
ENDOMORPHISMS OF MAPPING TORI

CHRISTOFOROS NEOFYTIDIS

Abstract. We classify in terms of Hopf-type properties mapping tori of residually finite

Poincaré Duality groups with non-zero Euler characteristic. This generalises and gives a

new proof of the analogous classification for fibered 3-manifolds. Various applications are

given. In particular, we deduce that rigidity results for Gromov hyperbolic groups hold for

the above mapping tori with trivial center.

1. Introduction

We classify in terms of Hopf-type properties mapping tori of residually finite Poincaré Du-

ality (PD) groups K with non-zero Euler characteristic, which satisfy the following finiteness

condition:

(∗)
if there exists an integer d > 1 and ξ ∈ Aut(K) such that θd = ξθξ−1 mod Inn(K),

then θq ∈ Inn(K) for some q > 1.

One sample application is that every endomorphism onto a finite index subgroup of the

fundamental group of a mapping torus F ohS
1, where F is a closed aspherical manifold with

π1(F ) = K as above, induces a homotopy equivalence (equivalently, π1(F oh S
1) is cofinitely

Hopfian) if and only if the center of π1(F oh S
1) is trivial; equivalently, π1(F oh S

1) is co-

Hopfian. If, in addition, F is topologically rigid, then homotopy equivalence can be replaced

by a map homotopic to a homeomorphism, by Waldhausen’s rigidity [Wa] in dimension three

and Bartels-Lück’s rigidity [BL] in dimensions greater than four. Condition (∗) is known

to be true for every aspherical surface by a theorem of Farb, Lubotzky and Minsky [FLM]

on translation lengths. Hence, our result generalises and gives a new, uniform proof of

the analogous classification in dimension three, due to Gromov [Gr1] for 3-manifolds with

positive simplicial volume, and to Wang [Wa2] for non-trivial graph 3-manifolds. We will

not depend on any notion of hyperbolicity for manifolds or groups, or on non-vanishing

semi-norms. In fact, as another application, we will show that there exist semi-norms that

do not vanish on every such mapping torus F oh S
1 with trivial center. Our results hold

if we replace the requirement on the normal subgroup being a PDn-group with weaker

assumptions on co-homology of degree n. Furthermore, our methods will generalise and

encompass the analogous classification for free-by-cyclic groups which was done by Bridson,

Groves, Hillman and Martin [BGHM]. Various other applications are given, for instance, to
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the Hopf problem, the Lichnerowicz problem on quasiregular maps, the Gromov order and

topological rigidity, as well as an extension to non-aspherical manifolds.

1.1. Motivation and statements of the main results. Gromov [Gr1] established strong

rigidity for hyperbolic 3-manifolds and, more generally, for 3-manifolds with hyperbolic JSJ

pieces, using the simplicial volume. This, together with Wang’s study of self-maps of non-

trivial graph 3-manifolds [Wa2] and Waldhausen’s rigidity [Wa], yields the following strong

rigidity for 3-manifolds that fiber over the circle, according to the Nielsen-Thurston picture.

Theorem 1.1 (Gromov, Waldhausen, Wang). Let Eh be the mapping torus of a diffeomor-

phism h of a hyperbolic surface Σ. Every self-map of Eh of non-zero degree is homotopic to

a homeomorphism if and only if h is not periodic.

Our goal is to show that the hyperbolicity of the fiber Σ or of its fundamental group π1(Σ),

the (possible) hyperbolicity of the total space Eh, of one of the JSJ pieces of Eh or of its

fundamental group π1(Eh), and the non-vanishing of the simplicial volume of Eh or of any

other functorial semi-norm of Eh (such as the Seifert volume) are unnecessary conditions

to prove Theorem 1.1. The proof is rather based on two properties of π1(Σ), namely on

the non-vanishing of the Euler characteristic and on residual finiteness. We will generalise

Theorem 1.1 in every dimension by removing the assumption on the fiber being a surface.

Theorem 1.2. Let Eh be the mapping torus of a homeomorphism h of a closed aspherical

manifold F , which has non-zero Euler characteristic and residually finite fundamental group.

If π1(F ) satisfies condition (∗), then the following are equivalent:

(i) π1(Eh) has trivial center C(π1(Eh));

(ii) Every endomorphism of π1(Eh) onto a finite index subgroup induces a homotopy

equivalence on Eh;

(iii) Every injective endomorphism of π1(Eh) induces a homotopy equivalence on Eh;

(iv) Every self-map of Eh of non-zero degree is a homotopy equivalence.

If, moreover, F is topologically rigid (i.e., it satisfies the Borel conjecture), then homotopy

equivalence in (ii), (iii) and (iv) can be replaced by a map homotopic to a homeomorphism.

Our approach to Theorem 1.2 will be purely algebraic and the involved groups need not

be fundamental groups of closed aspherical manifolds. The key idea here is to characterise

all mapping tori whose normal subgroup satisfies the above properties of π1(F ), together

with certain finiteness cohomological conditions.

Theorem 1.3. Suppose K is a residually finite group of type FP , such that χ(K) 6= 0,

Hn(K;R) 6= 0 and Hn(K;ZK) is finitely generated, where n is the cohomological dimension

of K. If K satisfies (∗), then the following are equivalent for the mapping torus Γθ = KoθZ
of any automorphism θ : K ! K:

(i) C(Γθ) = 1;
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(ii) Γθ is cofinitely Hopfian, i.e., every endomorphism of Γθ whose image is of finite index

is an automorphism;

(iii) Γθ is co-Hopfian, i.e., every injective endomorphism of Γθ is an automorphism.

It should be pointed out that condition (∗) is not generally true once the finiteness coho-

mological conditions of Theorem 1.3 are relaxed; see Example 6.5. We will discuss condition

(∗) in more detail in Section 6.2.

Recall that a free group Fr on r > 1 generators is residually finite and has Euler character-

istic χ(Fr) = 1−r 6= 0. It moreover satisfies condition (∗) by a result of Alibegović [Al], again

on translation lengths. A result analogous to Theorem 1.3, for free-by-cyclic groups, was

proved by Bridson, Groves, Hillman and Martin [BGHM, Theorem B] (note that H1(Fr,ZFr)
is not finitely generated). In contrast to our Theorem 1.3, that result does not include the co-

Hopf property ([BGHM, Remark 6.4]), but it includes another Hopf-type condition, called

hyper-Hopf property. We will prove (Theorems 4.2 and 5.2) that all of the equivalences

(except the hyper-Hopf property) shown in [BGHM] for Fr-by-Z groups hold as well for

K-by-Z groups, where K is as in Theorem 1.3. For surface-by-cyclic groups, we will prove

that all Hopf-type properties are equivalent, including both the co-Hopf and the hyper-Hopf

properties; cf. Theorem 5.6.

1.2. Applications. Theorems 1.2 and 1.3 apply to a variety of problems in topology and

geometry. The proofs of the results below will be given in Section 8 and they all reveal that

our mapping tori with trivial center behave similarly to non-elementary Gromov hyperbolic

groups.

The 3-manifold case. Nielsen-Thurston’s classification of surface automorphisms [Ni, Th2]

tells us that an automorphism h of a hyperbolic surface is either periodic, reducible or pseudo-

Anosov. The mapping torus Eh admits no self-maps of degree greater than one when h is

either pseudo-Anosov or reducible and there is a hyperbolic JSJ piece in Eh, because in

those cases Eh has non-zero simplicial volume by Gromov’s work [Gr1]. Wang [Wa2] showed

that the remaining mapping tori of reducible surface automorphisms – which are exactly

those consisting only of Seifert JSJ pieces and thus their simplicial volume vanishes – do not

admit self-maps of degree greater than one, by exploiting the hyperbolic orbifold bases of the

Seifert JSJ pieces. Subsequently, Derbez and Wang [DW] showed that the latter 3-manifolds

have virtually positive Seifert volume. Theorem 1.2 gives a new, uniform proof in all cases,

without using hyperbolicity or semi-norms.

Theorem 1.4. Let h be a diffeomorphism of a closed hyperbolic surface Σ. The mapping

torus Eh admits a self-map of degree greater than one if and only if h is periodic.

Combining Theorem 1.4 (and its proof) with Waldhausen’s rigidity for Haken 3-manifolds [Wa]

we obtain an alternative proof for Theorem 1.1.
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Gromov-Thurston norms. As motivated by the Thurston norm for 3-manifolds [Th3],

the simplicial volume ‖M‖ of a closed oriented n-dimensional manifold M measures how

efficiently the fundamental class of M can be represented by real cycles [Gr1]. An important

property of the simplicial volume is the functorial property, which means that whenever

there is a map f : M ! N , then ‖M‖ ≥ | deg(f)|‖N‖. The existence and computation of

functorial semi-norms in the sense of Gromov and Thurston is a hard problem [Gr3, MT]. As

mentioned above, a 3-manifold Eh given in Theorem 1.1 admits a non-vanishing functorial

semi-norm if and only if h is not periodic [Gr1, DW]. Theorem 1.2 generalises the 3-manifold

case in every dimension.

Theorem 1.5. Let Eh be as in Theorem 1.2. There is a functorial semi-norm that is non-

zero and finite on Eh if and only if h∗ has infinite order in Out(π1(F )).

The Hopf problem. A long-standing question of Hopf asks whether every self-map f

of a closed manifold M of degree ±1 is a homotopy equivalence; this is Problem 5.26 in

Kirby’s list [Ki] (see also [Neu, Ha]). If M is aspherical and π1(M) is Hopfian, then the

answer is affirmative, since maps of degree ±1 are π1-surjective. The fundamental groups of

our mapping tori Eh are Hopfian being residually finite by Mal’cev’s theorem [Ma]. More

interestingly, all known examples of self-maps of aspherical manifolds of non-zero degree

are either homotopic to a non-trivial covering or homotopic to a homeomorphism when the

degree is ±1, as predicted by the Borel conjecture [BL, Be, BHM, FJ, Gr1, Gr2, Mi1, Mi2,

Ne2, Ne3, Se1, Se2, Wa, Wa2]. It is therefore natural to ask whether this is always true,

strengthening Hopf’s problem for the class of aspherical manifolds [Ne2, Problem 1.2] (see

Question 8.9). We obtain an affirmative answer for Eh.

Theorem 1.6. Let Eh be as in Theorem 1.2, such that F is topologically rigid. Every self-

map of Eh of non-zero degree is homotopic either to a homeomorphism or to a non-trivial

covering and Eh is virtually trivial.

In the course of this study, we will also generalise in higher dimensions Wang’s π1-

injectivity for self-maps of Seifert 3-manifolds that are modeled on the geometry H2×R [Wa2].

We will use the residual finiteness of the fundamental group of the fiber, but not of the total

space, that is, we will not use Hirshon’s generalisation [Hi] of Mal’cev’s theorem [Ma]; cf.

Remark 8.12.

Gromov’s ordering and rigidity. Given two closed oriented manifolds M and N of the

same dimension, we say that M dominates N if there is a map of non-zero degree from M

to N . Gromov suggested studying the domination relation as defining a partial ordering on

the homotopy types of manifolds [CT]. In any dimension not equal to four, if M and N are

negatively curved or, more generally, aspherical with hyperbolic fundamental groups, such

that M and N dominate each other, then M and N are homeomorphic. This follows from

profound results both at algebraic and geometric levels, such as Sela’s study of Hopf-type
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properties of hyperbolic groups [Se1, Se2], works by Gromov [Gr2, Gr3] and Mineyev [Mi1,

Mi2] on bounded cohomology and hyperbolic groups, and topological rigidity results by

Farrell and Jones [FJ] and Bartels and Lück [BL]; concrete statements are given in [BHM]

and in [Ne2]. Our results imply that the same topological rigidity holds for all non-virtually

trivial mapping tori Eh.

Theorem 1.7. For i = 1, 2, let Ehi be as in Theorem 1.2, such that C(π1(Ehi)) = 1. If Eh1
and Eh2 dominate each other, then they are homotopy equivalent. If, moreover, the Fi are

topologically rigid, then Eh1 and Eh2 are homeomorphic.

The Lichnerowicz problem (quasiregular maps). Lelong-Ferrand’s proof [Le] of the

Lichnerowicz conjecture [Li] suggests to determine all closed manifolds M which admit

non-injective uniformly quasiregular maps, i.e., maps that preserve some bounded mea-

surable conformal structure on M ; this is known as the (generalised) Lichnerowicz problem;

cf. [BHM, p. 1614] and [MMP, p. 2092]. Bridson, Hinkkanen and Martin [BHM] showed

that closed aspherical manifolds with hyperbolic fundamental group do not admit any non-

trivial quasiregular maps. Our Theorem 1.3 implies that the same is true for all mapping

tori Eh with trivial center.

Theorem 1.8. If M is a closed manifold whose fundamental group is given as in Theorem

1.3 and has trivial center, then every quasiregular map f : M !M is a homeomorphism.

Strong motivation for the study of quasiregular maps stems from works of Walsh [Wals]

and Smale [Sm] (cf. Lemma 8.18), which establish a tight connection between the cofinite

Hopf property of groups and open maps of CW-complexes. Thus, Theorem 1.3 and its

consequences apply to open maps between CW-complexes whose fundamental groups satisfy

the conditions of Theorem 1.3 and have trivial center; see Remark 8.19 and Theorem 8.21.

1.3. Euler characteristic, L2-Betti numbers, and Lefschetz numbers. It is worth

pointing out that the arguments in this paper that require the non-vanishing of the Euler

characteristic can be carried out by assuming that some L2-Betti number of K is not zero.

While the latter is guaranteed if χ(K) 6= 0 by the Euler characteristic formula with L2-Betti

numbers [Lu3], it is not known whether the converse is always true for aspherical manifolds.

The Singer and Hopf conjectures [Si] (see also [Lu3]) predict that it is always true, asserting

that for a closed aspherical manifold M only the middle-dimensional L2-Betti number might

survive and (−1)dim(M)/2χ(M) ≥ 0 when dim(M) is even. Hence, at least at a theoretical

level, assuming that some L2-Betti number is not zero gives a more general statement for

Theorem 1.2 than assuming the non-vanishing of the Euler characteristic.

However, we prefer to state our results using the Euler characteristic instead of L2-Betti

numbers, because we can offer evidence that condition (∗) is always true for aspherical

manifolds (more generally, for groups that fulfil cohomological finiteness conditions similar

to those of Theorem 1.3), whenever the Euler characteristic is not zero.
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Theorem 1.9. Let K be a group of finite homological type, cd(K) < ∞, and χ(K) 6= 0.

Suppose θ : K ! K is an automorphism which is conjugate to θd in Out(K) for some d > 1.

Then there exists an integer qm = q(χ(K), d,m) > 1 such that χ(K) = Λ(θqm), where Λ(·)
denotes the Lefschetz number.

As we shall see in Example 6.5, the above theorem does not suffice to draw any conclusion

on the finiteness of the order of θ in Out(K), and what fails in Example 6.5 is the finite

generation of Hn(K;ZK). We suspect that for a Poincaré Duality group K, the Euler

characteristic of the fixed point subgroup of some conjugate of θqm will be equal to Λ(θqm).

Then, the same argument as for (part of) the proof of Theorem 3.12 will imply the finiteness

of the order of θ in Out(K), establishing condition (∗) for K.

1.4. A remark about hyperbolicity. In [Gr1], Gromov reproved Mostow’s rigidity [Mo]

in every dimension greater than two, by showing and using the non-vanishing of the simplicial

volume for hyperbolic manifolds. Mostow’s rigidity implies that the fundamental groups of

hyperbolic manifolds of dimensions greater than two have finite outer automorphism groups,

which means that the corresponding Eh are virtually trivial. In particular, mapping tori of

hyperbolic manifolds of dimension greater than two have always vanishing simplicial volume.

The same is true for any mapping torus of a closed aspherical manifold of dimension at least

three with hyperbolic fundamental group, by work of Paulin [Pa], Bestvina and Feighn [BF]

and Bowditch [Bo]. This indicates that, indeed, the hyperbolicity of π1(Σ) in Theorem 1.1

is not the key condition. Furthermore, for a group extension

(1) 1 −! K −! Γθ −! Z −! 1,

the group Γθ being hyperbolic implies severe restrictions on the normal subgroup K. It is a

folklore conjecture that there is no closed hyperbolic manifold of (obviously odd) dimension

greater than three that fibers over the circle and, thus, its fundamental group has the form

Γθ as in (1). Hence, it is evident that nor the hyperbolicity of Γθ is a property that can be

used for what we wish to do. From a purely group theoretic point of view, our results suggest

to think of higher dimensional analogues of hyperbolic 3-manifold groups as not being hyper-

bolic groups themselves, but rather members of a class of groups which have a finite index

subgroup Γθ given by (1), where K is torsion-free, residually finite with χ(K) 6= 0, and θ

has infinite order in Out(K). Every hyperbolic 3-manifold group fits into this context being

virtually fibered [Ag2, Ag1]. From a geometric point of view, the above rigidity applications

suggest an abundance of examples of non-positively curved manifolds F which fit into the

context of Theorem 1.2, e.g., higher dimensional graph manifolds studied in the monograph

of Frigerio, Lafont and Sisto [FLS]. And, clearly, taking products whose factors consist,

for instance, of such higher dimensional graph manifolds and of aspherical manifolds with

hyperbolic fundamental groups will produce more examples. This goes beyond aspherical

manifolds, as already indicated by the case of open maps between CW-complexes (Section
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8.5), or by considering, for example, connected sums and mixed products of aspherical man-

ifold groups with free groups (Section 9).

Acknowledgments. I would like to thank Jean-François Lafont for useful discussions.

2. Residual finiteness, injectivity, and the role of center

2.1. The structure of Γθ. Given a finite CW-complex X and a homeomorphism h : X !

X, the mapping torus of h is defined to be

Eh = X oh S
1 := (X × [0, 1])/((x, 0) ∼ (h(x), 1)).

Eh fibers over the circle with natural projection p : Eh ! S1 and fiber X. The fundamental

group of Eh has a presentation

π1(E) = 〈π1(X), t | tγt−1 = h∗(γ), ∀γ ∈ π1(X)〉,

where a chosen generator t ∈ Z acts on π1(X) by γ 7! h∗(γ) = tγt−1, γ ∈ π1(X), and there

is a short exact sequence (induced by the fibration)

1 −! π1(X) −! π1(Eh)
p∗
−! Z −! 1,

where p∗ maps π1(X) trivially and p∗(t) = 1. In other words, π1(Eh) is the semi-direct

product

π1(Eh) = π1(X) oh∗ Z.
At the purely group theoretic level, the same construction applies as a special case of HNN

extensions (as can be done for a pair of topological spaces): If K is a group and θ : K ! K

is an automorphism, then we call

Γθ = K∗θ = K oθ Z := 〈K, t | tαt−1 = θ(α), ∀α ∈ K〉

the mapping torus of K with respect to θ. If K is finitely generated, then we say that Γθ
fibers. In other words, the short exact sequence

1 −! K −! Γθ
π
−! Z −! 1,

has finitely generated kernel K. As above, π : Γθ ! Z denotes the projection to the chosen

generator of Z. Moreover, we can naturally identify Z with the quotient group Γθ/K.

We gather some elementary observations in the following lemma.

Lemma 2.1. Let Γθ = K oθ 〈t〉 be a mapping torus. The following hold:

(1) Every element x ∈ Γθ has the form x = βtm, for some β ∈ K and m ∈ Z.

(2) If ∆ is a subgroup of Γθ of finite index, then ∆ ∼= (K ∩∆) oη Z, where η = θl|K∩∆

for some l 6= 0. If, moreover, K is finitely generated, then K ∩∆ is finitely generated

and so ∆ fibers.

(3) More generally, if ∆ is a subgroup of Γθ such that ∆∩〈t〉 6= 1, then ∆ ∼= (K∩∆)oηZ,

where η = θl|K∩∆ for some l 6= 0.
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Proof.

(1) This follows immediately by the relation tαt−1 = θ(α) for all α ∈ K.

(2) Since [Γθ : ∆] <∞, we deduce that π(∆) has finite index, say l, in Γθ/K. The kernel

of

∆ ↪−! Γθ
π
−! Z

is given by K ∩∆, which is a finite index subgroup of K because

[K : K ∩∆] ≤ [Γθ : ∆] <∞.

Thus, if K is finitely generated, then K∩∆ is finitely generated. The above argument

is given in the following commutative diagram.

K ∩∆ //

��

∆

��

// Z ∼= ∆ ∩ Z

��
K // Γθ

π // Z

(3) Since ∆ ∩ 〈t〉 6= 1, the proof is similar to (2), without the assumption on the index.

�

2.2. Hirshon’s generalisation of Mal’cev’s theorem.

Definition 2.2. A group Γ is said to be Hopfian (or to have the Hopf property) if every

surjective endomorphism of Γ is an automorphism. It is called residually finite if for any

non-trivial element γ ∈ Γ there is a finite group G and a homomorphism % : Γ! G such that

%(γ) 6= 1. Equivalently, Γ is residually finite if the intersection of all its (normal) subgroups

of finite index is trivial.

A well-known theorem of Mal’cev [Ma] establishes the following connection between the

two properties.

Theorem 2.3 (Mal’cev). Every finitely generated residually finite group is Hopfian.

Following a similar line of ideas, Hirshon [Hi] proved the following interesting generalisation

of Theorem 2.3 (we state only the torsion-free case).

Theorem 2.4 (Hirshon). Let Γ be a finitely generated, torsion-free, residually finite group.

If ϕ is an endomorphism of Γ such that [Γ : ϕ(Γ)] <∞, then ϕ is injective.

Since finitely generated residually finite-by-cyclic groups (more generally, split extensions

of finitely generated residually finite-by-residually finite groups) are residually finite [Mi, Ch.

III, Theorem 7], we derive the following corollary.

Corollary 2.5. If K is a finitely generated, torsion-free, residually finite group, then every

endomorphism of Γθ = K oθ Z onto a finite index subgroup is injective.

Proof. Clearly Γθ is torsion-free and the corollary follows by Theorem 2.4. �
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2.3. Center and virtually trivial fibrations. The following lemma characterises Γθ when

the center C(K) of K is trivial. Note that K need not be residually finite.

Lemma 2.6. For a mapping torus Γθ = K oθ Z, where C(K) = 1, the following conditions

are equivalent:

(i) C(Γθ) 6= 1;

(ii) there exists m 6= 0 such that θm ∈ Inn(K);

(iii) Γθ is virtually K × Z.

Proof. (i)⇒(ii) Let x ∈ C(Γθ). By Lemma 2.1(1) and the assumption that K has trivial

center, x = βtm for some β ∈ K and some non-zero integer m. Then (βtm)α = α(βtm) for

all α ∈ K, that is, θm(α) = β−1αβ. Hence, θm ∈ Inn(K).

(ii)⇒(iii) Suppose θm ∈ Inn(K) for some m 6= 0, i.e. there is a β ∈ K such that θm(α) =

β−1αβ for all α ∈ K. Let Γθm be the index m subgroup of Γθ given by K oθm Z. A

presentation for Γθm is given by

Γθm = 〈K, s | sαs−1 = θm(α) = tmαt−m, ∀α ∈ K〉.

We define
Ψ: Γθm −! K × Z = K × 〈z〉

α 7−! α, α ∈ K,
s 7−! β−1z.

Ψ is well-defined because

Ψ(sαs−1) = β−1zαz−1β = β−1αβ = θm(α) = Ψ(θm(α)).

Clearly Ψ is surjective. Finally, Ψ is injective: If y = αsn ∈ ker(Ψ), then

1 = Ψ(αsn) = αβ−nzn.

Thus zn = βnα−1 ∈ 〈z〉 ∩K = 1, which implies that n = 0. We conclude that α = 1, and so

y = 1. Hence, Ψ is an isomorphism.

(iii)⇒(i) Finally, suppose Γθ contains a subgroup ∆ = K×Z such that [Γθ : ∆] = d <∞.

By Lemma 2.1(2), ∆ ∼= (K ∩∆) oη Z, where η = θl|K∩∆ for some l ≥ 1. Since K ⊂ ∆, we

deduce that

l = [Z : π(∆)] = [Γθ/K : (∆K)/K] = [Γθ : ∆K] = [Γθ : ∆] = d.

Hence, ∆ ∼= K oθd Z = Γθd (and C(Γθd) = Z). In particular, up to multiples, θd ∈ Inn(K),

that is, there is a (possibly trivial) β ∈ K such that tdαt−d = θd(α) = β−1αβ, for all α ∈ K.

Now, we observe
β−1αβ = θd(α)

= θ(θd(θ−1(α)))

= θ(β−1θ−1(α)β)

= θ(β−1)αθ(β),∀α ∈ K.
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In particular, θ(β)β−1 ∈ C(K) = 1. We conclude that θ(β) = β, i.e. tβt−1 = β. This implies

that βtd ∈ C(Γθ). �

3. Finiteness in outer automorphism and homology groups

3.1. Euler characteristic. The cohomological dimension of a group Γ is defined to be

(2)
cd(Γ) = inf{n ∈ N | Z admits a projective resolution of length n}

= sup{n ∈ N | Hn(Γ;A) 6= 0 for some Γ-module A}.

A group Γ is said to be of finite homological type if it has a finite index subgroup which

has finite cohomological dimension and every such subgroup has finitely generated integral

homology groups [Br1, Sec. II.3]. A subgroup ∆ ⊆ Γ of finite index is of finite homological

type if and only if Γ is of finite homological type [Br2, Ch. IX, Lemma 6.1].

Definition 3.1. Let Γ be a group of finite homological type. The Euler characteristic of Γ

is defined by

(3) χ(Γ) =


∑

i(−1)i dimHi(Γ;R), if cd(Γ) <∞,

χ(∆)/[Γ : ∆], in general, where [Γ : ∆] <∞ and cd(∆) <∞.

The above definition, originally due to Brown [Br1, Br2], does not depend on the choice

of ∆ as shown by the following theorem.

Theorem 3.2. ([Br2, Ch. IX, Theorem 6.3]). If Γ is a (torsion-free) group of finite homo-

logical type and ∆ is a finite index subgroup of Γ, then χ(∆) = [Γ : ∆]χ(Γ).

The Euler characteristic is multiplicative under group extensions.

Theorem 3.3. ([Br2, Ch. IX, Prop. 7.3(d)]). Let 1 ! K ! Γ ! Q ! 1 be a short

exact sequence of groups, where K and Q are of finite homological type. If Γ is virtually

torsion-free, then it is of finite homological type and χ(Γ) = χ(K)χ(Q).

We immediately obtain the vanishing of the Euler characteristic for mapping tori.

Corollary 3.4. Let K be a torsion-free group of finite homological type and Γθ = K oθ Z be

the mapping torus of an automorphism θ : K ! K. Then χ(Γθ) = 0.

Remark 3.5. Corollary 3.4 tells us that the Euler characteristic of Γθ is not applicable in

showing that Γθ is co-Hopfian. Similarly, the L2-Betti numbers vanish for Γθ [Lu2].

We remark that if Γ is of finite type, then Definition 3.1 coincides with Wall’s definition

via classifying spaces [Wal], and we write χ(Γ) = χ(BΓ).
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3.2. The finite co-Hopf condition.

Definition 3.6. A group Γ is called finitely co-Hopfian if every injective endomorphism of

Γ onto a finite index subgroup is an automorphism.

We will now use condition (∗) to build a bridge between Lemma 2.6 and the finite co-Hopf

property.

Theorem 3.7. Let K be a group of finite homological type with χ(K) 6= 0 and θ : K ! K

be an automorphism. If there is no integer d > 1 such that θd is conjugate to θ in Out(K),

then the mapping torus Γθ = K oθ Z is finitely co-Hopfian.

In particular, if K satisfies condition (∗), then Γθ is finitely co-Hopfian whenever θ has

infinite order in Out(K).

Proof. Let ϕ : Γθ ! Γθ be an injective homomorphism such that [Γθ : ϕ(Γθ)] = d < ∞. By

Lemma 2.1(2), ϕ(Γθ) is a semi-direct product

(4) ϕ(Γθ) = (K ∩ ϕ(Γθ)) oη Z,

where η = θl|K∩ϕ(Γθ) for some l 6= 0. Since

[K : K ∩ ϕ(Γθ)] ≤ [Γθ : ϕ(Γθ)] <∞,

and χ(K) 6= 0, Theorem 3.2 tells us that

(5) χ(K ∩ ϕ(Γθ)) = [K : K ∩ ϕ(Γθ)]χ(K) 6= 0.

Since ϕ is injective, the restriction ϕ|K : K ! Γθ is an isomorphism onto its image ϕ(K).

Thus

(6) χ(K) = χ(ϕ(K)).

Moreover, since ϕ(K) is normal in ϕ(Γθ) we obtain a commutative diagram

(7) Γθ

��

ϕ
// ϕ(Γθ)

��
Γθ/K

ϕ
// ϕ(Γθ)/ϕ(K),

where ϕ and ϕ are isomorphisms onto their images. In particular, ϕ(Γθ) is a semi-direct

product

ϕ(Γθ) ∼= ϕ(K) o Z ∼= K o Z.
In addition, (ϕ|ϕ(Γθ))

−1(ϕ(K)) = K ∩ ϕ(Γθ) implies that

(8) χ(ϕ(K)) = χ(K ∩ ϕ(Γθ)) 6= 0.

By (6) and (8) we obtain χ(K) = χ(K ∩ ϕ(Γθ)) and thus by (5) we conclude that K =

K ∩ ϕ(Γθ). Hence, Lemma 2.1(2) tells us that

(9) ϕ(Γθ) = K oθd Z = Γθd .
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Repeating the above argument for every m ∈ N, we obtain a sequence of normal subgroups

ϕm(Γθ) of Γθ with

[Γθ : ϕm(Γθ)] = dm, and K ∩ ϕm(Γθ) = K,

which implies that

(10) ϕm(Γθ) = K oθdm Z, ∀m ∈ N.

If d > 1, we derive

ϕ(K) = ϕ(∩mϕm(Γθ)) ⊆ ∩mϕm+1(Γθ) = K.

Hence by (6), the injectivity of ϕ and [Γθ : ϕ(Γθ)] < ∞, we deduce that K = ϕ(K); in

particular

ϕ|K : K ! K

is an isomorphism.

We have proved that there exists an isomorphism

ϕ : Γθ = K oθ Z −! Γθd = K oθd Z
(α, 0) 7−! (ξ(α), 0), ξ = ϕ|K , α ∈ K,
(e, 1) 7−! (β,±1), β ∈ K,

where e denotes the trivial element of K. In particular, the relation

(e, 1)(α, 0)(e, 1)−1 = (θ(α), 0)

in Γθ must be preserved by ϕ. We compute the image on both sides to find

ϕ((e, 1)(α, 0)(e, 1)−1) = (βθ±d(ξ(α))β−1, 0) and ϕ(θ(α), 0) = (ξ(θ(α)), 0).

Since d > 1, the theorem follows. �

Remark 3.8 (Finite hyper-Hopf condition). The above proof (up to the isomorphism Γθ ∼=
Γθd) implies as well that, if Γθ is finitely hyper-Hopfian (see Definition 5.1), then it is finitely

co-Hopfian. We will discuss the (finite) hyper-Hopf condition in Section 5.

3.3. The K-module D = Hn(K;ZK).

Definition 3.9. A group K is said to be a duality group of dimension n over Z if

(i) Z admits a projective resolution of finite type and finite length over ZK, i.e., K is of

type FP , and

(ii) H i(K,ZK) = 0 for all i 6= n and Hn(K,ZK) is torsion-free as an Abelian group.

The K-module Hn(K,ZK) is called the dualizing module of K. If, in addition, Hn(K,ZK) ∼=
Z, then K is called Poincaré Duality group or PDn-group in short.

Hereafter, the K-module Hn(K,ZK) will be denoted by D.
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The above definition, due to Johnson and Wall [JW], coincides with the definition given

by Bieri [Bi1, Bi2]: K is a duality group of dimension n over Z if there are natural cap

product isomorphisms

H i(K;A)
∼=
−! Hn−i(K;D ⊗ A),

for all i and all K-modules A. When D is infinite cyclic, then K is a PDn-group. Note that

cd(K) = n.

For any group K, the cohomology groups H∗(K;ZK) inherit a canonical (right) K-module

structure, and for any (left) K-module A we can define a canonical map form the tensor

product H∗(K;ZK) ⊗ZK A to H∗(K;A). When K is of type FP with cd(K) = n, then

there is a canonical isomorphism

(11) D ⊗ZK A
∼=
−! Hn(K;A).

Similarly, there is an isomorphism

(12) Hn(K;A)
∼=
−! HomZK(D,A);

see [Bi2, Lemma 9.1] for details.

A remarkable theorem of Strebel [Str] states that any infinite-index subgroup of a PDn-

group has cohomological dimension at most n−1. Bieri [Bi2, Prop. 9.22] shows an analogous

result using homological dimension hd (note that cd = hd for groups of type FP ).

3.4. The co-Hopf condition.

Definition 3.10. A group Γ is called co-Hopfian if every injective endomorphism of Γ is an

isomorphism.

If Hn(K;R) 6= 0, then the universal coefficient type isomorphism, given by (12), tells us

that D contains a Z-factor. This prompt us to recast the proof of a result of Fel’dman [Fe]

for the cohomological dimensions of short exact sequences.

Theorem 3.11 (Fel’dman’s equality). Let 1! K ! Γ! Q! 1 be a short exact sequence

of groups such that K is of type FP and Z ⊆ D = Hn(K;ZK), where cd(K) = n. If

cd(Q) = q <∞, then cd(Γ) = cd(K) + cd(Q).

Proof. By the Hochschild-Serre spectral sequence [HS], we obtain an isomorphism

(13) Hq(Q;Hn(K;A)) ∼= Hn+q(Γ;A),

for any Γ-module A, and

(14) cd(Γ) ≤ cd(K) + cd(Q) = n+ q.

Since cd(Q) = q < ∞, we can moreover assume that A = B ⊗ ZΓ for some free Z-module

B, where Hq(Q;A) 6= 0. Hence, by (11) we obtain

(15) Hn(K;A) = Hn(K;B ⊗ ZΓ) ∼= D ⊗ZK (B ⊗ ZΓ) ∼= (D ⊗B)⊗ ZΓ.
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Since Z ⊆ D, we conclude that A ⊆ Hn(K;A). This means, by (13) and Hq(Q;A) 6= 0, that

Hn+q(Γ;A) 6= 0 and the theorem follows. �

We are now in position to obtain an even stronger conclusion than that of Theorem

3.7, using finiteness conditions in top cohomology. We prove the following result, which is

independent of condition (∗).

Theorem 3.12. Let Γθ be the mapping torus of an automorphism θ : K ! K, where K is a

group of type FP with cd(K) = n, such that Hn(K;R) 6= 0 and D = Hn(K,ZK) is finitely

generated. If Γθ is finitely co-Hopfian, then it is co-Hopfian.

Proof. Let ϕ : Γθ ! Γθ be an injective endomorphism. Then Γθ ∼= ϕ(Γθ) and so cd(Γθ) =

cd(ϕ(Γθ)). Since K is of type FP and Z ⊆ D (by (12) and Hn(K;R) 6= 0), Theorem 3.11

yields

(16) cd(ϕ(Γθ)) = cd(Γθ) = cd(K) + cd(Z) = n+ 1.

Since Γθ is of type FP (because K and Z are of type FP ), we conclude that ϕ(Γθ) is of type

FP . Now, ZΓθ ⊗Zϕ(Γθ) Z has a Γθ-module structure, and there is a canonical isomorphism

(cf. Shapiro’s lemma [Br2, Ch. III, Prop. 6.2])

(17) Hn+1(ϕ(Γθ);Z) ∼= Hn+1(Γθ;ZΓθ ⊗Zϕ(Γθ) Z).

Moreover, since D is finitely generated and Z is a PD1-group, we obtain by (13) and (11)

that D̂ = Hn+1(Γθ,ZΓθ) is finitely generated as an Abelian group. Hence, combining (17)

with (12), we obtain

(18)

0 6= Hn+1(ϕ(Γθ);Z) ∼= Hn+1(Γθ;ZΓθ ⊗Zϕ(Γθ) Z)

∼= HomZΓθ(D̂,ZΓθ ⊗Zϕ(Γθ) Z)

∼=
∏

rank D̂

HomZΓθ(Z,ZΓθ ⊗Zϕ(Γθ) Z)

=
∏

rank D̂

(ZΓθ ⊗Zϕ(Γθ) Z)Γθ .

If [Γθ : ϕ(Γθ)] = ∞, then the last term vanishes (cf. [Bi2, Str] or [Br2, Ch. III.5]). This

contradiction shows that [Γ : ϕ(Γθ)] < ∞. Since Γθ is finitely co-Hopfian, we derive that ϕ

is an isomorphism. �

Remark 3.13. As a special case of the above, if K is a PDn-group, then Γθ is a PDn+1-

group, and the proof of Theorem 3.12 is an immediate consequence of Strebel’s theorem.

4. Cofinitely Hopfian groups (Proof of Theorem 1.3)

Definition 4.1. A group Γ is called cofinitely Hopfian if every endomorphism of Γ onto a

finite index subgroup is an automorphism.
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We are now ready to bring all pieces together to finish the proof of Theorem 1.3. Our

main result is the following characterisation, which encompasses Theorem 1.3.

Theorem 4.2. Suppose K is a residually finite group of type FP , such that χ(K) 6= 0,

Hn(K;R) 6= 0 and D = Hn(K,ZK) is finitely generated, where cd(K) = n. If K satisfies

condition (∗), then the following are equivalent for any mapping torus Γθ = K oθ Z.

(i) Γθ is cofinitely Hopfian;

(ii) Γθ is finitely co-Hopfian;

(iii) Γθ is co-Hopfian;

(iv) C(Γθ) = 1;

(v) θ has infinite order in Out(K);

(vi) Γθ is not virtually K × Z.

Proof. (i)⇒(ii) This follows by definition.

(ii)⇒(i) Suppose ϕ : Γθ ! Γθ is a homomorphism such that [Γθ : ϕ(Γθ)] <∞. Since K is

residually finite, Corollary 2.5 implies that ϕ is injective and the conclusion follows.

(ii)⇒(iii) This is Theorem 3.12, using the finiteness cohomological assumptions.

(iii)⇒(ii) This follows by definition.

(ii)⇒(v) Suppose θm ∈ Inn(K) for some m > 0, i.e., there exists β ∈ K such that

θm(α) = β−1αβ, for all α ∈ K. Then Γθ is isomorphic to Γθm+1 . More precisely, there is an

injective homomorphism

(19)

ϕ : Γθ = K oθ 〈t〉 −! K oθ 〈t〉
α 7−! α, α ∈ K,
t 7−! βtm+1.

such that ϕ(Γθ) = Γθm+1 and [Γθ : ϕ(Γθ)] = m+ 1 > 1. Thus Γθ is not finitely co-Hopfian.

(v)⇒(ii) This is Theorem 3.7, using condition (∗).
(iv)⇔(v)⇔(vi) This is Lemma 2.6, under the only assumption that C(K) = 1. �

5. The hyper-Hopf property and surface-by-cyclic groups

We will now extend Theorem 4.2 including an additional equivalent property. Then, we

will apply our results to (hyperbolic surface)-by-cyclic groups.

5.1. The hyper-Hopf condition.

Definition 5.1. A group Γ is called hyper-Hopfian if every endomorphism ϕ of Γ such that

ϕ(Γ) is normal in Γ with cyclic quotient Γ/ϕ(Γ) is an automorphism. It is called finitely

hyper-Hopfian if moreover the quotient Γ/ϕ(Γ) is required to be finite cyclic.

A hyper-Hopfian group is clearly finitely hyper-Hopfian. We will see below that the two

properties are equivalent for (hyperbolic surface)-by-cyclic groups.

The proof of Theorem 3.7 shows that, if Γθ is finitely hyper-Hopfian, then it is finitely

co-Hopfian. Thus we can extend Theorem 4.2 to include the finite hyper-Hopf property.
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Theorem 5.2. Let Γθ be as in Theorem 4.2. Γθ is finitely hyper-Hopfian if and only if it

satisfies any of the six equivalent conditions of Theorem 4.2.

Proof. Any cofinitely Hopfian group is clearly finitely hyper-Hopfian. For the converse,

suppose Γθ is not finitely co-Hopfian. Let ϕ : Γθ ! Γθ be an injective endomorphism with

1 < [Γθ : ϕ(Γθ)] = d < ∞. We repeat the steps of the proof of Theorem 3.7 to show that

ϕ(Γθ) = K oθd Z. Thus ϕ(Γθ) is normal and Γθ/ϕ(Γθ) ∼= Zd. Hence Γθ is not finitely

hyper-Hopfian. �

5.2. Surface-by-cyclic groups. Given a finitely generated group G, the translation length

of an element γ ∈ G, defined by Gersten and Short [GS], is given by

(20) τ(γ) = lim inf
n!∞

d(γn)

n
≥ 0,

where d(·) denotes the minimal word length with respect to a fixed finite generating set for

G. The translation length satisfies the following properties [GS]:

• τ(γ) = τ(δγδ−1), for all γ, δ ∈ G;

• τ(γn) = nτ(γ), for all γ ∈ G, n ∈ N.

Hence, the following result by Farb, Lubotzky and Minsky [FLM] implies that condition (∗)
is true for aspherical surfaces.

Theorem 5.3 (Farb-Lubotzky-Minsky). Every element θ of infinite order in the mapping

class group of a closed aspherical surface has τ(θ) > 0.

Remark 5.4. An analogous result for infinite order outer automorphisms of a non-elementary

free group Fr was proved by Alibegović [Al]. In fact, Alibegović proved that the translation

length of an infinite order outer automorphism θ ∈ Out(Fr) is bounded away from zero, and

this is what Bridson, Groves, Hillman and Martin [BGHM] used in their study of Hopf-type

properties for free-by-cyclic groups. Theorem 3.7 tells us that the positivity of τ(θ) suffices

to deduce the finite co-Hopf property for Fr oθ Z. Moreover, observe that the proof in The-

orem 5.2, that finitely hyper-Hopfian implies finitely co-Hopfian, does not use any of the

finiteness cohomological conditions on top degree. However, Theorem 3.12 does not apply to

free-by-cyclic groups, as clearly D is not finitely generated when K = Fr. Indeed, a finitely

co-Hopfian free-by-cyclic group is not necessarily co-Hopfian [BGHM, Remark 6.4]. Hence,

we deduce that all – but the co-Hopf – conditions of Theorem 5.2 are equivalent for free-by-

cyclic groups, which is what was proved in [BGHM, Theorem B] and included moreover the

hyper-Hopf property. It is therefore natural to ask whether the hyper-Hopf condition is also

equivalent to the seven conditions of Theorem 5.2. We will see below that this is true for

surface-by-cyclic groups, showing that [BGHM, Lemma 6.1] extends over surface-by-cyclic

groups.

Lemma 5.5. Let Σg be a closed hyperbolic surface of genus g and Γθ = π1(Σg) oθ Z be the

mapping torus of an automorphism θ : π1(Σg)! π1(Σg). If ϕ : Γθ ! Γθ is an endomorphism
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such that ϕ(Γθ) is normal in Γθ and Γθ/ϕ(Γθ) ∼= Z, then Γθ ∼= π1(Σg)×Z. In particular, Γθ
is not finitely hyper-Hopfian.

Proof. Γθ is the fundamental group of an aspherical surface bundle over the circle and so

it is a PD3-group. By Scott’s theorem for all 3-manifold groups [Sc1] (see also [St]), Γθ is

coherent, that is, every finitely generated subgroup of Γθ is finitely presentable. We deduce

that the finitely generated image ϕ(Γθ) is finitely presentable. Now we have a short exact

sequence

(21) 1 −! ϕ(Γθ) −! Γθ −! Z −! 1,

where Γθ and Z are Poincaré Duality groups and ϕ(Γθ) is finitely presentable. Thus by [Bi2,

JW] we deduce that ϕ(Γθ) is a PD2-group, which implies that ϕ(Γθ) is a surface group [Ec].

(Note that to deduce cd(ϕ(Γθ)) = 2 we do not need that ϕ(Γθ) is finitely presentable; in

particular we do not need that Γθ is coherent: Since Γθ is a PD3-group and ϕ(Γθ) has infinite

index in Γθ, Strebel’s result [Str] tells us that cd(ϕ(Γθ)) ≤ 2. But cd(Γθ) ≤ cd(ϕ(Γθ)) + 1

by the Hochschild-Serre spectral exact sequence for (21) [HS]. Hence, cd(ϕ(Γθ)) = 2.) We

can thus assume that ϕ(Γθ) ∼= π1(Σh), where Σh is a closed hyperbolic surface of genus h.

Furthermore, we can assume that the genus g of Σg is minimal in the decomposition of Γθ
as a surface-by-cyclic group, so h ≥ g. In other words,

(22) 2h− 2 = |χ(Σh)| ≥ |χ(Σg)| = 2g − 2.

Now ϕ(π1(Σg)) is finitely generated normal in the surface group π1(Σh) ∼= ϕ(Γθ). A

result of Griffiths [Gr] implies that either ϕ(π1(Σg)) = 1 or ϕ(π1(Σg)) has finite index in

ϕ(Γθ). (This can also be deduced from the fact that π1(Σh) has non-vanishing first L2-Betti

number, equal to |χ(Σg)|; [Gab].) Clearly ϕ(π1(Σg)) 6= 1, otherwise ϕ(Γθ) would be cyclic.

Thus ϕ(π1(Σg)) ∼= π1(Σr) for some hyperbolic surface of genus r. In particular, r ≥ h, i.e.,

(23) |χ(Σr)| ≥ |χ(Σh)|

Moreover, we have a homomorphism between surface groups

ϕ|π1(Σg) : π1(Σg)! ϕ(π1(Σg)) ∼= π1(Σr).

The Hurewicz map induces a surjective homomorphism H1(Σg) ! H1(Σr). This means

g ≥ r, i.e.,

(24) |χ(Σg)| ≥ |χ(Σr)|

Combining (22), (23) and (24) we deduce that Σg, Σh and Σr are homeomorphic. Since

moreover surface groups are Hopfian, we deduce that the restriction

ψ := ϕ|π1(Σg) : π1(Σg)! ϕ(Γθ)

is an isomorphism. Hence

(ψ−1 ◦ ϕ, π) : Γθ ! π1(Σg)× Z
is an isomorphism and the lemma follows. �
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We now have the following characterisation for surface-by-cyclic groups.

Theorem 5.6. Let K be the fundamental group of a closed hyperbolic surface. The following

are equivalent for any mapping torus Γθ = K oθ Z.

(i) Γθ is cofinitely Hopfian;

(ii) Γθ is finitely co-Hopfian;

(iii) Γθ is co-Hopfian;

(iv) C(Γθ) = 1;

(v) θ has infinite order in Out(K);

(vi) Γθ is not virtually K × Z;

(vii) Γθ is finitely hyper-Hopfian;

(viii) Γθ is hyper-Hopfian.

Proof. Let K = π1(Σ), where Σ is a closed surface of genus g > 1. K is residually finite,

PD2-group with χ(K) 6= 0, and satisfies condition (∗) by Theorem 5.3. Theorems 4.2 and

5.2 imply that the first seven conditions are equivalent. Clearly (viii)⇒(vii), and, by Lemma

5.5, (vii)⇒(viii). �

6. L2-Betti numbers and Lefschetz numbers

6.1. L2-Betti numbers. Given a group Γ of finite type, the i-th L2-Betti number of Γ is

defined as the von Neumann dimension of the Hilbert space `2H i(BΓ) associated to the action

of Γ on BΓ. Note that the L2-Betti numbers can be defined for more general groups [Lu3].

Nevertheless, since we are dealing with residually finite groups, the reader may refer to Lück’s

approximation theorem [Lu1]: If Γ is a residually finite group of finite type and {Γk}k∈N is

a residual chain for Γ, then the i-th L2-Betti number of Γ is given by

(25) b
(2)
i (Γ) = lim

k!∞

dimHi(Γk;R)

[Γ : Γk]
.

By the additivity of the von Neumann dimensions (see [Lu3]), we have

(26) χ(Γ) =
∑
i

(−1)ib
(2)
i (Γ).

In contrast to the ordinary Betti numbers, L2-Betti numbers are multiplicative under finite

index subgroups, i.e., if ∆ is a finite index subgroup of Γ, then (cf. [Lu3])

(27) b
(2)
i (∆) = [Γ : ∆]b

(2)
i (Γ).

Therefore, any argument in the proof of Theorem 1.3 that uses the multiplicativity of the

Euler characteristic under finite index subgroups can be carried out if one assumes the non-

vanishing of some L2-Betti number of K. In addition, the existence of an infinite amenable

normal subgroup in K implies the vanishing of all L2-Betti numbers of K (and thus of the

Euler characteristic). By (26) if χ(K) 6= 0, then clearly there is some b
(2)
i (K) 6= 0, however

the converse is not necessarily true. Singer’s conjecture [Si] predicts that if M is a closed
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aspherical manifold of even dimension 2n, then only b
(2)
n (π1(M)) might not be zero and

so χ(M) = (−1)nb
(2)
n (π1(M)). Thus the conditions χ 6= 0 and b

(2)
n 6= 0 might be in fact

equivalent for aspherical manifolds. Hence, we have the following statement which is at least

as strong as Theorem 5.2.

Theorem 6.1. Let K be as in Theorem 5.2 where instead of χ(K) 6= 0, we assume that

b
(2)
i (K) 6= 0 for some i. Then the following are equivalent for any mapping torus Γθ = KoθZ.

(i) Γθ is cofinitely Hopfian;

(ii) Γθ is finitely co-Hopfian;

(iii) Γθ is co-Hopfian;

(iv) C(Γθ) = 1;

(v) θ has infinite order in Out(K);

(vi) Γθ is not virtually K × Z;

(vii) Γθ is finitely hyper-Hopfian.

Nevertheless, we have chosen to use the Euler characteristic instead of the L2-Betti num-

bers in our statements/proofs, because, assuming the non-vanishing of the Euler characteris-

tic, we were able to find evidence for the validity of condition (∗) for all aspherical manifolds,

which we provide below. Of course, an alternative approach to the one we present below is to

show positivity of a translation length-type distance for infinite order outer automorphisms,

as in Section 5.2.

6.2. Lefschetz numbers.

Definition 6.2. Let K be a group of finite homological type with cd(K) = n. Given a

homomorphism θ : K ! K, we define the Lefschetz number of θ by

(28) Λ(θ) =
n∑
i=1

(−1)itr(Hi(θ;R)),

where Hi(θ;R) : Hi(K;R) ! Hi(K;R) are the induced homomorphisms and tr(·) denotes

the trace.

Consider H∗(K;R) as the vector space (⊕iH2i(K;R))⊕ (⊕iH2i+1(K;R)) and the induced

by θ homomorphism H∗(θ;R) as (⊕iH2i(θ;R)) ⊕ (⊕iH2i+1(θ;R)). If λj is an eigenvalue of

H∗(θ;R), we define the corresponding generalised eigenspaces by

E
λj
2i =

⋃
p≥1

ker(⊕iH2i(θ;R)− λj)p and E
λj
2i+1 =

⋃
p≥1

ker(⊕iH2i+1(θ;R)− λj)p

Definition 6.3. The λj-Euler characteristic of θ is defined by χj(θ) = dim(E
λj
2i )−dim(E

λj
2i+1).

We call λj essential if χj(θ) 6= 0.

Note that the λj-Euler characteristic does not change under passing to iterates of θ. Thus

we can write

(29) χj = χj(θ
l), ∀l ≥ 1.
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The following result is of independent interest, and gives a connection between the Euler

characteristic of a group K and the Lefschetz number of an iterate of a certain automorphism

of K.

Theorem 6.4 (Theorem 1.9). Let K be a group of finite homological type, cd(K) <∞, and

χ(K) 6= 0. Suppose θ : K ! K is an automorphism which is conjugate to θd in Out(K) for

some d > 1. Then there exists an integer qm = q(χ(K), d,m) > 1 such that χ(K) = Λ(θqm),

for all m ≥ 1.

Proof. Let λ1, ..., λk be the essential eigenvalues of H∗(θ). Since θ is an automorphism, we

exploit (29) to obtain

(30)
k∑
j=1

χj = χ(K) 6= 0.

Moreover, using again (29), we observe that

(31) Λ(θl) =
k∑
j=1

χjλ
l
j, ∀l ≥ 1.

Suppose now that there is a ξ ∈ Aut(K) and d > 1 such that θd = ξθξ−1 in Out(K). Thus

θµd
m

= ξmθµξ−m in Out(K), and so Λ(θµd
m

) = Λ(θµ), for all m ≥ 1, µ ≥ 1. Hence, (31)

implies

(32)
k∑
j=1

χj(λ
dm

j )µ =
k∑
j=1

χjλ
µ
j , ∀m ≥ 1, µ ≥ 1.

Moreover, by (30), we have

χ(K) =
k∑
j=1

χj =
∑
χj>0

χj +
∑
χj<0

χj = ω+ + ω−.

Thus, setting ω = ω+ − ω−, we can rewrite (32) as

(33) δµ1 + · · ·+ δµω = δ̃µ1 + · · ·+ δ̃µω, ∀µ ≥ 1,

where for each ` = 1, ..., ω

(δ` = λ` and δ̃` = λd
m

` ) or (δ` = λd
m

` and δ̃` = λ`).

Since N numbers a1, ..., aN are determined up to order by the µ-th power symmetric functions

aµ1 + · · · + aµN , 1 ≤ µ ≤ N , we deduce that the two sides of (33) contain the same terms.

Hence, there exists qm = q(dm, ω) > 1 such that λqmj = 1 for all j = 1, ..., k, and all m ≥ 1,

and therefore, by (30) and (31), we obtain

(34) Λ(θqm) =
k∑
j=1

χj = χ(K).

�
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We suspect that Theorem 6.4 combined with (a variation of) the additional finiteness

conditions in cohomology, the Euler characteristic of the fixed point subgroup of conjugates

of θqm and the proof of Theorem 3.12 should imply finiteness of the order of θ in Out(K)

(condition ∗). However, Theorem 6.4 alone does not imply that θ has finite order in Out(K),

as shown in the following example.

Example 6.5. Let G = BS(1, d) = 〈x, y | yxy−1 = xd〉 be the (1, d)-Baumslag-Solitar group

with d > 1, and F2 = 〈u, v〉 be the free group on two generators. Let

K = G ∗ F2

be the free product of G and F2. Then cd(K) = 2 and χ(K) = −2. We define an automor-

phism θ : K ! K by

θ(x) = x, θ(y) = xyx−1, θ(u) = u, θ(v) = v,

and an automorphism ξ : K ! K by

ξ(x) = yxy−1, ξ(y) = y, ξ(u) = u, ξ(v) = v.

Then θd = ξθξ−1 and θ has infinite order in Out(K). Note that for all q > 1,

Fix(θq−1) = Fix(θ) = 〈x〉 ∗ 〈u, v〉 = F3,

and χ(Fix(θq−1)) = Λ(θq−1) = χ(K) = −2, verifying in particular Theorem 6.4. Also,

H2(K;R) ∼= H2(K;R) = 0 and [K : Fix(θ)] = ∞. We can easily modify this example so

that the real homology in top degree is isomorphic to R. Let

L = K ∗ Z2,

where K is as above. We define automorphisms θ̂ and ξ̂ on L by

θ̂|K = θ, θ̂|Z2 = id and ξ̂|K = ξ, ξ̂|Z2 = id,

where θ and ξ are given as above. Then θ̂d = ξ̂θ̂ξ̂−1 and θ̂ has infinite order in Out(L).

Moreover, for all q > 1,

Fix(θ̂q−1) = Fix(θ̂) = 〈x〉 ∗ F2 ∗ Z2 = F3 ∗ Z2,

and χ(Fix(θ̂q−1)) = Λ(θ̂q−1) = χ(L) = −3, verifying Theorem 6.4. In addition, we have

H2(L;R) ∼= H2(L;R) ∼= R. However, H2(L;ZL) is not finitely generated.

7. Aspherical manifolds (Proof of Theorem 1.2)

7.1. Aspherical manifolds.

Definition 7.1. A finite CW-complex X is called aspherical if all its higher homotopy groups

vanish, i.e. πn(X) = 1 for all n ≥ 2.

We refer to [Lu4] for a survey on aspherical manifolds.
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Theorem 7.2 (Homotopy classification of aspherical spaces). Given two connected aspher-

ical CW-complexes X and Y , there is a bijection from the set of homotopy classes of maps

from X to Y to the set of group homomorphisms from π1(X) to π1(Y ) mod Inn(π1(Y )),

sending the homotopy type of a map f : X ! Y to the class of the induced homomorphism

f∗ : π1(X) ! π1(Y ). In particular, X and Y are homotopy equivalent if and only if their

fundamental groups are isomorphic.

Corollary 7.3. Let X be a closed oriented aspherical manifold. If ϕ : π1(X)! π1(X) is an

injective endomorphism, then f := Bϕ : X ! X has degree ±[π1(X) : ϕ∗(π1(X))] <∞.

Proof. Since ϕ is injective, it is an isomorphism onto its image, which implies cd(π1(X)) =

cd(ϕ(π1(X))). By Strebel’s theorem [Str] (see Sections 3.3 and 3.4), we deduce that

d = [π1(X) : ϕ(π1(X))] <∞.

Hence, there is a finite covering p : X̃ ! X of degree d and a lift f̃ : X ! X̃ such that

f = p ◦ f̃ . Since ϕ is injective, we conclude that f̃∗ is an isomorphism. Theorem 7.2 implies

that f̃ is a homotopy equivalence; in particular, it has degree ±1. Thus

deg(f) = deg(f̃) deg(p) = ±d.

�

7.2. Finishing the proof of Theorem 1.2. We will now finish the first, main part of

Theorem 1.2.

Theorem 7.4. Let F be a closed aspherical manifold F with non-zero Euler characteristic

and residually finite fundamental group, and h be a homeomorphism of F . If π1(F ) satisfies

condition (∗), then the following are equivalent:

(i) C(π1(Eh)) = 1;

(ii) Every endomorphism of π1(Eh) onto a finite index subgroup induces a homotopy

equivalence on Eh;

(iii) Every injective endomorphism of π1(Eh) induces a homotopy equivalence on Eh;

(iv) Every self-map of Eh of non-zero degree is a homotopy equivalence.

Proof. (i)⇒(ii) By Theorem 1.3, every endomorphism ϕ of π1(Eh) onto a finite index sub-

group is an automorphism, and so Bϕ : Eh ! Eh is a homotopy equivalence by Theorem

7.2.

(ii)⇒(iv) Let f : Eh ! Eh be a map of non-zero degree. Then f∗(π1(Eh)) has finite index

in π1(Eh) and the claim follows.

(iv)⇒(iii) Let ϕ : π1(Eh) ! π1(Eh) be an injective endomorphism. By Corollary 7.3,

deg(Bϕ) = ±[π1(Eh) : ϕ(π1(Eh))] 6= 0. Thus Bϕ is a homotopy equivalence and ϕ an

automorphism.

(iii)⇒(i) Since π1(Eh) is co-Hopfian, the claim follows by Theorem 1.3. �
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The Borel conjecture asserts that the homeomorphism type of closed aspherical manifolds

is determined by their fundamental groups.

Conjecture 7.5 (Borel Conjecture). If X and Y are closed aspherical manifolds with iso-

morphic fundamental groups, then X and Y are homeomorphic. Moreover, any homotopy

equivalence X ! Y is homotopic to a homeomorphism.

Definition 7.6. A closed manifold which satisfies the Borel conjecture is called topologically

rigid.

Bartels and Lück [BL] made prominent contributions to the Borel conjecture, mostly by

studying the Farrell-Jones conjecture. Below we quote what is necessary for us.

Definition 7.7. Let C be the smallest class of groups satisfying the following conditions:

• Q ∈ C;
• If π : Γ! Q is a group homomorphism such that π−1(U) ∈ C for any virtually cyclic

subgroup U of Q, then Γ ∈ C.

Since the Borel conjecture holds for the circle, a special case of the results in [BL] for

groups that fiber reads as follows.

Theorem 7.8 (Bartels-Lück [BL]). If M is a closed aspherical manifold of dimension at

least five and π1(M) ∈ C, then M is topologically rigid. In particular, if F is a topologically

rigid aspherical manifold of dimension at least four, then for any homeomorphism h : F ! F

the mapping torus Eh is topologically rigid.

Thus we can strengthen the conclusion of Theorem 7.4 by replacing homotopy equivalences

with maps homotopic to homeomorphisms, completing the proof of Theorem 1.2.

Theorem 7.9. Suppose F is as in Theorem 7.4, which is moreover topologically rigid. Then

the homotopy equivalences in (ii), (iii) and (iv) of Theorem 7.4 are homotopic to homeo-

morphisms.

Proof. If F is a surface, then the 3-manifold Eh is Haken and therefore every self-homotopy

equivalence of Eh is homotopic to a homeomorphism by Waldhausen [Wa]. If F has dimension

at least four and satisfies the Borel conjecture, then the claim follows by Theorem 7.8. �

8. Applications

8.1. The three-dimensional model. Nielsen [Ni] and Thurston [Th2] classified surface

diffeomorphisms.

Theorem 8.1 (Nielsen, Thurston). Let Σ be a closed hyperbolic surface and h : Σ! Σ be a

diffeomorphism. Then, up to isotopy, h is either

(1) periodic, i.e., there is an m such that hm = id, or
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(2) reducible, i.e., there is an m such that hm fixes an essential (non-contractible) family

of circles, but not periodic, or

(3) pseudo-Anosov, i.e., there is no m such that hm fixes an essential family of circles.

Remark 8.2. Our terminology for pseudo-Anosov is slightly different from the standard

definition.

The corresponding mapping tori Eh for h as in (1)-(3) of Theorem 8.1 are as follows, in

terms of Thurston’s geometrization picture [Th1].

(1) Eh possesses the geometry H2 × R and it is virtually S1 × Σ;

(2) Eh has non-trivial JSJ decomposition, i.e., it can be decomposed into geometric pieces

along tori, where each piece fibers over the circle (cf. [Neum]) and it is either Seifert

fibered and modeled on H2 × R or hyperbolic (i.e., modeled on H3);

(3) Eh is hyperbolic.

We remark that every hyperbolic 3-manifold is virtually of type (3) in Theorem 8.1 by the

resolution of the Thurston Virtually Fibered Conjecture [Ag2, Ag1].

The simplest class is that of manifolds in (1). They admit self-maps of degree greater

than one, and, moreover, these maps are homotopic to non-trivial coverings; see Wang’s

paper [Wa2] or Theorems 8.6 and 8.11 below for a generalization in all dimensions (see

also [Ne2]). A manifold Eh in (3) has positive simplicial volume [Gr1, Th1] and thus does

not admit self-maps of absolute degree greater than one. Furthermore, every self-map of Eh
of non-zero degree is homotopic to a homeomorphism by Gromov [Gr1] or Waldhausen [Wa],

and, even more, to an isometry, by Mostow’s rigidity [Mo, Gr1]. Let now Eh be a manifold in

(2). If Eh has a hyperbolic JSJ piece, then again the simplicial volume of Eh is not zero [Gr1,

Th1], and so every self-map of Eh of non-zero degree is homotopic to a homeomorphism by

Waldhausen [Wa]. However, if Eh is a non-trivial graph 3-manifold, i.e., it has no hyperbolic

JSJ pieces, then the simplicial volume of Eh vanishes. In that case, Wang [Wa2] exploited

the hyperbolic orbifold bases of the Seifert pieces to show that Eh does not admit self-maps

of degree greater than one, which means that every self-map of Eh of non-zero degree is

a homotopy equivalence and hence homotopic to a homeomorphism [Wa]. Subsequently,

Derbez and Wang [DW] showed that every non-trivial graph 3-manifold has a finite cover

which has non-zero Seifert volume (another Gromov-Thurston type semi-norm introduced

by Brooks and Goldman [BG]).

The following theorem encompasses a uniform treatment of all cases. In particular, it

proves Theorems 1.4 and 1.1.

Theorem 8.3. Let Eh be the mapping torus of a diffeomorphism h of a closed hyperbolic

surface Σ. The following are equivalent:

(i) Eh is hyperbolic or has non-trivial JSJ decomposition;

(ii) C(π1(Eh)) = 1;
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(iii) Every endomorphism of π1(Eh) onto a finite index subgroup induces a map homotopic

to a homeomorphism;

(iv) Every injective endomorphism of π1(Eh) induces a map homotopic to a homeomor-

phism;

(v) Eh does not admit self-maps of absolute degree greater than one.

Proof. (i)⇒(ii) If Eh is hyperbolic or it has non-trivial JSJ decomposition, then C(π1(Eh)) =

1 by the Seifert fiber space conjecture, the final cases of which were resolved by Casson and

Jungreis [CJ] and by Gabai [Ga] – note that if Eh is hyperbolic, then clearly C(π1(Eh)) = 1.

(ii)⇔(iii)⇔(iv)⇔(v) These equivalences are part of Theorem 1.3. More precisely, the

equivalences for the homotopy type are part of Theorem 7.4 and for the homeomorphism

type of Theorem 7.9 by Waldhausen [Wa].

(v)⇒(i) If Eh is not hyperbolic and it has trivial JSJ decomposition, then h is periodic

and hence Eh admits self-maps of degree greater than one; see Theorems 8.6 and 8.11 below

(and also [Ne2]). �

8.2. Gromov-Thurston norms. Generalising the concept of the Thurston norm in dimen-

sion three [Th3], and of the simplicial volume in any dimension [Gr1], Gromov introduced

the notion of functorial semi-norms [Gr3, Ch. 5G+] (see also Milnor-Thurston [MT]).

Definition 8.4. Let X be a topological space. A functorial semi-norm in degree k homology

is a semi-norm
IX,k : Hk(X;R) −! [0,∞]

x 7−! IX,k(x),

such that IX,k(x) ≥ IX,k(Hk(f)(x)) for any continuous map f : X ! Y .

By definition, it is straightforward that IX,k is a homotopy invariant. The significance of

functoriality is reflected on the mapping degree sets.

Definition 8.5. Given two closed oriented manifolds M and N of the same dimension, the

set of degrees of maps from M to N is defined to be

D(M,N) = {d ∈ Z | ∃ f : M ! N with deg(f) = d}.

For M = N , the set D(M) = D(M,M) is called the set of self-mapping degrees of M .

Using Definition 8.5, one can assign a natural semi-norm on a closed oriented manifold N

by setting in degree dim(N) homology

(35) IN([M ]) := sup{|d| | d ∈ D(M,N)}.

We refer to [CL] for further details.

The simplicial volume is the most prominent example of a functorial semi-norm. It does not

vanish on hyperbolic manifolds [Gr1] and, more generally, on aspherical manifolds with non-

elementary hyperbolic fundamental groups [Gr2, Mi1, Mi2]. Another example in dimension

three, mentioned in Section 8.1, is given by the Seifert volume. It was introduced by Brooks
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and Goldman, who showed that S̃L2(R)-manifolds (in particular, non-trivial circle bundles

over hyperbolic surfaces), have non-zero Seifert volume [BG]. Hyperbolic 3-manifolds and

3-manifolds with non-trivial JSJ decomposition include all mapping tori Eh of hyperbolic

surfaces Σ, such that h has infinite order in Out(π1(Σ)), and either the simplicial volume

or the Seifert volume (or both) does not (virtually) vanish on their fundamental classes;

cf. Section 8.1. Higher dimensional analogues of the Seifert volume have been developed

in [DLSW] and those semi-norms reflect on hyper-torus bundles over locally symmetric

spaces. The corresponding analogue to non-trivial circle bundles over hyperbolic surfaces,

i.e., replacing surfaces by any aspherical manifold with hyperbolic fundamental group, was

treated by the author in [Ne2], using the finiteness of the set of degrees of self-maps as source.

We obtain an analogous result for all mapping tori Eh, proving in particular Theorem 1.5.

Theorem 8.6. Let Eh be as in Theorem 1.2. If h∗ has infinite order in Out(π1(Eh)), then

there is a functorial semi-norm that takes the value one on Eh. If h∗ has finite order in

Out(π1(Eh)), then every functorial semi-norm can only take the values 0 or ∞ on Eh.

Proof. If h∗ has infinite order in Out(π1(F )), then D(Eh) ⊆ {−1, 0, 1} by Theorem 1.2. Thus

IEh([Eh]) = 1.

Conversely, suppose h∗ has finite order in Out(π1(F )), i.e., there exists an m ≥ 1 such

that hm∗ ∈ Inn(π1(F )). We have seen in the proof of Theorem 4.2 (cf. (19)) that there

is an injective endomorphism ϕ : π1(Eh) ! π1(Eh), such that ϕ(π1(Eh)) = π1(Ehm+1) and

[π1(Eh) : π1(Ehm+1)] = m + 1 > 1. By the definition of ϕ (see also Corollary 7.3) the map

f := Bϕ is a self-map of Eh of degree m+ 1 > 1. Thus every functorial semi-norm I on Eh
takes the values

I([Eh]) = 0 or I([Eh]) =∞.

�

8.3. A strong version of the Hopf problem. The following long-standing question of

Hopf has essentially motivated the concept of Hopfian groups; see the Kirby list [Ki, Problem

5.26] and also [Neu, Ha].

Question 8.7 (Hopf). Let M be a closed oriented manifold. Is every self-map f : M ! M

of degree ±1 a homotopy equivalence?

Affirmative answers to Hopf’s problem are known in certain cases, such as for simply

connected manifolds (this follows by Whitehead’s theorem) and for manifolds of dimension

at most four with Hopfian fundamental groups by a result of Hausmann [Ha]. If M is

aspherical and π1(M) is Hopfian, then every self-map f : M ! M of degree ±1 is a ho-

motopy equivalence, because any map of degree ±1 induces a surjective endomorphism on

π1(M). For instance, Question 8.7 has an affirmative answer for every aspherical manifold
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with hyperbolic fundamental group. Note that the assumption deg(f) 6= 0 alone would suf-

fice to answer Question 8.7 in the affirmative for the latter manifolds in dimensions greater

than one. Indeed, every self-map of non-zero degree of an aspherical manifold with non-

elementary hyperbolic fundamental group must have degree ±1. This can be shown either

algebraically, based on Sela’s work on the Hopf and co-Hopf properties of torsion-free hy-

perbolic groups [Se1, Se2], or more geometrically, based on Mineyev’s work on bounded co-

homology [Mi1, Mi2] combined with Gromov’s work on the simplicial volume and bounded

cohomology [Gr2, Gr1]; see [Ne2] for a summary of the proofs.

Theorem 8.8 ([BHM, Se1, Se2, Gr2, Gr1, Mi1, Mi2]). Every self-map of non-zero degree

of a closed oriented aspherical manifold with non-elementary hyperbolic fundamental group

is a homotopy equivalence.

Clearly, the above theorem does not hold for all aspherical manifolds, e.g., the circle

admits self-maps of any degree. Nevertheless, every self-map of the circle of degree greater

than one is homotopic to a non-trivial covering. The same holds for every self-map of

degree greater than one of nilpotent manifolds [Be] and of certain solvable mapping tori

of homeomorphisms of the n-dimensional torus [Wa1, Ne3]. In addition, every non-zero

degree self-map of a closed 3-manifold M is either a homotopy equivalence or homotopic

to a covering map, unless the fundamental group of each prime summand of M is finite or

cyclic [Wa2]. Recently, I showed that the same is true for every self-map of non-zero degree

of a circle bundle over a closed oriented aspherical manifold with hyperbolic fundamental

group [Ne2]. We therefore ask whether the following strong version of Question 8.7 holds for

all closed aspherical manifolds.

Question 8.9. ([Ne2, Problem 1.2, Strong version of Hopf’s problem for aspherical mani-

folds]). Is every non-zero degree self-map of a closed oriented aspherical manifold either a

homotopy equivalence or homotopic to a non-trivial covering?

Remark 8.10. Together with the Borel conjecture, Question 8.9 can be strengthen as fol-

lows: Is every non-zero degree self-map of a closed oriented aspherical manifold homotopic

either to a homeomorphism or to a non-trivial covering? The answer is affirmative in all

cases mentioned before Question 8.9 by various rigidity results.

As an application of Theorem 1.2, we obtain the following affirmative answer to Question

8.9 for the homeomorphism types of mapping tori of topologically rigid aspherical manifolds.

Theorem 8.11 (Theorem 1.6). Let Eh be as in Theorem 1.2, where F is topologically rigid.

Every self-map of Eh of non-zero degree is homotopic either to a homeomorphism or to a

non-trivial covering and Eh is virtually trivial.

Proof. Let f : Eh ! Eh be a map of non-zero degree. Since π1(F ) is residually finite, π1(Eh)

is also residually finite [Mi, Ch. III, Theorem 7], and therefore f∗ is injective by Hirshon’s

theorem [Hi], because [π1(Eh) : f∗(π1(Eh))] <∞; cf. Corollary 2.5. Since F is topologically
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rigid, Eh is also topologically rigid by Bartels and Lück [BL] in dimensions greater than four

(Theorem 7.8) and by Waldhausen [Wa] in dimension three. By the proof of Corollary 7.3 we

conclude that f is homotopic to a finite covering. Thus f is homotopic to a homeomorphism

if deg(f) = ±1 and to a non-trivial covering if | deg(f)| > 1. Theorem 1.2 tells us (without

any assumption on F being topologically rigid) that the case | deg(f)| > 1 occurs if and only

if Eh is virtually F × S1. �

Remark 8.12. In order to show π1-injectivity, we have applied Hirshon’s theorem, using

that the fundamental group of the total space Eh is residually finite. By Hirshon’s result and

the residual finiteness for 3-manifold groups [He], one deduces the π1-injectivity for self-maps

of non-zero degree of 3-manifolds with torsion-free fundamental groups, showing thus most

of the cases of [Wa2, Theorem 0.1].

Nevertheless, residual finiteness for the fundamental group of the fiber F alone can be used

as follows to show that, if h∗ has finite order in Out(π1(F )), then any self-map of non-zero

degree of Eh is π1-injective. This has independent interest, generalising (and giving a new

proof of) Wang’s analogous result [Wa2] for Seifert 3-manifolds modeled on the geometry

H2 × R, i.e., covered by the product of the circle with a hyperbolic surface.

Let the presentation

π1(Eh) = 〈π1(F ), t | tαt−1 = h∗(α), ∀α ∈ π1(F )〉,

and recall that C(π1(F )) = 1 because χ(π1(F )) 6= 0 [Go, Lu3]. Since h∗ has finite order in

Out(π1(F )), there exists m 6= 0 such that hm∗ ∈ Inn(π1(F )), i.e., hm∗ (α) = β−1αβ for some

β ∈ π1(F ). As in the proof of Lemma 2.6, we deduce that C(π1(Eh)) = 〈βtm〉 ∼= Z and

π1(Ehm) ∼= Z× π1(F ). Then π1(Eh) fits into the central extension

1 −! 〈βtm〉 −! π1(Eh) −! Q = π1(Eh)/〈βtm〉 −! 1

(i.e., Q is an orbifold group) and, by Lemma 2.1, π1(Ehm) has the presentation

π1(Ehm) = 〈π1(F ), tm | tmαt−m = hm∗ (α), ∀α ∈ π1(F )〉.

In particular, π1(Ehm) is normal of index m in π1(Eh) and Q fits into the short exact sequence

(36) 1 −! π1(F ) −! Q −! Zm −! 1.

By the Hochschild-Serre spectral sequence for (36), we deduce that

(37) H∗(Q;R) ∼= H∗(π1(F );R).

Let now f : Eh ! Eh be a map of non-zero degree and f∗ : π1(Eh)! π1(Eh) be the induced

homomorphism. Then f∗(π1(Eh)) has finite index in π1(Eh). We lift f to f̃ : Eh ! Ẽh, where

Ẽh is the finite covering of Eh corresponding to f∗(π1(Eh)). By Lemma 2.1, π1(Ẽh) fits into

the central short exact sequence

1 −! 〈βtm〉 ∩ π1(Ẽh) −! π1(Ẽh) −! Q̃ −! 1,
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where Q̃ has finite index in Q. Since f̃∗ is surjective, we conclude that f∗ maps 〈βtm〉 into

itself, and thus f∗ factors through a self-homomorphism f ∗ : Q! Q, whose image f ∗(Q) has

finite index in Q. In particular, by (37), H∗(f ∗(Q);R) is isomorphic to the cohomology of

an aspherical manifold F .

By the lifting property for the orbifolds corresponding to Q and f ∗(Q), we lift (factor) the

homomorphism f ∗ through a group isomorphic to f ∗(Q). The corresponding commutative

diagram in cohomology with real coefficients is equivalent to the commutative diagram with

the manifold cohomology groups H∗(F ;R) and H∗(F ;R). Since F and F satisfy Poincaré

Duality, we conclude that dimH∗(F ;R) = dimH∗(F ;R). Hence,

χ(Q) = χ(f ∗(Q)).

Since, moreover, [Q : f ∗(Q)] < ∞, we obtain Q = f ∗(Q). By [Q : π1(F )] < ∞ and the

fact that π1(F ) is residually finite, we deduce that Q is residually finite, and, in particular,

Hopfian by Theorem 2.3, being finitely generated. Hence f ∗ is an isomorphism.

We have now shown that f∗ maps the infinite cyclic center 〈βtm〉 of π1(Eh) into itself, and

factors through an isomorphism of Q. Hence, f∗ is injective.

8.4. Gromov’s ordering and rigidity. In a lecture given at CUNY in 1978, Gromov

suggested studying the existence of maps of non-zero degree as defining an ordering on the

homotopy types of closed oriented manifolds of a given dimension [CT].

Definition 8.13. Let M , N be closed oriented manifolds of dimension n. If there is a map

of non-zero degree M ! N , we say that M dominates N and denote this by M ≥ N .

For instance, if Σg and Σh are two closed surfaces of genus g, h ≥ 0, then the domination

relation is a total ordering given by

Σg ≥ Σh ⇐⇒ g ≥ h.

The implication “⇒” is a simple application of the Poincaré Duality in all dimensions: If

M ≥ N , then the ordinary Betti numbers satisfy bi(M) ≥ bi(N), for all i = 1, ..., n. The

implication “⇐” is very specific to dimension two; clearly inequalities between Betti numbers

do not guarantee domination between two given manifolds. In general, it is a hard problem

to show existence of a map of non-zero degree between two given manifolds. Moreover, the

domination relation for maps of degree ±1 defines a partial order on the homotopy types of

aspherical manifolds with Hopfian fundamental groups. Variations of this partial ordering

(for any degree) have been studied in many instances [Be, BBM, CT, Ro, Wa1, Ne3].

By Bartels and Lück [BL], the class C in Definition 7.7 contains hyperbolic groups, and

Theorem 7.8 tells us that aspherical manifolds with hyperbolic fundamental groups are topo-

logically rigid in dimensions higher than four; for negatively curved manifolds this was also

proved by Farrell and Jones [FJ]. The same result is true in dimension three by Perelman’s

proof of the geometrization conjecture. Suppose now M and N are closed aspherical mani-

folds with non-elementary hyperbolic fundamental groups and let f : M ! N and g : N !M
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be maps of non-zero degree. Then g ◦ f and f ◦ g are self-maps of non-zero degree of M

and N respectively. As mentioned in Section 8.3, every self-map of non-zero degree of an

aspherical manifold with non-elementary hyperbolic fundamental group must have degree

±1. Thus g∗ ◦f∗ and f∗ ◦g∗ are automorphisms of π1(M) and π1(N) respectively (recall that

π1(M) and π1(N) are Hopfian) and this proves the following theorem.

Theorem 8.14 ([BHM, BL, Se1, Se2, Mi1, Mi2, Gr2]). Let M , N be two closed aspherical

manifolds of dimension n ≥ 2 with hyperbolic fundamental groups. If M ≥ N ≥M , then M

and N are homotopy equivalent. If, moreover, n 6= 4, then M and N are homeomorphic.

With the above discussion, it is now straightforward that Theorem 1.2 implies the analo-

gous rigidity result for non-virtually trivial mapping Eh. This in particular rediscovers the

(homotopy part of the) case of the corresponding negatively curved 3-manifolds.

Theorem 8.15 (Theorem 1.7). For i = 1, 2, let Ehi be as in Theorem 1.2 such that hi∗
has infinite order in Out(π1(Fi)). If Eh1 ≥ Eh2 ≥ Eh1, then Eh1 and Eh2 are homotopy

equivalent. If, moreover, the Fi are topologically rigid, then Eh1 and Eh2 are homeomorphic.

8.5. The Lichnerowicz problem (quasiregular maps). A uniformly quasiregular map

of a manifold M is a map which is rational with respect to (i.e., preserves) some bounded

measurable conformal structure on M .

The Lichnerowicz conjecture [Li], proved by Lelong-Ferrand [Le], states that the only

compact manifold of dimension n that admits a non-compact conformal automorphism group

is Sn. Lelong-Ferrand’s work suggests moreover the following non-injective version of the

Lichnerowicz conjecture [BHM, p. 1614], [MMP, p. 2092].

Question 8.16 (Lichnerowicz problem). Which compact manifolds admit non-injective uni-

formly quasiregular maps?

Martin, Mayer and Peltonen [MMP] showed that the only manifolds of dimension n which

admit locally (but not globally) injective uniformly quasiregular maps are those quasicon-

formally homeomorphic to the n-dimensional Euclidean space forms. Bridson, Hinkka-

nen and Martin [BHM] exploited results by Walsh [Wals], Smale [Sm], Väisälä [Va] and

Čhernavskĭı [Ce], together with Sela’s work on the Hopf and co-Hopf properties [Se1, Se2],

to show that closed manifolds with non-elementary hyperbolic groups do not admit any

non-trivial quasiregular maps.

Theorem 8.17. (Bridson-Hinkannen-Martin [BHM]). Every quasiregular map of a closed

manifold with non-elementary torsion-free hyperbolic group is a homeomorphism.

We will explain how to combine our results with those by Walsh [Wals], Smale [Sm],

Väisälä [Va] and Čhernavskĭı [Ce] to obtain the analogous theorem to Theorem 8.17 for

manifolds whose fundamental groups fullfil the conditions of Theorem 1.3.

Recall that a map is called open if the image of each open set is open, and proper if the

preimage of each compact set is compact.
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Lemma 8.18 (Walsh [Wals], Smale [Sm]). Let M , N be two finite CW-complexes. If

f : M ! N is a proper, open and surjective map, then f∗(π1(M)) has finite index in π1(N).

Remark 8.19. Lemma 8.18 tells us that the results of our paper apply to open maps between

finite CW-complexes whose fundamental groups satisfy the conditions of Theorem 1.3 and

have trivial center.

Note that the converse to Lemma 8.18 is true for compact connected PL manifolds M

and N [Wals, Cor. 5.15.3]: If f : M ! N satisfies [π1(N) : f∗(π1(N))] < ∞, then f is

homotopic to a light open map, where light means that the preimage of every point is totally

disconnected.

Any quasiregular map is open and discrete, i.e., the preimage of any point consists of

isolated points. In particular, the preimage of any point under a proper quasiregular map

is a finite set. The following theorem was proved independently by Čhernavskĭı [Ce] and

Väisälä [Va].

Theorem 8.20 (Čhernavskĭı, Väisälä). If f : M !M is an open discrete map of a manifold

M of dimension n, then f is a local homeomorphism except for a set Bf whose dimension

is at most n− 2. Furthermore, the dimension of f(Bf ) is at most n− 2.

The set Bf is called the branch set of f . We are now ready to prove Theorem 1.8. We first

state a more general result, not necessarily for closed manifolds; compare [BHM, Theorem

5.1 and Remark 5.2] and [Va, Section 7, Remark].

Theorem 8.21. Let M be a finite CW-complex with fundamental group π1(M) = K oθ Z,

where K is as in Theorem 1.3. If C(π1(M)) = 1, then every proper, open and surjective

map f : M !M induces an automorphism of π1(M).

Proof. By Lemma 8.18, f∗(π1(M)) has finite index in π1(M). Since the order of θ in Out(K)

is infinite, Theorem 1.3 tells us that π1(M) is cofinitely Hopfian, and thus f∗ is an isomor-

phism. �

Corollary 8.22 (Theorem 1.8). Every quasiregular map of a closed manifold M with funda-

mental group π1(M) = KoθZ as in Theorem 1.3, where C(π1(M)) = 1, is a homeomorphism.

Proof. Let f : M !M be a quasiregular map. Then f is proper, open and discrete and thus

finite-to-one (M is closed), thus f∗ is an automorphism of π1(M) by Theorem 8.21. By [HW]

(see also [BHM]), the branch set Bf in Theorem 8.20 does not separate locally M at any

point, thus f restricts to a covering on

M \ f−1(f(Bf )) −!M \ f(Bf ),

and the preimage of each x ∈ M \ f(Bf ) under f contains one point because deg(f) = ±1.

Thus Bf = ∅, the map f is a covering, and hence a homeomorphism. �
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9. Extension to non-aspherical manifolds

The purely algebraic nature of Theorem 1.3, and of the various techniques applied in

different stages of the proof, suggest that variants of the results of this paper generalise to

non-aspherical manifolds. Such an extension was already given in Section 8.5 for open maps

between finite CW-complexes. Below we give two more illustrative classes of groups.

9.1. Connected sums. For s ≥ 2, let the connected sum

M = M1# · · ·#Ms,

where M1, ...,Ms are closed n-dimensional manifolds, such that their fundamental groups

Ki = π1(Mi) are residually finite and χ(π1(M)) 6= 0.

Suppose, for example, that M1 is aspherical with χ(M1) 6= 0, π1(M1) satisfies condition (∗),
and that for i = 2, ..., s each Mi is simply connected. Then π1(M) satisfies all assumptions of

Theorem 1.3 and thus Theorem 1.3 applies to the fundamental group of the non-aspherical

mapping torus Eh of a homeomorphism h : M !M .

9.2. Products. Another example comes from direct products. Let, for instance,

K = Fr1 × · · · × Frs × π1(Σg1)× · · · × π1(Σgt),

where each Fri is free on ri > 1 generators and each Σgj is a closed surface of genus gj ≥ 2.

Then K is residually finite and χ(K) 6= 0. As explained already, the free factors Fri do not

satisfy the conditions of Theorem 1.3, and so the same is true for K.

Let θ : K ! K be an automorphism. By [Ne1], since Fri and π1(Σgj) are Hopfian and

have trivial center, there exists an integer m such that

θm = θm|Fr1 × · · · × θ
m|Frs × θ

m|π1(Σg1 ) × · · · × θm|π1(Σgt )
,

where θm|Fri and θm|π1(Σgj ) denote self-automorphisms. Now we apply Theorem 1.3 to each

θm|π1(Σgj ) and Remark 5.4 (or [BGHM, Theorem B]) to each θm|Fri to deduce that Theorem

1.3 (except for the co-Hopf condition) holds for the mapping torus Γθ = K oθ Z.
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Helv. 52 (1977), 310–314.

[Th1] W. P. Thurston, Three-Dimensional Geometry and Topology, Princeton University Press, 1997.

[Th2] W. P. Thurston, On the geometry and dynamics of diffeomorphisms of surfaces, Bull. Amer. Math.

Soc. (N.S.) 19 (1988), 417–431.

[Th3] W. P. Thurston, A norm for the homology of 3-manifolds, Mem. Amer. Math. Soc. 59 (1986), i–vi

and 99–130.
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