
VIRTUAL BETTI NUMBERS OF MAPPING TORI OF 3-MANIFOLDS

CHRISTOFOROS NEOFYTIDIS

ABSTRACT. Given a reducible 3-manifold M with an aspherical summand in its prime decomposi-
tion and a homeomorphism f : M → M , we construct a map of degree one from a finite cover of
M of S

1 to a mapping torus of a certain aspherical 3-manifold. We deduce that M of S
1 has virtu-

ally infinite first Betti number, except when all aspherical summands of M are virtual T 2-bundles.
This verifies all cases of a conjecture of T.-J. Li and Y. Ni, that any mapping torus of a reducible
3-manifold M not covered by S2 × S1 has virtually infinite first Betti number, except when M is
virtually (#nT

2 o S1)#(#mS
2 × S1). Li-Ni’s conjecture was recently confirmed by Ni with a

group theoretic result, namely, by showing that there exists a π1-surjection from a finite cover of any
mapping torus of a reducible 3-manifold to a certain mapping torus of #mS

2 × S1 and using the
fact that free-by-cyclic groups are large when the free group is generated by more than one element.

1. INTRODUCTION

The virtual first Betti number of a manifold M is defined to be

vb1(M) = sup{b1(M) |M is a finite cover of M}

(where b1 denotes the first Betti number) and takes values in N0∪{∞}. This notion arises naturally
in geometric topology and it is often difficult to compute. A recent prominent example is given
by the resolution of the Virtual Haken Conjecture [1] which implies that vb1 = ∞ for hyperbolic
3-manifolds, and therefore completes the picture for the values of vb1 in dimension three. Li and
Ni [10] used this picture to compute vb1 for mapping tori of prime 3-manifolds:

Theorem 1.1. ([10, Theorem 1.2]). Let X = M of S
1 be a mapping torus of a closed prime

3-manifold M . Then vb1(X) is given as follows:

(1) If M is a spherical manifold, then vb1(X) = 1;
(2) If M is S1 × S2 or finitely covered by T 2 o S1, then vb1(X) ≤ 4;
(3) In all other cases, vb1(X) =∞.

When the fiber M is reducible, then the monodromy f of the mapping torus M of S
1 is in

general more complicated than when M is irreducible; see [11, 14, 12]. Li and Ni conjectured that
almost always vb1(M of S

1) =∞ when M is reducible:

Conjecture 1.2. ([10, Conjecture 5.1]). If M is a closed oriented reducible 3-manifold, then
vb1(M of S

1) =∞, unless M is finitely covered by S2 × S1.
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As pointed out in [10, Lemma 5.4] (see Lemma 2.2), ifM is a closed reducible 3-manifold which
is not covered by S2×S1, thenM is finitely covered by a connected sumM ′#(S2×S1)#(S2×S1),
for some closed 3-manifold M ′. Since free-by-cyclic groups are large whenever the free group is
generated by more than one element (cf. [15, 7, 5]), we deduce that

vb1((#mS
2 × S1)of S

1) =∞ for m ≥ 2.

Thus, when M contains an aspherical summand in its prime decomposition, and not only sum-
mands covered by mapping tori of T 2, Conjecture 1.2 follows by the following result:

Theorem 1.3. Let M be a closed oriented reducible 3-manifold that contains at least one aspher-
ical summand in its prime decomposition. For any mapping torus M of S

1, there is a finite cover
M of M containing an aspherical summand M1 in its prime decomposition and a degree one map

M ofk S
1 −→M1 oh S

1,

for some k ≥ 1 and some homeomorphism h : M1 −→M1.

Recently, Ni [13] verified Conjecture 1.2 by showing that there exists a surjection from the
fundamental group of a mapping torus of a finite cover ofM to the fundamental group of a mapping
torus of a connected sum #mS

2×S1, m ≥ 2, and making use of the fact that free-by-cyclic groups
with at least three generators are large. Our result is in a sense both stronger and weaker than Ni’s
result. It is stronger, on the one hand, because it comes with a construction of a map of non-
zero degree, instead of just a π1-surjection as in [13]. Indeed, it is likely that there is even a
degree one map from a mapping torus of a finite covering of M to a mapping torus of a connected
sum #mS

2 × S1; see [13, p. 1592]. However, the map we construct here makes essential use
of the asphericity of the summand M1 and therefore our method cannot be extended to the case
where no aspherical summand exists in the prime decomposition of M . On the other hand, the
π1-surjection obtained by Ni covers as well the case where the aspherical summands of M are
only virtual mapping tori of T 2. Therefore, it is natural to ask whether one can find a topological
proof of Conjecture 1.2 for connected sums of type (#nT

2 o S1)#(#mS
2 × S1). Also, it would

be interesting to find a purely group theoretic proof that for every reducible 3-manifold M that is
not finitely covered by S2 × S1, any π1(M)-by-cyclic group is large.

Outline. In Section 2 we give some facts about finite coverings of mapping tori and in Section
3 we recall the description of self-homeomorphisms of closed reducible 3-manifolds. The main
body of the proof of Theorem 1.3 is given in Sections 4 and 5. Finally, we discuss Conjecture 1.2
in Section 6.
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IHÉS for providing a stimulating working environment, and especially Misha Gromov and Fanny
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2. PRELIMINARIES

We begin our discussion by gathering some well-known facts needed for our proofs.

Let M be a closed oriented reducible 3-manifold. By the Kneser-Milnor theorem [8], M can be
decomposed as a connected sum

M =M1# · · ·#Mn#(#mS
2 × S1)#(#s

p=1S
3/Qp),

where each Mi is aspherical and S3/Qp are spherical quotients with fundamental groups the finite
groups Qp.

The following lemmas give some precise descriptions of finite covers of M and can be found
in [9, pp. 23-24] and [10, Lemma 5.4] respectively:

Lemma 2.1. If n = 0 and M 6= RP 3#RP 3 or S2×S1, then M is finitely covered by #m′S
2×S1,

for some m′ ≥ 2.

Proof. Let the projection

ϕ : π1(M) −→ Q1 × · · · ×Qs

of the free product π1(M) = Fm ∗ Q1 ∗ · · · ∗ Qs to the direct product
∏s

p=1Qp. By the Kurosh
subgroup theorem, the kernel of ϕ is a free group, say Fm′ , where m′ ≥ 2. Since moreover ker(ϕ)
has finite index in π1(M), Grushko’s theorem implies that M is finitely covered by the connected
sum #m′S

2 × S1. �

Lemma 2.2. If n ≥ 1, then M is finitely covered by M ′#(#m′S
2 × S1), where M ′ is a connected

sum of aspherical 3-manifolds and m′ ≥ 2.

Proof. Let M = M1#M2, where M1 is aspherical and M2 6= S3 (not necessarily prime). Since
π1(M1) is residually finite, there is a d-fold cover M1 of M1 for some d ≥ 3, and so M is d-fold
covered by M = M1#(#dM2). Now, since π1(M2) is residually finite, there is a finite group G
together with a surjection

ψ : π1(M) −→ G,

which maps π1(M1) to the trivial element and each π1(M2) surjectively to G. Then, since G is
finite, it is easy to see that the cover ofM corresponding to ker(ψ) contains at leastm′ := d−1 ≥ 2

connected summands S2 × S1. �

Finally, we quote two general facts about coverings of mapping tori whose proof is easy and left
to the reader (see also [10, Section 2]).

Lemma 2.3. Let f : M −→ M be a self-homeomorphism of a closed oriented manifold (of any
dimension).

(a) M of S
1 is finitely covered by M ofk S

1 for every k ≥ 1.
(b) If M is a finite cover of M , then M of S

1 is finitely covered by M ofk S
1 for some k.
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3. SELF-HOMEOMORPHISMS OF REDUCIBLE 3-MANIFOLDS

In this section, we recall the isotopy types of orientation-preserving homeomorphisms of 3-
manifolds. For the most part we follow the description given in McCullough’s survey paper [11],
however we adapt some parts of his description in order to simplify our next arguments.

Suppose M is a closed oriented reducible 3-manifold. By the discussion in Section 2, we may
assume that M does not contain any spherical quotients in its prime decomposition. Consider the
following construction of M : Let W be a punctured 3-cell obtained by removing n + m open
3-balls from a 3-sphere, and let

S1, S2, ..., Sn, Sn+1, Sn+2, ..., Sn+m

be its boundary components. For each of the Si, i = 1, ..., n, remove the interior of a 3-ball
D3
i from Mi, and attach M ′

i = Mi − int(D3
i ) to Si along ∂D3

i . Similarly, for each of the Sj ,
j = n + 1, ..., n + m, remove the interior of a 3-ball D3

j = D2
j × Ij from S2 × S1, and attach

(S2 × S1)′j = (S2 × S1)− int(D2
j × Ij) to Sj along ∂D3

j .
Using the above construction, we now describe three types of homeomorphisms of M . We

remark that two orientation-preserving homeomorphisms of W are isotopic if and only if they
induce the same permutation on the boundary components of W .

1. Homeomorphisms preserving summands. These are the homeomorphisms ofM which restrict
to the identity on W . Note that this class of homeomorphisms includes the so-called “spins” of
S2 × S1 as given following McCullough’s construction of M ; compare [11, Remark, p. 69].

2. Interchanges of homeomorphic summands. If Mi and Mj are two orientation-preserving
homeomorphic summands, then a homeomorphism of M can be constructed by fixing the rest of
the summands, leaving W invariant, and interchanging M ′

i and M ′
j .

Similarly, we can interchange any two S2 × S1 summands, leaving W invariant.

3. Slide homeomorphisms. For i = 1, ..., n, let M̂i be obtained from M by replacing M ′
i with a

3-ball Bi. Let α be an arc in M̂i which meets Bi only in its endpoints and Jt an isotopy of M̂i that
moves Bi around α, with J0 = idM̂i

and J1|Bi
= idBi

. The homeomorphism

s : M −→M

defined by

s|M−M ′i = J1|M̂i−Bi
and s|M ′i = id|M ′i .

is called slide homeomorphism of M that slides Mi around α. Starting with a different isotopy
Jt, then s changes by an isotopy and perhaps by a rotation about the boundary component Si.
Therefore each α might determine two isotopy classes of a slide homeomorphism. Note that if T
is the frontier of a regular neighborhood of M ′

i ∪ α in M , then T is a compressible torus and s is
isotopic to a certain Dehn twist about T .

Similarly, one can slide an S2 × S1 summand around an arc in M − (S2 × S1)′j .
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We remark that if α1 and α2 are two arcs meeting Bi only in their endpoints, and α represents
their product, then a slide of Mi around α is isotopic to a composite of slides around α1 and α2.
Similarly for sliding S2 × S1.

With the above description, we have the following classification result of self-homeomorphisms
of closed reducible 3-manifolds. This result was first announced in [6] and an elegant proof was
given by McCullough [11, pp. 70–71], based on an argument of Scharlemann [4, Appendix A].

Theorem 3.1. ([11, p. 69]). If M is a closed oriented reducible 3-manifold, then any orientation-
preserving homeomorphism f : M −→M is isotopic to a composition of the following three types
of homeomorphisms:

(1) homeomorphisms preserving summands;
(2) interchanges of homeomorphic summands;
(3) slide homeomorphisms.

In fact, the proof of Theorem 3.1 presented in [11, pp. 70-71], together with our adaptions on
the construction of M , implies that

(3.1) f = g3g2g1,

where g3 is a finite composition of homeomorphisms of type 3 (slide homeomorphisms) and iso-
topies of M , and g1, g2 are compositions of finitely many homeomorphisms of type 1 and 2 re-
spectively.

4. COMMUTATIVITY IN HOMOTOPY

Next, we show that there are self-homeomorphisms of an aspherical summand of a reducible
3-manifold whose “conjugation” by the pinch map in homotopy gives the three types of homeo-
morphisms described in the previous section.

According to the proof of Lemma 2.2, we may assume, after possibly passing to a finite
cover, that M contains an aspherical summand M1 in its prime decomposition so that the self-
homeomorphism f : M −→ M does not contain a component of g2 that interchanges M1 with
another summand.

Clearly M1 can be considered as being obtained by replacing each M ′
i (i ≥ 2) and (S2 × S1)′j

with a 3-ball Bi and Bj respectively. Then we can construct a pinch map

p : M1# · · ·#Mn#(#mS
2 × S1) −→M1,

by mapping each M ′
i (i ≥ 2) to Bi, each (S2 × S1)′j to Bj and the rest of the part identically to

itself.
We will show the following whose line of proof follows that of [13, Lemmas 3.6 and 3.7] adapted

to our situation:
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Lemma 4.1. For each component gi of f , there is a self-homeomorphism hi of the aspherical
summand M1 such that the following diagram commutes in homotopy, i.e. (p ◦ gi)∗ = (hi ◦ p)∗.

π1(M)

p∗
��

gi∗ // π1(M)

p∗
��

π1(M1)
hi∗ // π1(M1)

Proof. We will examine each of the (components of) gi separately.

Homeomorphisms preserving summands. Suppose first, that g1 is a self-homeomorphism of sum-
mands Mi or of S2 × S1. Define

h1 : M1 −→M1

by

h1|M ′1 = g1|M ′1 and h1|M1−M ′1 = id|W∪(∪ni=2Bi)∪(∪mj=1Bn+j).

If γ is a loop in M ′
1, then g1(γ) is a loop in M ′

1 as well, and so

(4.1) p ◦ g1(γ) = g1(γ) = g1 ◦ p(γ) = h1 ◦ p(γ).

If γ /∈ M ′
1, then g1(γ) /∈ M ′

1, and since W ∪ (∪ni=2Bi) ∪ (∪mj=1Bn+j) is simply connected, we
deduce that g1(γ) and p(γ) are homotopically trivial. Thus again p∗ ◦ g1∗ = h1∗ ◦ p∗.

Interchanges of homeomorphic summands. Now, let g2 be a homeomorphism that interchanges
two aspherical summands Mi and Mj or two copies of S2 × S1. By our assumption on M1, we
know that i, j 6= 1. Set

h2 : M1 −→M1, h2 := id

If γ is a loop in M ′
1, then g2(γ) = γ, and so

(4.2) p ◦ g2(γ) = p(γ) = γ = h2(γ) = h2 ◦ p(γ).

If γ /∈ M ′
1, then g2(γ) /∈ M ′

1, and so, as in the previous case, p∗ ◦ g2∗ = h2∗ ◦ p∗, because
W ∪ (∪ni=2Bi) ∪ (∪mj=1Bn+j) is simply connected.

Slide homeomorphisms. Finally, let g3 be a slide homeomorphism.
Suppose first that g3 slidesM1 around an arc α inM−M ′

1 such that α∩(M ′
i) and α∩(S2×S1)′j

is a single arc for any i ≥ 2 and any j. By McCullough’s description, there is a Dehn twist sα
about the frontier T of a regular neighbourhood of M ′

1 ∪ α which is isotopic to g3. An arc β in
W ∪(∪ni=2Bi)∪(∪mj=1Bn+j) is given by letting β|W be the same as α|W and β|(∪ni=2Bi)∪(∪mj=1Bn+j) be
the trivial arc. Then we can define a Dehn twist sβ about the frontier T ′ of a regular neighborhood
of M ′

1 ∪ β (corresponding to g3). This defines our new homeomorphism h3 : M1 −→M1. If γ is a
loop in M ′

1, then clearly

(4.3) p ◦ g3(γ) = p(γ) = γ = h3(γ) = h3 ◦ p(γ).



VIRTUAL BETTI NUMBERS OF MAPPING TORI OF 3-MANIFOLDS 7

If γ /∈M ′
1, then, after homotoping γ if necessary, we can assume that γ∩T = ∅ and p(γ)∩T ′ = ∅.

We then have g3(γ) = sα(γ) = γ and so p ◦ g3(γ) = p(γ) is homotopically trivial, because
W ∪ (∪ni=2Bi) ∪ (∪mj=1Bn+j) is simply connected. Thus p∗ ◦ g3∗ = h3∗ ◦ p∗ as required.

Next, assume that g3 slides some Mi, i 6= 1, around an arc in M −M ′
i (similarly for sliding a

copy of S2 × S1). We can assume that α ∩M ′
1 is not trivial, otherwise the proof is identical to

the above argument. Now, we have an arc β which is given by α in M ′
1 ∪W and it is trivial in

(∪ni=2Bi) ∪ (∪mj=1Bn+j), and Dehn twists sα and sβ about tori T and T ′, given similarly as above.
In this way, we define our homeomorphism h3 : M1 −→ M1. For loops not in M ′

1 the situation is
as before, because p(γ) is homotopically trivial. For a loop γ in M ′

1, we can assume again that,
after homotoping γ, we have γ ∩ T = ∅ and γ ∩ T ′ = ∅. Then

(4.4) p ◦ g3(γ) = p ◦ sα(γ) = p(γ) = γ = sβ(γ) = h3 ◦ p(γ).

This finishes the proof of the lemma. �

5. FINISHING THE PROOF OF THEOREM 1.3

Now we will construct a map of degree one from M of S
1 to M1 oh S

1, for some homeomor-
phism h : M1 −→M1.

As above, we can assume by Lemmas 2.1 and 2.2 that M = M1# · · ·#Mn#(#mS
2 × S1),

where Mi are aspherical and n ≥ 1. Moreover, we assume that M1 is not interchanged under f
with another summand Mi (by the proof of Lemma 2.2).

Consider the classifying space Bπ1(M) = M1 ∨ · · · ∨ Mn ∨ (∨mS1) and the homotopically
unique map

B(f∗) : M1 ∨ · · · ∨Mn ∨ (∨mS1) −→M1 ∨ · · · ∨Mn ∨ (∨mS1),

where f∗ : π1(M) −→ π1(M) is the isomorphism induced by f . Let also the map

B(p∗) : M1 ∨ · · · ∨Mn ∨ (∨mS1) −→M1,

induced by the pinch map p. (Again, p∗ : π1(M1) ∗ · · · ∗ π1(Mn) ∗ Fm −→ π1(M1) denotes the
induced homomorphism.)

By Theorem 3.1 (and the comments after that), we know that f = g3g2g1, where g3 is a finite
composition of homeomorphisms of type 3 and isotopies of M , and each of g1, g2 is a composition
of finitely many homeomorphisms of type 1 and 2 respectively, as given in Section 3.

By Lemma 4.1, there is a homeomorphism h : M1 −→M1 such that

(5.1) p∗ ◦ f∗ = h∗ ◦ p∗.

For set h = h3h2h1, where each (component of) hi is given by Lemma 4.1. Then applying succes-
sively Lemma 4.1 on each hi we deduce that (5.1) indeed holds. Therefore, there is a well-defined
surjective homomorphism

p∗ : π1(M of S
1) −→ π1(M1 oh S

1)
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which maps each element x of π(M) to p∗(x) ∈ π1(M1) and the generator of the infinite cyclic
group acting (through f∗) on π1(M) to the generator of the infinite cyclic group acting (through
h∗) on π1(M1).

Remark 5.1. If we replace M1 by the connected sum #mS
2 × S1 and adapt accordingly Lemma

4.1 to the situation of [13, Lemmas 3.6 and 3.7], then we will obtain a surjection

(5.2) π1(M of S
1) −→ Fm oh∗ Z.

This surjection does not yield a map of non-zero degree, because the classifying space of Fm is
one dimensional.

The homomorphism p∗ gives rise to a well-defined map

B(p∗) : Bπ1(M of S
1) −→ Bπ1(M1 oh S

1).

SinceM1 is aspherical, the homotopy long exact sequence for π1(M1ohS
1) implies thatM1ohS

1

is aspherical. Furthermore,

π1(M of S
1) = 〈π1(M), t | txt−1 = f∗(x), x ∈ π1(M)〉 = π1(Bπ1(M)oB(f∗) S

1).

Again, by the asphericity ofBπ1(M), we deduce thatBπ1(M)oB(f∗)S
1 is aspherical. ThusB(p∗)

is (homotopic to) a map

Bπ1(M)oB(f∗) S
1 −→M1 oh S

1

[(a, t)] 7→ [(B(p∗)(a), t)],

which we still denote by B(p∗).
Define now a map

F : M of S
1 −→M1 oh S

1

by

F := B(p∗) ◦ ψMofS1 ,

where ψMofS1 : M of S
1 −→ Bπ1(M)oB(f∗) S

1 is the classifying map for M of S
1 (recall that

π1(M of S
1) = π1(Bπ1(M) oB(f∗) S

1)). Let also ψM : M −→ Bπ1(M) denote the classifying
map for M . Then the following diagram

0 = H4(M)

0
��

0 // H4(M of S
1)

H4(ψMofS1 )

��

α1 // H3(M)

H3(ψM )

��

0 // H3(M)

H3(ψM )

��

// · · ·

0 = H4(Bπ1(M))

0
��

0 // H4(Bπ1(M)oB(f∗) S
1)

H4(B(p∗))
��

α2 // H3(Bπ1(M))

H3(B(p∗))

��

// H3(Bπ1(M))

H3(B(p∗))

��

// · · ·

0 = H4(M1)
0 // H4(M1 oh S

1)
α3 // H3(M1) //0 // H3(M1) // · · ·



VIRTUAL BETTI NUMBERS OF MAPPING TORI OF 3-MANIFOLDS 9

implies

α3 ◦H4(B(p∗)) ◦H4(ψMofS1)([M of S
1]) = H3(B(p∗)) ◦ α2 ◦H4(ψMofS1)([M of S

1])

= H3(B(p∗)) ◦H3(ψM) ◦ α1([M of S
1])

= H3(B(p∗)) ◦H3(ψM)([M ])

= H3(B(p∗))([M1], ..., [Mn]) = [M1].

This means that

H4(F )([M of S
1]) = [M1 oh S

1],

completing the proof of Theorem 1.3.

6. VIRTUAL FIRST BETTI NUMBERS

In this section we discuss Conjecture 1.2.

Recall that the finiteness of virtual first Betti numbers of mapping tori of prime 3-manifolds
follows that of their fiber M , namely vb1(M) (and vb1(M of S

1)) is finite if and only if M is
virtually S3, S2 × S1 or a T 2-bundle. More precisely, if a 3-manifold M is finitely covered by
S3, S2 × S1 or a T 2-bundle, then vb1(M) ≤ 3, and the corresponding mapping tori of M satisfy
vb1(Mof S

1) ≤ vb1(M)+1 ≤ 4 for any homeomorphism f : M −→M . It is therefore natural to
examine Conjecture 1.2 according to whether a reducible 3-manifold contains a prime summand
with virtually infinite first Betti number or not.

6.1. At least one prime summand with virtually infinite first Betti number. Suppose first that
a reducible 3-manifold M contains a summand in its prime decomposition with vb1 = ∞. This
summand is necessarily aspherical. If f : M −→M is an orientation preserving homeomorphism,
then Theorem 3.1 tells us that f is isotopic to a composition g3g2g1 where each gi is a finite
composition of homeomorphisms of type i = 1, 2, 3. By Lemmas 2.1, 2.2 and 2.3 (and their
proofs), there is a finite a cover M of M containing an aspherical summand M1 in its prime
decomposition which is not virtually a mapping torus of T 2 and is not interchanged by some fk

(under a component of type 2) with any other summand of M . Then Theorem 1.3 implies that
there is a self-homeomorphism h of M1 and a degree one map

M ofk S
1 −→M1 oh S

1.

In particular, b1(M ofk S
1) ≥ b1(M1 oh S

1), and so Theorem 1.1 implies that

vb1(M of S
1) =∞.

This proves Conjecture 1.2 in all cases, except when M is virtually (#nT
2oS1)#(#mS

2×S1)

(containing at least two summands).
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6.2. Only summands with virtually finite first Betti numbers. Suppose, finally, that M is (vir-
tually) of the form (#nT

2oS1)#(#mS
2×S1). In that case, Theorem 1.3 is not anymore applicable

to deduce that vb1(M of S
1) =∞. On the one hand, if n = 0, then #mS

2 × S1 does not contain
any aspherical summands. On the other hand, if n 6= 0, then Theorem 1.3 implies that there is a
degree one map M ofk S

1 −→ (T 2oS1)ohS
1, which, however, does not suffice to conclude that

vb1(M of S
1) =∞ because vb1((T 2oS1)oh S

1) ≤ 4. It would be interesting to find topological
arguments that cover those two cases as well.

Nevertheless, we can appeal to group theoretic results to deduce that vb1 =∞ in the remaining
two cases. First, one can deduce from known results that π1((#mS

2 × S1) of S
1) is large for

m ≥ 2: By [2, 3], the free-by-cyclic group

Fm of∗ Z = π1((#mS
1 × S1)of S

1), m ≥ 2,

is word hyperbolic if and only if it does not contain as subgroup an isomorphic copy of Z2. In the
case where Fm of∗ Z is hyperbolic, then it is large by [1, 7, 15]. If now Z2 ⊂ Fm of∗ Z, then
Fm of∗ Z is large by [5]. Thus in all cases we deduce that vb1(Fm of∗ Z) =∞ as required.

Therefore, using the largeness of Fm of∗ Z, we conclude that

vb1((#mS
2 × S1)of S

1) =∞ for m ≥ 2.

Remark 6.1. By [2, 3], Fm of∗ Z being word hyperbolic is equivalent to the automorphism f∗
being atoroidal, i.e. having no non-trivial periodic conjugacy classes. When f∗ is toroidal (i.e. it
has some non-trivial periodic conjugacy class), Ni also showed that vb1(Fm of∗ Z) =∞; see [13,
Lemma 2.4].

Finally, as Ni shows in all cases where aspherical summands exist, our remaining case of map-
ping tori of (#nT

2 o S1)#(#mS
2 × S1), where n ≥ 1, can be treated as follows: Recall that we

can always assume that m ≥ 2 and using the π1-surjection induced by the pinch map

π1(((#nT
2 o S1)#(#mS

2 × S1))of S
1) −→ π1((#mS

2 × S1)oh S
1),

we deduce that
vb1(((#nT

2 o S1)#(#mS
2 × S1))of S

1) =∞
as required; see also Remark 5.1.
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[6] E. César de Sá and C. Rourke, The homotopy type of homeomorphisms of 3-manifolds, Bull. Amer. Math. Soc.

(N.S.) 1, no. 1 (1979), 251–254.



VIRTUAL BETTI NUMBERS OF MAPPING TORI OF 3-MANIFOLDS 11

[7] M. Hagen and D. Wise, Cubulating hyperbolic free-by-cyclic groups: The general case, Geom. Funct. Anal.,
25 (2015), 134–179.

[8] J. Hempel, 3-manifolds, Princeton University Press And University of Tokyo Press, 1976.
[9] D. Kotschick and C. Neofytidis, On three-manifolds dominated by circle bundles, Math. Z. 274 (2013), 21–32.

[10] T.-J. Li and Y. Ni, Virtual Betti numbers and virtual symplecticity of 4-dimensional mapping tori Math. Z., 277
(2014), 195–208.

[11] D. McCullough, Mappings of reducible 3-manifolds, Proceedings of the Semester in Geometric and Algebraic
Topology, Warsaw, Banach Center (1986), 61–76.

[12] C. Neofytidis and S. Wang, Invariant incompressible surfaces in reducible 3-manifolds, Ergodic Theory Dynam.
Systems (to appear).

[13] Y. Ni, Virtual Betti numbers and virtual symplecticity of 4-dimensional mapping tori, II, Sci. China Math. 60
no. 9 (2017), 1591–1598.

[14] X. Zhao, On the Nielsen numbers of slide homeomorphisms on 3-manifolds. Topology Appl. 136, no. 1-3 (2004),
169–188.

[15] D. Wise, From Riches to Raags: 3-Manifolds, Right-Angled Artin Groups, and Cubical Geometry, CBMS
Regional Conference Series in Mathematics 117, American Mathematical Society, Providence, RI, 2012.
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GENÈVE 4, SWITZERLAND

Email address: Christoforos.Neofytidis@unige.ch


	1. Introduction
	Outline
	Acknowledgements

	2. Preliminaries
	3. Self-homeomorphisms of reducible 3-manifolds
	4. Commutativity in homotopy
	5. Finishing the proof of Theorem 1.3
	6. Virtual first Betti numbers
	6.1. At least one prime summand with virtually infinite first Betti number
	6.2. Only summands with virtually finite first Betti numbers

	References

