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ABSTRACT. We obtain an ordering of closed aspherical 4-manifolds that carry a non-hyperbolic
Thurston geometry. As application, we derive that the Kodaira dimension of geometric 4-manifolds
is monotone with respect to the existence of maps of non-zero degree.

1. INTRODUCTION

The existence of a map of non-zero degree defines a transitive relation, called domination rela-
tion, on the homotopy types of closed oriented manifolds of the same dimension. Whenever there
is a map of non-zero degree M −→ N we say that M dominates N and write M ≥ N . In general,
the domain of a map of non-zero degree is a more complicated manifold than the target.

Gromov suggested studying the domination relation as defining an ordering of compact oriented
manifolds of a given dimension; see [3, pg. 1]. In dimension two, this relation is a total order
given by the genus. Namely, a surface of genus g dominates another surface of genus h if and only
if g ≥ h. However, the domination relation is not generally an order in higher dimensions, e.g.
S3 and RP3 dominate each other but are not homotopy equivalent. Nevertheless, it can be shown
that the domination relation is a partial order in certain cases. For instance, 1-domination defines a
partial order on the set of closed Hopfian aspherical manifolds of a given dimension (see [18] for 3-
manifolds). Other special cases have been studied by several authors; see for example [3, 1, 2, 25].

Wang [23] obtained an ordering of all closed aspherical 3-manifolds in a reasonable sense, ac-
cording to Thurston’s geometrization picture. We will discuss Wang’s result in Section 2, together
with an extension of that result to non-aspherical 3-manifolds obtained in [11]; cf. Theorem 2.1.
In this paper, our goal is to order in the sense of Wang all non-hyperbolic closed 4-manifolds that
carry a Thurston aspherical geometry:

Theorem 1.1. Consider all closed oriented 4-manifolds that possess a non-hyperbolic aspherical
geometry. If there is an oriented path from a geometry X4 to another geometry Y4 in Figure 1, then
any closed Y4-manifold is dominated by a closed X4-manifold. If there is no oriented path from
X4 to Y4, then no closed X4-manifold dominates a closed Y4-manifold.
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FIGURE 1. Ordering the non-hyperbolic aspherical Thurston geometries in dimension four.

We will not be dealing with the two hyperbolic geometries (real and complex), partially because
some of the results concerning those geometries are well-known and because the domination rela-
tion for those geometries has been studied by other authors; see Section 5.4 for a brief discussion.
Similarly, the non-aspherical geometries are not included in the above theorem. Those geometries
are either products or their representatives are simply connected; see [15, 17] for a discussion.

An important question in topology (see for example [14]) is whether a given numerical in-
variant ι is monotone with respect to the domination relation, that is, whether M ≥ N implies
ι(M) ≥ ι(N). The Kodaira dimension is a significant invariant in the classification scheme of
manifolds; we refer to [12] for a recent survey on the various notions of Kodaira dimension of
low-dimensional manifolds. Zhang [25] defined the Kodaira dimension κt for 3-manifolds and
showed ([25, Theorem 1.1]) that it is monotone with respect to the domination relation; see Theo-
rem 6.1. Moreover, Zhang [25] defined the Kodaira dimension κg for geometric 4-manifolds and
suggested that it should also be monotone with respect to the domination relation (we will give
both definitions of κt and κg in Section 6). In this paper we confirm Zhang’s suggestion:

Theorem 1.2. Let M,N be closed oriented geometric 4-manifolds. If M ≥ N , then κg(M) ≥
κg(N).

Outline. In Section 2 we discuss briefly Wang’s ordering of 3-manifolds. In Section 3 we list
Thurston’s aspherical geometries in dimension four together with some properties of manifolds
modeled on those geometries. In Section 4 we discuss maps between 4-manifolds that are finitely
covered by direct products, extending in particular Wang’s ordering to 4-manifolds that are virtual
products of type N × S1, and in Section 5 we complete the proof of Theorem 1.1. In Section 6 we
discuss the relationship between the domination relation and Kodaira dimensions.
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FIGURE 2. Ordering 3-manifolds by maps of non-zero degree [23, 11].
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2. WANG’S ORDERING IN DIMENSION THREE

2.1. Ordering 3-manifolds. Let M be a closed aspherical 3-manifold that does not possess one
of the six aspherical Thurston geometries. Then there is a finite family of splitting tori so that M
can be cut into pieces, called JSJ pieces (after Jaco-Shalen and Johannson). We call M non-trivial
graph manifold if all the JSJ pieces are Seifert. If there is a non-Seifert JSJ piece, then this piece
must be hyperbolic by Perelman’s proof of Thurston’s geometrization conjecture. In that case, we
call M non-graph manifold.

In [23] Wang suggested an ordering of all closed 3-manifolds. According to Wang’s work and
to the results of [11] we have the following:

Theorem 2.1 (Wang’s ordering [23, 11]). Let the following classes of closed oriented 3-manifolds:

(i) aspherical geometric: modeled on one of the geometries H3, Sol3, S̃L2, H2 × R, Nil3 or
R3;

(ii) aspherical non-geometric: (GRAPH) non-trivial graph or (NGRAPH) non-geometric
irreducible non-graph;

(iii) finitely covered by #p(S
2 × S1), for some p ≥ 01.

If there exists an oriented path from a class X to another class Y in Figure 2, then any representa-
tive in the class Y is dominated by some representative of the class X . If there is no oriented path
from the class X to the class Y , then no manifold in the class Y can be dominated by a manifold
of the class X .

1As explained in [11], these manifolds constitute the class of rationally inessential 3-manifolds, namely closed
oriented 3-manifolds whose classifying map of the universal covering is trivial in rational homology of degree 3.
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The proof of Theorem 2.1 concerning maps between aspherical 3-manifolds is given in Wang’s
paper [23]. Concerning maps from H2 × R-manifolds to S̃L2- or Nil3-manifolds, or when the
target manifold is finitely covered by #p(S

2 × S1) the proof is given in [11]. As pointed out
in [23], some of the non-existence results of the above theorem can be deduced using well-known
tools, such as Gromov’s simplicial volume, Thurston’s norm and the Seifert volume. However, the
proofs in [23] do not rely on this machinery and are given in a uniform elementary way, using only
properties of the fundamental groups and incompressible surfaces of 3-manifolds.

In fact, there is one case which is not explicitly treated neither in [23] nor in [11], namely, that
S2 × S1 admits a non-zero degree map from a Sol3-manifold. Recall that every closed Sol3-
manifold is virtually a mapping torus of T 2 with hyperbolic monodromy [19]. Therefore, a map
for this remaining case can be obtained similarly to the construction given in [11, Prop. 6], where

it was shown that a T 2-bundle over S1 with monodromy

(
1 1

0 1

)
dominates S2 × S1. We only

need to replace the monodromy of the mapping torus of T 2 by a hyperbolic one, for example by(
2 1

1 1

)
; see the proof of [11, Prop. 6] for details.

Furthermore, we note that the restriction p ≤ 1 for the arrows from Sol3, Nil3 and R3 to
#p(S

2 × S1) in Figure 2 is required for the following reasons:

(Sol3) The first Betti number of closed Sol3-manifolds is one and so these manifolds cannot dom-
inate #p(S

2×S1) when p ≥ 2 (recall that a map of non-zero degree induces epimorphisms
in rational homology).

(Nil3) Let M be a closed Nil3-manifold. After passing to a finite covering, if necessary, we
may assume that M is a non-trivial circle bundle over T 2 [19]. Suppose that there is a
continuous map f : M −→ #p(S

2 × S1), where p ≥ 2, such that π1(f)(π1(M)) is a finite
index subgroup of π1(#k(S

2 × S1)) = Fp, i.e. π1(f)(π1(M)) = Fl for some l ≥ p ≥ 2.
The homomorphism π1(f) : π1(M) −→ Fl must factor through π1(T 2) = Z2, because free
groups on more than one generators do not have center, whereasC(π1(M)) = Z. However,
Z2 cannot surject onto such a free group and so f must be of zero degree.

(R3) A flat 3-manifold has fundamental group virtually Z3, which cannot surject onto a free
group on more than one generators.

Remark 2.2. Note that if we restrict to the class of closed oriented aspherical 3-manifolds and
to degree one maps, then the domination relation defines a partial order on those manifolds, be-
cause 3-manifold groups are Hopfian (i.e. every surjective endomorphism is an isomorphism), by
Perelman’s proof of the geometrization conjecture. For further details, we refer to the works of
Wang [23, 24] and Rong [18].

2.2. A remark about #(S2 × S1). In [11], it was shown that a connected sum #p(S
2 × S1) is

dominated by both a non-trivial circle bundle over a closed oriented surface Σp (of genus p), and
by the product Σp × S1. An interesting observation is that the genus p is the smallest possible:
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Type Geometry X4

H3 × R, Sol3 × R,
Product S̃L2 × R, Nil3 × R,

H2 × R2, R4,
H2 ×H2

Solvable Nil4,
non-product Sol4m 6=n, Sol40,

Sol41

Hyperbolic H4, H2(C)

TABLE 1. The 4-dimensional aspherical Thurston geometries with compact representatives.

Lemma 2.3. Let M be a circle bundle over a closed oriented surface Σg. If M ≥ #p(S
2 × S1),

then g ≥ p.

Proof. The interesting cases occur when p ≥ 2. Suppose that f : M −→ #p(S
2 × S1) is a map of

non-zero degree. Then the base surface Σg ofM is aspherical and π1(f)(π1(M)) is a free group on
l ≥ p generators. The infinite cyclic group generated by the circle fiber of M is central in π1(M),
and therefore is mapped trivially in Fl, which means that π1(f) factors through π1(Σg). Since the
degree of f is not zero, we obtain an injective homomorphism

H1(f) : H1(Fl) −→ H1(Σg).

(Note that both H1(Fl) and H1(Σg) are torsion-free.) The cup product of any two elements α1, α2

in H1(Fl) is trivial, because H2(Fl) = 0. By the naturality of the cup product, we have that
H1(f)(α1) ∪ H1(f)(α2) vanishes as well. This implies that l ≤ 1

2
dimH1(Σg) = g, because

otherwise the intersection form of Σg would be degenerate. �

3. THE 4-DIMENSIONAL ASPHERICAL GEOMETRIES

In this section we enumerate Thurston’s aspherical geometries in dimension four and give some
properties that we will need for our proofs.

The 4-dimensional Thurston’s geometries were classified by Filipkiewicz [4]. We list the as-
pherical geometries that are realized by compact manifolds, following Wall’s papers [21] and [22].
This list (Table 1) will be used as an organizing principle for the proof of Theorem 1.1.

Product geometries. Seven of the aspherical geometries are products of lower dimensional ge-
ometries: H3 × R, Sol3 × R, S̃L2 × R, Nil3 × R, H2 × R2, R4 and H2 ×H2.

Closed manifolds possessing a geometry of type X3 × R satisfy the following property:
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Theorem 3.1 ([7, Sections 8.5 and 9.2]). Let X3 be a 3-dimensional aspherical geometry. A closed
4-manifold possessing the geometry X3 ×R is finitely covered by a product N × S1, where N is a
closed oriented 3-manifold carrying the geometry X3.

The geometryH2×H2 can be realized both by manifolds that are virtual products of two closed
hyperbolic surfaces and by manifolds that are not even (virtual) surface bundles. These two types
are known as the reducible and the irreducibleH2×H2 geometry respectively; see [7, Section 9.5]
for further details and characterizations of those geometries.

Solvable non-product geometries. There exist four aspherical non-product geometries of solvable
type. Below, we describe their model Lie groups together with some characterizations of manifolds
modeled on each of those geometries.

The nilpotent Lie group Nil4 is defined as the semi-direct product R3 oR, where R acts on R3

by

t 7→

 1 et 0

0 1 et

0 0 1

 .

A closed Nil4-manifold is characterized by the following:

Proposition 3.2. ([16, Prop. 6.10]). A closed Nil4-manifold M is a virtual circle bundle over a
closed oriented Nil3-manifold and the center of π1(M) remains infinite cyclic in finite covers.

The model spaces for the three non-product solvable – but not nilpotent – geometries are defined
as follows:

Let m and n be positive integers and a > b > c reals such that a + b + c = 0 and ea, eb, ec are
roots of the equation Pm,n(λ) = λ3 − mλ2 + nλ − 1 = 0. If m 6= n, the Lie group Sol4m 6=n is
defined as R3 oR, where R acts on R3 by

t 7→

 eat 0 0

0 ebt 0

0 0 ect

 .

We remark that the case m = n gives b = 0 and corresponds to the product geometry Sol3 × R.
If we require two equal roots of the polynomial Pm,n, then we obtain the model space of the

Sol40 geometry, again defined as R3 oR, where now the action of R on R3 is given by

t 7→

 et 0 0

0 et 0

0 0 e−2t

 .

It was shown in [9] that aspherical manifolds (more generally, rationally essential manifolds)
are not dominated by direct products if their fundamental group is not presentable by products.
A group Γ is not presentable by products if for every homomorphism ϕ : Γ1 × Γ2 −→ Γ with
[Γ : im(ϕ)] < ∞, one of the images ϕ(Γi) is finite. Manifolds modeled on one of the geometries
Sol4m6=n or Sol40 fulfill the latter property:
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Proposition 3.3. ([16, Prop. 6.13]). The fundamental group of a closed 4-manifold possessing one
of the geometries Sol4m 6=n or Sol40 is not presentable by products.

The last solvable model space is an extension of R by the 3-dimensional Heisenberg group

Nil3 =

{ 1 x z

0 1 y

0 0 1

∣∣∣∣ x, y, z ∈ R
}
. Namely, the Lie group Sol41 is defined as the semi-direct

product Nil3 oR, where R acts on Nil3 by

t 7→

 1 e−tx z

0 1 ety

0 0 1

 .

Manifolds modeled on this geometry fulfill the following property:

Proposition 3.4. [16, Prop. 6.15]). A closed Sol41-manifold M is a virtual circle bundle over a
mapping torus of T 2 with hyperbolic monodromy (i.e. over a Sol3-manifold).

Every closed oriented 4-manifold that possesses a solvable non-product geometry is a mapping
torus:

Theorem 3.5 ([7, Sections 8.6 and 8.7]).

(1) A closed Sol40- or Sol4m 6=n-manifold is a mapping torus of a self-homeomorphism of T 3.
(2) A closed oriented Nil4- or Sol41-manifold is a mapping torus of a self-homeomorphism of

a Nil3-manifold.

We note that non-orientable closed Nil4- or Sol41-manifolds are not mapping tori of Nil3-
manifolds [7, Theorem 8.9].

Hyperbolic geometries. There exist two aspherical irreducible symmetric geometries, namely the
real and the complex hyperbolic, denoted by H4 and H2(C) respectively. We will not be dealing
with these geometries in Theorem 1.1; see Section 5.4 for a brief discussion.

A crucial property for our study is that the 4-dimensional geometries are homotopically unique,
by the following result of Wall:

Theorem 3.6 ([22, Theorem 10.1], [8, Prop. 1]). If M and N are homotopy equivalent closed
4-manifolds possessing geometries X4 and Y4 respectively, then X4 = Y4.

In particular, a closed aspherical geometric 4-manifold M is finitely covered by a closed X4-
manifold if and only if it possesses the geometry X4.

4. 4-MANIFOLDS COVERED BY PRODUCTS

In this section we deal with maps between closed 4-manifolds that are virtually direct products.
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4.1. Non-existence stability between products. We first recall from [17, 10] some general results
about maps between direct products.

Following the discussion of Section 2, a natural question is whether one can extend Wang’s
ordering given by Theorem 2.1 to 4-manifolds that are finitely covered by N × S1, where N is
a 3-manifold as in Theorem 2.1. The non-trivial problem is to extend the non-existence results
of Wang’s ordering. A priori, it is not clear whether M � N implies M × S1 � N × S1.
More generally, a natural question is whether M � N is stable under taking direct products, that
is, whether M � N implies M × W � N × W for every manifold W . This question has its
own independent interest, because, for example, our current understanding of the multiplicativity
of functorial semi-norms (such as the simplicial volume) under taking products is not sufficient
enough to provide answers to this kind of problems, even when a semi-norm remains non-zero
under taking products.

The following result gives a sufficient condition for non-domination stability under taking direct
products:

Theorem 4.1 ([10, 17]). Let M , N be closed oriented n-dimensional manifolds such that N is not
dominated by products and W be a closed oriented manifold of dimension m. Then, M ≥ N if
and only if M ×W ≥ N ×W .

The proof of the above statement is based on the celebrated realization theorem of Thom [20];
see [10, 17] for details. In the same spirit, we obtain the following:

Proposition 4.2 ([10, 17]). Let M , W and N be closed oriented manifolds of dimensions m,
k and n respectively such that m, k < n < m + k. If N is not dominated by products, then
M ×W ≥ N × V for no closed oriented manifold V of dimension m+ k − n.

4.2. Targets that are virtual products with a circle factor. Now we apply Theorem 4.1 to closed
4-manifolds that are finitely covered by products of typeN×S1. The main result of this subsection
extends the ordering of Theorem 2.1 as follows:

Theorem 4.3. Let X be one of the three classes (i)− (iii) of Theorem 2.1. We say that a closed
4-manifold belongs to the class X × R if it is finitely covered by a product N × S1, where N is a
closed 3-manifold in the class X .

If there exists an oriented path from the class X to the class Y in Figure 2, then any closed 4-
manifold in the class Y ×R is dominated by a manifold of the class X ×R. If there is no oriented
path from the class X to the class Y , then no manifold in the class Y × R can be dominated by a
manifold of the class X × R.

Proof of existence. The existence part follows easily by the corresponding existence results for
maps between 3-manifolds given in Theorem 2.1. Namely, let Z be a closed 4-manifold in the
class Y ×R and suppose that there is an arrow from X to Y in Figure 2. By definition, Z is finitely
covered by a product N × S1 for some closed 3-manifold N in the class Y . By Theorem 2.1,
there is a closed 3-manifold M in the class X and a map of non-zero degree f : M −→ N . Then
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f × idS1 : M × S1 −→ N × S1 has degree deg(f) and the product M × S1 belongs to the class
X × R.

Proof of non-existence. We now prove the non-existence part of Theorem 4.3. Obviously, there
is no 4-manifold in the class (#pS

2 × S1) × R that can dominate a manifold of the other classes.
Thus, the interesting cases are when both the domain and the target are aspherical.

We first deal with targets whose 3-manifold factorN in their finite coverN×S1 is not dominated
by products.

Proposition 4.4. Let W and Z be two closed oriented 4-manifolds. Suppose that

(1) W is dominated by products, and
(2) Z is finitely covered by a product N × S1, where N is a closed oriented 3-manifold which

is not dominated by products.

If W ≥ Z, then there exists a closed oriented 4-manifold M × S1 so that M × S1 ≥ W and
M ≥ N . In particular, M cannot be dominated by products.

Proof. Assume that f : W −→ Z is a map of non-zero degree and p : N × S1 −→ Z is a finite
covering of Z, where N is a closed oriented 3-manifold that is not dominated by products. The
intersection

H := im(π1(p)) ∩ im(π1(f))

is a finite index subgroup of im(π1(f)) and its preimage G := π1(f)−1(H) is a finite index
subgroup of π1(W ). Let p′ : W −→ W be the finite covering of W corresponding to G and
f̄ : W −→ N × S1 be the lift of f ◦ p′.

By assumption, there is a non-trivial product P and a dominant map g : P −→ W . Thus, we
obtain a non-zero degree map f̄ ◦ g : P −→ N ×S1. Now, since P is a 4-manifold, there exist two
possibilities: Either P = M × S1, for a closed oriented 3-manifold M or P = Σg ×Σh, where Σg

and Σh are closed oriented hyperbolic surfaces of genus g and h respectively. The latter possibility
is excluded by Proposition 4.2, because N is not dominated by products. Thus P = M × S1, and
so we obtain a non-zero degree map M × S1 −→ N × S1. Then M ≥ N by Theorem 4.1, again
because N is not dominated by products. Clearly, M cannot be dominated by products. �

Corollary 4.5. If Y 6= H2 × R or R3, then the non-existence part of Theorem 4.3 holds true for
every aspherical target in a class Y × R.

Proof. By [11, Theorem 4], the only closed aspherical 3-manifolds that are dominated by products
are those carrying one of the geometries H2 × R or R3. The corollary now follows by Proposition
4.4 and the non-existence result in dimension three given by Theorem 2.1. �

In terms of 4-dimensional geometries of type X3 × R we obtain the following straightforward
consequence:

Corollary 4.6. Suppose thatW andZ are closed oriented aspherical 4-manifolds carrying product
geometries X3×R and Y3×R respectively. Assume that Y3 is not H2×R or R3. If W ≥ Z, then
every closed Y3-manifold is dominated by a closed X3-manifold.
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In order to complete the proof of Theorem 4.3, we need to show that closed manifolds which
belong to the classesH2×R2 or R4 are not dominated by closed manifolds of the classes Sol3×R,
S̃L2 × R or Nil3 × R.

Since the first Betti numbers of closed Sol3 × R-manifolds are at most two, and of closed
Nil3 × R-manifolds at most three, such manifolds cannot dominate closed manifolds possessing
one of the geometries H2 × R2 or R4.

Finally, we deal with the S̃L2 × R geometry:

Lemma 4.7. There is no closed oriented S̃L2 × R-manifold that can dominate a closed oriented
manifold possessing one of the geometries H2 × R2 or R4.

Proof. Every closed R4-manifold is finitely covered by T 4 and, therefore, is virtually dominated
by every closed H2 × R2-manifold. Thus, it suffices to show that T 4 cannot be dominated by a
productM×S1, whereM is a closed S̃L2-manifold. After passing to a finite cover, we can assume
that M is a non-trivial circle bundle over a hyperbolic surface Σ [19].

Suppose that f : M ×S1 −→ T 4 is a continuous map. The product M ×S1 carries the structure
of a non-trivial circle bundle over Σ × S1, by multiplying by S1 both the total space M and the
base surface Σ of the circle bundle M −→ Σ. The S1-fiber of the circle bundle

S1 −→M × S1 −→ Σ× S1

has finite order in H1(M × S1), being also the fiber of M . Therefore, its image under H1(f) has
finite order in H1(T

4). Now, since H1(T
4) is isomorphic to π1(T 4) ∼= Z4, we deduce that π1(f)

maps the fiber of the circle bundle M × S1 −→ Σ× S1 to the trivial element in π1(T 4). The latter
implies that f factors through the base Σ×S1, because the total spaceM×S1, the base Σ×S1 and
the target T 4 are all aspherical. This finally means that the degree of f must be zero, completing
the proof. �

We have now finished the proof of Theorem 4.3.

4.3. Virtual products of two hyperbolic surfaces. We close this section by examining manifolds
that are finitely covered by a product of two closed hyperbolic surfaces, i.e. closed reducible
H2 ×H2-manifolds.

Reducible H2 × H2-manifolds as domains. It is clear that every closed 4-manifold with geometry
modeled on H2 × R2 or R4 is dominated by a product of two hyperbolic surfaces. This implies
moreover that every target in the class #p(S

2 × S1) × R is dominated by such a product (by
Theorem 2.1). However, as we have seen in the proof of Proposition 4.4 (see also Proposition 4.2),
closed aspherical 4-manifolds that are virtual products N × S1, where N does not belong to one
of the classes H2 × R or R3, cannot be dominated by reducible H2 ×H2-manifolds.

Reducible H2 ×H2-manifolds as targets. We claim that there is no manifold in the classes X ×R
which can dominate a product of two closed hyperbolic surfaces. This is obvious when X =

#p(S
2 × S1). When X is a class of aspherical 3-manifolds, then the technique of factorizing



ORDERING THURSTON’S GEOMETRIES BY MAPS OF NON-ZERO DEGREE 11

dominant maps applies: The fundamental group of a product M × S1 has center at least infinite
cyclic, whereas the center of the fundamental group of a product of two hyperbolic surfaces Σg×Σh

is trivial. Therefore, every (π1-surjective) map f : M × S1 −→ Σg × Σh kills the homotopy class
of the S1 factor of M × S1, and so it factors through an aspherical manifold of dimension at most
three, because both M ×S1 and Σg ×Σh are aspherical. This means that H4(f)([M ×S1]) = 0 ∈
H4(Σg × Σh), implying that the degree of f is zero.

Remark 4.8. Since Σg and Σh are hyperbolic, the conclusion that M ×S1 � Σg×Σh is straighfor-
ward, because M×S1 has vanishing simplicial volume, whereas the simplicial volume of Σg×Σh

is positive. However, we prefer to give more elementary and uniform arguments for the proof of
Theorem 1.1, following simultaneously our methodology.

5. ORDERING THE NON-HYPERBOLIC GEOMETRIES

In this section we finish the proof of Theorem 1.1.
The proof for the right-hand side of the diagram in Figure 1, concerning maps between geometric

aspherical 4-manifolds that are virtual products, was obtained in the previous section.
We now deal with the remaining geometries and complete the proof of Theorem 1.1. The claim

indicated in Figure 1 is that each of the geometries Nil4, Sol40, Sol4m 6=n, Sol41 and the irreducible
geometry H2 × H2 is not comparable with any other (non-hyperbolic) geometry under the domi-
nation relation.

5.1. Non-product solvable geometries. We begin by showing that there are no maps of non-
zero degree between any two closed manifolds possessing a different geometry among Nil4, Sol40,
Sol4m6=n and Sol41.

First, we show that there are no maps of non-zero degree between closed Nil4-manifolds and
Sol41-manifolds. We need the following lemma:

Lemma 5.1. For i = 1, 2 let Mi
pi−→ Bi be circle bundles over closed oriented aspherical man-

ifolds Bi of the same dimension, so that the center of each π1(Mi) remains infinite cyclic in finite
covers. If B1 � B2, then M1 �M2.

Proof. Suppose that f : M1 −→M2 is a map of non-zero degree. After passing to finite coverings,
if necessary, we may assume that f is π1-surjective and that the center of each π1(Mi) is infinite
cyclic. Let p2 ◦ f : M1 −→ B2. The induced homomorphism π1(p2 ◦ f) maps the infinite cyclic
group generated by the circle fiber of M1 trivially in π1(B2). This implies that p2 ◦ f factors
through the bundle projection p1 : M1 −→ B1 (recall that B2 is aspherical). In particular, there is
a continuous map g : B1 −→ B2, so that p2 ◦ f = g ◦ p1 (in homotopy). Now f factors through
the pullback of M2

p2−→ B2 under g, which means that the degree of f is a multiple of deg(g).
However, the degree of g is zero by our hypothesis that B1 � B2, and so deg(f) = 0. This
contradiction finishes the proof. �

Closed Nil4-manifolds and Sol41-manifolds are virtual circle bundles over Nil3-manifolds and
Sol3-manifolds respectively, and the center of their fundamental groups remains infinite cyclic in
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finite covers; cf. Prop. 3.2 and 3.4 respectively. Since there are no maps of non-zero degree
between closed Sol3-manifolds and Nil3-manifolds (cf. Theorem 2.1), Lemma 5.1 implies the
following:

Proposition 5.2. Closed oriented Nil4-manifolds are not comparable under ≥ with closed ori-
ented Sol41-manifolds.

Next, we show that there are no dominant maps between closed Sol40-manifolds and Sol4m6=n-
manifolds. Recall that a closed manifold modeled on Sol40 or Sol4m6=n is a mapping torus of T 3

(Theorem 3.5 (1)). Moreover, the eigenvalues of the automorphism of Z3 induced by the mon-
odromy of T 3 are not roots of unity; cf. [7, pg. 164/165].

In the following proposition we show that every non-zero degree map between such mapping
tori is π1-injective:

Proposition 5.3. Let M and N be closed manifolds that are finitely covered by mapping tori of
self-homeomorphisms of T n so that no eigenvalue of the induced automorphisms of Zn is a root of
unity. If f : M −→ N is a non-zero degree map, then f is π1-injective.

Proof. Since we want to show that f : M −→ N is π1-injective, we may write

π1(M) = π1(T
n)oθM 〈t〉,

where π1(T n) = Zn = 〈x1, ..., xn| [xi, xj] = 1〉 and the automorphism θM : Zn −→ Zn is induced
by the action of 〈t〉 on Zn, given by

txit
−1 = xk1i1 · · ·xkni

n , for all i = 1, ..., n.

(That is, the matrix of the automorphism θM is given by (kij), i, j ∈ {1, ..., n}.) We observe that
txit

−1 6= xj , for all i, j ∈ {1, ..., n}, because no eigenvalue of θM is a root of unity.
The image f∗(π1(M)) of the induced homomorphism f∗ : π1(M) −→ π1(N) is a finite in-

dex subgroup of π1(N), generated by f∗(x1), ..., f∗(xn), f∗(t). Also, the relations [xi, xj] = 1

and txit
−1 = xk1i1 · · ·xkni

n in π1(M) give the corresponding relations [f∗(xi), f∗(xj)] = 1 and
f∗(t)f∗(xi)f∗(t)

−1 = f∗(x1)
k1i · · · f∗(xn)kni in f∗(π1(M)).

Since π1(N) (and therefore f∗(π1(M))) is torsion-free and (virtually) a semi-direct product
Zn o Z, where the eigenvalues of the induced automorphism of Zn are not roots of unity, we
conclude that there no other relations between the generators f∗(x1), ..., f∗(xn), f∗(t) and that
f∗(t)f∗(xi)f∗(t)

−1 6= f∗(xj), for all i, j ∈ {1, ..., n}. Therefore, f∗(π1(M)) has a presentation

f∗(π1(M)) = 〈f∗(x1), ..., f∗(xn), f∗(t)| [f∗(xi), f∗(xj)] = 1,

f∗(t)f∗(xi)f∗(t)
−1 = f∗(x1)

k1i · · · f∗(xn)kni〉
= 〈f∗(x1), ..., f∗(xn)〉o 〈f∗(t)〉.

In particular, f∗|π1(Tn) surjects onto π1(T
n) ∼= 〈f∗(x1), ..., f∗(xn)〉 ⊂ f∗(π1(M)). Since Zn is

Hopfian, we deduce that f∗|π1(Tn) is injective.
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Finally, we observe that f∗(tk) /∈ 〈f∗(x1), ..., f∗(xn)〉 for all non-zero integers k, otherwise the
finite index subgroup 〈f∗(x1), ..., f∗(xn)〉 o 〈f∗(tk)〉 ⊂ π1(N) would be isomorphic to Zn, which
is impossible. This completes the proof. �

Since the 4-dimensional geometries are homotopically unique (cf. Theorem 3.6), we deduce the
following:

Corollary 5.4. Any two closed oriented manifolds M and N possessing the geometries Sol4m6=n
and Sol40 respectively are not comparable under ≥.

Now, we show that closed Sol41-manifolds are not comparable with closed manifolds possessing
one of the geometries Sol4m 6=n or Sol40.

Proposition 5.5. Closed oriented manifolds possessing the geometry Sol41 are not dominated by
closed oriented Sol4m 6=n- or Sol40-manifolds. Conversely, closed oriented Sol41-manifolds cannot
dominate closed oriented manifolds with geometries modeled on Sol4m6=n or Sol40.

Proof. Let Z be a closed oriented Sol41-manifold. By Theorem 3.5 (2), Z is a mapping torus of
a self-homeomorphism of a closed Nil3-manifold N . However, Z is not a mapping torus of a
self-homeomorphism of T 3; cf. [7, Section 8.6].

Suppose that there is a non-zero degree map f : W −→ Z, where W is a closed oriented
Sol4m6=n- or Sol40-manifold. By Theorem 3.5 (1), W is a mapping torus of a self-homeomorphism
of T 3 and π1(W ) = Z3 oθW Z = 〈x1, x2, x3〉 oθW 〈t〉, where θW is the automorphism of Z3 in-
duced by the action by conjugation by t. Now f∗(π1(W )) has finite index in π1(Z) and 〈f∗(t)〉 acts
by conjugation (by f∗(t)) on 〈f∗(x1), f∗(x2), f∗(x3)〉, that is f∗(π1(W )) is a semi-direct product
〈f∗(x1), f∗(x2), f∗(x3)〉o 〈f∗(t)〉 (recall also that our groups are torsion-free). However, the gen-
erators f∗(x1), f∗(x2), f∗(x3) commute with each other, contradicting the fact that π1(Z) cannot
be (virtually) Z3 o Z. Therefore W � Z.

For the converse, we have that a closed Sol41-manifold Z is finitely covered by a non-trivial
circle bundle over a closed oriented Sol3-manifold and the center of π1(Z) is infinite cyclic (Prop.
3.4). Moreover, the fundamental group of every closed Sol4m 6=n- or Sol40-manifold W is not pre-
sentable by products (Prop. 3.3). In particular, every finite index subgroup of π1(W ) has trivial
center, because W is aspherical. Using the asphericity of our geometries and applying a standard
factorization argument we derive that Z � W , because a dominant map Z −→ W would factor
through the base (Sol3-manifold) of the domain. �

Finally, it has remained to show that there are no dominant maps between closedNil4-manifolds
and closed manifolds possessing one of the geometries Sol4m 6=n or Sol40.

Proposition 5.6. Closed oriented Nil4-manifolds are not comparable under the domination rela-
tion with closed oriented manifolds carrying one of the geometries Sol4m 6=n or Sol40.

Proof. A closed orientedNil4-manifold cannot be dominated by closed Sol4m6=n- or Sol40-manifolds,
because the latter have first Betti number one, whereas closed Nil4-manifolds have virtual first
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Betti number two; see [16, Section 6.3.3] for presentations of the fundamental groups of the above
manifolds.

Conversely, let M be a closed Nil4-manifold. By Prop. 3.2, M is virtually a non-trivial cir-
cle bundle over a closed oriented Nil3-manifold and C(π1(M)) remains infinite cyclic in finite
covers. As before, since the fundamental group of every closed Sol4m 6=n- or Sol40-manifold N is
not presentable by products (Prop. 3.3), and in particular has trivial center, we deduce that ev-
ery (π1-surjective) map M

f−→ N factors through the base manifold of the domain (which is a
Nil3-manifold). This implies that deg(f) = 0 and so M � N . �

5.2. Non-product solvable manifolds vs virtual products. Next, we show that there are no
maps of non-zero degree between a closed manifold possessing one of the geometries Nil4, Sol40,
Sol4m6=n or Sol41 and a closed manifold carrying a product geometryX3×R or the reducibleH2×H2

geometry.
Using the property “not (infinite-index) presentable by products”, the following result is an

application in [16]:

Theorem 5.7. ([16, Theorem F]). A closed oriented aspherical geometric 4-manifold M is dom-
inated by a non-trivial product if and only if it is finitely covered by a product. Equivalently, M
carries one of the product geometries X3 × R or the reducible H2 ×H2 geometry.

Thus closed 4-manifolds possessing a non-product solvable geometry are not dominated by
products. We therefore only need to show the converse, namely, that solvable manifolds do not
dominate manifolds modeled on one of the geometries X3×R or the reducibleH2×H2 geometry.
First, we deal with nilpotent domains.

Proposition 5.8. A closed oriented Nil4-manifold does not dominate any closed manifold pos-
sessing a geometry X3 × R or the reducible H2 ×H2 geometry.

Proof. LetW be a closed orientedNil4-manifold. The Abelianization of π1(W ) shows thatW has
virtual first Betti number at most two (cf. Prop. 3.2), and therefore it cannot dominate any closed
manifold carrying one of the geometries R4, H2 ×R2, the reducible H2 ×H2 geometry, S̃L2 ×R,
Nil3 × R or H3 × R. (The proof for the H3 × R geometry follows by the establishment of the
virtual Haken conjecture by Agol. Nevertheless, we do not actually need to appeal to this deep
result because the argument below for the Sol3×R geometry applies as well for targets possessing
the geometry H3 × R.)

Next, we show that W does not dominate closed Sol3 × R-manifolds. Suppose, for contrast,
that there is a non-zero degree map f : W −→ Z, where Z is a closed 4-manifold possessing the
geometry Sol3 × R. After passing to finite coverings, if necessary, we may assume that f is π1-
surjective, W is a non-trivial circle bundle over a closed oriented Nil3-manifold M (cf. Prop. 3.2)
and Z = N × S1, where N is a closed oriented Sol3-manifold (cf. Theorem 3.1). If p1 : Z −→ N

denotes the projection to N , then π1(p1 ◦ f) : π1(W ) −→ π1(N) kills the S1-fiber of W , because
the fundamental group ofN has trivial center [19]. Since our spaces are aspherical, we deduce that
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p1 ◦ f factors through the bundle map W
p−→ M . However, H2(p;Q) is the zero homomorphism

because W
p−→M is a non-trivial circle bundle. This contradicts the fact that H2(p1 ◦ f ;Q) is not

trivial, and therefore W � Z. (Alternatively, the result follows by Lemma 5.1, because M � N

according to Theorem 2.1.) �

Finally, the proof of the following statement is straightforward, because the first Betti number
of every closed Sol40-, Sol4m6=n- or Sol41-manifold is one (by the corresponding presentation of their
fundamental group; cf. [7, Sections 8.6 and 8.7] and [16, Section 6]), and therefore the second
Betti number of those manifolds is zero (recall that the Euler characteristic of those manifolds is
zero because they are virtual mapping tori).

Proposition 5.9. A closed oriented manifold possessing one of the geometries Sol40, Sol4m 6=n or
Sol41 cannot dominate a closed manifold carrying a geometry X3 × R or the reducible H2 × H2

geometry.

5.3. The irreducible H2 × H2 geometry. We finally deal with irreducible closed H2 × H2-
manifolds. We show that they cannot be compared under ≥ with any other closed manifold pos-
sessing a non-hyperbolic aspherical geometry.

Let M be a closed oriented irreducible H2 × H2-manifold. Suppose that f : M −→ N is a
map of non-zero degree, where N is a closed aspherical manifold not possessing the irreducible
H2 × H2 geometry. As usual, we can assume that f is a π1-surjective map, after possibly passing
to a finite cover. Then we obtain a short exact sequence

1 −→ ker(π1(f)) −→ π1(M)
π1(f)−→ π1(N) −→ 1.

By a theorem of Margulis [13, Theorem IX.6.14], the kernel ker(π1(f)) must be trivial, meaning
that π1(f) is an isomorphism. Since M and N are aspherical, we deduce that M is homotopy
equivalent to N , which contradicts Theorem 3.6. Therefore M � N .

We now show that M cannot be dominated by any other (non-hyperbolic) geometric closed
aspherical 4-manifold N . Since M is not dominated by products, it suffices to show that M cannot
be dominated by a closed manifold N possessing one of the geometries Sol41, Nil4, Sol4m6=n or
Sol40. For each of those geometries, π1(N) has a normal subgroup of infinite index, which is free
Abelian of rank one (geometries Sol41 and Nil4) or three (geometries Sol4m6=n and Sol40); see [16,
Section 6] for details. If there were a (π1-surjective) map of non-zero degree f : N −→ M , then
by [13, Theorem IX.6.14] either f would factor through a lower dimensional aspherical manifold
or π1(M) would be free Abelian of finite rank. The latter cases cannot occur and so N �M .

We have now shown the following:

Proposition 5.10. Closed irreducibleH2×H2-manifolds are not comparable under≥ with closed
non-hyperbolic 4-manifolds possessing a different aspherical geometry.

This finishes the proof of Theorem 1.1.
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5.4. A remark about hyperbolic 4-manifolds. Using mostly standard properties of the funda-
mental group or the obstruction “fundamental group not presentable by products”, it is easy to
see that closed hyperbolic 4-manifolds (real and complex) are not dominated by geometric non-
hyperbolic ones. Gaifullin [5] proved that there exist real hyperbolic closed 4-manifolds that vir-
tually dominate all closed 4-manifolds. Finally, complex hyperbolic 4-manifolds cannot dominate
real hyperbolic ones; see [3] and the related references given there.

6. THE DOMINATION RELATION AND KODAIRA DIMENSIONS

In this section we investigate the monotonicity of Kodaira dimensions of low-dimensional man-
ifolds with respect to the existence of maps of non-zero degree.

The Kodaira dimension κt of a closed oriented surface Σg of genus g is defined by

κt(Σg) =


−∞, if g = 0

0, if g = 1

1, if 9 ≥ 2.

Thus κt is indeed monotone with respect to the domination relation in dimension two: If Σg ≥ Σh,
then κt(Σg) ≥ κt(Σh).

Zhang [25] defined the Kodaira dimension of 3-manifolds as follows: Divide the eight 3-
dimensional Thurston geometries into four categories assigning a value to each category:

−∞ : S3, S2 × R
0 : R3, Nil3, Sol3

1 : H2 × R, S̃L2
3
2

: H3.
Let M be a closed oriented 3-manifold. Consider first the Kneser-Milnor prime decomposition of
M and then a toroidal decomposition for each prime summand of M , such that at the end each
piece carries one of the eight geometries with finite volume. We call this a T -decomposition of M .
The Kodaira dimension of M is then defined as follows:

Definition 6.1. ([25]). The Kodaira dimension κt of a closed oriented 3-manifold M is

(1) κt(M) = −∞, if for any T -decomposition each piece belongs to the category −∞;
(2) κt(M) = 0, if for any T -decomposition there is at least one piece in the category 0, but no

pieces in the category 1 or 3
2
;

(3) κt(M) = 1, if for any T -decomposition there is at least one piece in the category 1, but no
pieces in the category 3

2
;

(4) κt(M) = 3
2
, if for any T -decomposition there is at least one hyperbolic piece.

The following result of Zhang states that the Kodaira dimension of 3-manifolds is monotone
with respect to the domination relation. We give a proof for the convenience of the reader.

Theorem 6.1. ([25, Theorem 1.1]). Let M,N be closed oriented 3-manifolds. If M ≥ N , then
κt(M) ≥ κt(N).
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Proof. We will show that, if κt(M) < κt(N), then M � N . Recall that if M ≥ N1#N2, then
M ≥ Ni because N1#N2 ≥ Ni by pinching the summand Nj 6= Ni to a point. (Note that the
pinch map N1#N2 −→ Ni is π1-surjective.) So we can assume that the target N is prime and
belongs to the category (among (1)–(4)) with the highest Kodaira dimension, according to which
category our initial target (which is a connected sum containing N ) belongs.

First, if M possesses a Thurston geometry, then the claim is an immediate consequence of
Theorem 2.1.

Next, suppose M is not prime. If M belongs to category (1), then clearly it does not dominate
any prime manifold in categories (2)–(4) because those manifolds are aspherical (see also Theorem
2.1). If M belongs to category (3), then it does not dominate any prime manifold in category
(4), because manifolds with hyperbolic pieces have positive simplicial volume [6], whereas every
manifold in category (3) has zero simplicial volume (recall that the simplicial volume is additive
for connected sums of manifolds of dimension at least three; cf [6]).

Finally, suppose M belongs to category (2). By the same argument as above (using simplicial
volume), M does not dominate any manifold in category (4). Let now the target N be in category
(3). We can assume thatN (or each toroidal piece ofN ) is a circle bundle over a hyperbolic surface
(or orbifold) Σ. Suppose M dominates N . Then, after possibly passing to finite covers, there is
a surjection π1(M) � π1(Σ). However this is impossible because π1(M) is a free product of
(virtually) solvable groups. �

In dimension four, Zhang defined the Kodaira dimension κg for geometric manifolds:

Definition 6.2. ([25]). The Kodaira dimension κg of a closed oriented geometric 4-manifold M is

(1) κg(M) = −∞, if M is modeled on one of the geometries S4, CP2, S3 × R, S2 × S2,
S2 × R2, S2 ×H2, Sol40 or Sol41;

(2) κg(M) = 0, if M is modeled on one of the geometries R4, Nil4, Nil3 × R, Sol4m 6=n or
Sol3 × R;

(3) κg(M) = 1, if M is modeled on one of the geometries H2 × R2, S̃L2 × R or H3 × R;
(4) κg(M) = 2, if M is modeled on one of the geometries H2(C), H2 ×H2 or H4.

An application of Theorem 1.1 is that the Kodaira dimension of geometric 4-manifolds is also
monotone with respect to the domination relation, as conjectured in [25]:

Theorem 6.2. (Theorem 1.2). Let M,N be closed oriented geometric 4-manifolds. If M ≥ N ,
then κg(M) ≥ κg(N).

Proof. It is clear that manifolds possessing a non-aspherical geometry do not dominate aspheri-
cal manifolds. The proof for the non-hyperbolic aspherical geometries follows by Theorem 1.1.
Finally, we refer to Section 5.4 for the hyperbolic geometries. �
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