homology sphere. Some arguments and formulas will be
taken from the proof of Theorem 1.4 and will not be repeated.

Let M1, ...,Ms be negatively curved manifolds of dimensions m1, ...,ms respectively, where
mi ≥ 3 for all i = 1, ..., s, and N be a rational homology sphere of dimension n such that
‖N‖ = 0. For short, we set

M := M1 × · · · ×Ms and m := m1 + · · ·+ms.

Suppose f : M × N −→ M × N is a codimension k transitive Anosov diffeomorphism with
orientable invariant distributions. As in the proof of Theorem 1.4, let α ∈ Hk(M × N ;R) be the
Ruelle-Sullivan class that satisfies (2) for some positive λ 6= 1. Furthermore, we know by Theorem
1.1 (a) that k 6= 1.

Since N is a rational homology sphere, the Künneth theorem implies that the real cohomology
groups of M ×N are given by (3). Now, since ‖M‖ ≥ ‖M1‖ · · · ‖Ms‖ > 0 (cf. [8]) and ‖N‖ = 0,
we deduce that f ∗(ωM × 1) is given as in (8). Also, f ∗(1 × ωN) is given as in (9). Note, finally,
that the coefficients a and c that appear in equations (8) and (9) respectively must be ±1 (i.e. (10)
holds), because deg(f) = ±1.

We will now show that Proposition 4.1 holds in this situation as well. Although not every
homology class of degree greater than one of M = M1 × · · · ×Ms has non-vanishing simplicial
semi-norm and is not realizable by products, we will use the fact that every homology class of
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degree greater than one of each factor Mi still satisfies those two properties, and the additional
assumption that the rational homology sphere N has vanishing simplicial volume.

Proposition 5.1. f ∗(xuM × 1) ∈ Hu(M ;R) for each xuM ∈ Hu(M ;R).

Proof. The case u = m is explained above and so we may assume that u < m. We have

(22) f ∗(xuM × 1) = (yuM × 1) + (yu−nM × ωN) ∈ Hu(M ;R)⊕ (Hu−n(M ;R)⊗Hn(N ;R)),

where

xuM ∈
s
⊕
i=1

Hu(Mi;R)⊕
(

⊕
u1+···+us=u,

0≤uj<u

(Hu1(M1;R)⊗ · · · ⊗Hus(Ms;R))

)
,

that is,

(23) xuM =
s∑
i=1

(1× · · · × 1× xuMi
× 1× · · · × 1) +

∑
u1+···+us=u,

0≤uj<u

(xu1M1
× · · · × xusMs

),

for some x∗Mi
∈ H∗(Mi;R).

The proposition holds trivially if u < n, thus we may assume that u ≥ n. If u = n, then (22)
has the form

f ∗(xnM × 1) = (ynM × 1) + ξ · (1× ωN) ∈ Hn(M ;R)⊕Hn(N ;R),

for some ξ ∈ R, and the proof follows as in Proposition 4.1; cf. computation (12). (Note that
the additional product structure on H∗(M ;R) has no effect in the proof of Proposition 4.1 when
u = n.)

Finally, let u > n. For each xuMi
∈ Hu(Mi;R), we have

(24) f ∗(1× · · · × 1× xuMi
× 1× · · · × 1) ∈

s
⊕
i=1

Hu(Mi;R),

otherwise xuMi
would be realizable by some product class in(
⊕

u1+···+us=u,
0≤uj<u

(Hu1(M1;R)⊗ · · · ⊗Hus(Ms;R))

)
⊕(Hu−n(M ;R)⊗Hn(N ;R)).

But the latter is impossible by Corollary 3.5. Next, each class

xu1M1
× · · · × xusMs

∈ Hu1(M1;R)⊗ · · · ⊗Hus(Ms;R)

is written as cup product
s
∪
j=1

(1× · · · × 1× xujMj
× 1× · · · × 1).

If uj > 1, then each xujMj
has non-vanishing simplicial semi-norm and is not realizable by products.

Thus the effect of f in cohomology is given by

(25) f ∗(1× · · · × 1× xujMj
× 1× · · · × 1) =

s∑
l=1

(1× · · · × 1× yulMl
× 1× · · · × 1),
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for some yulMl
∈ Hul(Ml;R). Note that (25) holds when uj = 1 as well. For if uj = 1, then the

only case where yuj−nM × ωN might not be trivial is when n = uj = 1. In that case,

f ∗(1× · · · × 1× x1
Mj
× 1× · · · × 1) =

s∑
l=1

(1× · · · × 1× y1
Ml
× 1× · · · × 1) + ξ · (1× ωS1),

for some ξ ∈ R. Let xm−1
Mj

= ωM1 × · · · × x
mj−1
Mj

× · · · × ωMs such that x1
Mj
∪ xm−1

Mj
= ωM . Then

f ∗(xm−1
Mj
× 1) = (ym−1

M × 1) + (ym−2
M × ωS1),

and the same computation as in (12) shows that ξ = 0. Thus (25) holds when uj = 1. Therefore,
for each class xu1M1

× · · · × xusMs
we obtain

(26) f ∗(xu1M1
× · · · × xusMs

) ∈ Hu(M ;R).

By (23), (24) and (26), we deduce that yu−nM = 0 in (22) and this finishes the proof. �

As in the proof of Theorem 1.4, we now split the proof into three cases, according to the possible
values of the codimension k.

Case I: k < n. By (3) we have that α ∈ Hk(M ;R). But this is impossible because Out(π1(M))

is finite, since mi ≥ 3 for all i = 1, ..., s; see Section 2.2.

Case II: k = n. By (3) we have that

α = (xnM × 1) + ν · (1× ωN) ∈ Hn(M ;R)⊕Hn(N ;R)

and equation (13) holds. (Note that α /∈ Hn(M ;R) as in Case I above. Also, α /∈ Hn(N ;R),
because otherwise (2), (9) and (10) would imply λ = ±1 which is impossible.) By Proposition
5.1, we have f ∗(xnM × 1) ∈ Hn(M ;R). Thus equation (13) takes the form of (14), which leads to
the absurd conclusion that λ = ±1.

Case III: k > n. By (3) we have that

α = (xkM × 1) + (xk−nM × ωN) ∈ Hk(M ;R)⊕ (Hk−n(M ;R)⊗Hn(N ;R)).

As in Case I, we have α /∈ Hk(M ;R). Also, α /∈ Hk−n(M ;R)⊗Hn(N ;R). Indeed, suppose the
contrary, i.e. α = xk−nM × ωN ∈ Hk−n(M ;R) ⊗ Hn(N ;R). Then (2) takes the form of (15). By
Theorem 1.1 (b), there is a Ruelle-Sullivan class xm−k+n

M ∈ Hm−k+n(M ;R) such that

f ∗(xm−k+n
M × 1) = ±1

λ
· (xm−k+n

M × 1),

which is in contradiction with the fact that Out(π1(M)) is finite; see Section 2.2. This proves that
α /∈ Hk−n(M ;R)⊗Hn(N ;R).

Thus we conclude that equation (16) holds. Now, Proposition 5.1 together with (9) and (10)
imply that equation (16) becomes

λ · (xkM × 1) + λ · (xk−nM × ωN) = f ∗(xkM × 1) + f ∗(xk−nM × 1) ∪ f ∗(1× ωN)

= (ykM × 1) + ((yk−nM ∪ αnM)× 1)± (yk−nM × ωN).
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This means that yk−nM = ±λ · xk−nM , and so f ∗(xk−nM × 1) = ±λ · (xk−nM × 1), which is impossible
again because Out(π1(M)) is finite.

This finishes the proof of Theorem 1.6.
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