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PREFACE

Recent years have seen a great deal of progress in the field of orthogonal
polynomials, a subject closely related to many important branches of analysis.
Orthogonal polynomials are connected with trigonometric, hypergeometric,
Bessel, and elliptic functions, are related to the theory of continued fractions
and to important problems of interpolation and mechanical quadrature, and
are of occasional occurrence in the theories of differential and integral equations.
In addition, they furnish comparatively general and instructive illustrations of
certain situations in the theory of orthogonal systems. Recently, some of these
polynomials have been shown to be of significance in quantum mechanics and
in mathematical statistics.

The origins of the subject are to be found in the investigation of a certain
type of continued fractions, bearing the name of Stieltjes. Special cases of these
fractions were studied by Gauss, Jacobi, Christoffel, and Mehler, among others,
while more general aspects of their theory were given by Tchebichef, Heine,
Stieltjes, and A. Markoff.

Despite the close relationship between continued fractions and the problem
of moments, and notwithstanding recent important advances in this latter
subject, continued fractions have been gradually abandoned as a starting point
for the theory of orthogonal polynomials. In their place, the orthogonal
property itself has been taken as basic, and it is this point of view which has been
adopted in the following exposition of the subject. Choosing this same basic
property, we discuss certain special orthogonal polynomials, which have been
treated in great detail independently of the general theory, and indeed, even
before this theory existed at all. In this conncction we add the names of La-
place, Legendre, Fourier, Abel, Laguerre, and Hermite to those previously
mentioned.

As regards treatises on the subject, we note that the only systematic treat-
ment thus far given is found in J. Shohat’s monograph, Théorie Générale des
Polynomes Orthogonaux de Tchebichef, Mémorial des Sciences Mathématiques,
Paris, 1934. Limitations of space have compelled that work to be brief, and
consequently, it does not enter into a detailed treatment of many problems
which have been especially advanced in recent years. It has therefore seemed
desirable to attempt a new and detailed development of the main ideas of this
field, devoting, in particular, some space to recent investigations of the distribu-
tion of the zeros, of asymptotic representations, of expansion problems, and of
certain questions of interpolation and mechanical quadrature.

In what follows, we are concerned partly with the general theory of orthogonal
polynomials, and partly with the study of special classes of these polynomials.
As might be expected, we have more exhaustive results for these special classes,
and we cite as an instance the classical polynomials satisfying linear differential
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vi PREFACE

equations of the second order. Also, when the primary importance of these
special classes in applications is taken into account, it should not be at all sur-
prising that the present book is mainly devoted to their study. The general
theory, however, as developed in Chapters XII and XIII, doubtless represents
the most important progress made in recent years.

In the present work, no claim is made for completeness of treatment. On the
contrary, the aim has purposely been to make the material suggestive rather
than exhaustive. An attempt has been made to indicate the main and charac-
teristic methods and to point out the relation of these to some general ideas in
modern analysis. As a rule, preference has been given to those topics to which
we were able to make some new, though modest, contributions, or which we
could present in a new setting. Thus the book contains a number of results not
previously published, some of which originated several years ago. For instance,
we have included a discussion of the Cesaro summability of the Jacobi series at
the end-points of the orthogonality interval (the method used here is of interest
even in the classical case of Legendre series). Further, a new and simpler ap-
proach has been given to S. Bernstein’s asymptotic formula for orthogonal
polynomials. We also refer to certain details of minor importance, such as:
simplifications and additions in the asymptotic investigation of Jacobi and
Laguerre polynomials and in the discussion of the expansions in terms of these
polynomials; the discussion of the cases in which the Jacobi differential equation
has only polynomial solutions; the evaluation of the number of zeros of general
Jacobi polynomials in the intervals [— «, — 1],[— 1, + 1], [+ 1, + «~];a new
proof of the Heine-Stieltjes theorem on linear differential equations of the second
order with polynomial coefficients and polynomial solutions, and so on.

In general, we have preferred to discuss problems which may be stated and
treated simply, and which could be presented in a more or less complete form.
This was the main reason for devoting no space to the extremely interesting
arithmetic and algebraic properties of orthogonal polynomials, such as, for
instance, the recent important investigations of 1. Schur concerning the irre-
ducibility and related properties of Laguerre and Hermite polynomials. Fur-
thermore, we have attached great importance to the idea of replacing incomplete
and overlapping theorems, scattered in the literature, by complete results
involving only intrinsic or necessary restrictions. We have also tried to exploit,
as far as seemed to be at all possible, definite methods, such as, for instance,
Sturm’s methods in differential equations (see §§6.3, 6.31, 6.32, 6.83).

A complete treatment of Legendre polynomials was not feasible, and probably
not desirable, in the framework of the general theory. Besides, there are al-
ready complete treatises on spherical and other harmonics." We have selected
and considered only those properties of Legendre polynomials which are the
starting points of generalizations to ultraspherical, Jacobi, or to more general
polynomials. Another subject which could not be included was Stieltjes’

! For instance, E. W. Hobson 1 (see bibliography).
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problem of moments, which has been omitted in spite of its great interest;
for this subject would have necessitated the development of a complicated
apparatus of results and methods. Orthogonal polynomials of more than one
variable also have not been treated.”

The book is based on a course given at Washington University during the
academic year 1935-1936. Acquaintance with the general ideas and methods
of the theory of functions of real and complex variables is naturally required.
Occasionally, Stieltjes-Lebesgue and Lebesgue integrals are considered. In the
greater part of the book, however, these integrals have been avoided, and, except
in a very few places, no detailed properties of them were used.

The problems at the end of this book are, with few exceptions, not new, and
they are not interconnected as are, for instance, those in Pélya-Szego’s Aufgaben
und Lehrsdtze. 'They are more or less supplementary in character and serve as
illustrations and exercises; they sometimes differ widely from one another both
as to subject and method.

The list of references is not complete; it contains only original memoirs, a few
text books of primary importance, and monographs to which references are made
in the text.

For the suggestion of preparing a book on orthogonal polynomials for the
Colloquium Publications, I am indebted to Professor J. D. Tamarkin, who has
also participated in the present work by offering a great number of valuable
suggestions. It is with the greatest gratitude that I mention his friendly
interest.

I have also received valuable advice from my friends and teachers L. Fejér
(Budapest), and G. Pélya (Zurich). My colleagues P. Erdos (Manchester),
G. Griinwald (Budapest), W. H. Roever (St. Louis), A. Ross (St. Louis), J.
Shohat (Philadelphia), and P. Turdn (Budapest) gave generously and unstint-
ingly of their time. TF. A. Butter, Jr. (at present in Los Angeles) collaborated
with me in the preparation of the manuscript. This last aid was made possible
through a grant from the Rockefeller Research Fund of Washington University
(1936-1937). My student L. H. Kanter also rendered valuable assistance in
the preparation of the manuseript.

My gratitude for the encouragement and help of these friends, colleagues,and
institutions can hardly be measured by any formal acknowledgment. Lastly,
I wish to express to the American Mathematical Society my great appreciation
for the inclusion of the present book in its Colloquium Series.

G. SzEGO

WasHINGTON UNIVERSITY, 1938.

2 Cf. the bibliography in Jackson 8, p. 423.




PREFACE TO THE REVISED EDITION

The first printing of this book published in 1939 was about exhausted in 1948.
Reprinting was arranged then but for various reasons no change in the text was
made. During the past twenty years since the preparation of the original
edition was completed, considerable progess was made in this field. A glance
at the pertinent section of the Mathematical Reviews suggests that the interest
in this topic is still very much alive. Systematic treatment of orthogonal
polynomials has been incorporated in various modern texts published in the
meantime. We refer only to the Higher Transcendental Funclions published by
the Bateman Manuscript Project Staff (cf. in particular, vol. 2, Chapter X,
edited by Professor A. Erdélyi), and to the book of F. Tricomi, Vorlesungen
itber Orthogonalrethen (Chapters IV—VI).

Recently the council of the American Mathematical Society has authorized
the author to prepare a revised edition of the book, adding a moderate amount
of material in order to bring it up to date. Naturally, limitations of space and
time did not allow including all new results (or, for that matter, the old ones
which were missing from the original edition). Only a few particularly interest-
ing new items have been added as well as some details which deserve attention
because of elegance of the method or originality of ideas. We mention here in
particular the important Pollaczek polynomials; they are treated in an Appendix.
Further new material was incorporated in the form of Problems and Exercises.
New bibliographic items have been included, again in a rather selective way.
Finally, misprints have been corrected and numerous minor improvements and
additions made.

The author recollects again, as was stated in the Preface of 1938, that the prep-
aration of this book was suggested to him by the late Professor J. D. Tamarkin.
Since his untimely death in 1945 his name is not too frequently mentioned. It is
justified and probably necessary to remind the younger mathematical gener-
ation, in the rush of modern developments, how much American mathematics
owes to his great energy and far-sighted intelligence.

STANFORD UNIVERSITY, 1958 G. SzZEGO




PREFACE TO THE THIRD EDITION

The interest of the mathematical community for orthogonal polynomials,
classical and non-classical, is still not entirely exhausted. During the past
years I lectured about this subject several times at Stanford. The attendants
of the course were upper division and graduate students, specializing in
mathematics, mathematical statistics, calculus of probability, etc.

Only minor changes have been made in the text. I owe numerous im-
provements and corrections to various friends and colleagues. 1 mention
particularly Professor Paul Turan (Budapest, Hungary) and Professor
Lee Lorch (Edmonton, Canada). New references, published in the time
interval 1958-1966, have been included.

STANFORD UNIVERSITY, 1966 G. SzEGO

PREFACE TO THE FOURTH EDITION

Again the American Mathematical Society has taken the initiative to
reprint the present book, allowing some minor changes and new material.
Among the persons interested in the field of orthogonal polynomials who
have contributed to these changes and additions, I mention with particular
indebtedness my friend and colleague Professor Richard Askey (Madison,
Wisconsin) and the very active and original group of mathematicians around
him. A very important set of lectures by Askey entitled, “Orthogonal
Polynomials and Special Functions,” reached me too late to be incorporated
in the present edition.

Further material has been furnished by Professor Paul Turan (Budapest,
Hungary) and Professor Lee Lorch (Toronto, Canada). New problems and
exercises have also been included. Peter Szego (Redwood City, California)
gave me valuable assistance in preparing the present manuscript.

My gratitude goes to all these friends and colleagues.

STANFORD UNIVERSITY, 1975 G. SZEGO
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CHAPTER I
PRELIMINARIES

1.1. Notation

Numbers in bold face type, like 1, refer to the bibliography at the end of the
book. The system of section numbering used is Peano’s decimal system, and
the numeration of formulas starts anew in each section. Thus, reference to §9.5
and (9.5.2) means section 9.5 in Chapter IX and formula (9.5.2) in the same
section, respectively. A similar numeration has been used for the theorems.

We use the symbol: 6., = 0 or 1, according as n = m, or n = m.

The closed real interval @ < z < b (a and b finite) will be denoted by la, B].
The same symbol is used if either a or b is infinite or if both are; in this case the
equality sign is excluded.

We often write for a real z

(1.1.1) sgnr = — 1,0, + 1,

according as  is negative, zero, or positive; more generally, for arbitrary com-
plex z, z # 0, we write

(1.1.2) sgnz = |z |z

The symbol Z denotes the conjugate complex value, R(z) the real part, and
3(z) the imaginary part of the complex number z.

If two sequences z, and w, of complex numbers have the property that w, = 0
and z,/w, — l as n — «, we write z, = w,. If z, and w, are complex, w, # 0,
and the sequence |z, |/| w. | has finite positive limits of indetermination, we
write 2z, ~ W, .

Occasionally we make use of the notation

(1.1.3) z, = 0(a,), 2, = 0(a,)

if a, > 0, to state that z./a. is bounded, or tends to 0, respectively, as n — .
A similar notation is used for a passage of limit other than n — <.

A function f(z) is called increasing (strictly increasing) if z; < z. implies
f(@1) < f(z2); it is called non-decreasing if x, < z. implies f(r,) < f(x2). An
analogous terminology will be used for decreasing functions.

Let p = 1, and let «(z) be a non-decreasing function in [a, b] which is not
constant. The class of functions f(z) which are measurable with respect to
a(z) and for which the Sticltjes-Lebesgue integral [0 |f(z) |? da(z) exists (see
§1.4) is called L% (a, b). In case a(z) = z we use the notation L”(a, b); in case
p = 1, a(z) arbitrary, the notation L.(a, b) is used. If f(z) and g(z) belong to
the class L% (a, b), the same is true for f(z) + g(z). (Cf. Kaczmarz-Steinhaus 1,
pp. 10-11.) .

1




2 PRELIMINARIES {I]

1.11. Inequalities

(1) Cauchy’s inequality. Let {a,}, (b, v =1,2, ..., n, be two systems of
complex numbers. Then

n 2 n n
2ab| =X le P20
y=1] Vel y=1

The equality sign holds if and only if two numbers A, 4, not both zero, exist
such that \a, + b, = 0,» = 1,2, ... n.

(2) Schwarz's inequality. Let f(z) and g(z) be two functions of class L(a, b).
Then f(z)g(x) is of class L.(a, b), and

/ f(@)g(z) da(z) | < '[ | f(@) I da(z) / | 9(2) I* da(z) .

(1.11.1)

(1.11.2)

(3) Imequality for the arithmetic and geometric mean. If f(z) > 0, we have

f 1(z) dec(z) f log 1(z) da(z)
(1.11.3) —a"—b*———— = exp ¢ =2 3 ’
/da(x) /da(x)

provided all integrals exist, and [°da(z) > 0. (Cf. Hardy-Littlewood-Pélya
1, pp. 137-138.)
(4) Abel’s transformation and Abel’s inequality. From

Jogo + figr + -+ fugn

(1.11.4)

= (fo _'fl)GO + (fl - f2)Gl + - + (fn-—l - fn)Gn——l -+ fﬂGn}
where
(1115) Gl’=g°+gl+"'+gvy V=0r1y2y"'yn}
we obtain, assuming fo 2 fi = --- 2 f, =0, and |G, | = G,v =0,1, -..,n,
the inequality
(1.11.6) | fogo + figs + --- + frgn] = fo G

(5) Second mean-value theorem of the integral calculus. Let f(z) = 0 be a
non-increasing function, and let g(z) be continuous, ¢ < z < b, a and b finite.

Then
b ¢
(1117) [ @tz = sta + 0) [ gra isEst,
1.12. Polynomials and trigonometric polynomials

We shall consider polynomials in z of the form

(1.12.1) p(z) = o+ a1z + c22” + -+ + cmz™,




[1.2] TRIGONOMETRIC POLYNOMIALS 3

with arbitrary complex coefficients ¢y, ¢i, ¢z, -+, ¢n. Here m is called the
degree; and if ¢ 5 0, the precise degree of p(z). In what follows an arbitrary
polynomial of degree m will be denoted by mm. If po(z), pi(z), - - , pa(z) are
arbitrary polynomials such that p.(z) has the precise degree m, every m» can be
represented as a linear combination of these polynomials with coefficients which
are uniquely determined.

A trigonometric polynomial in 6 of degree m has the form

(1.12.2) g(6) = ao+ a1cos 0+ bisin 6 + ... + amcosmb + by sin mé,

with arbitrary complex coefficients. Here m is again called the degree of g(6);
m is the precise degree if | @m | 4 |bm | > 0. According as all the b, or all the a,
vanish, g(6) is referred to as a cosine or a sine polynomial.

The functions cos m6 and sin (m + 1)6/sin 6 are polynomials in cos § = z of
the precise degree m and are called T'chebichef polynomials of the first and second
kind, respectively. These polynomials play a fundamental réle in subsequent
considerations. Setting

sin (m + 1)6

(1.12.3) cosmb = T, (cos 6) = Tr(z), -
sin §

= Un(cos §) = Un(a),
we see that any cosine polynomial of degree m is a polynomial of the same degree
in cos § = z, and conversely. Any sine polynomial of degree m, divided by
sin 6, furnishes a cosine polynomial of degree m — 1. Thus, a sine polynomial
can be represented as the product of sin 8 = (1 — z%)"* by a polynomial in
cos § = x.

The polynomials (1.12.3) are special cases of the so-called Jacobi polynomials
(cf. Chapter IV). They contain only even or only odd powers of z according
as m is even or odd. Thus cos (m -+ 3)6/cos (6/2) and sin (m + %)6/sin(6/2)
are cosine polynomials in 6 of degree m; they are also connected with the
Jacobi polynomials (see (4.1.8)).

We define the “‘reciprocal”’ polynomial of (1.12.1) by

(1.12.4) p*(x) = 2"B(x") = Cm + CmaZ + Cmooz’ + -+ + Coz™

If the zeros of p(x) are z;, z2, + -+ , Zm, those of p*(z) are z¥, z¥, - -- , z¥, where
z¥ = Z,'is the point which is obtained from z, by inversion with respect to the
unit circle | z | = 1in the complex z-plane. The zeros must be counted accord-
ing to their multiplicity, and 0* = «, ©* = (; ® as a zero of order k means
that the coefficients of the k highest powers vanish.

1.2. Representation of non-negative trigonometric polynomials

TreEOREM 1.2.1. Let g(0) be a trigonometric polynomial with real coefficients
which 1s non-negative for all real values of 8. Then there exists a polynomial p(z)
of the same degree as g(8) such that g(8) = | p(z) !, where z = €. Conversely, if
z = €, the expression | p(z) |* always represents a non-negative trigonometric poly-
nomtal 1n 6 of the same degree as the polynomial p(z).
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See Fejér 5. The second part of the statement is obvious. The first part is
easily derived from (1.12.2) by introducing z* + z7* for 2 cos k6 and z* — z7*
for2isinkg. We then find g(8) = 27 "G(z), where G(2) is a m2m for which G*(z) =
G(z). Now those zeros of G(z) which are different from 0 and «, and which
do not have the absolute value 1, can be combined in pairs of the form z,, z¥,
0 < |z.| < 1, where z¥ has a meaning similar to that in §1.12. Furthermore,
every real zero 8, of g(6) is of even multiplicity, and ¢™ is a zero of G(z) of the
same multiplicity. Thus

(1.2.1) G)=c Il e — 20 — 2% I1 (e = ¢.)%
p=1 ye=1
0<|z| <1, 16 ] = 1; K+ o4+ 1=m
Since g(6) = |g(0) | = |G@) |,z =¢",and |z — 2z, | = |z, ||z — 2F |,z = ¢*,

the theorem is established.

The representation in question is, however, not unique. Indeed, if a denotes
an arbitrary zero of p(z), the polynomial p(z) (1 — @z)/(z — «) furnishes another
representation. Hence assuming ¢(8) # 0, we can gradually remove all the
zeros from |z | < 1 and obtain the following theorem:

TueoreM 1.2.2. Let g(6) satisfy the condition of Theorem 1.2.1 and g(6) # 0.
Then a representation g(6) = |h(e”) | exists such that h(z) is a polynomial of
the same degree as g(6), with h(2) = 0in |z | < 1, and h(0) > 0. This polynomial
s uniquely determined. If g(6) is a cosine polynomial, h(z) is a polynomial with
real coefficients.

A generalization of this normalized representation (its extension to a certain
class of non-negative functions ¢g(6)) is of great importance in the discussion of
the asymptotic behavior of orthogonal polynomials. (See Chapters X-XIIIL.)

1.21. Theorem of Lukics concerning non-negative polynomials

(1) TaEOREM 1.21.1 (Theorem of Lukdcs). Let p(z) be a mm non-negative in
[=1, 4+1]. Then p(x) can be represented in the form

(A@)}* + 1 — ) {B(z))? if m s even,
(1 + 2){C@)}+ A — 2){D(@)}? if m s odd.

Here A(z), B(z), C(z), and D(x) are real polynomials such that the degrees of the
single terms on the right-hand side do not exceed m.

(1.21.1) plz) =

The proof can be based on Theorem 1.2.2. We have
p(COS 0) — | h(eiﬂ) |2 — | e—imﬂl2 h(eiﬂ) 12,
where h(z) is a 7, with real coefficients. Now the expressions

sin (m 4+ 1)8 cos (m 4+ 3)8 sin (m 4+ 3)8

(1.21.2) cos mé, s 6 ’ " cos (8/2) ' sin (6/2)
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are all 7., in cos 6 (see §1.12), so that

e-—-imﬁ/2h (eiﬂ) — {

A(cos 6) + 7 sin 8 B(cos 6) if m is even,
2" cos (6/2) C(cos 6) + 12" sin (6/2)D(cos 6) if m is odd,

where the degrees of A(z), B(z), C(z), D(z) are, respectively, m/2, m/2 — 1,
(m — 1)/2, (m — 1)/2.
(2) The following theorem has a simpler character:

TueoreM 1.21.2. Every polynomial in z, which is non-negative for all real
values of z, can be represented in the form {A@)}® + {B@)}% Every poly-
nomial which is non-negative for z = 0, can be represented in the form
(4@} + 1B@)" + allC@)) + (D)} Here A(z), B(z), C(z), D(x) are
all real polynomials, and the degree of each term does not exceed the degree of the
gwen polynomial.

These representations can also be written in the form | P(z)|* and
| P(z) " + z | Q(z) |”, respectively, where P(z) and Q(z) are polynomials with
complex coefficients; for the degrees the same remark holds as before. In the
case when x =20, B(x) and D(x) can be chosen to vanish identically. See
Achieser 4, [2.54], and Karlin-Studden 1, Chapter V, Corollary 8.1.

In connection with this section see Pélya-Szegd 1, vol. 2, pp. 82, 275, 276,
problems 44, 45, 47.

1.22. Theorems of S. Bernstein

TaeEOrREM 1.22.1. If g(6) ¢s a trigonometric polynomial of degree m satisfying
the condition | g(6) | = 1, 0 arbitrary and real, then | ¢’(6) | < m.

This theorem is due to S. Bernstein. (Cf. M. Riesz1.) The upper bound m
cannot be replaced by a smaller one as is readily seen by taking g(8) = cos mé.
The following special case is worthy of notice:

THEOREM 1.22.2. Let p(z) be an arbitrary . salisfying the condition
| p(z) | = 1, where z is complez, and |z | < 1;then |p'(2) | S m, |z| = 1.

With regard to this theorem see also Szasz 1, pp. 516-517. Finally we
mention the following consequence of Theorem 1.22.1:

TuEOREM 1.22.3. Let p(z) be a mm satisfying the condition |p(z)| = 1 in
—1 =2z = +1. Then

1p'@) | = (1 — &) 7'm.
This follows by applying Theorem 1.22.1 to g(6) = p(cos 6).

1.3. Approximation by polynomials

(1) TueoreMm 1.3.1 (Theorem of Weierstrass). A function, continuous in a
finite closed interval, can be approximated with a preassigned accuracy by poly-
nomials. A function of a real variable which is continuous and has the period 2w,
can be approximated by trigonomelric polynomaals.
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For flnf ormation concerning this theorem we refer to Jackson 4. In the second
part.o thg theorem 'Iet the func.tion in question be even (odd); then the approxi-
mating trigonometric polynomials can be chosen as cosine (sine) polynomials.

THEORI'EM 1.3.2. Let w(8) be the modulus of conlinuity of a given function
f(z), continuous in the finite interval [a, b],

(1.3.1) w(8) = max | f(z') — f(z") | if |2/ — 2| £ 8.

Then for each m we can find @ polynomial p(z) of degree m, such that in the given
interval of length | we have

(1.3.2) | f@@) — p(2) | < Aw(l/m).

In the case of a periodic funciion f (6) with period 2w, a trigonometric polynomzal
g(6) of degree m can be found such that

(1.3.3) | f(6) — ¢(6) | < Bw(27/m).
Here A and B are absolute constants.
In this connection see Jackson 4, pp- 7, 15.

Turorem 1.3.3. Let f(z) have a continuous derivative of order u in the finite
interval la, b), = 1, and let w,(8) be the modulus of continuity of f* "(z). Then
a polynomial p(x) of degree m + u exists such that

| /(@) — pl2) | < C(l/m) w.l/m),
|f(z) — @) ] < C(l/m)* wul/m), l=b— a.

Here C is a constant depending only on pu.

(1.3.4)

Analogous inequalities can be obtained for all the derivatives f(z), f'(2),

L, TP @)
For the first inequality see J ackson 4 (p. 18, Theorem VIII). To prove the

second inequality we first establish the following lemma:
Lemma. Let 1(8) be a function of pertod 2m satisfying the Lipschitz condition
(1.3.5) |7(6,) — f(B2) | < N[0 — O | s
where \ is a positive constant. Then there exist for each m trigonometric poly-
nomaals g(6) of degree m such that
DI)‘ / 14

where D' and D" are absolute constants.

For the first inequality (1.3.6) see Jackson 4 PP 2-6. When we use his
notation and argument, it suffices to show that | A"'I..(6) | is less than an abso-
lute constant. But



[1.3] APPROXIMATION BY POLYNOMIALS 7

hm +r/2 ’
(1.3.7) Lo = -7 |, U0 + 20) — SOl (u) du
and
/rlzu|l7'l(u)]d1,¢=4/'/2 sin mu [* d sinmu
0 " msin u dumsinu
sin 7mu d sin mu
1.3. — o1
(1.3.8) 0(1) / o sin
+ 0(1) / u | AU sin mu ’ du
0 mu

since u/sin u is analytic in the closed interval [0, x/2]). On writing mu = z,

o(m™) /” z |38

Now we use (cf. loc. cit.) hm = O(m).

The analogue of the lemma for polynomials can be derived in the usual way.
Then in the upper bound of the first inequality of (1.3.6) the factor b — a = 1
appears. It is convenient to transform the intervalea < z < binto —% =y < 1
(instead of —1 = y =< 1, cf. Jackson, loc. cit., p. 14), defining the function in
(-1, —3] and [%, 1] by a constant.

In order to prove Theorem 1.3.3, we apply Theorem VIII of Jackson (loc.
cit., p. 18) to f'(z). (For this argument cf. loc. cit., p. 16.) Thus

/() = ¢(@) | < K(/m)* w.(l/m),

where ¢(z) is a proper mmy,—1. Applying the lemma to f(z) — [Z q(t)dt,
which satisfies a Lipschitz condition with

N = K(@/m)* w,(l/m),

we obtain a 7., say o(z), such that

d s1n:v

-1
dz )-

dz +0(m)/

z

< K'(l/m)w.(l/m), | o’(z) | < K"(l/m)* " w,(l/m).

M@—ﬁ%mw—d@

If we write f; q(t).dt + o(z) = p(z), the statement is established.
The constants K, K’, K" in the last three inequalities depend ounly on .

(2) Tueorem 1.3.4 (Theorem of Runge-Walsh). Let f(z) be an analytic
Sunction regular in the interior of a Jordan curve C and continuous in the closed
domain bounded by C. Then f(x) can be approzimated with an arbitrary accuracy
by polynomials.

See Walsh 1, p. 36. This theorem has been proved by Runge in case f(z)
is analytic on C; the general case is due to Walsh.
We need also a supplement to the former theorem, duc to Walsh (1,
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pp. 75-76). Let C be again a Jordan curve in the complex z-plane. Let
z = ¢(z) be the map function carrying over the exterior of C into |z | > 1
and preserving r = z = «. Then the circles |z| = R, R > 1, correspond to
certain curves Cx , called level curves. We have

TrEOREM 1.3.5. Let f(x) be analytic within and on C, and let Cg be the largest
level curve in the interior of which f(z) is regular. Then to an arbitrary r,
0 < r < R, there corresponds a constant M > 0 such that, for each m, a polynomzial
pm(z) of degree m exists salisfying the inequality

(1.3.9) | f(z) — pmlz) | < M7, zon C.

This holds also if C is a Jordan arc, for example, the interval —1 <z < 4 1.
In the latter case Cr is an ellipse with foci at 1, and R is the sum of the semi-
axes (§1.9).

1.4. Orthogonality; weight function; vectors in function spaces

(1) Let a(z) be a non-decreasing function in [a, b] which is not constant. 1f
a = —o (orb = 4 =), we require that a(— ©) = lim,,_w a(z) (a(4 =) =
lim, ., ;» a(z)) should be finite. The scalar product of two real functions f(x)
and g(z), where z ranges over the real interval [a, b}, is defined by the Stieltjes-
Lebesgue integral

(1.4.1) (7, 9) = f 1@)g(z) da(a),

where we assume that f(z)g(z) is of the class L.(a, b). This is certainly the
case if f(z) and g(z) are both continuous, or both of bounded variation, and
[a, b] is a finite interval. For a fixed function a(z) the orthogonality with
respect to the ‘“distribution’’ da(z) may be defined by the relation

(1.4.2) (/,9) = 0.

We shall also use the expression “f(z) is orthogonal to g(z).”
If we permit f(r) and g(z) to be complex functions in general, definition
(1.4.1) must be modified to read

(1.4.3) (S, 9) = f J@)7G@) daa).

With this change in the definition of (f, g), we retain (1.4.2) as the definition of
orthogonality.

[For the definition of Stieltjes-Lebesgue integrals see, for instance, Hildebrandt
1, pp. 185-194. This definition, given originally for a monotonic «(z), can
easily be extended to the case where a(z) is of bounded variation. Hildebrandt
1, pp. 177-178, may also be consulted for the definition of Riemann-Stieltjes
integrals.
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In what follows we sometimes need the formula for integration by parts:

(1.4.4) / f(z) da(z) + / a(z) df(z) = f(b)a(®) — fl(a)a(a),

where a and b are finite, a(z) is of bounded variation, and f(z) is continuous.
The integrals are taken as Riemann-Stieltjes integrals.

The expression ‘“‘distribution’” used above arises from the classical inter-
pretation of da(z) as a continuous or discontinuous mass distribution in the
interval [a, b], the mass contributed by the interval [z;, z.] of [a, b] being
a(x;z) — a(xl).]

(2) If a(z) is absolutely continuous, the scalar product (1.4.1) reduces to

(1.4.5) (f, 9) / 1@ @) da,

where the integral is assumed to exist in Lebesgue’s sense. Here w(z) is a non-
negative function measurable in Lebesque's sense for which [i w(z) dz > 0.
We shall call w(z) the weight function, referring to a weight function of, or on,
the given interval. Instead of “weight function” the term “norm function”
is sometimes used in the literature.® In the case of a distribution w(z) dz the
total mass corresponding to the interval [z,, z,] is obviously [7* w(z) dr.
In what follows we refer to distributions of the form da(z) as distributions of
Stieltjes type.

We use the same concept of distribution and weight function on a curve or on
an arc in the complex plane, for example, on the unit circle. Then we replace
the variable z by the real parameter which is used for the definition of the curve
or arc in question. (See Chapters XI and XVI.)

(3) Let da(z), or w(z) dz, a < z < b, be a fixed distribution, and consider a
space of “vectors” defined by the set of real functions f(z) which belong to the
class L%(a, b). The scalar product of two vectors (functions) f(z) and g¢(z) is
defined by (1.4.1) and the length (magnitude, norm) of a vector f(z) by || f || =
(f, /). Vectors (functions) with || f|| = 0 are called zero-vectors (zero-func-
tions); vectors (functions) with || f|| = 1 are said to be normalized. When
f(z) is not a zero-function, Af(z) will be normalized provided A = 0 is a proper
constant, uniquely determined save possibly for sign. If the functions a(z) and
w(z) satisfy the conditions mentioned in (1) and (2), there exist functions of
positive length for both cases. In the second case f(x) is a zero-function if and
only if {f(z)}*w(z), or what amounts to the same thing, f(z)w(z), vanishes
everywhere in [a, b] except on a set of measure zero. If w(z) and f(z) are
integrable in Riemann’s sense, f(z) is a zero-function provided f(z)w(z) vanishes
at every point of continuity.

We note the inequality of Schwarz (cf. (1.11.2))

(1.4.6) W ll =1s gl

3 Some corresponding German and French terms are: Belegungsfunktion, Gewichts-
funktion, fonction caractéristique (Stekloff), poids (S. Bernstein).
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the equality sign holding if and only if Af(z) 4+ wug(z) is a zero-function with
A and u proper constants not both zero.
A finite set of functions fo(x), fi(z), --- , fi(z) is said to be linearly inde-

.pendent if the equation

| Mfo(@) + MAG) + - + Mfilz) || =0

can be true only for
>\0=>\l= e =>\I=O-

Evidently no zero-function can be contained in such a system. An enumerable
set of functions (! = «) is called linearly independent if the preceding condi-
tion is satisfied for every finite subset of the given set.

The extension of these considerations to complex vector spaces is not difficult.
The scalar product is then defined as in (1.4.3).

Concerning the axiomatic foundation of these concepts see Stone 1, Chapter 1.

1.5. Closure; integral approximations

(1) DeriniTioN. Let p = 1, and let a(z) be a non-decreasing function in {a, b)
which is not constant.* Let the functions

(151) fo(x)) fl(x)) f2(x)) Tt fﬂ(x)) ot

be of the class Li(a, b). The system (1.5.1) is called closed in L7 (a, b) if for every
f(x) of L%(a, b) and for every ¢ > 0 a function of the form

(1.5.2) k(z) = cofo(x) + cufi(z) + -+ + cafalz)
exists such that
(1.5.3) / |f(x) — k(2) |"da(z) < e

With regard to this definition see Kaczmarz-Steinhaus 1, p. 49. These authors
use the term ‘‘Abgeschlossenheit’ for ‘“‘closure.”

(2) TaeoreM 1.5.1. Let p and o(x) have the same meaning as in the previous
definition, and let the function f(z) be of the class Lz(a, b), a and b finite. Then
for every € > 0 a continuous function F(x) can be determined such that

(1.5.4) / |f(@) — F(z) |"da(z) < e

For a Riemann-integrable function with a(z) = z, this follows by a well-
known argument from the definition of the integral. In the general case, it is
convenient to use the method of W. H. Young of approximating Stieltjes-
Lebesgue integrals. (See Hildebrandt 1, p. 190.)

Applying Weierstrass’ theorem, we obtain the following:

4+ See the remark at the beginning of §1.4 (1).
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THEOREM 1.5.2. Let p, a, b, a(z), f(x) salisfy the conditions of Theorem 1.5.1.
For cvery € > 0 there exists a polynomial p(x) such that

b
(1.5.5) / [f(x) — o(z) " dalz) < e
This means the closure of the system

(1.5.6) ("}, n=012 -

in the class L%(a, b). In what follows, we shall use in particular the cases p = 1
and p = 2.

An analogous statement holds for the “mean approximation” of f(z) by
trigonometric polynomials, which is equivalent to the property of closure of
the system '

(1.5.7) 1, cos z, sin z, cos 2z, sin 2z, - - - , cos nz, sin nzx, - - -

in L}(—=, +m).
(3) A more precise form of Theorem 1.5.2 is often useful.

Tueorem 1.5.3. Let p, a, b, o(x), f(x) satisfy the conditions of Theorem 1.5.1
and let f(zx) be real-valued. Then we can find a polynomial p(x) which satisfies
(1.5.5) and is such that p(x) remains between the upper and lower bounds of f(z).

We refer also to the following property of Riemann-Stieltjes integrals which
plays a rdle in Chapter X.

TueOREM 1.5.4. Let the real-valued function f(x) be bounded in [a, b}, a and b
finite, a(z) non-decreasing, and let the Riemann-Stieltjes integral [° f(z) de(z)
exist. For cvery € > 0 there exist polynomials p(x) and P(x) such that

(1.5.8) inf f(z) —e = p(z) = f(z) < P(x) < sup f(z) +¢,
and
(1.5.9) / 1P(x) — px)} dalz) < e

See (for a(r) = z) Polya-Szegi 1, vol. 1, pp. 65, 228, problem 137.

Similar statements hold for approximations by trigonometric polynomials.
If f(z) is an even function, —= < z =< -+, the approximating trigonometric
polynomials can he chosen as cosine polynomials.

1.6. Linear functional operations

(1) Let U(f) be an operation which makes a number U(f) correspond t.o
every function f(z), continuous in the finite interval [a, b]. This operation 1s
called additive if

(1.6.1) U(erf1 + cofe) = aU(f1) + c2U(f2)
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whenever ¢; and c; are constants and fi(z) and fo(z) are arbitrary continuous
functions in [a, b]. It is called contrnuous if U(f,) — U(f) whenever f,(z) — f(z)
uniformly in [a, b]. Additive and continuous operations are called linear.

An operation U(f) is called limited if there exists a constant M such that
[U(f)] < M max | f|. The greatest lower bound of these constants M is the
norm of U(f). The class of additive and limited operations U(f) coincides with
that of the linear operations.

According to a theorem of F. Riesz (1), any linear operation can be written
in the form

(1.6.2) ) = [ ' /(@) dalz),

where a(z) is of bounded variation, defined in [a, b] and independent of f(z).
It is obvious that (1.6.2) always represents a linear operation. In (1.6.2) the
function a(z) can always be so normalized that a(z — 0) £ a(z) < a(z + 0)
ora(z + 0) < a(z) < alz — 0)fora < z < b. Then the norm of U(f) is
given by [o | da(z) |, which is the total variation of a(z).

(2) Let K(z) be a given function continuous in [a, b]. Then

(1.6.3) ' /bf(x)K(x) dz

defines a linear operation. Dirichlet’s integral

1 [+ sin {(2n+ 1) (z — z0)/2}
(164) o ). ! () sin {(z — 0)/2}

where n is a non-negative integer and z, arbitrary, is a special case of (1.6.3).
It represents the nth partial sum of the Fourier expansion of f(z) at £ = z,.
Another important example is Fejér’s integral

1 - sin {(n + 1) (z — z)/2}\’
(1.6.5) S F 1) ) ! (x)< sin (@ = 20)/2) ) az,

which represents the nth Cesiro mean of the Fourier expansion of f(z). A
further illustration of linear operations is furnished by Lagrange’s interpolation
polynomial

(1.6.6) L(z) = L(f; 2) = fzo)lo(z) + flz)l(z) + -+ + f(z.)la(z),

where lo(z), Li(z), - - -, l.(z) are the fundamental polynomials associated with the
interpolation points Zo, 2i, ---, 2. (see Chapter XIV). For a fixed value
z = £, the expression L(f; £) represents a linear operation on f(z). Finally, the
general mechanical quadrature formula,

(1.6.7) Q) = Mof(xo) + Mf(@) + -+ + Mf(zn)

is also an example; here Ao, A, - - - , A\, are the so-called Cotes numbers (see
Chapter XV).

dz,
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(3) We consider the sequence of linear operations
b
(168) un(f) = / f(x) dan(x)y n = 0} 1} 2} T

and the operation

(1.6.9) us) = / ' 1) da(a),

where a.(z) are normalized as in (1.6.2). Then we have the following theorem:

THEOREM 1.6. A necessary and sufficient condition that lim._-U.(f) = U(f),
where f(z) is an arbitrary continuous function, is that the follounng two relations
be satisfied stmultaneously:

lim U.(z") = Uz, k=012 -,
(1.6.10) i
/ [dan(x)[<A, n=2012 .-

Moreover, if the second condition (1.6.10) is not satisfied, a continuous func-
tion f(x) exists such that the sequence {11.(f)} is unbounded.

This important theorem is due to E. Helly (1, pp. 268-271). See also
Banach 1, p. 123. The first condition (1.6.10) expresses the validity of the
limiting relation for an arbitrary polynomial. The second condition (1.6.10)
states that the total variations of the functions «,(z) are bounded.

(4) Let b — a = 2, and suppose that f(z), a.(z), and «(z) are functions with
period 27x. Then the first condition (1.6.10) must be replaced by the following:

lim U.(cos kx) = U(cos k),

n—e

(1.6.11) _ k=01
lim U.(sin kz) = U(sin kz),

n—x

2 ...

b

One of the most important applications of the preceding considerations is
to the theory of “singular integrals” of Lebesgue:

(1.6.12) U.(f) = [bf(x)K,.(x) dz,

where {K,(z)} is a given sequence of continuous functions. In this case we
are mainly interested in finding a necessary and sufficient condition that
U.(f) — f(zo), where x, is a fixed point in [a, b] 21d f(z) an arbitrary continuous
function. According to Helly’s theorem, this must hold if f(z) is an arbitrary
polynomial (or trigonometric polynomial in the periodic case) and the so-called
Lebesgue constants (which are the norms of U.(f)) are bounded:

(1.6.13) /b | K,(z) |dz < A.
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See Lebesgue 1, 2; in particular articles 45, 46, pp. 86-88. See also Haar 1.

For Dirichlet’s integral (1.6.4) this condition (1.6.13) is not satisfied; hence
there exist continuous functions whose Fourier expansions are divergent at a
preassigned point. (Du Bois-Reymond 1; Lebesgue 2, chapter IV, pp. 84-89.)
This condition 1s, however, satisfied in the case of Fejér’s integral (1.6.5) which
implies the Cesaro summability of the Fourier expansion of a continuous func-
tion (Fejér 2, in particular p. 60). The same holds for the Cesaro means of
second order of the Legendre series (Fejér 4). ‘

Regarding applications of Helly’s theorem to the theory of interpolation and
mechanical quadrature, see Chapters XIV and XV.

1.7. The Gamma function

The Euler integral of the second kind

(1.7.1) I'(z) =f T dt
H]

defines the Gamma function I'(z) for 9(z) > 0. By analytic continuation we
obtain a meromorphic function without zeros and with simple poles at z = 0,
—1, —2, ... . The functional equations
(1.7.2) I'(z 4+ 1) = 2I'(2), r)r( — z) = «/sin =z
hold. Another important formula is

rz)r(z+ 1/n) --- 'z + (n — 1)/n)
(1.7.3) - (n—1)/2 e
= n'" " (27) " T (n2), n a positive integer.

In what follows we use mainly the casesn = 2and n = 3.
The Euler integral of the first kind

1
(1.7.4) B(p, q) = / 271 — 1) de, p>0qg>0,
0
can be expressed in terms of the Gamma function thus:
I'(p)T(q)
1.7.5 B(p, q) = 2
(1.7.5) (p, ) o ¥ 0

The integral (1.7.4) exists also for complex p and ¢ with positive real parts for
which (1.7.5) remains valid. By means of (1.7.5) the definition of B(p, ¢) can be
extended to arbitrary complex p and q. (See Whittaker-Watson 1, Chapter 12,
pp. 237, 239, 240, 254.)

The special case n =2 of (1.7.3) is as follows:

(1.7.6) I'(z2) T(z41/2) = 2% 721(22).
We mention also the formula

l 0+)
(1.7.7) 1 =— el dl.

T'(z2) 27l J-=

1.71. Bessel functions
(1) The Bessel function of the first kind of order « can be defined by
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had (_l)v( /2)a+2v
Jol2) = EV! F(V—:a+ 1)’

Obviously, 27 %J.(z) is an even integral function. Here « is arbitrary real.
If « is a negative integer, {I'(v + a + 1)}™" must be replaced by 0 whenever
v+ a+ 1 =0 We then obtain the relation J,(z) = (—=1)°J_.(2). If ais
not an Integer, J.(2) and J_.(z) are linearly independent. We notice the
special cases

(1.71.2) J_4(2) = <g>i cos z, Ji(z) = <g>; sin z.

e g

(1.71.1)

The function (1.71.1) satisfies Bessel’s differential equation
(1.71.3) y' 4+ 27y 41 — o2y =0, y = Ja(2).

For non-negative integral values of @ we introduce the Bessel functions of the
second kind

Yo(2) = %(7 + log g) Jo(2) — 1 az_:l (@ —v — 1)! (z/2)*°

T veml V!

(1.71.4) 1 d ("1)”(2/_222”:'
Tis vl v + a)! {1/1+1/2 +

+ 1+ 1/14+1/24 - + 1/0 + )], a=0,1,2 .

Here v is Euler’s constant. The first sum is to be suppressed for @ = 0, and the
curly brackets in the second sum are to be replaced by 1 for» = 0, « = 0, and by
1/1 +1/2 + --- + 1/aforv = 0, « > 0. This function furnishes a second
solution of (1.71.3) independent of (1.71.1). (See Whittaker-Watson 1, Chap-
ter 17, pp. 370, 372.)

The formulas

(L715)  Jacs(2) + Jan(2) = 2027 a(2), (%_ (27°T@)] = — 2T ans(2),

follow directly from (1.71.1) on comparing the corresponding coefficients on
both sides. The integral representation

S 7
Mo+ HIE) J-

holds for « > — 4. This can be verified by introducing the development of
'™ and integrating by means of (1.7.5).

(2) The following important asymptotic formula is used in various appli-
cations:

1
(1.71.6) J(2) (1 — &)™ gy

]
(1.71.7) Jo(2) = <7rgz> cos (z — ar/2 — 7/4) + 0@z, z— 4 o,

This is only a special case (p = 1) of the asymptotic expansion (see Whittaker-
Watson 1, p. 368):




16 PRELIMINARIES [T]

3 p—1
Jao(2) = (,%) cos (z — ar/2 — w/4) {Z a2 + O(z“z”)}
(1.71.8) =0

) 2=l
+ <7%z> sin (z — ar/2 — 7/4) {;0 b+ 0(24”_1)} ;

here p is an arbitrary positive number, a, and b, certain constants depending
onlyony,andz — + «. Also,a, = 1.

This expansion holds also if z is complex, |argz | < = — 8, 6§ > 0, if we agree
that 2! = exp (4 log z) with | S(logz) | £ # — 8. We notice the following
important consequence of this formula, valid for —7/2 4+ 8 < argz < 37/2 — 4,
6> 0:

e A (e77%2) = @rz)7Ve {1 4+ 0(|z| )}
+ (2r2) Pexp [— z + (a + Hmi) {1 4 0[]

An asymptotic formula similar to (1.71.7) holds for Bessel functions ¥ .(z)
of the second kind, with the only change that cosine is to be replaced by sine.
(See Whittaker-Watson 1, p. 371.)

(3) It may be useful to notice t:« order of magnitude of J,(z) and Y .(z) for
z—+ 0andz— + . From the preceding formulas we see that whenz — + 0,

(1.71.9)

Ja(2) ~ 2% areal, a # —-1, -2, =3, ---,
(1.71.10) Vi) ~27% a=123,---,
Yo(z) ~ log (1/2),

while whenz — 4+ «,

(1.71.11) Ja(z) = 0, Ya(z) = 0.

1.8. Differential equations

We shall make frequent use of certain elementary transformations of homo-
geneous linear differential equations of the second order.

(1) Let K(x), M(x), N(z) be functions defined in the interval ¢ < z < b
in which K(z) and M (z) have continuous derivatives and K(z) = 0; let N(z)
be continuous. If in

(1.8.1) Ky + M@y + Ny =0

we introduce y = s(z)u(zr), u(r) being the new unknown function, s(z) can be
determined so that u(z) satisfies an equation of the form

(1.8.2) w4+ Mz)u = 0.

Direct calculation gives

(1.8.3) 2Ks' + Ms =0;  s(z) = exp {_ Aglix},
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where the integration is extended from an arbitrary point z, to z. Then

(1.8.4) \z) = —% (2‘%) _ (2"‘74()2 + %,f

(2) If we introduce into (1.8.1) the new independent variable 8 defined by
z = o(6), we obtain

(18.5) K(z)a'(8) ‘é—(jj + (M@)o’ — K(z)s"(6)) % + N@)[o'(0))]y = 0.

If we apply the process in (1) to (1.8.5), the first derivative can be removed.
We write y = s*u; here, in view of (1.8.3),

Ms”? — Ko
¥ = — il — ni
(1.8.6) s exp{ / Ko db‘} (¢")’s,
where s has the same meaning as in (1.8.3). Hence, y = (¢')¥su, and u satisfies
d*u *

with

d (Me" — K" Ms” — K"\ | N ,

* - __ T — -

(1.8.8) A d0< 2Kd’ > < 2Kd’ ) T K-

As an application of the above, we note the following transformations of
Bessel’s differential equation (1.71.3), k = 0,

d2u 9 % — d.2 _ . R |
(1.8.9) T + K+ pe u = 0; ulz) = ' J.(kx),
d2 k _ 2
(1.8.10) d-xz; + <E + 1—43;_2“—> u = 0; u(z) = x*J,,{2(ch)*}.

Another elementary formula, important for further exposition is the repre-
sentation of a solution y = y(z) of the non-homogeneous equation

(1.8.11) K(z)y" + M(z)y’ + N(z)y = f(z)

in terms of a fundamental system {yi(z), y2(z)} of the corresponding homo-
geneous equation (1.8.1). We have

* yx(x)yz(t) - yz(x)yx(t) f(t) di
2 Y1(Oya(®) — y2(Oyi(®) K@) | ’

where 1z, is a fixed value and ¢, ¢, proper constants. Now

(1.8.12) y(x) = ayz) + cy(z) +

(1.8.13) y1(@)ye(z) — ys(x)yu(z) = const. exp {—/ %’dx}

When we take M = 0, this expression becomes a constant.
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Applying this last remark to (1.8.9), we obtain the important formulas

Jo(@)J_o(z) — J L@ o(2) = 2 S;I; mr, a non-integral,

(1.8.14)
Auwwm—muwmo=—%, =012 ...

As regards the evaluation of the constants on the right side, see Watson 3,
p. 43, (2), p. 76, (1).

1.81. Airy’s function

An interesting transformation of Bessel’s differential equation (1.71.3) can
be obtained in the special cases @ = 41/3. If we use (1.8.7) and (1.8.8), there
is no difficulty in showing that both integral functions

. L _rd (—2/3)
k(z) = 3 (2/3)° T 4{2(z/3)"} = 3 ; m;

T (—z/3)*
335 v!D(v+ 4/3)’

(1.81.1)
K@=§@Bﬁmmwwﬂ=

satisfy the equation
d2
(1.81.2) 3;3:{ + 12y = 0.

For negative = we have k(z) > 0, I(z) < 0. Using (1.71.9)," we obtain for
1 <0,z > — :

(1.81.3) k() = —Uz) = 2737 [z exp {2(] z |/3)}).
Thus, but for a constant factor, the function
(1.81.49) A(x) = k(z) + l(z)

1s the only possible particular solution of (1.81.2) which remains bounded if
r — — . Indeed,

(1.81.5) A(r) >~ 27'374 4 |z |7 exp {—=2(| z \/3)*}, r— — o,

(See Watson 3, pp. 188-190, 202.) This function A(z) is called Airy’s function;
1t can be considered as the standard solution of (1.81.2) and plays an important
part in numerous questions in mathematical physics. The function I(z)/k(x)
Is increasing (see Fig. 1) so that an arbitrary real solution of (1.81.2) has at
most one negative zero and infinitely many positive zeros. In particular, A (z)

® If z is negative, we have

k@ = = (2 1/3) e rIeg_yple-ieliz(| z|/3)sh),

I(z) = —;5 (| z|/3)126" 61y { e~ 122(| 2 | /3) 32} .
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has no negative zero and infinitely many positive zeros. Since A(x) > 0 for
r < 0, we see from (1.81.2) that A”"(z) > 0 for z < 0; therefore A’(x) — 0

as r — — oo,

Fig. 1

1.82. Theorems of Sturm’s type

The following “comparison theorems” of Sturm’s type can be proved in the
usual way (see Szegé 20, pp. 3-4):

THEOREM 1.82.1. Let f(x) and F(z) be functions continuous in 2o < z < X,
with f(x) < F(z). Let the functions y(z) and Y(z), both not identically zero,
satisfy the differential equations

(1.82.1) y'+f@)y =0, Y4 F(x)Y =0,

respectively. Let x' and ', ' < 2’, be two consecutive zeros of y(z). Then the
function Y (z) has at least one variation of sign in the interval z' < z < z'’ provided

f(z) # F(z) in [2, 2"'].
The statement holds also for ' = z, [y(ze + 0) = 0] if the additional condition

(1.82.2) lim {y@Y(z) -~ y@)Y' (@)} =0

z—zo+0
1s satisfied (similarly for 2" = X,).

From Theorem 1.82.1 we readily derive (loc. cit., p. 4) the following theorem:
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THEOREM 1.82.2. Let ¢(z) be continuous and decreasing in z, < z < X,
and let y be a solution of

(1.82.3) ¥' + o)y =0

which is not identically zero. Then z' < z'' < z'" being three consccutive zeros
of y(z), we have " — z' < z'" — z''; that 1s, the sequence of the zeros of y(x)
18 conver.

The last inequality holds also under the following more general condition:

(1.82.4) () > ¢(z") > ¢(y), forx < 2" <y <"
In addition, it holds also if ' = z, [y(zo + 0) = 0] provided that
(1.82.5) lim (z — zo)y'(z) = 0.

z—zp+0

In order to prove 2" — 2’ = h < z'" — 1z, we compare (1.82.3) with
Y + ¢(x - h)Y = 0}

which has the solution Y(z) = y(x — h) in the interval 2’ < z < 2.
Another very elementary remark of a related nature is the following:

THEOREM 1.82.3. Let f(z) be continuous and negative in 2o < z < Xo,. Then
an arbitrary solution y of y'' + f(z)y = 0, for which y — 0 if z — X, , cannot
vanish in zo < z < Xo.

Suppose the contrary. Now between two consecutive zeros sgn ¥’ = sgn y
is constant, say positive; then y is positive and convex, which is a contradiction.

A further remarkable result of Sturm’s type is the following (Watson 3, p. 518,
Makai 2):

THEOREM 1.824. Let f(z), F(z), y(z), Y(z), 2o, Xo, 2, z° have the same
meaning and salisfy the same conditions as in Theorem 1.82.1. We denote by &
the first zero of Y (x) to the right of ', 2’ < £ < z"’.

Assuming that y(z) > 0; Y(z) > 0inz’' <z < § and

. y(@) o
(1.82.6) I_I};,nw Y@ 2 1,

we have y(z) > Y () inz' <z < &.

We conclude as usual that the function ¥’ (z)Y (z) — y(z)Y’(z) is increasing
in [z, &]; it is zero at £ = 2'(¥Y (z’) = 0), thus positive in 2’ < z < £&. Hence
y(x)/Y (z) is increasing. In view of (1.82.6) the assertion follows.

The statement holds also for " = z, provided the condition (1.82.2) issatisfied.

We prove now the following important consequence of the last theorem
(Hartman-Wintner 1; Makai 2):
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THEOREM 1.82.5. Let ¢(x), &', 2, 2'"" have the same meaning as in Theorem
(1.82.2): 2" — 2’ <z2"" —x". Let y(x) describe a negative ‘“wave’ in [z’, z''] and
a posttive one in [x”, z'). The first “wave” is then entirely contained in the
second one.

The meaning of the last assertion is the inequality:
0 < —y@2z" —z) < y(x), ¥ <x <22 -2,

The proof proceeds as usual, taking into account that, Y() = —y@22" — 2),
lim ____1_/_(_’15’_)___ lim ——(x—)‘—— 1.
z -z’ _y(2 - ) z—z" Y (2 - x)

1.9. An elementary conformal mapping

Let the complex variables z and z be connected by the relations
(1.9.1) z=3z+2z", z=z+ (-1

The exterior of the unit circle, |z | > 1, as well as its interior, is mapped onto
the whole z-plane except the closed 1nterva1 [—1, +1] (the so- called cut plane),
withz = «~ and z = 0, respectwely, correspondlng toz = . If we take that
branch of z 4+ (2* — 1)} which becomes infinite at z = w, we obtain |z ]| > 1;
if we take the other branch which vanishes at z = o, we obtain |z | < 1.

The unit circle z = ¢” is carried over into the closed segment -1z +1
described twice since x = cos 6.

The circle |z | = r, or|z| = ", 0 < r = 1, corresponds to the ellipse with
foci at —1, +1 and with semi-axes

e+, e =T
Upon replacing z by ¢ or by ¥, we obtain the representation

(1.9.2) z = cosh ¢.
It maps the half-strip
(1.9.3) RE) > 0, -7 < 3@¢) =
onto the same z-plane cut along [—1, +1] as before; now, however, the point
z = « hasto be removed.
1.91. The principle of argument; Rouché’s theorem; sequences of
analytic functions

THEOREM 1.91.1 (Principle of argument). Let f(x) be analytic both inside and
on a Jordan curve C, and let f(x) #¢ 0 on C. Then the variation of S{log f(z)} =
arg f(z), as x describes C in the positive sense 1s 2xim, where m is the number of
the zeros of f(z) in the interior of C, counted with the proper multiplicity.
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Taeorem 1.91.2 (Rouché’s theorem). Let f(x) and g(x) be analytic inside
and on C, and let | g(x) | < |f(x) |on C. Then f(x) + g(x) and f(x) have no

zeros on C and the same number of zeros in the interior of C.

THeEOREM 1.91.3 (Theorem of Hurwitz). Let {fa(x)} be a sequence of analytic
functions regular in a region G, and let this sequence be uniformly convergent in
every closed subset of G.  Suppose the analytic function lim,_ fa(x) = f(x) docs
not vanish identically. Then if x = a is a zero of f(x) of order k, a neighborhood
|z — a| < 6 of z = a and a number N exist suchthatif n > N, f,(x) has exactly
kzerosin |z — a| < 6.

The last thcorem follows immediately from Theorem 1.91.2. Concerning
the preceding theorcms see Pélya-Szegé 1, vol. 1, pp. 120-124.

In Theorcm 1.91.3, let G be symmetric relative to the real axis, and let f,(x)
be real if zis real. If x = a is a simple real zero of f(x), then for n > N each
fo(z) has cxactly one real zeroin |z — a| < 8. For if fa(xe) = 0, then f(Zo)
is also 0.




CHAPTER II

DEFINITION OF ORTHOGONAL POLYNOMIALS;
PRINCIPAL EXAMPLES

2.1. Orthogonality

(1) In what follows a(2) is a fixed non-decreasing function which is not con-
stant in the interval @ < # < b. (See the remark at the beginning of §1.4 (1).)

DeriNiTION.  An orthonormal set of functions ¢o(x), ¢1(2), - - - , ¢u(x), 1 finite
or infinite, 1s defined by the relations

b
(2.1.1) (@n, m) = / ¢n(2)pm(z) da(z) = bnm, nym=0,1,2 -1

Here ¢,(z) s real-valued and belongs to the class L% (a, b).

Functions of this kind are necessarily linearly independent. If a(z) has
only a finite number N of points of increase (that is, points in the neighborhood
of which a(zx) is not constant), ! is necessarily finite and I < N.

THEOREM 2.1.1. Let the real-valued functions

(2.1.2) fo(x), fi(z), fo(z), - - -, filz), [ finite or infinite,
be of the class Li(a, b) and linearly independent. Then an orthonormal set
(2.1.3) éo(x), 1(x), $2(), - - - , du(®)

exists such that, forn = 0,1, 2, ... | [,

(2.1.4)  ¢u(2) = Mafo(2) + Mufi(2) T Aanfa(2), Ann > 0.

The set (2.1.3) s uniquely determined.

The procedure of deriving (2.1.3) from (2.1.2) is called orthogonalization.
(Cf. Stone 1, pp. 12-13.)

(2) For the orthonormal functions (2.1.4) the following explicit representation
holds:
(2.1.5) $n(2) = (Dn1Da)*Da(2), n=2012"-,
where, for n 2 1,
(fo, /o) (fo, /) -+ (fo,fw)
. (f,f) (i, 1) -+ (1, fa)
(2.1.6) Do) = corvveiiiiiiiii ,
(fn-—-l,fo) (fn—-l,fl) et (fn—l,fn)

fo(z) fi(z) coe fa(a)
23
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and, forn = 0,
(217) Dn = [(fv,fu)]v.u=0,1'2.---.n > 0
We write D_; = 1 and Dy(x) = fo(x). The determinant (2.1.7) corresponds
to the positive definite quadratic form
uofo + wfr + -+ + unfall’
(2.1.8) b \
= [ thle) + @) + -+ waful@)) data)

-so that D, > 0 for each n.
Furthermore, the following integral representations can be established:

folm)  film) -+ falza)
L[ o] Solz)  film) - fal@)
pawy = 3 [ [ [ A
Z 2 e filga) o falzas)
(2.1.9) ' D A@ - HE
 fo(z)  filw) -+ faca(zo)
| Bz Al) e (@) dae) daa) - - dalEa), no2 1,
Jo(@as) fil@a) o faca(zan)
Ds = o)
(2.1.10) folwo)  filze) o+ falzo) [
/ / / folz)  filw) - fa(@) | dalzo)dalz) - - - dalz.).

‘fo(xn) fl(xn) e fn(xn)
(Cf. Kowalewski 1, p. 326; Polya-Szego 1, pp. 48-49, 208, problem 68.)

(3) DerFINITION. Let {¢n(z)} be a given orthonormal set, finite or infinite.
To an arbitrary real-valued function f(x) let there correspond the formal Fourier
expansion

(2.1.11) f(x) ~ fogo(x) + figr(x) + -+ + fadnlz) + - -+ .

The coefficients f, , called the Fourier coefficients of f(x) with respect to the given
system, are defined by

(2.1.12) fn = (fy ¢n) = / f(x>¢n(x) da(x), n = 0, 1) 2) e

Every finite section of the series (2.1.11) has the following important minimum
property:
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TaeEOREM 2.1.2.  Let ¢,(x), f(x), fa have the same meaning as in the Previous

definition. Let 1 Z 0 be a fixed integer, and ay, ay, --- , a; arbitr ary real con-
stants. If we wrz'te
(2.1.13) 9(z) = awpo(z) + api(z) + --. + aipi(x),
and the coefficients a, are variable, the integral
b

(2.1.14) / {f(x) — g(2)}" dalz)
becomes a mimemum if and only if a, = f, ,» = 0,1, 2, ... , L.

The minimum itself is

b i

2.1.15) [ e - S - - 5,
so that
(2.1.16) fo+fi+ -+
and (Bessel’s inequality)
(2.1.17) fo+si+n+ - 2SI = / (f(@)}* da(z).

If the left-hand side of (2.1.17) is an infinite series, it is convergent. The dis-
cussion of the equality sign in (2.1.17) leads to the concept of closure (§1.5).

A classical example of Fourier expansions of this kind is the ordinary Fourier
series in terms of the trigonometric functions 1, cos nz, sin nx, n = 1,2,3, . .- ;
—r=z=< +m |

(4) Another important characterization of the orthonormal set (2.1.4) can
be based on the preceding minimum property of the partial sums. Indeed, for
variable real values of Ao, A;, -- -, A\._; the expression

(2.1.18) [ Nofolz) + Mfilz) + - + Ncifass(z) + ful2) ||
becomes a minimum if and only if
(2.1.19)  Nofo(z) + Mfi(x) + - + Aotfoa(z) + falz) = )\;1n¢n(x)-

The extension of these considerations to complex function spaces is not
difficult. The scalar product of the functions f(z) and g(z) is then defined as
in (1.4.3).

2.2. Orthogonal polynomials

(1) DeriniTION. Let o(x) be a fized non-decreasing function with infinitely
many points of increase in the finite or infinite interval [a, b], and let the “moments”

b
(2.2.1) Cn = / " da(r), n=2012 .-,
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exist. If we orthogonalize the set of non-negative powers of x:

(2.2.2) 1, z, xg, N A

’

i the sense explained in §2.1 (the linear independence is shown below), we
obtain a set of polynomials

(2.2.3) Po(2), p1(x), Pa(2), - - -, Pal2), - - -

uniquely determined by the following conditions:

(a) pa(x) s a polynomial of precise degree n in which the cocfficient of x" is
positive;

(b) the system {p.(x)} is orthonormal, that s,

b
(2.2.4) / Po(@) (@) da) = bumy o, = 0,1,2, -+

The existence of the moments (2.2.1) is equivalent to the fact that the func-
tions z" are of the class L.(a, b).

A similar definition holds in the special case of a distribution of the type
w(z) dz. Here we assume that w(z) is non-negative and measurable in
Lebesgue’s sense and that [o w(z)dz > 0. Moreover, the moments must
exist again.

We call pa(z) the orthogonal polynomials® associated with the distributions
da(z) and w(zx) dz, respectively; in the latter case we also speak of the or-
thogonal polynomials associated with the weight function w(z). The following
chapters are devoted to the study of these polynomials. Evidently if the
distribution is of the type w(x) dz, the system

(225) {[w(x)]*pn(x)}, n = 0; 1) 2; Tty

is orthonormal in the usual sense.
The linear independence of the functions (2.2.2) can readily be shown. In
fact if p(x) is an arbitrary real polynomial, the relation

el = j: {p(z)}*dalz) = 0

is possible only if p(x) vanishes at all points of increase of a(x). Since there
are infinitely many such points, p(z) must vanish identically.

If «(x) has only a finite number, say N, of points of increase, the functions
1, z, 2%, -+, "7 are still linearly independent. Through orthogonalization
we obtain a finite system of polynomials {p.(z)}, n = 0, 1,2, --- , N — 1,
satisfying similar conditions as required in the previous Definition. See §2.8
and §2.82.

(2) Using the general formulas (2.1.5) to (2.1.8), we obtain, forn = 1,

¢ Sometimes these are called T'chebichef polynomials. We shall reserve this terminology
for the important special cases (1.12.3).
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Co € C “++ Cq
a1 G (3 et Cnqa
(2.2.6) Pa(x) = Dusa D) H oo ,
Cpa1 Cp Cnt1 Con.1
1 z 2 "

where forn = 0
(227) Dn = [Cv+u]v,u=0.1,2,---,n > 0.

In addition to (2.2.6) we have po(z) = Di? = ¢;'. The determinant (2.2.7) 1s
associated with the positive definite quadratic form

n n b
(2.2.8) Zo: 20: Cranliy Uy = / (uo + mz + wex” + - -+ + uaz") da(x),
yual = a '
which is called a form of Hankel or of recurrent type. (See Szegd 1.)
The determinant in (2.2.6) can be transformed by multiplying the next to the
last column by z, subtracting it from the last column, and repeatlng this opera-
tion for each of the preceding columns. In this way we obtain, n =1,

Cx — 1 C1x — C2 LA Cpa1X — Cn
229) palz) = Daa D)~ AT =@ GT =G ot G = Can
Cn1T — Cn CaZ — Cpy1  *** Can—2X — Con—

Furthermore, according to (2.1.9) and (2.1.10), we have the following integral
representations:

m(x)=@1%§)£Lb[b---[b(x—xo><x~xl> e = 2)

(2.2.10)
I (@~ ) da(@) dal) - - dalean),
v, jazm '3.<“ -1
and
D - z,)°
’ + 1! / / / e g
(2.2.11) ORI Ve

-da(xo) da(x1) -+ + dalxs).

For (2.2.10) and (2.2.11) see, for example, Heine 3, vol. 1, p. 288. Formulas
(2.2.6), (2.2.9), (2.2.10) are not suitable in general for derivation of properties
of the polynomials in question. To this end we shall generally prefer the
orthogonality property itself, or other representations derived by means of the
orthogonality property.
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(3) The Fourier expansion of an arbitrary function f(x) in terms of the
polynomials {p.(x)} has the form

(2.2.12) f(@) ~ fopo(x) + fipr(z) + -+ + fapalz) + ..
with
(2213) fn = / f(x)pn(x) da(x); n =01, 2, ...

The partial sums have the minimum property formulated in Theorem 2.1.2.
We notice as an important special case the following direct characterization of
the orthogonal polynomials (see §2.1 (4)). Considering the set of all poly-
nomials p(z) of degree n with the coefficient of =" unity, we find that the integral

(2.2.14) [Wmﬁmw

becomes a minimum if and only if p(z) = const. p,(x). Here the constant
factor is determined by normalizing p(z). If k, denotes the highest coefficient
of p.(z), the minimum is obviously k,°. From (2.2.8) we find for this minimum
the value D,/Dn_;, so that

(2.2.15) kn = (Dnt/Da)},
which also follows directly from (2.2.6).

2.3. Further remarks

(1) The restriction (a) in the definition in §2.2 (1) concerning the highest
coefficient, and the restriction (b) concerning the integral of the square, is
only one of various possible ways of normalizing the polynomials in question.
Sometimes other kinds of normalization are appropriate, such as fixing the
value of p.(x) at £ = a or at = = b,” or fixing the highest coefficient of Pa(2),
and so on. Since p,(r) has the precise degree n, every =, can be represented
as a linear combination of po(z), pi(z), -+, p.(x) (see §1.12). Therefore
Pa(x), n Z 1, is orthogonal to any =, . In particular,

b
(2.3.1) / Pa(2)2 da(z) = 0, y=20,1,2-.-.,n—1.

This condition determines p.(r) save for a constant factor. Frequently, this
wider formulation of the orthogonality property is used. Observe also that
if p(z) is a 7, and

(2.3.2) /pmmnmw=q

then the coefficient of z" in p(x) is ck, .

" We have pa(a) # 0, pa(b) #= 0 (see §3.3).
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(2) Let [a, b] be an interval vsym;netric with respect to the origin, that is,

a = —b, and let us consider a distribution of the type w(z) dr with an even
weight function, that is, w(—z) = w(z). Then Pn(x) is an even or an odd
polynomial according as n is even or odd:

(2.3.3) pa(—12) = (=1)"pa().

[t can contain only those powers of z which are congruent to n (mod 2). In-
deed, we have forv = 0,1, 2, ... ,n — 1

/_a pa(—=2)2" w(x) dz = (—1)"/ o)’ w(z) dz = 0.
Consequently, p,(—x) possesses the same orthogonality property as p,(z) (in
the wider sense). Therefore, comparing the coefficients of z", we obtain
Pa(~2) = const. pa(z) = (—1)"p,().

The linear transformation x = kx' 4 I k s 0, carries over the interval
[a, b] into an interval [a’, b’] (or [b", a’]), and the weight function w(zx) into
w(kz’ 4+ 1). Then the polynomials

(23.4) (sgn )" | & | palha’ + 1)
are orthonormal on [a’, b’] (or [b’, a]) with the weight function w(kz’ + 1).

2.4. The classical orthogonal polynomials

LLeta=—-1,b= 41wk =1 - 2% + 2)* « > -1, 8> —1.
Then, except for a constant factor, the orthogonal polynomial Pa(z) is the
Jacobi polynomial Pi*?(z) (see §4.1).

2. Let a = 0,b = 4o, wix) = ¢°2% o > —1. In this case Pa() i,
except for a constant factor, the Laguerre polynomial L (z) (see §5.1).

3. Leta = —ow,b = +ow, wx) =¢*. In this case Pa(x) is, save for a
constant factor, the Hermite polynomial H,(z) (see §5.5).

Some special cases of 1, except for constant factors, are:

The ultraspherical polynomials, for « = 8.

The Tchebichef polynomials of the first kind, 7.(z) = cos nd, £ = cos 9,
for « = B = —1 (see (1.12.3)). '

The Tchebichef polynomials of the second kind, U/,(z) = sin (n + 1)8/(sin 6),
r = cos 0, fora = B = 43} (see (1.12.3)).

The polynomials Us, (cos (8/2)) = sin (n + 1)8/sin (6/2) of cos § = z, for
a = —f =1 (see §1.12).

The Legendre polynomials P,(z), for « = 8 = 0.

A detailed investigation of these polynomials will be given in later chapters.

2.5. A formula of Christoffel

(1) TaEorREM 2.5. Let {p.(x)} be the orthonormal polynomials associated
with the distribution da(zx) on the interval [a, b]. Also let
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(2.5.1) p(z) = ¢z — 2)(x — 1) --- (x — 1)), c# 0,

be a w, which is non-negative in this interval. Then the orthogonal polynomials
{gn(2)}, associated with the distribution p(x) de(x), can be represented in terms
of the polynomials p,(x) as follows:

Pa(z)  panlz) oo panla)
(2.5.2) p(x)q.(x) = Pal21)  Paralz) oo Payi(m) .
Pn(22) Pag(z) oo paglz) l

In case of a zero x,, of multiplicity m, m > 1, we replace the corresponding
rows of (2.5.2) by the derivatives of order 0, 1, 2, ..., m — 1 of the polynomials
Pn(2), Pria(2), -+, PriilE) @l T = T .

This important result is due to.Christoffel (see 1, actually only in the special
case a(r) = z). The polynomials ¢,(x) are in general not normalized.

The proof is almost obvious. The right-hand member of (2.5.2) is a 7.4
which is evidently divisible by p(z). Hence it has the form p(x)g.(x), where
ga(z) i1s a m.. Moreover, it is a linear combination of the polynomials p.(z),
Dni1(Z), -+ -, Pati(x), so that if ¢(x) is an arbitrary =, , then

(2.5.3) .ﬁpw%m«@muw=[mmmwammuw=o

Finally, the right side of (2.5.2) is not identically zero. To show this, it suffices
to prove that the coefficient of p,.,(z), that is, the determinant [pni,(zu1)],

vyu=20,1,2 -..,1 — 1, does not vanish. Suppose it to vanish; then certain
real constants Ao, A1, N2, -, Ay exist, not all zero, such that

(2.5.4) MND(Z) + Mpasa(z) + - + N1 Prgpia(x)

vanishes for ¢ = x;, 23, ---,2;. Hence (2.5.4) is of the form p(z)G(z),

where G(x) is a mn.1. Since (2.5.4) is orthogonal to an arbitrary =, , we have
the relation

/pwmnm@ww=o;

whence G(x) = 0, a contradiction.

(2) The representation (2.5.2) enables us, for instance, to reduce ultra-
spherical polynomials with « = B = an integer, or with « + 3 = 8 4+ § =
an integer, to Legendre and Tchebichef polynomials, respectively [cf. §4.21 (3)].
Another illustration may be obtained in connection with the polynomials con-
sidered in §2.6. ‘

By using some special properties of da(z) or of p(z), formula (2.5.2) can be
simplified. For example, let da(x) = w(z) dz, w(z) and p(x) be even func-
tions,and a = —b. Then, instead of (2.5.2), we have the representation (I cven)
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Pa(2) Pnya(z) Pra(2) cor Paga(T)
p(x)qn(x) = Pn(-’h) pn+2(x1) Pn+4(x1) v Pn+z(x1) ,
Pu(Ti2)  Pria(zyz) Papalzip) - Paplziyn)
where {1, &=25, - -+, f=2y2} is the total set of zeros of p(z). For instance,

the orthogonal polynomials ¢g.(z) associated with the weight function 1 — 2°

in [—~1, +1] can be determined from
Pn(x) Pn+2(x)

(1 ~ z%)ga(z) = Pul) Pan(D)

= Pn(x) - Pn+2(x)-

(Cf. (4.7.27), A = &)

2.6. A class of polynomials considered by S. Bernstein and G. Szeg6

Let p(x) be a polynomial of precise degree ! anc positive in [—1, +1]. Then
the orthonormal polynomials p.(x), which are associated with the weight funec-
tions

(1 = &) Ho(@)) 7,

(2.6.1) wz) = 44~ ) {p(x)} 7,

1 —z\! —

<fT5:) {p(z)} '
can be calculated explicitly provided I < 2n in the first case, ] < 2(n + 1) in
the second, and I < 2n + 1 in the third. The polynomials of the first case
play an important rolc in the proof of Szegi’s equiconvergence theorem (9; cf.

Theorem 13.1.2). All three cases were later investigated by S. Bernstein (3)
in connection with his asymptotic formula (2; ¢f. Theorem 12.1.4).

TueoreM 2.6. Let p(x) be a m; of precise degree | and positive in [—1, +1].
Let p(cos 6) = | h(c®) |” be the normalized representation of p (cos 8) in the sense
of Theorem 1.2.2. Writing h(e”) = ¢(8) + 1s(8), c(8) and s(6) real, we have the
following formulas:

palcos 6) = (2/m)' R (™ h(e™)]}
(2.6.2) = (2/7){c(6) cos nb + s(6) sin nb},
w@) = 1 — 2)7Hp@)} 7, I < 2n;

pa(cos 6) = (2/)"(sin )7 S im0 R ()}

(26.3) — @/n) {C(e) sin (n + 18 _ . cos (n + 1)9},

sin 6 sin 6

w(z) = (1 — HHpx)} ™!, I < 2(n + 1);
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pa(cos 8) = =} (sin (6/2)) 7' {eitrHb0 ()}
o sin (n + 1)6 cos (n + 3)8
(2.6.4) = { O e 0 Smem }
NS
w(z) = <i T i) {p(@)}7, I <2n+ 1.

These formulas must be modified for | = 2n,1 = 2(n + 1), and | = 2n + 1,
respectively, by multiplying the right-hand member of (26.2) by (1 + & /ho)_i
and those of (2 6.3) and (2.6.4) by (1 — hi/ho)™ where hy = h{(0) and h; s the
coefficient of 2 in h(z).

First we observe that the right-hand members of (2.8.2), (2.6.3), (2.6.4) are
cosine polynomials with the highest terms
sin (n + 1)8 ~ sin (n + %)6
sing '’ °* Tsin (6/2)
respectively. In the first of these expressions, if I = 2n > 0, h must be re-
placed by ho + h; ; in the second and last, if ] = 2(n + 1) and | = 2n + 1,

respectively, we have hy — h; in place of ho.
We give the proof of (2.6.2). First we show that

(2.6.5)  (2/7) ho cos n8, (2/7)} ke

+1
,/;1 pn(x)xy(]- - x2)—51p(x)}—1 dx = 0) v= 0) 1: AN (i 1)
or, what amounts to the same thing,

/ Pn (cos 6) cos »6{p (cos )} db = 0, yv=20,1,2 ... n—1.
0

Now,

3 x
(2/7r) R {A £in? D) ™ + ) | h(e™) l—z dﬁ}

(2/7[‘)} /+1 z(n-l—v)d +ei(n—v)6 (2/7[‘)} / zn+v+zn—y 3
4 ® — h(e*) a6 4 i S 2R(2) dzp =0,

since the function (z"™ 4 2"7){zh(2)} ™" is regular for | 2| = 1. Furthermore,

/_jl [pa(@) (1 — 2D Hp(2)} Vdx = lw {pa(cos 8)}*{p(cos 8)} " db

= j;wp,,(cos 6)(2/7) ko cos n{p(cos 6)} " de
3 b 2"+ 1 1 _
- (2/7r) ho(2/ ) { /|z|=1 zh(z) dz } =3 (2/m)ho(27/ho) =

The proofs of (2.6.3) and (2.6.4) are similar. In place of cos »8 we use
sin (v + 1)8/sin 6 and sin (v + })8/sin (6/2), respectively. The modifications
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necessary for I = 2n, I = 2(n + 1), and I = 2n + 1, in (2.6.2), (2.6.3), and
(2.6.4), respectively, are also obvious. Finally, we notice that (2.6.2) arises
from (2.6.4), (2.6.4) from (2.6.3), and (2.6.2) from (2.6.3) by replacing p(z)
by (1 — z)p(z), (1 + z)p(x), and (1 — z*)p(x), respectively.

2.7. Stieltjes-Wigert polynomials

Wigert (2, p. 7; also Stieltjes 11, pp. 507-508) found a very elegant explicit
representation for the orthonormal polynomials p,(z) associated with the
weight function

(27.1) w@) =7 kexp (=K log’z) = 7%k ' 0 <z < 4wk >0

Using the notation (cf. Gauss 1, p. 16)
o ® _ .. _ vl

1-91—-¢)--1—¢) n
where
(2.7.3) g = exp {— (27,
we have

(274) pa@) = (= D"¢*HA -1 —¢) --- A =g} go ["] (= ¢z).

For n = 0 the product in the braces must be replaced by 1.
The proof can be based on the identity of Gauss:

n

(2.7.5) > [7:] ¢ = (14 qu) 1+ g'u) - (1 + ™).
v=0

See Szegé 12, where other similar polynomials (related to the theory of theta

functions) are also considered. Also see Hahn 5.

2.8. Distributions of Stieltjes type; an analogue of Legendre polynomials

Tchebichef (4) investigated a remarkable finite set of orthogonal polynomials
associated with the distribution da(x) of Stieltjes type, where a(z) is a step
function with jumps of one unit at the pointsz = 0,1,2, ... , N — 1 (Nisa
fixed positive integer). This is a distribution of the type mentioned at the
end of §2.2 (1). The associated polynomials are, except for constant factors
(see (2.8.3)),

(2.8.1) ta(z) = n! A"<z><x n N)’ n=012-,N—1

n

Indeed, Tchebichef shows (4, pp. 547, 552; sec also A. Markoff 1, pp. 21-22) that

(2.8.2) /—:w b2t () da(z) = > 1 ta(X)tm(x) = 0, if n % m,

z=0,1.2,"+,N—
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and
+o0
[T werew - | X @y
(2.8.3) ' B NN — 1DHWN* = 29 --- (N* — D)
B 2n + 1 ’

n,m=012 ... N —1.

These formulas hold for all non-negative values of n» and m, but they are trivial
forn =2 Norm = N, since t,(x) = 0forz =0,1,2,... N — 1,ifn = N.
In (2.8.1) we used the symbols
Af(z) = flz + 1) — f(=),
(2.8.4) A™f(z) = A" f(2))}

=gt - (et n =10+ + D).
By the mean-value theorem

(2.8.5) A () = f"(z + 6n), 0<6<1,

(see, for example, Polya-Szegd 1, vol. 2, pp. 55, 241, problem 98), we obtain
for a fixed value of n the remarkable formula
(2.8.6) lim N7"t,(Nz) = P,.(2z — 1),

N—+c0
where P,(z) is the Legendre polynomial of degree n (see §4.1 (3)). The repre-
sentation (2.8.1) is the ‘“difference” analogue of (4.3.1), « = 8 = 0. The
proofs of (2.8.2) and (2.8.3) are analogous to those in §4.3.

Tchebichef also considers (1, 2) the more general case in which the points
0,1,2, ---, N — 1 are replaced by an arbitrary set of N distinct points. In
this connection he obtains an interpolation formula having a certain significance
in mathematical statistics. (See Jordan 1.)

2.81. Poisson-Charlier polynomials

These polynomials have become important in some recent investigations con-
nected with the calculus of probability and statistics (see Doetsch 2 and the
literature quoted in E. Schmidt 1, also Mecixner 1, 2). They belong to the
distribution da(r) where a(z) is a step function with the jump

(2.81.1) j@) = ¢ "a(x") " at the point z, z=0,1,2, ---;a > 0.
Obviously, the total variation of a(z) is

a(4 %) — a(—w) = éj@-) -1

The corresponding orthonormal polynomials are:
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Palz) = ™))™ Zn: (— 1)"—"<:L> v! a—v<f>

(2.81.2) y=0
= ") (= D)"{j(z)} A%z — n).

A simple proof of (2.81.2) can be given by means of the method of generating-
functions (see §4.4; cf. Doetsch 2, p. 260, and Meixner 1, 2). Let, for a suf-
ficiently small | w |,

0

6o, w) = 2 6™ ) palour = 3> 3 IZDT <’:>Vza—" <“’> "

n=0 p=0 v
(2.81.3) => > (=1) <"’>u!a‘"<“’> w"
y=0 n=yp n‘ 14 14
= zo a’ <f> we™ =e "1+ atw)
Then
2 i@)6(, W)G(z)v)
(2.81.4) = e (@) e (1 4+ a'w) e (1 + o t)?
z=0,1,2,"+ .
— e—a—u—vea(1+a"1u)(1+a“1v) — ea"luv’
so that
(2.81.5) 2. @a @) pa@)a T ) P pa@) = a0 om,

z=0,1.2,*
n,m=20,1,2,---.

The polynomials (2.81.2) are connected with Laguerre polynomials (§5.1)
by the relation

(2.81.6) pa(z) = a )L (a).

Concerning the expansion problem associated with Charlier-Poisson poly-
nomials, we refer to E. Schmidt 1.

2.82. Krawtchouk’s polynomials

Considerations in the calculus of probability lead also to the following dis-
tribution da(z).
Let a(x) be a step function with the jump, at the point z, of

. N x -
(2.82.1) jx) = <x>pq” , r=01,2---,N.
Here N is a positive integer, p > 0, ¢ > 0, and p + ¢ = 1.

Sce Krawtchouk 1. The total variation of a(z) is 1. The associated set
of orthogonal polynomials is again finite as in §2.8.
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(1) The method of generating functions yields the formula,

(2.82.2)  p.(z) = {<JZ>}4(M)‘"’ 2 Z:; (=)™ <JZ _ f><f> "¢,

n=01,2 ... N.
Indeed, let

6, 1) = 34V oo, o
_ ZN: i (—1)™ (N - x><x> "

Nl yma( n—v 14

(2.82.3)

In case z is an integer, 0 < z < N , the last summation can be extended over
all values of », n = 0, 1, 2,--+; v £ n, since the general term vanishes if

N—-z<n—yvorifz <. (FromN—xgn—u,:c Z v, we have N = n.)
Thus ‘

Ko = £ () & o (V7 2)

pem() ey n—v

(2.82.4) .
= 2 (f) qw'(l — pw)"™ = (1 + qu)*(1 — pw)™™=,
from which
- 1; N @)K (z, w)K (z, v)
(2829 =Z%waw+mm—me+mm—mH

= {P(1 + qu)(1 + gv) + ¢(1 — pu)(1 — po)}" = (1 + pqur)®,

so that in fact

(2.82.6) s=o. 1‘52‘: 1@ {(ﬁ)}i (pg)"*pa(x) {(Z)}i (pg)™*pula) = <JZ> (P9)"3nm,

n,m=20,1,2 --. N.

If n > N, obviously p.(z) = 0 for z = 0,1,2, ..., N.

(2) Two other classes of polynomials can be derived from the polynomials
(2.82.2) by two different limiting processes.

(a) Let z be real and let z denote the greatest integer less than or equal
to pN + 2(2pgN)* where D, q, z are fixed, and N — . Then for a fixed n

(2.82.7) lim pa(e) = (2207 H,.(2)
N0

if H,(z) denotes the nth Hermite polynomial (§56.5). This follows readily from
(2.82.3) and (2.82.4), since for z an integer, 0 < r < N,
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N 3
im 3 {() P o/l

N0 n=0

= lim {1 + (2/N)'qw}*{1 — (2/N)! pw} "

N —»00

lim exp ((2/N)qua — 2/N)pw(N = 2) = N 'wlte = N"'pw(N — 1))

N-—s00

L R

exp I2z(pq)éw — pqu’} = Z_(:) -

(Use Titchmarsh 1, p. 95;sce (5.5.7).) It is instructive to observe that the
same limiting process applied to the given distribution da(x) leads to the distri-
bution ¢~ dz of the Hermite polynomials; more precisely,

(2.82.8) j(x) = @rpgN) e, or j(z) dx = v de.

(b) Let pN = a, where a is a fixed positive number, N — «, p — 0, ¢ — 1,
Then for a fixed » and a fixed integer z = 0, we find that limy_» pa(r) exists
and is identical with the Poisson-Charlicr polynomial (2.81.2). In fact ((2.81.3))

lim (1 4+ qw)™(1 — pw)™™™ = lim (1 4 quw)"(L — pw) (1L — pw)” e
(2.829) V7 o
— (1 + w)xc_‘(l'll’

2.9. Further special cases

Concerning other distributions da(x) of Sticltjes type, see A. Markoff 1, pp.
7-18; Sticltjes 11, pp. 546 555; and Gottlich 1.

Markoff considers the case for which a(r) is a step function with the junp,
at the point ¢*, of j(z) = ¢, 2 =10,1,2, --- | N — L,and ¢ > 0,9 # 1. Thix
distribution is very much similar to that in §2.8. Analogues of (2.8.1) and
(2.8.6) hold.

Stieltjes and Gottlich investigate the case for which a(z) is a step function
with the jump ¢" at the point.z, z =0,1,2, -+ ,0 < ¢ < 1. _

In addition to these ‘“‘discrete’” distributions as well as to those studied in
§2.8 and §2.82, see Karlin-McGregor 2, Eagleson 1, and Gasper 6, 7.

A remarkable distribution can be defined by the weight function

(2.9.1) w(z) = {z(a — 1)@ — 2)}7 0<z<aa<b

Heine (3, vol. 1, pp. 294-296) derives a second order linear differential cquation

for the associated orthogonal polynomials which are related to the Jacobian

elliptic functions. Recently Achieser (1) investigated the orthogonal poly-
nomials associated with the weight function

{1 —a:Q)(a—a:')(b—a:)}_;lc—xl, —1=Z=z=a, b=2r=s+1,

(2.9.2) wx)=

. a <z <b,

b

where —1 < a < b < +1 and ¢ depends in a proper way on a and b, These
polynomials are also related to the clliptie functions.
In some cases the condition of the positiveness of the weight function can be

removed to a certain extent. (Cf. Szego 19.)
Concerning the polyvnomials of Pollaczek (1-4), see Appendix.




CHAPTER III

GENERAL PROPERTIES OF ORTHOGONAL POLYNOMIALS

In this chapter we shall deal with properties of orthogonal polynomials
which hold for distributions restricted only by certain conditions of integrability.
Usually, we shall consider distributions of the Stieltjes type da(x), but at times
we shall be concerned with distributions of the special type w(zx) dz. However,
a(z) and w(x) will always be taken subject to the conditions formulated in
§2.2 (1).

3.1. Extremum properties; closure

(1) Let f(z) be a given function of the class LZ(a, b), and let =" belong to
La(a, b) forn = 0,1,2,.... Then it is evident that the integrals

(3.1.1) /UMPM@% /Uwfwm, n=012-

exist in the Stieltjes-Lebesgue sense. Next, denoting by {p.(x)} the ortho-
normal set of polynomials associated with the distribution da(x) in [a, b], we
state the following theorem:

TaeoreEM 3.1.1. The wetghted quadratic devialion
b
(31.2) [176) - o data)

where p(x) ranges over the set of all m, , becomes a minimum if and only if p(x)
18 the nth partial sum of the Fourier expansion

J(®) ~ fopo(x) + fi;s(2) + fipe(z) + - + fupu(z) £ -+,

(3.1.3) b
fo= [ 1@puta) data), n=0,1,2 .
Sce Theorem 2.1.2 and §2.2 (3). The minimum itself is
b n
(3.1.4) / | f(z) [* de(z) — Zo IaE

This implies Bessel’s inequality, that is,
b
(3.1.5) mF+Lm“+mF+'~+LnF+~-§/ﬁﬂ@ﬁmu»

(2) On replacing n by n — 1 and taking f(z) = z", we obtain the following
direct characterization of p,(x):
38
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TueoreMm 3.1.2.  The integral

b
(3.1.6) / | p(z) |* da(a),
where p(x) ranges over the set of all w, with the highest term x", becomes a minimum
if and only if p(x) = const. p.(x).

See §2.2 (3). If k. is the coefficient of z" in p,(z), the minimum of (3.1.6)
is attained for p(z) = k7 'pa(z).

(3) TreorEM 3.1.3. Let x be an arbitrary complex constant, p(x) an arbitrary
T With complex coefficients, normalized by the condition

b
(3.1.7) / | p(2) | da(z) = 1.
The mazimum of | p(xo) |* is given by the polynomials
(3.1.8) p(x) = e[ Ku(zo, 70)} ™ Kulwo, 2), le| =1,
where

K.(20, ) = po(20)po(2) + pi(zo)pa(®) + -+ + Pal@0)pa(2).
= po(L0) po(x) + Pr(Z0)pr(T) + -+ +Da(Z0) Pa(2).

The maximum ttself 18 K.(xo, o).

(3.1.9)

If we write p(x) = Apo(x) + Mpa(x) + -+ - + Aapa(z), condition (3.1.7)
becomes | M| 4+ | M P + -+ 4+ | M| = 1, and by Cauchy’s inequality it
follows that

(3.1.10) p@) = 22 0P Y |pie) ! = Kalao, 20

The latter bound is attained for N\, = Ap,(z0), where A is to be determined
according to the condition

X Iped = 1

Thus the statement is established.

The “kernel polynomials” K.(zo, z) = Kn(z, o) = Ka(Z, %) can be used
for the representation of the nth partial sum s.(z) of the Fourier expansion
(3.1.3) in the form of an integral. In fact we have

$2(2) = fopo(z) + fip(z) + -+ + fapa(x)

3.1.11 n b b
( : = ;p,(az) / J®p.(t) da(t) = [f(t)Kn(t, x) da(f).

As a consequence of (3.1.11) we obtain
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(3.1.12) [ K.(t, £)p(t) da(t) = p(x),

where p(z) is an arbitrary =, . We may easily show that this is a characteristic
property of K,({, ) as a 7, in {. As a further consequence we notice the
following theorem:

THEOREM 3.1.4. Let a and xz be finite, zo < a. Then the polynomials

{K.(x0, 2)} are orthogonal with respect to the distribution (x — xo) da(x).

This follows immediately from (3.1.12) by writing z = x,, p(t) = (f — xo)r(?),
where r(f) 1s an arbitrary =,_;. A similar result holds if b is finite.

(4) According to the previous results the expression (3.1.4) decreases as n
increases, and consequently it tends to a non-negative limit as n — «. We
have Parseval’s formula

BL1) (Sl + AP+ 1L+ o+ 1P+ - =[ | f(z) |* da(x)

when and only when this limit is zero.

The validity of (3.1.13) is evidently equivalent to the fact that the integral
(3.1.2) can be made arbitrarily small by a proper choice of the polynomial p(x).
This is, however, the same as the closure in L%(a, b) of the system {p.(z)} or
of the system {z"} (see the definition in §1.5 (1)). Thus, according to Theorem
1.5.2 we have the following:

THEOREM 3.1.5.  The set of the orthogonal polynomials {p.(x)},n=10,1,2, -- .,
associated with the distribution da(x) on a finite interval [a, b], is closed in L2 (a, b).
More generally it vs closed in ' Li(a, b), p = 1.

For a function f(z) of the class Li(a, b) Parseval’s formula (3.1.13) holds.

A function f(x) of the class Li(a, b), for which f, = 0, n = 0, 1,2, --- , 4s
necessartly a zero-function.

The finiteness of the interval considered is an essential restriction. Some
cases of infinite intervals will be studied later. (See §5.7.)

The assumption f, = 0 in the last part of Theorem 3.1.5 is equivalent to
the fact that

(3.1.14) /bf(x)x" da(x) = 0, n=2012....

The discussion of this condition is closely connected with the uniqueness of
Stieltjes’ problem of moments. An example showing that Theorem 3.1.5 does
not hold generally in case of an infinite interval is the following:

(8.1.15) da(z) = exp (—z" cos um) dz, f(z) = sin (¢ sin ur), 0 < p < 1/2.

Here (3.1.14) is satisfied (cf. Polya-Szegod 1, vol. 1, pp. 114, 285, 286, problem
153), and yet f(z) is not a zero-function. In the same case, if p(x) is an arbitrary
polynomial,
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A =/; {f(@)} dalz) =/; J@{f(z) = o(z)} da(z)

= e V([ Vi
< ﬁ lf(a:)-—;a(a:)lda<a:>§{f0 lf<x>-p<x)|2da<x>}{ f da(az)},

which shows that the integrals

[150) = o1t ana "1 oo et
cannot be made arbitrarily small.

3.11, Generalizations

Numerous analogous problems arise if the weighted quadratic deviation
(3.1.2) is replaced by other types of deviations. The most interesting cases are

(3.11.1) [uw—pwvww,

p being a fixed positive number, and the limiting case p — «°* (called also the
“Tchebichef deviation”):

(3.11.2) max {|f(z) — o(z) | w(z)}.

aszsh

In the last case we assume that f(z) and w(z) are continuous. Similarly, the
integral (3.1.6) might be replaced by the expression

(3.113) [ 1@ P deta),
or by
(3.11.4) : max {| p(2) | w(z)}.

The polynomials of fixed degree which minimize (3.11.1) and (3.11.2) represent
a generalization of the nth partial sum of the expansion of f(z) in terms of the
orthogonal polynomials associated with da(z) or w(z) dr. The polynomials
of fixed degree, and with highest coefficient unity, which minimize (3.11.3)
and (3.11.4) represent a generalization of the orthogonal polynomials them-
selves.

Since the number of investigations which can be classified under this general
point of view is very considerable, only the most important aspects can be
indicated here.

(1) For p = 2 the polynomials minimizing (3.11.1) are the partial sums of the

8 Replacing da(z) by {w(x)}? dx, we have (a and b finite, f(z) and w(z) continuous)

b /
lim [/ | 7(2) — p(@) P {w(z) }? dx:|lp = nax {| 7x) — o) | w() }.

p—v@
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expansion of a given functton f(x) in a series of orthogonal polynomials (Theorem
3.1.1). Incasea= —1,b= 41, w(x) = (1 — 2°)* we obtain the expansion
of f(x) = f (cos 6) in a cosine series; in case a = —1,b = +1, w(z) = 1, we
obtain the Legendre series. (Cf. Chapters IX and XIII.)

(2) Inthe general case (3.11.1) the existence and uniqueness of the minimizing
polynomials have been investigated. See Jackson 1, 2, 3; Shohat 1, pp. 509-513,
4, pp. 160-161. Both authors consider only distributions of the type w(z) d.
For general distributions see Tamarkin 1, p. 118.

(3) Let a, b be finite, da(z) = dz, and p = 1. For problems (3.11.1) and
(3.11.3) see S. Bernstein 2, in particular pp. 135-137, where references are also
given to the earlier literature. (Cf. also Geronimus 5.) Recently Achyeser (2)
discussed the problem of minimizing

(3.11.5) / | o(&) | dx + [mx) | dz,

where [p, ¢] and [r, s] are given disjoint finite intervals and p(x) ranges over
all =, with the higlest term z". The minimizing polynomials can be repre-
sented 1n terms of elliptic functions.

(4) In the case where a and b are finite, f(x) continuous, and w(x) = 1, the
minimum problem corresponding to (3.11.2) leads to the closest approximation
of continuous functions by polynomials. The connection between the closeness
of this approximation (as n — <) and the continuity properties of f(z) has been
investigated in great detail. (See Jackson 4.)

(5) If @, b are finite, f(z) continuous, and da(z) = dz, the minimizing polyno-
mials of (3.11.1) (for a fixed n) tend to the minimizing polynomial of (3.11.2) as
p — . (We have existence and uniqueness in both cases.) See Po6lya 2;
also Shohat 1, pp. 513-514, 4, p. 171. Both authors consider only distributions
of the form w(z)dz. For general distributions, see Tamarkin 1, p. 125.

6) Ifa = —1,b = +1, w(z) = 1, then problem (3.11.4) Las the solution
p(z) = 2'7"T.(x) (see the notation in (1.12.3)). This is a classical result due to
Tchebichef and is the starting point of various investigations of the highest
interest. (Cf. S. Bernstein 1.)

3.2. Recurrence formula; Christoffel-Darboux formula

(1) TaroreMm 3.2.1. The following relation holds for any three consccutive
orthogonal polynomials:
(3.2.1) Pa(z) = (Anz + Bo)paa(®) — Copua(z), n =2,3,4,---.

Here A, , B., and C, are constants, A, > 0 and C, > 0. If the highest coeffi-
ctent of p.(x) is denoted by k. , we have

kn .4,, _ knkn—z
kn-—-l’ Cn - E;—__l - ki—l ‘

For the proof, we first determine A, so that p.(z) — A.xp.(x) is & mp1 .

(3.2.2) A, =
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This can be represented as a linear combination Apo(z) + Mpi(z) + - -+ F
An-1Pa-1(z), and because of the orthogonality it is readily seen that \, = 0
if v <n — 2. Therefore (3.2.1) follows. The first part of (3.2.2) is a conse-
quence of (3.2.1); the second part follows from

b

/ Pa(2)Prs(z) da(z) = 0 = 4, / IPn1(2) Pa2(z) da(z) — Ch,

a

since the integral of the right-hand member is equal to

[ Pat(2) (bn22™™ + -+ ) da(z) = Z":j / {Pr1(2)} da(z).

a

'The recurrence formula (3.2.1) is valid also for n = 1 if we write pa(z) = 0,
with the understanding that C; is arbitrary. The first formula in (3.2.2) then
holds for n = 1.

Concerning a converse of Theorem 3.2.1, see Favard 1.

(2) THEOREM 3.2.2. We have
Po(@)po(y) + pr(@)p1(y) + + -+ + Pu(x)paly)

= Fn pan(@pa(y) — Pal@)Pin(y)
kn+1 r— Y

(3.2.3)

For the special case da(z) = dz, see Christoffel 1; see also Darboux 1. This
important identity can be easily derived from the recurrence formula. For
we have

Pas1()Pa(y) — Pa(2)Pana(y)
= {(As1% 4+ Bay)Pa(2) — Cop10n1(2) } paly)
= Pa@) {(Ant1y + Bar))pa(y) — CapiPra(y)},
= A1z — Y)Pa(2)Pa(y) + Coti{Pa(@)Pact(y) — Pacs(x)paly)}.
By (3.2.2), this becomes

_’Er_._ pn+1(x)pn(y) — pn(x)pﬂ+1(y)
kn+l r — y

W) + kat Pa(@)paa(y) — paaa(@)paly)

- pﬂ(x)pﬂ kn r—y

which holds also for n = 0, with the understanding that k_; is arbitrary. On
replacing n by 0, 1, 2, - - - , n and adding, we obtain (3.2.3).
We notice the special case z = y:

(Do)} + {p(@)})* + -+ + {pa(2)}?

(3.2.4) k.,

= = {Prn(@)pa(z) — Pr(@Pan(2)}.
n+1
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(3) The left-hand member of (3.2.3) is identical with the “kernel” K, Z,y) =
K.(J, z) introduced in (3.1.9). Using (3.1.12), we may derive (3.2.3) in a
different way by showing that the right-hand member of (3.2. 3) (replacing y
by t) satisfies (3.1.12). For we have

_Iff_ /b pn--)l(x)pn(t) (-E)pn+l(t) (t) d (t)

L x — t
= B et @Pa® — Pa@pens(®) L= PE) g
knt1 Ja r—1
+ — p(x) IX0) pﬂ+1(x) — Pan(t) da(t)
kats z —1

)pn(t) - _p_ﬁqc_) dat).

pm} (t

Here the first and third integrals of the right-hand member vanish (also for
= 0). The second term is p(x) since

_k_'i_ 'pn+1(x) - pn+1(t)
k,.+1 r —1

=k,t" 4+ .-+~

Another proof of (3.2.3) may be obtained by combining Theorem 3.1.4 with
Theorem 2.5.

3.3. Elementary properties of the zeros

THEOREM 3.3.1. The zeros of the orthogonal polynomials p.(x), associated
with the distribution do(z) on the interval [a, b], are real and distinct and are
located in the interior of the interval [a, b].

In special instances, particularly in the classical cases (see §2.4), we shall
obtain later more exact information concerning the position of the zeros. (See
Chapter VI.)

As a consequence of Theorem 3.3.1 we have a(a) < a(z; — 0) and a(z, + 0) <
a(b), where z; and x. are the least and the greatest zeros of p.(z), respectively.

(1) The usual proof of the preceding theorem is based on the orthogonality
property. From

b
/ Pu(z) da(z) = 0, n 1,

we are assured of the existence of at least one point in the interior of [a, b] at
which p,(z) changes sign. (The function a(x) has an infinite number of points
of increase.) If z1, z,,---,z, denote the abscissas of all such points, the
product p,(z)(z — z1)(x — 22) -+ - (z — x,) has a constant sign (that is, is non-
negative or non-positive throughout [a, b]); we have [ < n. On the other hand,
ifl<n,

(3.3.1) / Pa(2)(xz — 2)(x — 1) -+ (2 — z) da(z) =
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Since the integrand is not a zero-function, this is impossible. Therefore we
have { = n.

(2) A slight variation of this argument may be made as follows. Let 2, be
an arbitrary zero of p.(z). The coefficients of p.(z) being real, we see that
Pa(z)/(x — Zo) is @ ma—1. On the other hand

(3.3.2) l Pa(z) xp"_(x;oda(x) = /b (x — 1’0)’ P

so that

b

(3.3.3) } 20 " o) = / ! P
0| a

ax_x

In other words, z, is the centroid of a mass distribution on the interval [a, b).
The integral in the left-hand member of (3.3.3) being positive, x is real. From
(3.3.2) we see that a < xy < .

If 2y were a multiple zero, we should have

(3.3.4) /a Pa(x) (;'“_(w—%—)—zda(x) = l{xpn(x) } da(z) =

which is a contradiction.

(3) The statement concerning the location of the zeros (not their simplicity)
follows also from the minimum property formulated in Theorem 3.1.2. Were
a zero o to lie outside [a, b], the distance | z — o | could be diminished simulta-
neously for all z in [a, b] by a proper displacement of z,. Hence the corre-
sponding integral (3.1.6) could not be a minimum.

For an extension of this argument to polynomials possessing an analogous or
a more general minimum property in the real or complex region, see Fejér 7,
Szego b.

From the orthogonality property of the kernel K.(xy, z) (Theorem 3.1.4),
we can similarly derive some theorems concerning the location of its zeros in z
if z, is regarded as a parameter. (See Szego b, pp. 241-244.)

(4) The reality and simplicity of the zeros (without the more exact statement
concerning their loéation in [a, b]) follow from the recurrence formula by means
of Sturm’s theorem (Perron 4, vol. 2, pp. 7-9). For, the polynomials

(3.3.5) po(z), pr(x), P2(z), - - -, Pal2)

form a Sturmian sequence in [a, b] since (a) if p,(x) = 0, » = 1, it follows from
(3.2.1) that p,—1(xe)p.i1(xe) < 0; (b) po(z) is a constant = 0, and p.(z) is of
precise degree n; (c) at a point zo where p,(x,) = 0, we have D (X0)Pri(o) > O.
The latter fact follows from (3.2.4) if n is replaced by n — 1 and z by zo (see
below). Now the number of variations of sign in (3.3.5) isn if £ < 0 and | = |
is sufficiently large; it is 0 if x > 0 and sufficiently large. (Cf. §6.2 (1) and the
footnote 32.)
(5) From (3.2.4) we obtain the important in .quality

(3.3.6) Pri(@)Pa(®) — Pu(@)Par(z) > 0, z real.
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As a first consequence we point dut that Pa(x) and pa;1(z) cannot have common
zeros. Furthermore, we obtain the following separation theorem:

TeEOREM 3.3.2. Letz; < 12 < ... < gz, be the zeros of pu(x), xo = @, Zpyy = b.
Then each interval (z,, z,44], v = 0,1, 2, ... ,n, contains exactly one zero of
Prya(x).

/In f;act if £and 9, ¢ < 5, are two consecutive zeros of p.(x), we have
P()Pa(n) < 0. On the other hand, (3.3.6) yields —p.(&)pna(i) > 0,
— 02 (M) Pria(n) > 0, so that Prt1(E)pria(n) < 0. This indicates an odd number,
that is, at least one zero of Pri(z)ing < z < 5. Now let £ = z,be the greatest
zero of p,(z); then p;(g) > 0, and (3.3.6) yields p,1(f) < 0. Since Dns1(b)
is positive, we obtain at least one zero of Pr+1(2) on the right of £ = z,, and
similarly at least one on the left of the least zero z; of pa(z). Consequently,
we can have only one zero of Pnt1(z) between z, and Tup1,v=0,1,2, ... n.

By interchanging the rdle of p,(z) and Pn41(2), we can prove as before the
existence of at least one zero of Pa(r) between two consecutive zeros of Pat1(x).
This shows again that we cannot have more than one zero of p,41(x) between
two consecutive zeros of p,(x).

(6) TuEOREM 3.3.3. Between two zeros of pa(x) there is at least one zero of
Pm(2), m > n.

See Stieltjes 11, pp. 414-418. For the following proof see Popoviciu 1.
Let &1, &, - -+, £x be the zeros of p=(2) in increasing order. According to
Theorem 3.4.1 we have

(3.3.7) V; Npa(E)p(E) = [ Pa(2)p(x) da(z) = 0,

where {\,} are the Christoffel numbers associated with {t.} (see §3.4) and
p(z) is an arbitrary =,_; . Now an argunent similar to that used in (1) shows
that the sequence {pa(&1), Pu(te), - -+, Palta)) displays at least n, and therefore
exactly n, variations of sign. Here sgn p.(f) = (=1)" pu(&n) > 0. Thus
there are n distinet intervals

Eu,<x<gﬂy+17 V—’=1,2,"-,’IL; 1§#1<#2<"'<#ﬂ+1§m7

containing exactly one zero of p.(z), respectively. This establishes the state-
ment.
Other simple consequences of (3.3.6) are:

THEOREM 3.3.4.  Let ¢ be an arbitrary real constant. Then the polynomial

(3.3.8) Put1(2) — cpa(z)

has n + 1 distinct real zeros. If ¢ > 0 (c < 0), these zeros lic in the interior of
la, ], with the exception of the greatest (least) zero which lies in la, b] only for

¢ = Pata(d)/pald), [¢ 2 panla)/p.(a)].
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Indeed, the function p.i1(z)/p.(x) increases from — «to -+ « in the intervals
z, <r<zyv=01,2 ...,n wherezy = — 0, 2, = 4 .
TueoreM 3.3.5.  The following decomposition into partial fractions holds:

pa(x) -5 b
pn+l(x) y=0 T — Ev’

where {£,} denote the zeros of pn.(z).

(3.3.9) I, >0,

For we have

(3310) lv — pn(EV) - p;+l(EV)pn(Ev) - p;(gv)pfwl(EV)
pn+1(&) {p;+l(EV)}2
3.4. The Gauss-Jacobi mechanical quadrature

(1) TaeorEM 3.4.1. Ifz, < 22 < .-+ < z, denote the zeros of p.(z), there
extst real numbers A1, N2, + -+, N\, such that

> 0.

(3.4.1) / p(@) daz) = Ap(r) + Nep(zz) + - + hap(za),

whenever p(x) vs an arbitrary me.— . The distribution da(z) and the integer n
uniquely determine these numbers N, .

The set {z, = z,.} of zeros, as well as the set of numbers {\, = \,.}, depends,
of course, on n. Sometimes the numbers A, are called Christoffel numbers. See
Gauss 2, Jacobi 1, Christoffel 1, Tchebichef 1, Mehler 1; Heine 3, vol. 2,
pp- 1-31.

It suffices to prove (3.4.1) for the special cases p(z) = 2z, k = 0,1, 2, - .-,
2n — 1. These cases represent 2n conditions which uniquely determine, as
we shall prove, the Christoffel numbers A, and the points z,. (If the distinct
points z, are given arbitrarily, the numbers A, can be determined so that (3.4.1)
holds for every m,—; .)

To prove (3.4.1) we construct the Lagrange interpolation polynomial L(z)
of degree n — 1 which coincides with p(z) at the points z,, that is,

pn(x) ) = ,;nl p(x,)lp(x);

(3.4.2) Lz) = 25 pla) 7m0 ==

where the [,(z) are the fundamental polynomials associated with the abscissas
Zy, T2, -+, of the Lagrange interpolation (see §14.1). Now p(z) — L(z)
is divisible by p.(z), so that p(z) — L(x) = p.(z)r(z), where r(z) is a 7., .
Therefore

[ o(2) dalz) = / L(z) dalz) + / Pa(@)r(2) dec(z)

_ / L) da@) = 3 o(z) / 1,(2) da(a).
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This establishes (3.4.1) with

(3.4.3) x—/bl(')d(')—/b p—"@—*—d ) =1,2
<X v = A WA\Z) Ga\T) = ap;(:ry)(x_xl‘) a(m; v=1,2 000,00,
Conversely, let (3.4.1) hold for an arbitrary Tan-1, called p(z). Then we
choose p(z) = U(z)r(z), where l(z) = (z — 2)(z — ) -+ (z — 2.) and 7(z)
18 an arbitrary =,_; . We find from (3.4.1) that

/bl(x)r(x) da(z) = 0,

so that I(z) = const. p.(z).

The interpretation of the left-hand member of (3.4.1) as a mechanical quad-
rature is obvious. For an arbitrary function f(z) defined in [a, b] it may
be written (cf. §15.1)

(3.4.4) Q) = M(@) + Nof(z2) + -+ 4 Mf(z).

Then Theorem 3.4.1 can be formulated as follows: Q.(f) = [of (z) da(z)
provided* f(z) is an arbitrary =._;. Further, from (3.4.3) the Christoffel
numbers A, are the values of Q.(f) for f(z) = ,(z). Also we can discuss for
a fixed function f(z) the convergence of the sequence {Q.(f)} asn— . (Com-
pare Theorem 15.2.3 and also Problem 9 below.) Concerning mechanical quad-
rature formulas holding for an arbitrary m._;, see Shohat 7, p. 465.

(2) TueorEM 3.4.2. The Christoffel numbers \, are positive, and

b

(3.4.5) MAN+ o N, = / da(z) = a(d) — ala).
The following representations hold: |

_ [ _Jn_(x.)___y , |
(3.4.6) A= [ <'pi.(x,)(x B da(z),

I —1 A 1
4 v = — 7 = ’

(3.47) A Fa Papr@)pn(y)  kny P (z,)Ph(2,)
(3.4.8) N = @) A p@) 4 -+ (palm))

= Ka.(z,, z,).

Here the previous notations are used.

Concerning (3.4.8) see Shohat 3, p. 456. The special case ¢ = — 1,b = 41,
da(z) = dz is particularly important. Here the abscissas z, are the zeros of
the nth Legendre polynomial, and the sum of the Christoffel numbers is 2, the
length of the interval of integration. This is the case originally considered by
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Gauss and Jacobi. Another important special case, namely ¢ = —1,b = 41,
da(z) = (1 — £*" dz, is due to Mehler (1).

The positiveness of A, is clear from any of the representations (3.4.6), (3.4.7),
(3.4.8). In case (3.4.7) we take into account (3.3.6). According to (3.4.5)
the sum of the ), is the total mass of the distribution da(z) spread over the
given interval. '

The discussion of the representation (3.4.7) can be carried further in the case
of the classical orthogonal polynomials. (Cf. §15.3 (1).)

For the proof of Theorem 3.4.2 we write po(z) = {I,(z)}* in (3.4.1); this
furnishes (3.4.6). Furthermore, writing y = =z, in (3.2.3), multiplying by
da(z), and then integrating, we obtain, according to (3.4.3),

1 = __ki"_ /b _pn(x)an(IV) da(x)

kutr T— s

kn 4
k p"+1(xv)pn(xv)>\v .
n+1

This establishes (3.4.7). Combining (3.4.7) with (3.2.4) for z = z,, we get
(3.4.8).

(3) As an application of (3.4.1) we obtain, for arbitrary real constants
Upy U1,y ="+ Un-,

b
F(u) = / (wo + wmz + 4+ uny 2" ) da(z)

= El N 4w, 4 oo - un_lx;t—l)z’

(3.4.9) .
G(u) = / 2(uo + wmz + -+ + U 2" da(z)

= E Na(uo + wmx, 4+ 0 A uaazr ™

y=]

Therefore, the characteristic values of the pencil

(3.4.10) Glw) —¢tF(u) = ; N — O uo + wmay + - A UnzrH?

are precisely ¢ = z,, 22, -+, .. With the notation (2.2.1), the quadratic
form of the left-hand member becomes

—1 n—1
(3~4~11) Zo EO (Cv+u+l - ECV+u)uvuu-

y=0 p=
Its determinant is a =, in £ which vanishes for ¢ = z;, 22, - -+, z., and is
therefore a constant multiple of p.(£). We thusarrive at a new proof of equation
(2.2.9).

See also Problem 10.
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3.41. Separation theorem of Tchebichef-A. Markoff-Stieltjes

In 1874 Tchebichef stated a very remarkable property of the Christoffel
numbers (see 6, 8), proofs of which were given independently by A. Markoff
and Stieltjes. Letn = 2. Inview of the positiveness of \, and of (3.4.5), there
exist numbers 1 < y2 < -+ < Yo, @ < 1, Yaa < b, such that

(3'411) >‘V = a(yl') - a(yv—-l); v = 1; 2; T ;n; yo = aq, yﬂ = b
Tueorem 3.41.1. The zeros z,, z2, -, x., arranged in increasing order,

alternate with the numbers yy, y2, «++ , Yn ; that is,

(3.41.2) Ty < yv < xv+l ;

more precisely
a(@, +0) — ala) < aly,) — al@) = M+ N+ -+ 4 A,

3.41.
( 3) <oty —0) —afa), v=1,2,...,n—1.

In view of (3.41.1) the quadrature formula (3.4.1) becomes

(3.41.4) [ p(z) da(z) = gp(x»){a(y») — a(y-1)}.

Since y,1 < 7, < y,, the right-hand member has the character of a “Riemann-
Stieltjes sum.”

As a further consequence of the inequalities (3.41.3) we notice that
a(z, + 0) < a(r,41 — 0). Thus we have proved the following:

TaEOREM 3.41.2. In the open interval (z,, Z,41), between two consecutive zeros
of Pa(x), the function a(zx) cannot be constant.

Or in other words: In an open interval in which «(r) is constant, p.(z) has
at most one zero.
3.411. First proof of the separation theorem?

Let » be an integer such that 1 < » < » — 1. Choose for p(z) in (3.4.1)
a special m._2 subject to the following 2n — 1 conditions:

1 f k=1,2,...,u,
p(zi) = .
(3.411.1) 0 if k=v+1L,v+2 ---,n;
p/(xk)=0 if k=1;2;'”;1’—1,1’+1,~--,n.

Then this polynomial is uniquely determined.

% To find such numbers y, it might be necessary to modify «(y) at some of its points of
discontinuity, which has, of course, no influence on (3.4.1). It should be also observed
that y, is in general not uniquely determined.

10 Cf. A, Markoff 1, 2, Stieltjes 1, A. Markoff 8.
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By Rolle’s theorem p’(z) has at least one zero in each of the open intervals
(34112) (x],, :232), (xZ; x3); M 'A; (xv——l; xv); (xw{l; xv+2); vty (xn—-l; xﬂ)'

These zeros together with zx, 1 < k < n, k # », furnish (n — 2)4+n-1) =
2n — 3 zeros for p’(z). Since p'(z) is a m2a_3 , it follows that these are the only
zeros of p'(z), and also that they are all simple zeros. Hence p(z) is monotonic
between any two consecutive zeros of p’(z); in particular, it is monotonic
between the zero in (z,_1, z,) and z,4,, and therefore also in lz,, z,11l. Fur-

thermore, p(z) is decreasing in [z, , z,41] since p(z,) = 1, p(z,s1) = 0. From

1 /
i — . LN —
a X, b

X1 X, Xy Xytq

F1a. 2

these considerations the graph of p(z) is easily seen to have the shape given in
the figure. Therefore we have

p(z) 21 in ¢ £z 5z,
(3.411.3) ,

p(x) 20 in z, £z =D
For this special case the general formula (3.4.1) gives

b
M A +>\,=/ p(z) da(x)

z,1+0 x,+0
> / o(z) da(z) >/ da(z),

which establishes part of the inequalities (3.41.3).

To prove the remaining part we consider the distribution d[—a(—2)] in
[—b, —a]l. The associated orthonormal set is {(—1)"p,(—z)} with the zeros
~Zn < —=Zpy < -+ < —z;. In place of the numbers y1, ¥z, - -+ , Yo We
now have —y,. 1, —ya-2, ---, —y1. Then, according to the preceding result,
-—a(x,._,,+1 - 0) < ~a(yn_.,), or a(y.,) < a(;l?y+1 — 0)

3.412. Second proof of the separation theorem!!

Let the non-decreasing step-function V(x) be defined by the following
conditions:

11 See Stieltjes 12, especially pp. 588-592.
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0, a =z <,
Al, xl é X < x2;
(3.412.1) Vi) =M+ N, 2=z < a3,

...............................

MAF A+ o+ N, TS =2b.
Then (3.4.1) can be written in the form

(3.412.2) [z plz) dfalz) — V(z)} = /bp(x) di{a(z) — ala) — V(z)} = 0.

An integration by parts (see (1.4.4)) yields
b
(3.412.3) / {a(x) — ala) — V(x)}p'(z)dxr = 0,

since V(a) = 0 and (see (3.4.5)) a(b) — ala) — V(b) = 0.

The function V(z) is constant in the open intervals (a, z), (z:, 22), - - -,
(Tn-1, Zn), (s, b); hence a(zr) — ala) — V(z) = B(z) is non-decreasing there.
We have 8(z) = 0 (but not 8(z) = 0) in the first interval, and 8(z) = 0 (but
not B(z) = 0) in the last interval. In the other intervals (z,, z,,1) the function
B(x) is either of constant sign (constantly non-negative or non-positive), or
there exists a point y, z, < ¥ < &,41, such that 3(y — 0) < 0and B(y + 0) > 0.
Thus the total interval [a, b] can be subdivided in at most 27 intervals in which
B(z) is non-negative and non-positive alternately, without being identically zero.
The end-points of these intervals are some of the zeros z, and some of the points
y previously defined. Now from (3.412.3) we conclude, by means of an argu-
ment similar to that in §3.3 (1), that the number of these intervals is at least 2n,
and then exactly 2n. Less precisely, 8(x) has exactly 2n variations of sign in
[a, b] which are located at the zeros z, as well as at the points y mentioned,
whose number is 7 — 1. * At the points y there is a transition from negative to
positive values. Hence at the points z, there is a transition from positive to
‘negative values.

Consequently,

(3.412.4) Bz, — 0) > 0 > Bz, + 0), y=1,2,...,n,

which is equivalent to the statement of Theorem 3.41.1. (The first inequality
is trivial for » = 1; the same holds for the second one for » = n.)

We can also prove the above statement by a slight modification of the argu-
ment used. Let y, denote the point in (z,, z,,,) with the variation of sign of
the type y; then we have

(Cf. the footnote above.)
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3.413. Third proof of the separation theorem!?
Let the functions ¢x(z, t) be defined as follows

(x — 0" if z< t,
(3.413.1) ¢k(x, t) =
0 if x>

where k is a non-negative integer, x and ¢ arbitrary and real. Let®

(3.413.2) Fu)) = [ oz, 1) da@) — 3 \an(a, 0.

y=]

Then according to (3.4.1)
(3.413.3) Fila) = Fe(b) =0, k=0,1,2 .--,2n — 1.

Also Fi(t) is continuous if k£ = 1; furthermore, we readily see that Fo(t) = B(t),
where 8(¢) has the same meaning as in §3.412. Now

(3.413.4) Fit) = —kFL(2), a<t<bk =l

[For k = 1,¢ = z,, this means Fi(z, & 0) = —Fy(z, =+ 0).] If we take into
account (3.413.3) and (3.413.4), Rolle’s theorem furnishes for the number of
zeros of Fi(f) (including ¢ = a and ¢ = b) the lower bound 2n + 1 — £k,
1 = k = 2n — 1; this holds also for k¥ = 0 in the sense that Fy(¢) has at least
2n — 1 variations of sign. From this point on the statement follows by an
argument similar to that in the second proof.
3.42. Another separation theorem

If 21n < 220 < -+ < 2,, denote the zeros of p.(z), we know (Theorem 3.3.2)
that the system {z,.} alternates with the system {z,,...1}, that is,
(3421) Ty—1,n < Ty ,n+1 < Tin , v = ]-7 2; M (4 + ]-; Ton = @) Tnt1,n = b.

Let now {M\.] denote the system of Christoffel numbers associated with
Pn(z), and let {y..} be the numbers y, defined in (3.41.1). Stieltjes showed
(12) that in addition to Theorem 3.41.1 the following separation theorem holds:

TueorEM 3.42. We may assert that
(3422) yv—-l,n < yv,nJ{-l < yvn ;
or
)\ln + )\2n + M + )\v——-l,n < )\l,n+l + )\2,n+l + M + )\v,n+l
(3.42.3)
<Mt An+ o4+ Np, v=12 ... n
For v = 1 the inequalities involving yo, and N, must be disregarded.

12 This proof is due to Pélya and Uspensky (written communication).
3 In case k = 0, ¢ = a the integral in the right-hand member should be replaced by 0.
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The analogy between (3.42.1) and (3.42.2) is obvious.

For the proof we use the same function V(z) as in §3.412, denoting it now
by V.(z), and introducing the corresponding function V() associated with
the system {N,..41}. Then by (3.412.3) we have

(3.42.4) [ (Va@) = Vos(®)} () d(z) = 0,

where p(z) is an arbitrary ms..,. Hence V,(z) — V..(z) has at least 2n — 1
variations of sign. Such variations can occur only at the points z,, and z,.n.1 .
In the first case V,,i(z) is constant in the neighborhood of this point, and
since V,(z) increases, the variation of sign is necessarily a transition from
negative to positive values. The opposite is true for z, ,.; . The total number
of points {z..} and {7,..11} is 27 4+ 1. Now V.(r) and V,.,(z) are identical
in the intervals ¢ £ z < 2’ and "/ < z < b, where 2’ is the minimum and z"
the maximum of all the zeros z,, and Z,.n+1 . Hence no variation of sign is
possible at 2’ or #/. This means that a variation of sign actually occurs at
each of the other zeros and is of the type described above.

As a first consequence of this, we again obtain (3.42.1), that is, Theorem
3.3.2, and as a second consequence, the inequalities

(3425) V,,(:z:,m - 0) - Vn+](xvn - 0) < 0 < Vn(xvn + 0) - Vn+l(xvn + 0)

These are the same as the inequalities (3.42.3).

3.5. Continued fractions

Historically, the orthogonal polynomials {p.(z)} originated in the theory
of continued fractions. This relationship is of great importance and is one of
the possible starting points of the treatment of orthogonal polynomials. See
Tchebichef 1-8, Heine 3, vol. 1, pp. 260-297, Stieltjes 11.

(1) For an infinite continued fraction we use the notation

a | as | n |
3.5.1 bo + ' 4 e
( ) 0 | bl | b2 Ibn
Here, as usual, the convergent R,/S,, n = 0, 1, 2, - -, is defined as the finite

fraction obtained from (3.5.1) by stopping at the term b,. (See, for example,
Perron 3.) We have

Ro=bo, R1=bob1+a1,"'
So =1, Si=b, -
and the recurrence formulas

(353) Rn = ban—l + aan—2 ) Sn = bn Sn—-l + anSn—2 y = 2; 3; 47 T

)

(3.5.2)

)

which hold also forn = 1if we define R_; = 1, S_; = 0. Also, we easily obtain
(see Perron, loc. cit., p. 16)
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RoSns — BaaSn = (—l)n—lal az + -+ Qp,
or

Rn Rn—-l (_ l)n—‘lal dg ++* Qg
3.5.4 = - = = = cenl
(354 5. 8. S8, 0 "TbLRS
(2) Let {pa(z)} be the orthonormal set of polynomials associated with the
distribution da(z) on [a, b]. The recurrence formula (3.2.1) then suggests the

consideration of the continued fraction

@55 Gl GlL Gl
e ]A1$+Bl |A2$+Bz |A3$+Bs IA,,,IE’{"B”

Here A, , B,, C. have the same meaning as in (3.2.1). Therefore,
(3.5.6) bo =0, bo=A4x+B,, n=1; o, =1 a,=—-C,, n =2
Next we prove the following theorem:

TueoreMm 3.5.1. The convergents R,/S,. of (3.5.5) are determined by the
formulas

R, = R.(z) = ci¥(coes — D)} /bw_).da(t),
(3.5.7) a r—1

S, = Su(z) = chpala), n=0102-
Here c, has the same meaning as in (2.2.1).

Accordingly, the orthogonal polynomials are identical with the denominators
of the convergents of the continued fraction (3.5.5).

The second part of the statement follows immediately by comparing (3.2.1)
with (3.5.3) for n = 2 and observing that the statement is true for n = 0 and
n = 1. As regards the first part, we notice that it holds also for n = 0 and
for n = 1. (Since pi(z) = kiz + const., the corresponding integral becomes
kico. Then we use (2.2.15) and (2.2.7).) Finally, if n = 2, we have

63(6002 - ci)—}(Rn - ban—-l - aan-—2)

_ /b{m(x) — Pa(8) — (4az + Ba) {praaa(z) — paaa(t)}

r—1

+ Cn{Pn—z(x) - Pn_z(t)}}da(t)

r—1

- T —

B /,, ~ (At + Bpea(d) + (Anz + BIpuad)

_ 4, f pas(t) dat) = 0,

which establishes the statement.
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Therefore, the numerators of the convergents are expressible in terms of
Pa(z). Obviously, R, is a polynomial of degree n — 1 in z.

(3) On expanding the rational function R,(x)/S.(z) in descending powers
of z, we obtain forn =1

Ra(x) _
Su(@)

According to (3.5.4) this expansion agrees with that of Roy(2)/Sa_(x) up to,
and including, the term z~“"™  Whence there exists a power series

(3.5.9) dox ™ + diz ™ + doz > 4+ ...

such that, for n = 1,

Rn(l) = dO :1;_1 + dl x_2 + cre + d2n—-l x—-2n -i':' Z dvn x—v—l.

S"(x) B y=2n

This is generally true for the convergents of any continued fraction of the
type (3.5.5).

TaEOREM 3.5.2. The equality
(3.5.11) d, = ¢o (coce — e, , vy =0

(358) dOn-T'~l + ({lnr—2 + dan_s + o

(3.5.10)

18 valid.
In fact, if d, is defined by these equations and we use (3.5.7), we find

Ro(2) — Sa(@)(dox™ + diz? + -+ + dyayz ™)
b .
= cE*(CoCz - Cf)*{/ W da(t) — pn(x)(CO-T—l 4+ Qn_lx—zn)}.

Here the expression in the braces can be written in the form
b b _ 2n 2n
[ =20 oty — ) [ LT
-1 a z —

_ / (2a) = Pall) gy / palt) 1—;5__—} da(t)

r—1

— x—2n /b pn(x) - pn(t) t2n da(t)
a x —1

b
B x—zn/ P (@ + 2 2 4 277 dat).

Since the first integral of the right-hand member is a ,_,, the expansion of
the first term starts with z™®. Since the contributions of the powers
1, ¢, & ... " in the second integral vanish, the expansion of the second
term starts with z7>"z"™ = ™. On dividing by S.(z), we obtain an expan-
sion of the form (3.5.10). This requirement uniquely determines the numbers

do, di, ---,dz2s, and therefore, the whole sequence {d,].
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(4) TuEoREM 3.5.3. The following decomposition into partial fractions holds
for the convergents of (3.5.5):

Rn(x) —-2
S = (cocs — cl)’ ; P

- where N, = \,, and z, = x,, have the same meaning as in §3.4.

(3.5.12)

For, we find from Theorem 3.5.1

R.(z,.) _ Co_i(cocz — C§)§ b pn(t)
S;‘(xvn) o cépﬁ‘(x,m) a t — ZTup
Now we can apply (3.4.3).
From (3.5.12) we see that the zeros of R,(z) are real and that they alternate
with those of S.(z).
(5) Finally, we consider the special case in which [, b] is a finite interval.
Then the expansion (3.5.9) represents the function

(3.5.13) F(z) = co*(cocs —‘cf)*/ da(t)

r —1

da(t).

provided |z | is sufficiently large. In various special cases, a function F(z)
representable in the form (3.5.13) may be developed dlrectly into a continued
fraction of the type (3.5.5), the denominators of this fraction being the or-
thogonal polynomials associated with the distribution da(f). Such an approach
to these polynomials is essentially different from that used in Chapter II.

THEOREM 3.5.4. Let [a, b] be a finite interval. Then

R.(x)

(3.5.14) lim
n—wo Sp(Z)
if x is an arbitrary point in the complex plane cut along the segment [a, b]. The
convergence 1s uniform on every closed set having no points tn common with [a, b).

This theorem is due to A. Markoff (5, p. 89).
If z be real, z > b, we may combine Theorem 3.5.3 with Problem 9 to get

R.(z)
Sa(x)
This tends to 0 as » — « (Problem 52) provided z is sufficiently large. On
the other hand, the left-hand member of (3.5.15) is uniformly bounded in the
exterior of an arbitrary closed curve containing [a, b] in its interior, since \,, > 0
and (3.4.5) holds. Now the statement follows by use of Vitali’s theorem
(Titchmarsh 1, p. 168). Another proof can be based on Theorem 15.2.3.
Concerning further properties of the convergents we refer to Sherman 1
and the bibliography given there. Regarding the relation of the continued
fraction (3.5.5) and of the orthogonal polynomials to the problem of moments,
see Hamburger 1, 2, M. Riesz 2, and the bibliography quoted in these papers.

= F(z),

(3.5.15) F(z) — = ctz(coc2 — D — ™, a<E=<h

IIA




CHAPTER IV

JACOBI POLYNOMIALS

In this chapter we shall be concerned with the main properties of Jacobi
polynomials, which include as special cases the ultraspherical polynomials,
particularly, the Legendre polynomials. Among the topics which are not con-
sidered here, but which are reserved for later study, are the properties of the
zeros, asymptotic expressions, expansion problems, and properties connected
with interpolation and mechanical quadrature.,

Addition theorems for Legendre and ultraspherical polynomials have also
been omitted, as have the relations of these polynomials to spherical and surface
harmonics of various dimensions. Limitations of space and the existence of
exhaustive treatises on these subjects are the chief reasons for such an omission.
The interested reader may well consult Whittaker-Watson (1, pp. 326-328,
335) and Hobson (1).

4.1, Definition; notation; special cases

(1) The definition of the Jacobi polynomials P{*®(z) has been given in
§2.4, 1; they are orthogonal on [—1, +1] with the weight function w(z)
= (1 — z)*(1 + ). Assurance of the integrability of w(z) is achieved by
requiring « > —1 and 8 > —1; the normalization of P{*? (z) is effected by™

(4.1.1) N I (n 1' “).

The orthogonal polynomials with the weight function (b — z)*(z — @)® on the
finite interval [a, b] can be expressed in the form

b—a

“(see the last remark in §2.3). The case a = 0, b = 1 is often used (Jacobi 3;
Jordan 1, vol. 3, pp. 231-234; Courant-Hilbert 1, pp. 76-77)."

Stieltjes (6, p. 75) writes « and 8 for (8 + 1)/2 and (a + 1)/2, respectively,
in terms of our notation. The same notation is used by Fejér (13, p. 42).
Jordan’s function Z,(u) in our notation is

(—1)"{(” +Z B 1>}~} Pl (9 — 1),

14 According to §3.3 the zeros of Pi""ﬂ) (z) arein —1 < z < +1, so that Pf“"ﬁ’(l) = 0,
1t The statement on p. 76 in Courant-Hilbert must be corrected so as to read

(4.1.2) const, P{*? {2 TTa_ 1}

p(z) = z¢1(1 —z)r ¢, ¢>0,p—qg>—1L
58
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Courant-Hilbert’s function G.(p, ¢, %) is the same as Z,(u) withp = o, ¢ = 7.
The important identity

(4.1:3) PP (z) = (=1)"P¥“(—z)

is readily derived by means of the last remark in §2.3. Combining (4.1.3) with
(4.1.1), we have

(4.1.4) PP (—1) = (=1)" (n 1_ B).
(2) For « = B we have the ultraspherical polynomials. They are even or
odd polynomials according as n is even or odd (§2.3 (2)).

TrEOREM 4.1. The following formulas hold:

P(""')(x) — F(2V + 23 + I)F(V + 1)
Z T(r +a + DI2 + 1)

iy T+ e+ DTG+ 1) Sy o2
= (=1 I'(v + a + 1)I'(2v + 1) P, (1 = 27,
(ava) _ T2 4+ a+ TG+ 1) b 2
2041 (23) = F(V + o + 1)F(2V + 2) :EP,, (22} - 1)
1y ' + a4+ 2)ri + 1) Gy _ o2
= (=1 6 Fat D@ ¥ (1 = 2.

As a consequence of these important relations, Jacobi polynomials with
o or B = =% may be expressed by ultraspherical polynomials. In order to
establish the first relation, it suffices to prove that

Pl — 1)

(4.1.5)

+1
/ PP — Do)l — 2)%dz = 0,
-1

where p(z) is an arbitrary =2, . This is trivial if p(z) is odd. Let p(z) be even
and equal to 7(z), where r(z) is an arbitrary m,—;. Then we have

+1 . w1
/ P (2% — D)r(@®) (1 — 2)%dz = 2/ Pf"'—“(2x2 — Dr@HQ — 2H)*dzx
—1 0
1
= / PPy — Dr(z)(1 — z)*z dz
0

= g /+ PP @31 + 2} (1 — 2" + 2V dz = 0.

A similar argument may be used to prove the second relation. The constant
factors are determined according to (4.1.1), (4.1.3).

Thecasea = —1,b = +1, w(x) = |z |*, k > —1%, can also be reduced to
Jacobi polynomials. The corresponding orthogonal polynomials are (see
Szegd 2, p. 349):
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const. PO (227 — 1) ifn =2,

const. :rPﬁo"‘H)(%zc2 - 1) ifn =241,

where the constant factors are different from zero; they depend on v and k.
The proof is similar to the previous one.
(3) The simplest cases of ultraspherical polynomials are'®

hep 13- (@2n—1) 13- (@2n—1)
P, (z) = 51 on T.(z) = R e nd,
1-3--- (2n + 1)

2

(4.1.7) P8 P(x) Ua(z)

24 --- 2n + 2)

1-:3.--(2n 4+ 1)sin (n 4 1)8
2:4--- 2n+2) sing '’

where ¢ = cos 6, and T,(z) and U,(z) denote the Tchebichef polynomials of
the first and second kind [(1.12.3)]. This follows from

= 2

+1 x
/ To(2)Tolz)(1 — 29 de = / cos nd cos mfdf = 0,
—1

- Jo
+1 T
/ Un2)Un(z)(1 — 22 dz = / sin (n 4 1)8sin (m + 1)8do =0, n # m,
—1 0

because of (4.1.1).
In this connection, two “mixed”’ cases of importance may be mentioned:"

pe(y) = 1-3--- (2n — 1) sin {(2n + 1)6/2}
(4.1.9) 2:4+--2n sin (8/2) ’ . = cos
o pitdgy — 13 (2n — 1) cos {(2n + D)o/2) ’ '
" 2-4...2n cos (68/2) ’

1

The proof is similar to that of (4.1.7) (or is obtained by setting e = 3 anda = —3
in (4.1.5)). Formulas (4.1.7) and (4.1.8) also follow from §2.6 by putting
p(z) = 1 there.

Another important ultraspherical case is @ = g = 0, that is, the Legendre

polynomials P (z) = P.(z). Less elementary cases are « = 8 = —3$, and
a = B = —%, for which Koschmieder (1) gave representations in terms of elliptic
functions.

4.2, Differential equation
(1) TueorEM 4.2.1. The Jacobi polynomials y = P.*® (z) satisfy the following

- linear homogeneous differential equation of the second order:

421) Q-2 +B-a—-(a+8+2zly +nln+a+8+1y=0,

18 In the first equation the coefficient of T'.(z) is 1 for n = 0.
17 For n = 0, the numerical factor on the right sideis 1.
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or
d

o & 107D DY)
+n+a+s+ DA -1+ 2 =0.
To prove this, we note that since y is a ,, the expression
A = )" + 2"y} /dz

has the form (1 — z)*(1 + z)%, where z is also a r,. In order to show that
z = const. y, we prove the orthogonality relation

"4 a+l B+1,
/-1 = D™ + 2y p(e) do = 0,

where p(z) is an arbitrary m,_,. An integration by parts reduces the left-hand
member to

+1
——/ (1 — 2)* (1 + )"y p'(z) de,
-1

since  + 1 and 8 + 1 are positive. A second integration by parts gives

+

/ yi {1 =) + 2)°7p'(2)} da.

-1~ dzx .
In the last integrand the coefficient of y is of the form (1 — z)*(1 + 2)°r(z),
where r(z) is a 7,y . Hence this integral vanishes and the statement is estab-
lished. The constant factor —n(n + a + 8 + 1) may be determined by com-

paring the highest terms.
An alternative form of (4.2.1) is

1=z +a—B8+ (a+ 8 — 2]V
(4.2.3) +m+ 1)+ a+ Y =0,
Y = (1 —2%A+2)y = 1 - 2)°A + 2)°PL*? ).

(2) Replacing n(n 4+ a + B + 1) in (4.2.1) by v, we may ask: For what
values of v has this equation a polynomial solution which is not identically
zero?

THEOREM 4.2.2. Let o > —1,8 > —1. The differential equation
(4.2.4) Q-2 +B—a—(@+8+2zly +vy =0,

where v is a parameter, has a polynomial solution not identically zero if and only if
v has the form n(n + « + 8 + 1), n = 0,1, 2, ... . This solution ?s const.
PP (2), and no solution which is linearly independent of P (z) can be a poly-
nomaal.

To prove this, substitute y = Y ;29 a,(z — 1) in (4.2.4). We find
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@+ 1) Sl - Daz — 1)

y=2

R+ D+ @b+ - Dl -1 44D — 1) =0,

y=1 y=0

which yields the recurrence formula .
[y —v(v + a4+ B+ Dla, — 2(v + D+ o+ Da,y;, =0,
»y =012 ....

(4.2.5)

Assuming that y is a polynomial, let us suppose that a, is the last nonzero
coefficient. Then we see from (4.2.5) that for » = n the coefficient of a, must
vanish, thatis,y = n(n + o« + B8 + 1). Conversely, if this condition is satis-
fied, then @41 = a@ni2 = -+ = 0 since the coefficient of a,,, never vanishes.
Now let ¥y = n(n 4+ a + B + 1), and let z be a second solution of (4.2.1) or -
(4.2.2). If welet z — =1 in the relation

(4.2.6) (1 — 271 + ) (y'z — y2') = const,.,

we see that y and z cannot both be polynomials unless the constant in the right
member is zero, that is, unless y and z are linearly dependent. This argument
shows that z cannot even be regular at £ = —1 or at £ = +1, unless y and z
are linearly dependent.

4.21. Hypergeometric functions
(1) Substitution of z = 1 — 2z’ in (4.2.1) yields

iy N dy B n dy
oy Z T Gt et 1= e+ 215

+nn+a+ 8+ Dy =0,

which is the hypergeometric equation of Gauss. On account of the second part
of Theorem 4.2.2, for n = 1, we obtain the important representation:

n

PP () =<n+a F(——n,n+a+ﬁ+1;a+1:1—2—x>

(4.21.2) =—1-i<n>(n+a+ﬁ+1)---(n+o:+B+VJ

n! y=() 14

(at+v+1) - (a+n)<$ ‘2— 1)".18

18 The general coefficient
(ﬂm+a+a+n‘~m+a+a+o@+y+n~-m+m

is to be replaced by (a« + 1)(a 4 2) *»* (« + n) for » = 0, and by
nt+tat+ps+l)n+at+p+2) - - 20+ a+B)forv =n.
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Here, and in what follows, F(a, b; c; z) is the usual notation for the hyper-
geometric series

F(a,b;c; z)

(4.21.3) _ ~ale+1)---a@a+r—-DbO+1 ---O+r—-1) ,
=1+ 2 15 GetD - (ctr=D >

convergent for | z | < 1 and satisfying

d*y d
(4.21.4) 21 — ) L+ lc— (@+ b + 1)a] d—z — aby = 0.

(See Whittaker-Watson 1, p. 283.) For latter reference we observe that
(4.21.3) is without meaning if ¢ is a non-positive integer. However, it is readily
seen that if m is a positive integer,
lim (c+ m — 1)F(a, b;c; x)
c—+—(m—1)
(4.21.5) _ (_l)m-la(a +1) - @+m—-—Dbb+1)---®+m—1)
m!l(m — 1)!

2" Fla +m, b+ m;m+ 1;2),

and the function z"F(a + m, b + m; m + 1; z) satisfies the equation (4.21.4)
with ¢ = —(m — 1). _
(2) In the formula (4.21.2) the hypergeometric series stops with the term
in z". The constant factor in the first part of (4.21.2) is determined by (4.1.1).
Using (4.21.2), note that the coefficient I**® of the highest term z”in PP (z) is

(4.21.6) 1 = lim £ PP (z) = 27 <2n +: + B>.
(3) Another application of (4.21.2) is the useful formula
(4217) -d%; {Pia'ﬂ)(g;)} = %(n +a+8+ I)Pittl'ﬂ-lrl)(x),

which follows immediately when we expand both sides of (4.21.7) according
to (4.21.2).

As an application of (4.21.7) we observe that the successive derivatives
T.(z), Tw(z), Ty (x), --- of the Tchebichef polynomial T,(z) are, but for
constant factors, P& (z), P34 (z), P34 (z), ---. The first is, except for a
constant factor, U,_,(z) (see (4.1.7)). We note also that the derivatives P (z),
P}/(z), - - - of the Legendre polynomial P,(z) are constant multiples of P2y (z),

P33 (x), - - - , respectively.

4.22. Generalization

(1) The second formula (4.21.2) furnishes the extension of the polynomial
P{*?(z) to arbitrary complex values of the parameters « and 8. It is a poly-
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nomial in z, a, and 8. In the following, we again denote this =, by PP (z).
Many of the properties of P{*# () may be extended to this general case. The
polynomial P\*#(z) satisfies the differential equation (4.2.1), and the formulas
(4.1.1), (4.1.3), (4.1.4) hold. Some other results, however, (for instance, the
theorem on the location of the zeros, of. §6.72) must be essentially modified.
Using (4.1.3), the representation of P.**(z) as a =, in £ 4+ 1 can easily be
derived.

(2) By comparison of the corresponding powers of z — 1, we obtain the
identity

PP (1)

woy = <2n +na + 6) <x -1

=<1—1> P;a',ﬁ)<x+3>’ = % —a—f— 1.
2 r — 1
Furthermore, |
l

(4.22.2) <7;> PP () = <n -;— 6) <r —2— 1> PU9(x), laninteger, 1<1%n,
and |

n (@B _ n+ « ()
(4.22.3) <k - 1) Ple) = <n —k+ 1) P (@),

n+a+pB+k=0 kaninteger,1 <k < n.

In connection with (4.22.2) see (4.21.5). ,

(3) Let n = 1. A reduction of the degree of Pt**¥(z) occurs if and only if
n+ a+ B+ k = 0foracertain integer k, 1 < k £ n. In thiscase “c = =
is a zero of order n — k 4 1,” this being the precise order unless o = —1, lan
integer, t =l = n. If

(4224) n+a4+B+k=0 a=-I 1

the polynomial Py**?(z) vanishes identically.
By settingn + a + B8+ k = ¢ o + I = 7, it can be shown that PP ()
= er(z) + ns(x), except for terms of higher order, if ¢ — 0, n — 0. Here r(z)

lIA
=
1A
IA

n,

and s(z) are certain 7, independent of € and 4. In view of (4.22.2) and (4.22.3)

it follows that, apart from constant nonzero factors,
r(@) = (1= o) PYTH (),  s(a) = P9 (g),
or

(4.225) r(z) = (1 —2) P3P (2), s(z) = P2, 4 \(x),

a, B, nintegers, @ =2 —n,f Z —n,a+p = —n — 1,n = 1. Both polynomials
r(z), s(z) are solutions of (4.2.1); they are linearly independent since r(1) = 0,
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s(1) % 0. Also, they have the precise degreesnandk — 1 = —p —a — 8 — 1,
respectively. In this instance the general solution of (4.2.1) is a polynomial.

(4) Once more let n = 1. We then see that P\ (1) 5 0 unless & = —I,
1sl=n Ifa= —Il,z=1isa zeroof order I, and this is the precise order
unlessn +a« + 8+ k = 0,1 < k < I, in which event we recognize the ex-
ceptional case (4.22.4).

According to (4.1.3) we have P{*P(—1) > 0, unless 8 = —L 1 < I < n.
In this case z = —1is a zero of order [, and here this is the precise order unless
n+a+B+k=01=k =< which is again essentially the case (4.22.4).

(6) Letn 2 0. From (3) a second case may be derived in which the general
solution of (4.2.1) is a polynomial. If we replace n by —n — « — 8 — 1, the
differential equation (4.2.1) remains unchanged, which leads to the linearly
independent polynomial solutions:

rn(z) = (1 — x)_“P_(__,“ig)_l(x), si(z) = PP (),

a, B, n integers, « < —n, B8 < —n, n = 0.

(4.22.6)

4.23. Second solution

(1) According to the theory of hypergeometric functions, a second solution
of (4.2.1) is given by

(4.23.1) (1 —x)_“'F<—n—a,n+B+ 1;1 —a;l —2—23)’

unless «a is an integer. (See Whittaker-Watson 1, p. 286; cf. in particular
y1 and y2." The functions (4.21.2) and (4.23.1) are then linearly independent:

Now let o be an integer. If « = —1, 0 £ | < n, the function (4.23.1) is,
but for a constant factor, identical with P{*®(z) (see (4.22.2)). The same is
true if « — ap = a positive integer, provided we multiply (4.23.1) by « — ao
before passing to the limit & — ay (see (4.21.5)).

Finally, for integral values of o, « < —n, P{*®(z) and (4.23.1) are linearly
independent, since

peom = (") o

and (4.23.1) vanishes for £ = 1. The latter function is a polynomial if and
only if n 4+ B + 1is a non-positive integer, that is, 8 is an integer less than —n.
This is the case referred to in §4.22 (5).

(2) Numerous other representations are obtained for the solutions of (4.2.1)
by using the classical transformation formulas of hypergeometric functions.
The only singularities of this differential equation are at z = +1, —1, and .
Interchanging « and 8, and replacing z by —z, we obtain the expansions about
z = —1.

19 This can be readily shown by introducing in (4.21.1), y = z’~. Analogous methods
can be used in the cases (4.23.2), (4.23.3).
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The expansions about z = « are especially important. From Whittaker-
Watson 1, p. 286,” we obtain the solutions

(4.23.2) (1 ——r)"F(——n,—n—a;—2n—a—ﬁ;l__g_..>’
— 7

(4.23.3) (1 — I)_n_a—ﬂ_1F<n+a+ﬁ+1,n+ﬁ+1;2n+a+6+2;1—%—2—;>.

The first function is, except for a constant factor, Py*"®(z) [cf. (4.22.1)]. The
second function is obtained from the first by replacing n by —n — « — 8 — 1.

Apart from constant factors, the expressions (4.23.2) and (4.23.3) arise from
(421.2) and (4.23.1), respectively, by replacing « by —2n — a« — 8 — 1,
(I — 2)/2 by 2/(1 — z), and then multiplying by (1 — z)". Consequently,
(4.23.2) and (4.23.3) are linearly independent unless —2n — a« — 8 — 11is an
integer not less than —n.

THrEOREM 4.23.1.  Let a, B be arbitrary, n = 0 an inieger. The general solution
of (4.2.1) can be represented in the forms

AP () + B(1 — r)"“F(—n —a,n+B8+1;1— a;l _2— x)

tfa#® —n,—n+1,-n+2 -,

2
B = —n —n+1,—-n+2 -+,

AP (1) + B(1 + x)""F<—n —Bntat1;1-pLE “’)
(4.23.4)

APP(2) + B(1 — x)""‘““’“‘F<n taotB+lintps+1;

2n+a+[3+2;1———_g_—-}> fa+pB*—-n—1,-n—-2 -+,

respectively. Here A and B arc arbitrary constants.
(3) The preceding results enable us to prove the following:

THeorEM 4.23.2. If a and B arc arbitrary and n = 0 is an integer, then
(4.22.5) and (4.22.6) arc the only cases in which the general solution of (4.2.1)
is a polynomial. They can be characterized by one of the following sets of conditions:

(a) a, B negative integers, ¢ =2 —n, B 2 —n,a + B =< —n—1,n 21,
(4.23.5) o
(b) «a, B negative integers, a« < —n, f < —n,n = 0.
We see from (4.2.6) that in the case in question a and 8 must be negative
integers. Now, let a < —n, 8 = —n; then (4.23.1) is a non-polynomial solu-

20 In particular see the functions denoted by ys and 22 . (There is a misprint in the
corresponding formulas: the exponent of —x should be —A in 5 and — B in y3,.)
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tion. The case « =2 —n, 8 < —n can be excluded by making use of (4.1.3).
Finally,leta =2 —n,8 =2 —n,a + 8 2 —n. Then (4.23.3) is a non-polynomial
solution.

(4) Let abeaninteger. * In the exceptional cases, excluded in Theorem 4.23.1,
we can show that the second solution contains logarithmic terms in its repre-
sentation about z = +1 (similarly forz = —1,z = «). (See (4.61.6).)

An extension of the preceding discussion to arbitrary values of n is also
possible. However, in what follows, we shall confine ourselves to non-negative
integral values of n.

The consideration of the second solution, properly normalized, will be resuumed
in §4.61, where some other representations will also be given.

4.24. Transformation of the differential equation

Applying §1.8 to (4.2.1), we obtain the following important transformations
of the differential equation of Jacobi polynomials:

du 1 1=-a 11-§
dr? 4(1—2)? " 401 + )2

(4.24.1) R ) -

11—z
u = 'll(l') — (1 _ a.)(a-H)/2(1 + :r)(ﬂHmPf,“'ﬂ)(x);
2 1 _ 2 1 __ p2 2
PO el A 66+<n+~——————“+6+1) u =0,

4 sin? g 4 cos® = 2
(4.24.2) 2

o\t g\f+
u = u(f) = <sin 5) <cos :2-) PP (cos 6).

The special cases o = +£3, 8 = =£3 are to he particularly noted.

ntat+p+1)+ (@t 9&@#9/2} v =0

4.3. Rodrigues’ formula; the orthonormal set
(1) Given a and B arbitrary, we have

431) (=2 + )PPz = U (4

2rn! \dz
First, take both a and 8 greater than —1. A simple application of Leibniz’ rule
then shows that the right-hand member is of the form (1 — 2)*(1 + z)°p(x), p(x)

being a 7. To show that p(z) = const. PL*? (x), it suffices to prove that

/ ) <i) (1= 2™ + 2)"*)r(@) dz = 0,

)" (1 =21 + )",

1 \dz

where r(z) is an arbitrary m.—; . But integration by parts n times yiclds the
result
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+1
(_l)n [-1 (1 _ I)n+a(1 + I)n+ﬂ7‘m)(2?) dI,

which vanishes since '™ (z) = 0. The constant factor can then be determined
by setting z = 1 and using (4.1.1) (see (4.3.2)).

Since Pﬁf‘ﬂ) (z) is a polynomial in « and B8 by (4.21.2), and since the same is
true for the right-hand member of (4.3.1) when divided by (1 — z)*(1 + z)°,
it follows that (4.3.1) is valid for arbitrary « and 8.

On calculating the nth derivative in (4.3.1) by ILeibniz’ rule, we obtain the
important representation

@,y e (n+a\(n+B\[(z—1\[(z+1\""

P, (I)_,;()(?'L—V)( v ><2><2>

(4.3.2) =<”+a)<x+1)" n(n—l)"‘(n—v+1)<n+6)<x—1)”
3. n 2 S+ 1Da+2) - (at+y)\ ¥ o

- (o)) (o n e e ii5)

(2) The argument used in (1) readily leads to the formula

M-

I
o

+1

Q-2+ )’ (PP (2)) da
(4.3.3) -

_ 2 Tt e+ DI +6+1) _ s
2n+a+B+1 Tn+DI(n+a+p8+1)

(Here we have the inequalities « > —1, 8 > —1, and for n = 0 the product
@2n + a+ B+ 1)I'(n + o + B + 1) must be replaced by I'(a + B8 + 2).)
In fact, because of (4.3.1) and (4.21.6), we have

"1 = %+ P PO @) e = 1 / (1 = (1 + 2P (@) da
(_1) a, 1 d " n+a n n
= 5 li;ﬂ)'/ll <a—£> {(1—:1:)+(1+a:)+ﬂ}2: dx

+1
— 2—-nl§‘a.ﬂ) f (1 _ I)n+a(1 + I)n-’rﬂ dz.

-1

Now we employ (4.21.6) and (1.7.5).
Using the notation (4.3.3), we obtain as the orthonormal set associated with
the weight function (1 — z)*(1 + )® in [—1, +1]

pn(x) — {h(a.ﬂ)}‘%P(d.ﬂ)( )
_j2ntat+ B+ 110+ DI +a+ 8+ 1)} P ()
Satii T+a+DIn+a+1) ) " '
n=2012":

)

(4.3.4)
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4.4. Generating function
(1) Formula (4.3.2) can be written as follows:

nta _ n+8
(4.4.1) PEP () = L /(1 + 27 z) <1 pr 1 z) 2"z,
2m 2 2

where we assume that 2 # +1. The integration is extended in the positive
sense along a closed curve around the origin, such that the points —2(z + 1)~
lie neither on it nor in its interior. (We define the first and second factors of
the integrand to be 1 for z = 0.) Hence for sufficiently small values of | w |,

z+1 z—1

a 8
© 1 + Z) <1 + .Z) '
(44.2) D PP @ = 2—1—1 / < 2 2 d

z.
_ z+1 ) z—1
z w<1+——§——z <1+ 5 z)
The denominator is

(4.43) — i - Dwd — zzw — D—w = (1 — 2wz — 2)(z — Z),

n=0

where
2 zw—1+R

1— 22 w !

(4.44) 20 = 2w = R = Rw) = (1 — 2zw + w)},
For Zy = Zo(w) there is an analogous expression with —R instead of E.
Here z, and R are regular analytic functions of w provided | w | is sufficiently
small; we take R(0) = 1. At w = 0 the function z, has a zero, and the function
Zy has a pole. For sufficiently small | w |, 2o lies in the interior, and Z, in the
exterior, of the integration curve of (4.4.2), so that by Cauchy’s theorem

© —1 a _ 8
Zo PPyt = E (1- x2)w] <1 + 2 '; ! zo) <1 + Qf—g—l Zo) (20 — Zo)™.

Now, we readily get

1+I—'—;~1zo=2(1—w+R)“l, 1+9;——1zo=2(1+w+R)“1,

20 — Zp = 4w'(1 — 2)7'R,
so that

0

> PEP(w = 22PRT'1 —w + R)*(1 + w + R)™®

n=0

(4.4.5) = 2(1 — 22w + )1 — w + (1 — 20w + )}

Al +w+ (1 — 2xw+w2)*}—ﬂ.

This is the generating function (series) of the Jacobi polynomials (Jacobi 3,
pp. 193-194) which may be established directly for x = 1. The expressions
{ 17 and { }7® must be taken positive for w = 0.
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(2) A slight variation of this argument may be made by writing (4.3.1) in
the form

@h iy — 1 1t2—1)"1_t"1+t>" dt
(446) P, (I) 2m/<2t—x <1—-x) <1+I t— =z’

Here z £ +1, and the integration is extended in the positive sense around a
closed contour enclosing the point ¢ = x, but not the points ¢ = =1. Also the
functions ({1 — ¢)/(1 — 2))*and (1 + ¢)/(1 + 2))” are assumed to reduce to 1
fort = z. We next write

1£ -1

(447) 5 —

—w™, t=w{l— (1 — 2w + v =x+%(x2—1)w+..._

Here that branch of (1 — 2zw + w®)! must be taken which is equal to +1 for
w = 0. Then if w describes a small closed curve around the origin, ¢ describes
a curve of the type mentioned above. Furthermore,

1—1¢

= — — 234y -1
(4.4.8) T =2(l— v+ Q- 20w + )7,
i_—%—*-;:—i = 2{1 +w + (1 — 2zw + ")}, [‘ii;} = (1 — 2zw + ) ™ dw,
so that
1 _ .
P:‘aoﬂ)(-’r) = —. / w 7"2(1 1 —w + (1 _ zxw + w2§ —a
(4.4.9) i ‘ )

Pl +w+ (1 — 2w + w2)*}“ﬂ(1 — 2zw + w)) ™ dw,

which is the desired result.

(3) A third method of deriving the generating function is based on the fol-
lowing remark. If the function F(z, w) of the right-hand member of (4.4.5) is
developed in a power series in w, it is seen that the coefficient of w" is a poly-
nomial of degree n in z. To identify this polynomial with P\** (z) we show
that

+1
(4.4.10) /1 (1 — 2)*(1 + 2)°F(z, w)F(z, v) dz,
considered as a function of u and v, is a function only of the product wv, which
is equivalent to the orthogonality property. For z = 1, the identity (4.4.5)
can be proved directly, and this procedure furnishes the normalization of the
coefficients.

In Legendre’s case: « = B = 0, the integral can be calculated explicitly
(Legendre 1, p. 250). In the general case, Tchebichef (6) transformed this
integral into the form

1
(4.4.11) getAHt l £(1 - 071 — wt)™ (1, — wit’) ™ dt,

from which the statement follows.
Concerning a fourth method based on Lagrange series, see Pélya-Szegd 1,
vol. 1, pp. 127, 303, problem 219.
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4.5. Recurrence formula

(1) In the present case the general formula (3.2.1) becomes
2(n + o + B)(2n+ a +8 — 2)PL (2)
= @n+a+B—D{(2n+a+p)2n+a+p8— 2z +o — P27 (2)
—2(n+a— 1D +8—1)(2n+a+BPP(z), n =234, -
Pi*?(z) =1,  Pi""(2) = Ha+ B+ 2z + 3o — B).

Here, the coefficient of zP\*% (z) may first be verified by means of (4.21.6);
then, by alternately setting £ = +1 and z = —1, the coefficients of P(“‘”(x)
and P( % (z) may be calculated. Actually, the formula is but a special case
of the relations between contiguous Riemann P-functions (see Whittaker-
Watson 1, pp. 294-296).

(2) Using the notation (4.3.3), we obtain the following expression for the
“kernel” (cf. (3.2.3)):

(4.5.1)

K (e y) = 2 (WP 7PIP ()P0 (y)

y=0

27 * I(n 4+ 2)T(n +a+ 8 +2)
Tt a+B+2T(m+a+ DIm+B+1)

PER ()PP (y) — PP (2)PL3? (y)
rT—y ’

(4.5.2)

In particular, for y = 1:
K&z, 1) = K\ (2)

=iﬂw+a+ﬁ+yr0+ a+B+1)
»=0 2etbH Mo+ DI+ +1)

g _Nntatl I'n 4+ a4+ B + 2)
(4.5.3) Mm4+a+B+20(a+ DIn+B+1)

(aﬂ)( )

a 1 a
‘P; ?(z) ———-*'Z_ —t——%_—_i P (2)

1—12
_gas1 Mt a+B8+2)
(e + 1I'(n + 6 + 1)

The last representation in (4.5.3) is a consequence of Theorem 3.1.4, since
(1 —2)*Q+2)°Q —z) = 1 — 2P + 2)’. We also note that

P;a+l.ﬂ)(x)‘

PO () = 2 (n +a+ )P (2) = (n + NP3 ()

(4.5.4) " m+a-+B+2 1—=z !
T puestigg = 2 (n + 8+ DPL (@) + (n + DPID ()

" oM+ a+ B+ 2 1 +z ‘

The second formula follows from the first one if we interchange « and 8 and use
(4.1.3). Finally, by using (4.21.7) and the last formulas, we obtain
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(1 =) LIPEP @] = 30+ a + 8+ D = HPEH ()

(4.5.5)
- (a B)(.T) + BP(a ‘3)(1‘) + CPSS}—'?)(‘T);
where ‘
g2ttt prtatp+1)
@Enta+B)@ntat+p+1) '
2n(n + a« + B+ 1)
4.5.6 B = (a-
(4.5.6) B i fat At at AT
e __ 2+ DE+atBp+1)

@n4at+B+1Cn+a+8+2)
Here P{%% () [or P{*7(z)] can be expressed by means of (4.5.1) in terms of
PP (z), PP (x), PR (z) (or PL%P (x)). This yields
@ntat B - ) L (PP

= —n{(2n +a+ Br+ B — )PP () + 2(n + a)(n + B)PLZY (2),

457) 9y 1 o +6+2)(1—x) — (PP (@)

= (4 a+B8+D{@+a+8+2z+a— 8P )
— 200+ D + a + 8 + )P ().
In addition, we notice the following consequence of the last formula (4.5.3):

K21, 1) = K2P(1)

(4.5.8) _ grape r'n+a+ 8+ 2T(n+ a+2)
Fla+ DI(a+ 2)T(n+ DI'(n + B+ 1)

4.6. Integral representations in general

The representation (4.3.1) and its integral form (4.4.6) are closely related to
a classical method used for the integration of the hypergeometric equation and
others of similar type. We again start from the formula (4.4.6):

—1)"
(1 - x)a(l '+' x)ﬂP;"'ﬂ)(x) = (27;) / (1 _ t)n+a(1 + t)n+ﬂ(t _ x)—n—ldt’
(4.6.1)
where r % 1. The integration is extended in the positive sense over a closed

curve enclosing z, but not the points ¢ = 1. Using an idea of Euler (1), we
try to integrate (4.2.1) and (4.2.3) by means of

462 Y= (-0t Dy = [ Q=000 =97

with a proper choice of the contour of integration. Here r = 1, and the
path of integration must avoid the points —1, +1, and z. However, we allow
—1 and +1 as end-points of a path provided the integrals (4.6.2) and (4.6.3)
are convergent.




[4.6] INTEGRAL REPRESENTATIONS IN GENERAL 73

Substituting (4.6.2) in (4.2.3), we obtain
1= Y +[a—B+(a+B—2)7Y + (n+ 1)(n+ a+ BY

=/u¥om0+mWwwwﬂm+nm+mu—w

(4.6.3) + @+ Dae—B+ (@a+8— 2)2](t — x)
+ @+ D0+ a+ B —2)}d

D) / 81— e g - Y

Therefore, we see that (4.6.2) satisfies (4.2.3), provided one of the following
two conditions is fulfilled:

(a) The path of integration is a closed contour along which the expression
(1 — )™*"Q 4+ "¢ — 2)7"% or what amounts to the same thing,
(1 — £)°(1 + t)° returns to its original value.

(b) The integration is extended along an arc, finite or infinite, such that the
first expression mentioned vanishes at the end-points.

Specialization of the contour according to these restrictions yields numerous
important integral representations for Jacobi polynomials as well as for other
solutions of (4.2.1). (Cf. §4.61, §4.82.) For a special contour integral allowed
in the sense of (a) and (b), we must first show that y is not identically zero; then y
can be identified with a constant multiple of P{*#(z), or with some other
particular solution of (4.2.1); finally, the constant factor must be determined.
The resulting integral representations hold, save for some exceptional values of
« and B. :

Further integral representations are obtained by replacing n by n—a—pf—1
in (4.6.2); this does not affect (4.2.3). Thus,

(4.64) Y = (1 -1 +2)y = / (1 =7 Q + 77 — o)™

where the contour is chosen as in (a) or (b) above. Instead of the first expres-
sion in (a) we now have

(L= 0770 + 077 — )™

Rodrigues’ formula (4.3.1) is a special case of (4.6.2), the path of integration
being a closed curve which encloses z but not &=1. Condition (a) is then satisfied.

4.61. Application; functions of the second kind

(1) TuEOREM 4.61.1. Let z be arbitrary in the complcxr plane cut along the
segment [— 1, + 1]. Leta> —1,8> —1,n 2 0. Excluding the case n = 0,
a+ B8+ 1=0,asolutiony = Q(“ P () of the differential equation (4.2.1), which
is linearly independent of P.*® (), can be obtained in the form

(P ()
(4.61.1)

+1

=27z — D= + 1)“ﬂ/ (1 = "1 + "z — 7 dt.

-1

In the exceptional case: n = 0, « + B + 1 = 0, we have Q5*"(z) = const.;
then a non-constant solution is given by
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Q) =log (r + 1) + 7' sinwa (x — 1)z + 1)™*
(4.61,2) /+1 (1 = (1 + 9)°

1 r—1

log (1 + t)dt.

The function Q{**”(x) is called Jacobi’s function of the second kind. We use
this notation also if n = 0, & + 8 + 1 = 0, for the function Q”(z). In the
special case @ = B = 0 we write QY'”(z) = Q.(z) (Legendre’s function of the
second kind). (Cf. Jacobi 3, pp. 195-197.)

Both (4.61.1) and (4.61.2) are multi-valued (except if « and 8 are integers).
Both integrals are single-valued and regular in the complex plane cut along the
segment [— 1, 4+ 1].  Obviously, Q*?(z) ~ 7" asz — «, which shows
that Q*® (z) is linearly independent of P{* f')(:1:) (exceptif n = 0, « + B+1=0,
see below). The corresponding property of Q“(x) is clear. We have, as is
easily seen,

(4.61.3) Q“(z) = 2r " sin 7« [o Qé"'ﬂ)(x)}
\86 B a1
The function Q¥ (x) satisfics the differential equation (4.2.1); this follows
from (4.6.2) since the segment [= 1, + 1] which is the path of integration,
satisfies the condition (b) of §4.6. Differentiating (4.2.1) with respect to 8, and
substituting 8 = — & — 1, we obtain the solution Q“(z) since Q§*®(z) = const.
ifg=—a—1.
(2) TueorEM 4.61.2. The following representations hold:

(461.4) Qx*7(x) = 4z — D™ + 1)™* /j( D1+ ) = —= P‘“”(t)

grtatp T(n + a + I(n + g+ 1)
r@n 4+ a4+ g+ 2)

(z— D"+ 17"
(4.61.5)

F<n+a+l,n+1;2n+a+6+2;f—§—;).
Furthermore,

Q' (z) = log (z + 1)

2\ ety 1 AYAR' Y
(4.61.6) +<1_1—x) Z{( v )<‘+§+ "+5)<1—x)+°’
I'(-a)
I'(—a)
By use of Rodrigues’ formula, (4.61.1) may be integrated by parts n times.
This establishes (4.61.4). From (4.61.1) we readily obtain

(@ — D%z + 1)°Q"(x)
( 2)—n -1 Z (n + V) x)-—n—v—l ];;H (1 _ t)n+v+a(1 + t)n+ﬂdt

v==()

c=T'(1) — — log 2.

v==0

= (__ 1)n+12a+ﬂ—l i (n + V) F(n "l" v + @ -<|— l)r(n .+- 6 + 1) ( ) )n+v+l
" I@n+v+a+B+2) 1—z)
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This, in connection with the notation (4.21.3), yields (4.61.5).

Turning to the exceptional case, we first notice that forn = 0,a + 8+ 1 = 0,
(4.61.5) becomes

Qi=P (1) = 9o+ I'(a+ 1TB + 1)

_ —a—1 —B
CETE T R

(4.61.7)

'F<a+1,l;a+ﬁ+2; 2 )

1—=x
Fora + 8+ 1 = 0 this will, in fact, be a constant since ((1.7.2), second formula)

é T(a+ DI@+ D - D™=+ 17 F<a +1,15 1 1——3—5)

N 1)~a<1 2 )—a—l _ 1 =

2 sin ra 1—1=x 2 sin ra

Now from (4.61.7), taking into account.(4.61.3), we obtain (4.61.6).
(3) The case n = 0 may be treated in another way by means of the relation
(4.2.6). For z = 1 this becomes

(4.61.8) (1 — 2)*'(0 + 2)*"'y’ = const.
This yields an integral representation for y.

TreEOorREM 4.61.3. Leta > — 1,8 > — 1. We then have the following integral
representations:

a _ e Tla+1r@+1) (° . o
(4.61.9) (() ﬂ)(x) - 2+ Tla+ B8+ 1) L (t—1) t+1) Al dt

fa+pB+1>0,

@d .y _ _ gats Lla+ DT(E + 1) {/x et -1
Q™" (z) 2 NCEY SR (¢t =D+ 1)

(4.61.10)

—a—f—1
— ey gy _ :
t ] dt am+6+1} fa+8+1<0,
(a) _ z f—1 —a—1 ¢ 1 —p-1 1 ]dt 1 1
(461.11) (=) L[( )T+ D) | %t leE+ D)

tfa+pB+1=0.

In the first case the integrand is ~ ¢ , as t — o so that the integral is
convergent. The constant factor in (4.61.9) can be obtained by comparing the
principal terms in (4.61.7) and (4.61.9).

In the second case the principal term of the integrand is (« — B)t™* "% so
that the integral is convergent. In the third case the principal term of the
integrand is 2(a + 1)(¢ 4+ 1) so that here too we have convergence.

(4) Another very general integral representation of a second solution of (4.2.1)
is obtained by choosing the path of integration in (4.6.2) as in Jordan-Poch-
hammer’s integral for the Gamma function (see the figure in Whittaker-Watson
1, p. 257). This path can be defined by the scheme

—a—f-—2
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(4.61.12) (=1=), *14), (=14), (+1-).

Condition (a) is then satisfied, z = =4 1. The principal term is 7" pro-
vided the integral [ (1 — t)"+°‘(1 + t)"** dt, extended over the contour in question,
does not vanish. Thisis the case (see loc. cit., p. 257) unless one of the following
conditions is satisfied:

n+a=012 - ..; n+8=012 ...,
2n+a+6+2=0)_ 11_21"'

In the special cases, where & + B or @ — B is an integer, the contour can be
simplified.

(4.61.13)

4.62. Further properties of the functions of the second kind
In the following considerations we again assume that « > — 1 and 8 > — 1.
(1) The possible singular points of Q'*'?(z) are + 1, — 1, . In order to

discuss this function near £ = + 1 (and also for later purposes), we write (4.61.4)
in the form

)ﬂ P(a ﬂ)(il') P(a ﬂ)(ﬂ

- dt

+1
QePz) = —3x— 1)@+ 17* /_1 (1—=0)*(14¢

+1 a B
(4.62.1) Filz— 1)@+ )PPy [ A i) “t+ D" 4
-1 —_

(@B _ plad

+1
=—3ia-1)"@+1"* /_1 (1—=0%1+1) —

+ PP ()" P (x).

The last integral is a 7, in z (a constant multiple of the numerator £2,(z) of the
nth convergent of the continued fraction defined in §3.5; sce the first part of
(3.5.7)). Therefore, if x approaches + 1, the behavior of fo‘ P (z) is to a certain
extent determined by that of Qy*? ().

The discussion of Q¢*?(x) near x = + 1 is not difficult. Expanding the
factor (¢ + 1)™' in the integrand of (4.61.9) into a power series in ¢t — 1, we
obtain for @« + 8 + 1 > 0, a not an integer,

Qé""ﬂ)(x) = const. + (z — ™M (L;—E)

here M (u) is a power series of u, convergent for [u | < 1, and M(0) = 0. A
similar representation holds if @ + 8 + 1 < 0 [(4.61.10)]. (In the exceptional
case a + B + 1 = 0, this is not true for Q§*'" (z); however, it is true for Q' (z),
cf. (4.61.11).) Now, let o be an integer; then we use (4.61.9) again. In view of

t— D7+ DT =27 — 1y (1 — IT_‘)_ﬁ_l

=277t — 1)"""“{1 + ..+ (ﬂ “: “)(Lz__t)a + o }

the integration furnishes a logarithinic term. 'T'hus,
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const. + (x — 1)7°M, (1 ; T)
ifa>-1,8>—1:a0,1,2 - ;a+B8+150,

(— l)a 1 i o 1l —12
5 lng_1+(1 1) M, 5
Fa =012 -:8>—1
Here M,(u) and M»(u) are power series convergent for | u | < 1 with M,(0) 5 0,
M>(0) = 0 (see below). A representation similar to the first one holds for @ (x).
We have, for instance,

_ Todt 1, z+
(4.62.3) Q"0(2) = Qlz) = L =~ 5%, —7-

[The statement M,(0) = 0 requires further comment for « = 0. Taking
z > 1, and then integrating by parts, we have

/r (t— D7+ D g

(4.62.2) Q5P (z) =

=@+ 1) g &~ 1) + (8 + 1) / T ) log ¢ — 1) d,
so that
M;(0) = lim {Q"®(x) + Llog (z — 1)}

z-+1+0

1
= —(B+ 1)2ﬂ/ (t+ 1D log (t — 1)dt = 0.]
(2) Now we prove the following theorem:

THEOREM 4.62.1. Let z be real, z > 1, and take (zx — 1)%, (z + 1)® real and
positive. We then have, for x — 1 + 0,

(x — 1)—0‘, a> 0,
(4.62.4) QP (z) ~ <log(x — 1), a= 0,

1, a < 0.
More precisely,

za—l F(a)r(n + B + 1) (2: . 1)—01’

>0
T(n+a+p+1 *7o
(4625) Q@] L )
(_l)alo ! =0
2 g =1’ «=
The behavior near z = — 1 of Q4*"?(z) is similar.

The case « > 0 follows from (4.61.1):
+1

QP (x) = 27" P (x — 1)‘“/ (1 — 7' + )" dt.

—1

In the case & = 0 we use (4.62.1), (4.62.2), and P{*?(1) = 1. Inthecasea <0
the first term of the right-hand member of (4.62.1) vanishes as z — 1 + 0.
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Thus the statement is equivalent to Qi*#(x) ~ 1. This is immediately clear

from (4.61.9)ifa+8+1>0. Ifa+4+ B8+ 1 < 0, weuse (4.61.10) and show
that

4.62. R e (IR S P S D S
(4.62.6) [{( )P e L <o

On writing

=D+ D =0 - D7+ 1)*“*ﬂ“<}——+ 1) ,
we see that (4.62.6), as a function of « and 8, increases with « if & -+ 8is constant.

But when g approaches — 1, we find for the left-hand member of (4.62.6) the
result

d 1
/ ¢t — 1) - dt + - = 0.
1 04
We have, as an instance, [(4.62.1), (4.62.3)]

(4.62.7) Q@) = Qu(@) = R(z) + $P.(x) logzi— 1

where R(z) is a .. The logarithmic factor is chosen so that it tends to 0
as r — o,

(3) THEOREM 4.62.2. Let a be an integer, « = 0. We consider Q\*"® (x) (real
and positive for x > 1) in the complex plane cut along the line [— «,+1]. Then

(4.62.8)  QP(z 4+ 10) — QP — 0) = (= D'mPP (),

-1l <z< + 1.

This follows from (4.62.1) and (4.62.2).
On the other hand, the function

(4.62.9) Q" P(2) = 3Q2 (= + i0) + QP (x — i0)}

is analytic on — 1 < z < + 1 and satisfies the differential equation (4.2.1).
Asz — 1 — 0, it displays a behavior similar to that of Q\*#(z). In particular,
we find for Q;o'(» (z) = Q.(x)

(4.62.10) Q.(z) = R(z) + 3P.(z) log 1 + z,
(4.62.11) Q.(— ) = (— 1)""Q.(2), —l<z<+1,
(4.62.12) 1in10 Q.(z) = + .

Here R(z) has the same meaning as in (4.62.7).
In general, if « and B8 are both integers, the function Q
single-valued in the whole plane cut along [— 1, + 1].

(4) The functions of the second kind satisfy the same recurrence formula as
PP (z) [(4.5.1)], that is,

{#(z) is regular and
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2n(n+ a+ B)2n+ a + B — 2)QP (x)

(4.62.13) =@n+at+B-1D{@r+at+PH@n+at+B—2z+ o —
Q@) ~ 20+ a = Din+ 8- D@ + o+ HQ (@),
n=234, ...

This follows from (4.62.1) on account of (3.5.3) and Theorem 3.5.1. There is,
however, an essential difference if n = 1. We then have, according to (4.62.1),

Q) = 3 [(a + B+ 20z + a — 81 Q5P (z)

(4.62.14)
—_ 2a+ﬂ-—l(a + 3 + 2) F(?(‘: j—)g(i_;) 1)

Therefore, both systems of functions [(4.3.3)]
pa(z) = (RSP )PLP (),
ax(z) = (R"P)7Q P (),

n
satisfy the same recurrence formula of the type (3.2.1) for n = 1, provided we
define

(4.62.16) pa(x) =0,  gu(x) = (x — 1)@z + 1)

Thus a procedure similar to that used in §3.2 (2) furnishes, for n

(x— 1Dz + 1)~

(4.62.15)
= O) 1) 21 Tt

v

K Pri(@)0(Y) = Pa(2)gni1(y)
kn+1 =Y

(4.62.17)

= pa(2)qa(y) + ’ikn;l.pn@)qn-l(y; - 5,._1<x>q,.<y>_

Here k, denotes the coefficient of z™ in the “normalized” polynomial p.(z).
This formula also holds for n = 0 if we modify it as follows:

(4.62.18) Z_o P(2)0e(y) — po()u(y) _ (@) ao(y) 4 const. g (y) |
1 zT—y o—
Adding, we obtain the important result:
2 +atB+1 TG+ DI +at+B+1) p@o yo@s
2 g I Fat DIGTAFD L BT W
_1y=D"y+D7* go?
(462.19) =3 L T
T+ 2Ar(n+atp+2) P @) () — PP ()@ ()
F(n+a+I(n+B+1) z—y :

The constant 3 in the right-hand member can be determined by substituting
n = 0, multiplying by y*"**', then permitting y — «, and finally using (4.61.5).

We shall return to this formula in §9.2, where it will be used in a classical
manner for the expansion of an analytic function in terms of Jacobi polynomials
or of Jacobi functions of the second kind.
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4.7. Ultraspherical polynomials
(1) If « = B, Jacobi’s polynomial P{"” (z) is called an ultraspherical poly-

nomial.® The following is the customary notation and normalization:
INa+1) T(n+ 2a+ 1) «
P (z) = P ()
'Ca+1) T(n+a+1 "
4.7.1) ( ) Tt et

_TA+3) Th+2N

- TN T+ 3+ 3
Here we assume first that « > — 1, or A > — 1. Some important special cases
are (cf. (1.12.3))

PO (), a=\~— 4%

(4.7.2) PP (z) = Pu(z), PP ()= Unlx).
If « = — % or X\ = 0, the polynomial P{(z) vanishes identically for n = 1.

This case will be treated later. (Cf. (4.7.8).)
We next observe a number of formulas and theorems which can be obtained

immediately from the theory of general Jacobi polynomials by setting @ = 8 =
AN—3HA> — &

(4.7.3) PP) = (n + 2,2)‘ B 1);
(4.7.4) PPV (= z) = (= )PP (2);
(1~ 2" — @\ + Day' + n(n + 2y = 0, y = P2'(),

(4.7.5)
(1 =27 + O\ — 3)zY' 4+ (n 4+ 1)(n + 22 — 1)Y = 0,

Y= (1 -2 PP @);

PR = (" 1)F<— mow+ 28+ 5 L x)
(4.7.6)

=2 ("N (- - - -t iE)
\ =

The last formulas define P{’(z) for all values of A. If necessary, for some
special values of A, say A = Ao, the formulas may be interpreted as limits for
A— X2 Forh= —m,m =0,1,2 ..., we obviously have (cf. the first

formula (4.7.6)) PV (z) = 0if n > 2m. In this case

. P(M(.’E) {d ) }
EERLEIACARS Y Shalily o4
xglzlm AN m dn " (z) At

:=2(2m)!(n—2m—1)!F< 1-—:1:)

. 1.:
1 —n,n—2m;—m+ 3, 5

exists. These polynomials are, except for constant factors, again the Jacobi
polynomials PS*'®(z), « = — m — 4. For instance (cf. (1.12.3))

(4.7.8) lim APV (z) = (2/n)Ta(x), n

(4.7.7)

v
—_

2t They are sometimes called Gegenbauer’s polynomials. See the papers of Gegenbaxuer
(1—7). See also Heine 3, vol. 1, pp. 297-301, 449-464. Occasionally, the notation Cp(x)
. . M)
is used instead of P, (x).

22 This should also be done in all the subsequent formulas.
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Incase a = — [, (n + 1)/2 £ I £ n, the polynomial P\“(z) vanishes identi-
cally (§4.22 (3)). However, the corresponding expression P{’(z), as a limit, has
a meaning and does not vanish identically.

(2) Further formulas involving P{" (z) are

(4.7.9) lim £ "P® (g) = 2" (" A= 1) :
' T n
. d2 2 1 _ 22 2
(4.7.10) d_;_: + {(li;_zz_ 42 +>El _Xx—z{;zx /4}u =0, u=(1—2)"Hp® (g,
& A1 —
(4.7.11) d—;—: + {(n + N+ L%B—z—}z}u =0, u = (sin 6)*P{ (cos 6);

(4712) (1 _ xz)k—ipi)\)(x) — (_—2)" I‘(n + X)P(n + 2)\) (d)" (1 _ xz)n+>\-—§_

n!  T\I'2n + 20) \dz ’

(4.713) PP () = ("+2>‘— 1)(x+ 1) F(—n. —n =N+ 3N+ 32 1) ;

n 2 z+1
(4.7.14) ad; PO () = 0P (4.

+1
(1 — 2 pw 2 dp= OB - T(n 4+ 2)\)
(4.7.15) f“ PR e T} n+ N F 1)’

A> — 1A= 05

~ T\ T+ x+1)
(4.716) =0 T'(A4+3) TI(n+ 22

=21 — 220 + w)H1 — 2w+ (1 — 22w + W

PS‘) (x)wn

nPa’ (@) =200+ X = D2P(@) — (n+ 20 — 2)PPu(z), n =234, - .-

4.7.17) - ’
PP() =1, PM(z) = 2

4718) > (v 4+ NP (z) = % (n + 2>\)Pi”(x1) — (n + DPN (&)
v} 1 —z M

(32X)We obtain as a second solution of (4.7.5), which is linearly independent
of Pu"(z), (cf. (4.23.1), (4.23.3), (4.61.1), (4.61.4), (4.61.5))

y=(1_x)HF(‘"—>\+%,n+>\+%;%—>\;1;x),

Nt —n+1/2, —n+3/2, —n+5/2 ... 2%

(4.7.19)

2 Use (1.7.3), n = 2. In the limiting case A\ — 0,7 2 1, we multiply (4.7.15) by A2,
A — 0 [(4.7.8)].

HForx= —n—1/2, —n — 3/2, --- thisis a polynomial linearly independent ofPﬁf‘)(x)
(cf. §4.23 (1)).
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y= (1 —x)""‘2*F<n+2>\,n+>\+%;2n+2)\+1; 2 >,

(4.7.20) 1~z
N —n/2 —n/2 ~1/2 —n/2—1,...5
+1 .
y= (1 -2 1 (1 =)™~ ™2 g4
(4.7.21) B
_ NEW A a1 P (0)
= const. (1 — z°) (1 —1¢% o tdt, A> —1/2 N\ 0;
-1 -
y=0 -2+ x)HF<n +A+Ln+1;2n+ 20+ 1; i—)
(4.7.22) 1~

N ~n/2 —n/2~1/2 —n/2~1,....%

According to Theorem 4.23.2 the general solution of (4.7.5) is a polynomial if
and only if X — % is an integer and A £ — n/2.

(4) Another generating function, essentially different from (4.7.16) (cf.
Problem 16), and much simpler, is often used as a definition of the ultraspherical
polynomials, namely:

PP (@) 4+ PP @)w+ PP @w' + - + PP @w" + -

= (1 — 2zw + v
For the proof, we consider the recurrence formula (4.7.17), from which

(4.7.23)

glnP;*>(x)w"“ =2z 21 (n+x— PR ()w™ " ~ 2:‘1 (n+ 27 — 2)PXy(2)w™
and in which we define PY(x) = 0. If the left-hand member of (4.7.23) be
denoted by h(w), the last equation may be written in the form

R (w) = 220" N w'hw)) — 0 (W h(w))’
= 2z{M(w) + wh'(w)} — {2z wh(w) + W'h' (w)];

or K(w)/h(w) = 2\(z — w)(1 — 2rw + w) ™. Since h(0) = PP (z) = 1,
(4.7.23) follows by integration.
On differentiating (4.7.23) with respect to \, we obtain

(4.7.24) — (1 = 22w + v’ log 1 — 2zw + wb)

which, for A = — m, m = 0, 1, 2, ... | gives the generating function of the
polynomials (4.7.7), provided only those terms are considered for which n > 2m.
These polynomials are, as mentioned in (1), constant multiples of the Jacobi
polynomials P\ (z) with « = — m — . The polynomials of degree n < 2m,

defined by this new generating function (4.7.24), are essentially different from

2 Cf. §4.23 (2).

2¢ Formula (4.61.5) has been considered only under the restriction « > —1, 8 > —1.
We seeimmediately, however, that except for the indicated values of \, the function (4.7.22)
is a solution which is ~z™"~2* g5 z — , go that it cannot be a polynomial.
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the P (z) which are given in this case by the corresponding terms of (4.7.23).
We have, for instance, [(4.1.7)],

(P() =1, PP@) =0, nx1

)

4725 r=0!~ log (1 — 22w 4 o%) = g (2/n)T,(z)w"
‘ | _ had g 2:4...9p
=1 1-3 -+ (20 — 1)
PiP() =1, P{™()=~2, P{@) =1,
PiPz) =0, n=3
~ (1 = 22w + w) log (1 — 22w + w°) = 2zw — (22* + 1w’

= 24 (20 —6) .,
—~ 32. (=D (), n
§1-3...(2n_3)Pn (x)w".

(5) From (4.5.5), (4.5.6), (4.5.7), (4.7.14), we obtain the relations

P;ﬁi'—*)(x)w";”

)

(4.7.26) A = — 1

(1 -2 & (PO())

=[2(n +N]H{(n 4+ 28 = 1)(n 4- 20) PPy (z) — n(n + PN(z))

T2 _ _ 0eP®@) + (0 + 23 = )POy()

= (n + 20zP."(z) ~ (n + 1)PXs(x)

= 2\(1 — )PP (z), n =0, PN () = 0.
We can then derive the following identities:
o PR @) =2 L (PO @) ~ L PO

(n + 20PP (z) = % (PO} — 2 Zz%; (P® ()}

Adding these formulas we find, by use of (4.7.14),
d
Zl—i {P;"_,)_x(x) - PSLA—)»l(.’E)} = 2(n + A)P;M(x)

(4.7.29) = ™ {PM(z) — POMP (@)},

n 21, PY(z) = 0.
(6) Finally, we give some special formulasinvolving hypergeometric functions.

Combining (4.1.5) and (4.21.2), we obtain

P'y;)(x) = (2’;;-{—3:\— 1>F(— v+ NA+ 31— 1)

(4.7.30) = (T T R,

" The first of these identities can be derived directly by writing 1 — 2w cos 0 + w? =
(1 — we'?) (1 — we™i?).




84 JACOBI POLYNOMIALS '[ IV ]

P{Li(x) = (2; 12;‘)961"(— vr+A+ 10+ 31 —2b)
(4.7.30) g

= (= 1)2x (V _1: >‘>xF(— v, v+ X+ 1;g;x2).

The constant factors can be calculated by substituting £ = 1 and comparing
the highest powers [or by computing Ps)’ (0) and P$}}1(0) from (4.7.23)].
Another way of writing the second part of (4.7.30) is the following:
[n/2])

N - I g —
4.7.31) PP(z) = mz;o (=1) T(NT(m+ DI(n — 2m + 1) (@)

This last expression is an explicit representation of the ultraspherical poly-
nomials. (Cf. Problem 15.)
The formulas (4.1.5) may be proved by a more general consideration. For

instance, in the first case, we may start from the corresponding differential
equations

(1 — 2" — 2(a + Day’ + 20(2v + 2a + 1)y = 0,
1 -2 —fa+ i+ (@+ P} + v+ a+ 2= 0

and show the relation y(z) = 2(22° — 1) between their general solutions. This
argument furnishes at the same time relations between the non-polynomial
solutions of (4.7.32) similar to (4.1.5). To be specific, let us replace the quanti-
ties m, a, B, z in the expression (4.23.3) first by », — 1, o, 1 — 22°, respectively,
and then by », +3%, a, 1 — 22°, respectively; we then find (in the second case
after multiplying by z)

(4.7.32)

- x—n—Za—ll;v([(n + 1)/2] + o+ 1/2’ [n/2] + a+ Lin4 a+ %;x“z)
=z " PF(n+ 1)/24+N\n/2+ N0+ N+ 1;279,

as & second solution of (4.7.5), which is linearly independent of P{" (z), provided
N —[(n+1)/2l = k;k=0,1,2 -...

Starting from the first formula in (4.7.21), we find, save for a constant factor:

0 +1
y = (1 _ xz)h)\ x—n—l Z <n ‘2|" 2V> x—zv / (1 _ tz)nﬂ*ilzvdt

y=0 4 -1

4733 7

RN = G w« (n+ 2\ T'(n +. A+ DTG+ 35 o
(4.7.34) (1 ==)"a g( 2v ) ThFr+tr+1)
_ T+ N+ DTA) , _ 2y —n

BECE S ) (1= 2)"z

F(ln +1)/2,1 +n/2;n 4+ X+ 1;279).

For further properties of ultraspherical polynomials the reader may consult
Whittaker-Watson 1, pp. 329, 330, 335, and the literature quoted there. See
also Wangerin 1, pp. 730-731. The function C;(z) of these authors is identical
with P{”(2) in our notation. The Legendre associated functions P7(z), m an
integer (cf. Hobson 1, p. 90), can be represented in the form (cf. (4.21.7))

(4.7.35) Po(x) = const. (1 — 25)™2PHh ().
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4.8. Integral representations for Legendre polynomials

In the important case « = 8 = 0, that is, for Legendre polynomials, the
method of §4.6 leads to various integral representations. According to (4.6.1),

(4.8.1) P.(x) = L. / (1 £~ 1>" dt

271 2t—z/) t—z

Here the path of integration encloses the point z. At present, the position of
this contour with reference to the points ¢ = =+ 1 is immaterial.

(1) Integrals of Dirichlet-Mehler. (Cf. Dirichlet 1, Mehler 6.) Take z in
the interior of the interval [— 1, + 1], so that z = cos 6,0 < 8 <. For the
contour in question we choose the circle

(4.8.2) |t—1|=|eia—1|=2sing, t=1+2sing-ei“,
so that
0 .
1 + sin =-¢"*
1 &£ ~1 3¢,
4.8, — =
(4.8.3) 2% — cos#

1+ sin g--e_“

Next let ¢ vary from — 7 to + =; then 1 + sin 10-¢" describes the small circle
in the figure. The expression in the right-hand member of (4.8.3) has the

a = sin6/2

Fra. 3

absolute value 1 and an argument twice that of the numerator. Thus, if we
write

1 & ~1 i

the quantity ¢ varies from — 6 to + 6 and again from + 6 to — 6. Solving
(4.8.4), we obtain
(4.8.5) t = e 4 ¢**(2 cosp — 2 cos o).

Here the positive value of ( )} corresponds to |¥| < (v + 6)/2, that is, to
the “‘exterior’ arc, while the negative value corresponds to | ¢ I > (r + 6)/2,
that is, to the “interior’” arc. Furthermore, from (4.8.4) it follows that

tdt = &*dt + (t — cos 6)ie™ dg;

whence
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dt _ _ iedg _ ie"*? de
t—cosf t—e€* (2cos¢p — 2cosh)t
Finally,
+6 i/2 -6 i9/2
Prleos 6) = 517; /~o e (2 COS(; -d;bCOS op T Ql; ,[;-a ¢ —(2 co:qs iqu2 cos o)’
or,
(4.8.6) P, (cos §) = 2 [* cos(n+ P de,

T Jo (2cos¢ — 2cosh)}
where the square root of 2 cos ¢ — 2 cos § must be taken with. positive sign.
This is the first formula of Dirichlet-Mehler. Substituting = — 6 for 6 we ob-
tain, because of (4.1.3), the second formula

(48.7) P, (cos6) = 2 f T osintBe

T (2 cos 6 — 2cos ¢)}

(2) First integral of Laplace. (Cf. Whittaker-Watson 1, pp. 312-313.) Let
z be different from = 1, and choose the circle

(4.8.8) [t —z|= |22 =1

as the contour of integration. Writing ¢ = z 4 (2* — 1)%"¢ (with an arbitrary
but fixed determination of (z* — 1)!), we find that

1£—1 2 } .
(4.8.9) 57— =% + (z 1)’ cos ¢, = 1dé.
Consequently,
+r
P.(r) = él;/ fz 4+ (@ — 1)} cos ¢}"do
(4.8.10) i

= r”l/) {z + (a® — 1)} cos ¢}" d,

an expression known as Laplace’s first integral. It holds for arbitrary values
of z.

(3) Second tintegral of Laplace. (Cf. Whittaker-Watson 1, p. 314; Jacobi 2,
p. 153.) This integral is given by

+r
P,(z) = 517‘r fx + (@ — 1) cos ¢} dg
(4.8.11) et

= 7r_1/ {z + (& — 1)} cos ¢} " de.
0

It may be derived from the first integral of Laplace in the following manner.
Let 0 < r < 1 and

2 9
x - L__*—_lz, (x2 —_— 1)} — ._:1____2,
(4.8.12) 1= 1=
g4+ (@ — Dleosgp =1 — 7|1 4+ 72 ?, z=e°,

whence,
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2\—n
(4.8.13) P.(z) = (}~—2~T~)—— / |1 4 rz ™ |dz|.
™ jz}=1
Now, substituting
w—r 1= dz 1—r
W8I =71y It TEEIT & T e

. 28
we obtain

(4815)  Pule) = L) [ A= 1=7

27 wi=1]1 = rw |1 — rwl?

Substituting w = —e'*’, we obtain (4.8.11). Using analytic continuation, this
formula may be immediately extended to arbitrary complex values of z.
(4) As a special case of (4.4.9) we note the representation

1
27

(4.816) P (cos §) = w1 — 2w cos 6 + w*) 7 dw.

Fia. 4

The integration is extended in the positive sense along a contour enclosing the
origin but neither of the points . Bya proper choice of the contour, formu-
las (4.8.6) and (4.8.10) can be derived again from (4.8.16) (see Pélya-Szegé 1,
vol. 1, pp. 115, 287288, problem 157).

(5) Integral representation of Stielijes. (Stieltjes 8.) Suppose 0 < § < .
This important representation can be obtained from (4.8.16) by using the con-
tour in the figure. (The derivation from (4.8.1) seems too complicated.) Since
the integrand is O(w™""%) as w — o, the contribution of the large arcs tends to
zero as the radius becomes infinite. The same is true of the contributions of
the small arcs around ¢* (the integrand is O{| w — ¢*|™} there). Thus,
we have

P.(cos ) = 2R ;Trz / w1 — 2w cos 8 + ) duw,

extended twice over the straight line w = t“lew, where ¢ Increases from 0 to 1
and then decreases from 1 to 0. We have, then,
(1 — 2w cos 8 + WH = & te (1 — H7H1 - te 2%

28 Concerning this argument see Szegd 21.
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where the signs + and — correspond to the first and second cases, respectively
[(1—-07F= (@1 -ty =1fort=0]. Therefore,

1
P.(cos ) = 4R 51;1 l e (1 — )T — e (= 1% dt
(4.8.17) '
2 [ (n+1)8 ! 216 1
= - Gqe™ / (1 — 071 — ) dt)
T 0 f

(6) Further integral representations are obtained by replacing » in (4.8.1) by
—n — 1 (cf. (4.6.4)) and observing the conditions (a), (b) formulated in §4.6
(here the expression (1 — )™"(t — z)"" must be considered). We then have

1 18 — 1\ dt
(4.8.18) y_27i <§t—x> t— =z

Integrals of this type may represent Legendre polynomials as well as Legendre
functions of the second kind, or a proper linear combination of these, according
to the special choice of the path of integration.

By using the contour in (1), we again obtain Dirichlet-Mehler’s formula
(4.8.6), since the expression in the right-hand member does not change if we
replace n by — n — 1. The same procedure transforms Laplace’s first integral
(4.8.10) into Laplace’s second integral (4.8.11), and conversely. Thus, choos-
ing the contour in (4.8.18) as in (2), we obtain the second integral. The ex-
pression in the right-hand member of (4.8.11) cannot represent a solution other
than P.(z), since it is finite and equal to + 1 at z = + 1.

4.81. Legendre functions of the second kind

(1) Let x be in the complex plane cut along the segment [— 1, + 1], and z =
3z + 27, |2z] < 1. We deform the path of integration in (4.61.1) into the
circular arc through — 1, z, 4 1 (cf. Whittaker-Watson 1, p. 320, example 1).
This deformation is permitted since sgn S = —sgn 32. Then

_ e+ D+ (z-1)
(4 e — (z = 1)’
18 -1 _dt 1

— . 2 _ 3 —1
5T "2 = dr o {x+ (z 1)" cosh 7} 7.

The new variable r is real and ranges from — « to 4+ «; furthermore (2% — 1)}
=~ z as  — . This furnishes the following integral representation for
Q" (z) = Q.(x), which is very similar to Laplace’s second integral: -

(4.81.1)

+o0
(4.81.2) Un(2) = %f {z + (& — 1)} cosh 7} 7" dr.

00

(2) Let xbereal, z > 1; we writez = cosh {, { > 0. Introducing in (4.81.2)
cosh { + sinh { cosh 7 = ea,

(4.81.3) dr ¢ A0
dd  sinh¢sinhr  (2cosh 8 — 2 cosh ()’

we obtain
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(Do
(2 cosh 8 — 2 cosh g“)*
In this formula (Watson 2, p. 154) we first assume that ¢ > 0. By analytic
cofitinuation it can he extended to the half-strip (1 9.3). The path of integra-

tion is the horizontal line R(6) > R(E), J(8) = J(¢). This formula corresponds
to Dirichlet-Mehler’s formula.

(4.81.4) Q.(cosh ) = /a°
e

Fia. 5

4.82. Generalizations

(1) Generalization of the Dirichlet-Mehler integral. (See Fejér 12.) Suppose
0 <6 <mand0 <\ < 1. According to the generating function (4.7.23) we
have

(4.82.1) P (cos 0) = 21*—1 / w "1 — 2w cos 6 + W)™ dw.

™
Here we take the unit circle | w| = 1 as the path of integration, avoiding the
singular points w = ¢**, in the nelghborhood of which the integrand is

Of|w — ¢*" |™}. (See Fig. 5.) Forw = ¢ 0 < ¢ < 9, we have
(1 —2weos o+ w')™ = e ™™ (w™ — 2cos § + w)™ =¢ ™ (2cos ¢ — 2cos §) ™,
and for w = ¢, 0 < ¢ < 7,

(1 —2wcos 8 + w)™ = ¢ ™ (2 ¢os 8 — 2 cos é) ™,
so that

0 .
P (cos ) = 29‘3{2——1 / e” "8R9 0os ¢ — 2 cos 0) e do
7t Jo

+ —1— g VRN (9 105 8 — 2 cos #) ie'? dd)};
27t Jg
whence
P (cos 9) == 7r_1/ F(¢)|2cos ¢ — 2cos | dg,
0 .
(4.82.2) () cos (m 4+ N)¢ if 0 ¢ <9,
d) == .

cos [(n + N)¢ — Ar] fe<o¢p=nrn

The expression resulting from (4.82.2) for A = 1/2, is the sum of the expres-
sions (4.8.6) and (4.8.7).

(2) Generalization of the integral of Stieltjes. (Stieltjes; Hermite-Stieltjes 1,
vol. 2, p. 122, no. 284.) If we choose in (4.82.1) the same contour as in §4.8 (5),
an argument similar to that used there leads to the representation
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1 .
(4.82.3) P (cos 6) = (2/x) sin )wrg}{enz(a) / (R 51 — tem)ﬂdt},
.82. i

W6) = (n+ 2M)6 +(3 — Nr; 0<8<m0<A<Il.

The formulas in §4.8 (1) and (2) can be extended to Jacobi polynomials
P{eP(z) for integral values of «. The resulting_' representations, however, are
rather complicated. Finally, we notice the following generalization of (4.81.2)

arising from (4.61.1) in a manner similar to that used in §4.81 (1) (notation the
same as there):

1—2 w

(4.82.4) {z+ (=" — 1)} cosh r} ™ dr,

=3+, 2| <lja>—-1,8>—1
with a proper determination of the functions involved.

H

4.9. Trigonometric representations

(1) Finite cosine expansion of Legendre polynomials. From the generating
function (4.7.23) we obtain, for X = %,

(1 — 2w cos 8 + wz)"} = (1 — wefﬂ)-i(1 _ we—ia)_}

(4.9.1) o . _
= Zo gmw™e™ Z% gmw™e ™
where
1-3---(2m — 1)
(4.9.2) g0=1’ gm: 2-4.'.2m y =1’2’3"'.’
so that
Pn(COS 0) — Z gmeimﬂgn—me—i(n—m)ﬂ
m=0
' - {(2m—n)@ -
= mJn-m€ = m@n—m COS (N — 2m)0
(4.9.3) 24 Gng 2. gng ( )
= 2gogn cos 18 + 2¢1gn_, cos (n — 2)6 + - - -
29 (n—1)/20 (n41) /2 COS 6, n odd,
gi‘/z, n even,

Consequently, P,(cos 6) is a trigonometric cosine polynomial with non-negative
coefficients.

Relation (4.9.3), as an identity in 6, can be written as follows in terms of
Tchebichef polynomials:

P.(2) = 2¢0gaT(z) + 201gn1Tn-2(z) + - - -
(4.9.4) + 291y 29 (n i1y 2 Th(2), n odd,
gi/z . n even.

(2) Infinite sine expansion of Legendre polynomials. (Heine 3, vol. 1, pp.
19, 89.) We have
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4 2-4-
Prleost) = 575 (2n+1)

(4.9.5) + fusin(n + 2v + 1)0 4 -« -},

4 s . D+ (nt)
fo—l, f,,—f,n (+3)(n+!) (n—{—y—{—%)’

For n = 0 the factor (2.4 ... 2n)/(3-5 --- (2n + 1)) must be replaced by 1.
Abel’s transformation (§1.11 (4)) shows this expansion to converge for the values
0 < 8 <, and even uniformly for e £ 9 = 7 — ¢, 0 < ¢ < v/2. The conver-
gence may be deduced also from the elements of the theory of Fourier series. In-
deed, (4.9.5) is the formal expansion of the function defined by P,(cos 6) for 0 < 6

< m,and by — P, (cos8) for — # < 8 < 0 (see below). It is a generalization
of the classical expansion (n = 0)

(496) r/4 = (sin9)/1 + (sin 36)/3 + (sin 50)/5 + ---

First proof (Heine, loc. cit.; cf. also Fejér 20, pp. 24-26). Using the notation
(1.12.3), we have

{fosin (n 4- 1)6 + fisin (n + 3)9 + -

v=123, - -

+1

(4.9.7) '[r P.(cos ) sin (m + 1)8d8 = / P.(t)Un(?) dt.

-1
This integral vanishes if m < n, or if m = n, and m — n odd. Now write
m = n + 2v; using (4.9.3), we find

/ P.(cos 8) sin (m + 1) d§ = :2 Grn_k / cos (n — 2k)6 sin (m + 1) d6
0 == () 0

(4.9.8) = Za TkGn—k <? 1 + 1 )

m+1+n—2k m+1—n+42k

D S L= gkt
iem+1—n+2k k=ov+k+%.
Considering » as a continuous variable momentarily, we easily verify (by calcu-
lating the residues) that

S gignk . 0+ DE+2) - 4n) _, 2-4---2n
P M i Sl F o [ = ) By ey s Rl e pr i R

which establishes the statement.

Second proof (see Fejér 19, pp. 202-203). Expansion of the last factor in
the integrand of (4.8.17) gives

0 1
(4.9.10)  Pu(cos ) = gﬁ} {e'("“’” 2 g,,,e“"‘”/ 1 - dt},
™ m=0 0
where ¢, has the same meaning as in (4.9.2). The last integral can be calcu-
lated by means of (1.7.5), and the statement is thus established.
Third proof.. We use mathematical induction with respect to n. According
to the recurrence formula of P,.(z) ((4.7.17), X = }), it suffices to show that

2
n

(4.9.11) n?— 17" = fonr + Sorr,nmr = foga,nes,

V=O,1,2,“',n=1,2,3, ;f,.+1,_1=0.
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For n = 0 we have (4.9.6). The identity (4.9.11) can be verified by direct
calculation.

Remark. Formula (4.9.5) is closely related to certain expansions of the
functions of second kind. We find from (4.61.4), a = 8 = 0,

49.12) 009 () = Qu(a) = f " P(0) i

-1 X —

If we substitute z = $(w + w™') (§1.9), the function Q,{i(w + w™)} will be
regular for |w| = 1, w # 4= 1. Using (4.7.23), N = 1, we obtain for | w| < 1,

+1
Qn{%(w +uw ) =w [1 T P.) dt = v /_1 P, (t){z U.,.(O)w }

Ztw + w?

so that, because of (4.9.7), (4.9.8), (1£.9.9),

1 —1 2 4 n+2v-+1
(4.9.13) Q.{3(w+w)} = (9n+1) Zf , lw| < 1.

Now let |w| < 1,w—¢?,0 <8 <x. Then Yw+ w™") — cos 8 — 10, so that

2 4 .

(4.9.14) Q.(cos § — 70) = 2 Z [P 0 < < w.

(2n + D)

(Here 'use was made of the convergence of the last series and of Abel’s con-
tinuity theorem; see Titchmarsh 1, pp. 9—10.) Replacing 7 by — ¢, we obtain

2 4 .

(4.9.15) Q.(cos 8 + 10) = 2 ny el 0<o<m.

(2 + 1) 5=o

From here (4.9.5) follows again because of (4.62.8), « = 8 = 0. By use of
(4.62.9), a = B = 0, we find (Heine 3, vol. 1, p. 130)

(4.9.16) Qnlcos6) = 2 ¢ 2 4-

(2 +1) y_};f,cos(n+2u+1)o 0<6<m.

Another variation of these considerations (see Hobson 1, pp. 57-58) is to
introduce = }(w + w™) and y = w™"'z into (4.2.1). Then 2, as a function of
W', satisfies a hypergeometric differential equation from which (4.9.13) (therefore
also (4.9.5)) again follows.

By means of (4.9.9) we see that the sequence {f,} ts completely monotonic
(cf. §6.5 (4)).

(8) Another trigonometric representation of Legendre polynomials. (Stieltjes

7, 8.) Starting again from (4.8:17), we write
)

—t
_ gt /40 o -1 _ e
(1 = te™) e (2 sin 8) {1 (1 -9 2sin0} .

Consequently, for 2sin § > 1

T (f—r/2) 1

Pn(COS 0) — ?rs{ i(n+1)6 1(#/4—9/2)(2 sin 0) ~4 Z gy tn(l _ t)v-i dt} ,or

y=0 0)
(4.9.17) Pa(cosf) = 25 4 o + . go p, costn +» (4;;);90;3 +Dr/2)

where
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—1. - — 7136 -93
(4.9:18) ho=1; h =hn=yg, R N rey cwr s P 1,2,3, .
Expansion (4.9.17) is convergent if /6 < § < 5r/6. Its importance will be
more fully realized in discussing the asymptotic behavior of P,(cos 6) for large
values of 7 (§8.5). Concerning the connection of this representation with that
of Heine [(4.9.5)], see Stieltjes 8, p. 244.

(4) Ultraspherical polynomials. From (4.7.21) we obtain as in (1):

P (cos 8) = 2apan cosnl + 2001 c08 (n —2)0 + - - -

(4.9.19) N {Za(n_l)/za(n+1)/z cos 6, nodd,
2

Qn /2 n even,
where
(4.9.20) I -—w " =a+ o +ot®+ - + ats” + .
Thezefore,
(4.9.21) a,.=<”+:;_1), n=101,2 ...
Here the cases A\ = 0, — 1, — 2, ... are to be excluded. In particular, if

A > 0, the coefficients a, are positive, so that Py’ (cos 6) as a trigonometric
cosine polynomial again has non-negative coefficients.

Expansion (4.9.5) can likewise be extended. We have (Szegd 19, pp. 508
509) forA > 0,x =1,2,3,...,0< 6 <,

2222 I‘(n + 2)\) > )
I'\) T(n+x+1) gf,

(sin9)® P (cos9) = sin (n + 2v + 1)8,

(4.9.22)

=1, N =59
_0=ME2=N---=N m+Dn+2) - (n+v
1:2---v (n+ A+ DE+A+2)---(n+ X+’
y =123, ---.

The generalization of the third proof given in (2) is particularly simple. The
special case n = 0 is

e - S(L=ME2 =N (¥ —=2)

9.2 221 =92 3 1 (

(4.9.23)  (sin6) wTO+ 1) 2 ETES

It can be verified in various ways. (Cf. Whittaker-Watson 1, p. 263, problem

40; multiply this formula by cos z, and substitute x = /2 — 6, s = 2\ — 2.)
Another extension of (4.9.5) is the following:

sin (2v + 1)4.

P®(cos6) = 2 3 T(n + v 4 2))

(4.9.24) T00 25 % T £ o T x 1) o8+ 2 4 200 —

0<A<1,0<8<m.

It follows readily from (4.82.3) by means of the argument used in the second
proof given in (2).
The extension of (4.9.17) (Szego 17, pp. 57-60) is
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PM(cos8) = (2/x) sin ar L 2N TG+ NI = ) + 1)
I(\) 3 »IT(n v FA+ 1)

cos{(n+v+N)o—(v4+\)r/2
: (2Sin0)y+”x ™/ },0<)\<1;7r/6<0<57r/6.

It follows from (4.82.3) by the same argument as used in (3).

(4.9.25)

4.10. Further properties of Jacobi polynomials

(1) Rodrigues’ formula. A generalization of Rodrigues’ formula (4.3.1) is the
following:
(1 = 2)2(1 + 2)sPEo (z)
(410.1) (=1)m d
2m(n—1) (n—m+1) (%
Here n 2 m. The proof is similar to that given in 4.3 (1).

(2) Integral representations for ultraspherical polynomials. (a) Combining
(4.1.5) and (4.3.2) we find

P (x) = PEo(1) - a*F(~», —v + ;0 + 1;1 — z-2),
PEgi(e) = PEH(1) - 2 F (v, ~v — ;0 + 1;1 — 272)

so that, in view of (4.7.1) and (4.7.3),
PP@)=PP1) 2" F(—n/2, —n/2 + ;A + ;1 — z2)

>m (1= z)mte(l4a)moPmtamsd (1)),

(4.10.2)

_ZA TR\ TR+ 0,
(4.10.3) F()\) n! Z( 1) (k) F()\+k+%)x (1—z?)

_ 21 D(n 4+ 2)\)
STOOF Al ), |
We used (1.7.3), n = 2, and (1.7.5). This generalization of (4.8.10) holds pro-
vided that A > 0. See Gegenbauer 1, Seidel-Szasz 1.
(b) Another remarkable integral representation valid for non- nega‘uve integral
values of A — % is the following:

(28 = DM2-t4P (z)

4.10.4) _ o TOA+3) T(@+2)) 1 (7 2 _ A
( ) =i TNy TN ) i {z + (22 — 1)} cosp}rt i
“cos (A — 1) de.

For the sake of simplicity we assume here that > 1, (2 — 1)} > 0.
For the proof we use (4.4.6) with the circle (4.8.8) as contour of integration.
Since

z+ (22 — 1)} cosp}sin®~ 1 p dop.

2~ 1 =2(x*— 1)eiv{z + (22 — 1)} cos ¢}

we have, a = A — 3,

(= e

+r
= 2i f {x + (@2 — 1)} cos p}"te{2(2? — 1)t eiv}adp

which yields easily (4.10.4).
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(3) Generating functions. (a) A slight modification of the argument in
44 (3) (proving the formula (4.4.5) for the generating function F(z, w)) is the
following. Let —1 < w < I; we write (4.4.7) as follows:

(4.10.5) z=1t+ 3wl — )

so that x and ¢ describe the interval |—1,4-1] at the same time. Hence, using
the formula (4.4.7) and the two first formulas of (4.4.8), we find

(I —z)*(1 + 2)fF (z, w) dz = (1 — t)=(1 + t)8dt

so that for any non-negative integer n

+1 +1
f (1 —z)2(1 + z)5F (x, w)z" dx =/ (I = )1 + At + 3wl — )] dt,

1 -1

i.e., a polynomial of degree n in w. This shows that the coefficients of F(z, w)
must be, apart from constant factors, the Jacobi polynomials. These factors
can be determined by writingz = 1.
(b) The following generating function holds for ultraspherical polynomials:
2 P®(z) wr = T'(2\)

n . = N P(X) n

(0106 PP nl = 2 T +2v) [+ @
= 220N 4 §) e®[(1 — 2wy [(1 — 22)hw).

It is different from (4.7.16) and (4.7.23). Setting A = 1 we obtain for the
Legendre polynomials:

(4.10.7) >
n =0

For the proof of (4.10.6) we use (4.10.3); we obtain for the left-hand side
of (4.10.6):

21-1T'(2\) [*
TR

P;L(;C) wr = exJ[(1 — z2)tw).

exp (w{r + (22 — 1)} cos ¢}] - sin®lp dp

_21—2XF(2X) o L] [(xZ _ 1);,“)]2,," T o .
R OSE € m};O-—W——O cos®™ ¢ sin o do

which is easy to identify with the right-hand expression in (4.10.6).

Concerning further formal properties of the Legendre and ultraspherical
polynomials, see Bateman Manuscript Project, vol. 1, Chapter 3 and vol. 2.
Chapter 10. Cf. also Problems and Exercises, 61-66, 69-71, 84.

(4) The following remarkable identity, involving ultraspherical polynomials,
is due to Feldheim 5, p. 278:

r(2x) 2I'(N + %)
____________P’('x) §) =
Mngon » ) =TT =
x/2
(4.10.8) - }—(I’%(—%l—)— ﬁ sin*p cos™ " * (1 — sin%f cos’p)™?

() cosd 1
PY (TS oo ) e A > H> —H A =0, u0,0S0 ST
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It is an easy consequence of the generating function (4.10.65. Indeed, multi-

plying bothsides of (4.10.8) by w" and extending the summationovern =0, 1,2, - - -

we obtain
22PN 4 4 ) e (g sin8)"*"J, _| o(wsin)
2I(\ +4) Y e : :
= : . 1 ~2u- . 2“‘“1,2F l_) e ost
PR T — | sinecos ® (w+35)
< (wsinf sin<p)"2““J“-,/2(w sinf sin¢) do,
or

Jr-1,2(wsing)

x/2
4.10.9 wsinf)** . . ) , oy s
( ) = 2)\5“—811;1()\)_”’) _/0 Ju-1/2(wsind sin ) sin* 25 cos® "% o dep.

This identity is due to Sonine (Watson 3, p. 373, (1)).
(5) Posilivily of certain sums. The first result of this kind is due to L. Fejér
4, p. 83:

(4.10.10) Py(z) + P((z) + Py(z) + - + P(z) 20 for —1 <=z <1.

This fact is important in the study of summability of the Laplace series. It
follows from (4.8.7) by observing the identity

" sin(2v +1)6 (sin(n + 1)a>2

par sinf sinf

Generalizations of (4.10.10) are due to Fejér 12, Feldheim 35, Szego 25.
(6) The formulas (4.8.6) and (4.8.7) of Dirichlet-Mehler can be extended to

Pt =x)  Ta+u+1) P (y)

AN " = - BN —x)+!
(1 x) Prsa+u,ﬂ~u)(1) F(a + 1) F(ﬂ.) x ( y) P,Sa’ﬂ (1) (y x) dy’
(41011) a > —1,#>0, —1 <x<17
and
Pr=+t(x) _TB+p+1 (* Pr2(y)
Buln = sin \Y) 1
( \ +>x) PP ~ T 110 ) 1+ PF(y XYy,
4.10.12

B>—-1Lpu>0, —1<x<1.

Feldheim’s integral (4.10.8) follows by using the quadratic transformations
(4.1.5) and the integral

(1 _ x)a+u P,f‘““‘"’)(x)
(1 +x)n+a+1 Prfa+u,ﬂ)(1)

(4.10.13) =2“I"(a -4—,¢—|~1)f‘(l-—y)"(y—x)““l P,f""”(y)d
T(a+DT(a) J: ~(1fym et peay) @

a>—1,p4>0, —1<x<1. These three integrals are all special cases of
known integrals connecting hypergeometric functions which were found by
Bateman 2. See Askey-Fitch 2 for other useful integrals. Among the conse-
quences of these integrals is the following theorem on positive sums.
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THEOREM 4.10.1. If 0 <u <y and 8> —1 and if

= P&
(4.10.14) a =0, —1=x<
Zeppy 2 C1swst
then
n P}Sa—"u,ﬂ-i-t')(y)
(4.10.15 a =0, —1<y=
) kzao kﬁkmy(—ﬁ 20 1=y=1.

Feldheim’s integral (4.10.8) can be used to prove a related theorem.

THEOREM 4.10.2. If v >0, a > —1 and if

(4.10.16) S a Piox) l<x<1
. . = kPka’a(l) = VU, = = )
then
n P(a+v.a+v)
(4.10.17) Zakﬁ’}m%g 0, —1=sy=<l.
k=0 k

As Feldheim 5 pointed out, (4.10.10) implies

2 PE)(x)

4.10. 0, -—l<x<x1, :
(4.10.18) k‘ng""’(l)> <x=<1l,a>0

Askey-Gasper 4 and Askey-Steinig 2 have obtained generalizations of (4.10.18).
They proved

= PiO(x)
4.10.1 , - )
( 9) & W >0 l<x<«l
for
) a+B82—2, 820 (when o = —2, 8 =0, assume n 1),
(i) —B<a=p+1(a=13% 8= — 1 omitted),
(i) —8+1=a=3/2,
(iv) —B+2=a=8+3.
The case @ = 3, 8= — % of the sum (4.10.19) is Fejér’s sum (6.4.3), which
is nonnegative, while the case « =3/2, 8 = — } is equivalent to
d & sin(k+1)8
L= —_ <0, 0<é® .
T &k Den(0/2) <o<r

It is also equivalent to

n P(2)(x) 1 n P(2)(x)
k 1 o4 2k > 1 2k ,
k‘éo( b PR(1) 7 413 PO

and, since the right-hand side of this inequality is the even part of (4.10.18)
when a = 3/2, it is nonnegative. The positivity of the left-hand side is equivalent
to the positivity of K®(x) in (15.5.1).

(7) Jacobi polynomials satisfy the addition formmula




98 JACOBI POLYNOMIALS [1V]
PP (2| cos6,cos; + rei“’sin f1sinfy| 2 — 1)

= Z Z ¢ (sin 8;sin 8,) cosf;cosfy)
(4.10.20) k=0 m=0

kb, + ke _
- Plehtmetk=m( 065 20,) PEHHmE M (608 26,)

. P;a-ﬂ—~l.ﬂ+k~—m)(2r2 _ l)rk_m ﬁ +kﬂ_ m Cf_

COS(P

where

el = ktmte)Dntktatf+ DIk + ) I(E+DI(n+8+DI(n —k+1)
e r(n+a+B+D)N(n+m+a+1)I(k+8+1)T(n —m+8+1)

and the limit relation

B+n

2cosn¢1 n=,1127 sy
1, n =0,

lim
80

C4(cos o) =.{

is used when 8 = 0.
When r =1 and a =@ this formula is the addition theorem of Gegenbauer
1 for ultraspherical polynomials. It was discovered by Sapiro 1 in the case
8 =0 and independently by Koornwinder 1 in the general case. For other |
proofs see Koornwinder 2, 3, 4.
Among the special results contained in (4.10.20) are

PP (cos26,) PP (cos20,)
PR PO

(4.10.21) _flf"P,f"‘"’)(2|cos0100s02+rei‘°sin01sin02|2— 1)
- PA(1)

dma,ﬂ( ¥, 7'),

a> B> — 3, where

dma,ﬂ( ©s r) = Aa'ﬂ(l - 7'2)“—_'8—17'2'8-‘_1( sin (p) 2ﬂdgpdr’ |

1 x
Aa_; =.j; j; (1 — r2)—#-1p28+1(5in o) ¥d pdr,

P (cos 26
(4.10.22) ——P—(;;;?%——z f f cos20 — r?sin%0 + ircos ¢ sin 20] "dm, (o, T).

and

and also

When a — 8, (4.10.22) has (4.10.3) as a limit. In addition to the papers listed
above, see Gasper 3, 4 and Askey 10.
Another useful formula was found by Bateman 1:

P(a,ﬂ) <1 +xy>
" \x4y <x +y P“’ A

y)
(ax ﬂ)
(4.10.23) Prsa,ﬂ)(l) 2 > Z n P P(a ﬂ)( 1)

where the ¢;,’'s are defined by
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(4.10.24) < > Zc,, PP (x

The cpn can be explicitly computed by use of Rodrigues’ formula and
orthogonality and they were given in Bateman 1. However, in many applica-
tions only the positivity of the ¢;, is needed (see e.g. Horton 1). It can easily
be proved by induction. Bateman 3 also discovered the inverse to (4.10.23):

P(a 8) < + xy>
PrO@PEny) _ ¢, C \a+y <x +y>" ’
P&P(1) & PEP(D 2

>k
This has been used by Koornwinder 3. Again the specific form of the b,’s

was not needed.
(8) Gegenbauer 6 generalized (4.9.19) to obtain

n/2

(4.10.27) P¥(x) = Z Apn PPo( )

.(4.10.25)

where the b,,'s are defined by

(4.10.26) PP(x) = Zbkn<

where

rN(n —2k4+MNT(k+p —NI(n —k +pu)
Mwk!T(pg —NI(n —k+X+1) ‘

Proofs are given in Hua 1 and Askey 2. This can be inverted to give

(4.10.28) Qppn =

(4.10.29) (1 —xH)*7V2PW(x) =3 dpa PRo(0)(1 —x)* 2 p> (A =1)/2,
k=0

where

(4.10.30)
p PN 227 (n 42k +N)T(n+2k +1)T(n +2u) T(n +k +N) D(k+\ —p)
kon = .

F(N=p) T(w) T(n +1) D(k+D(n 4k +p +1) I(n +2k 42N

See Askey 1. When A =1, (4.10.29) reduces to (4.9.22). Generalizations of
these formulas to Jacobi polynomials as well as generalizations of Problem
84 are given in Askey 4, Askey-Gasper 1, 2, Gasper 1, 2. In the general case,
the coefficients are much more complicated and one needs to obtain asymptotic
formulas and positivity when it holds. For an application of (4.10.27) and
Problem 84 in which only the positivity is used see Askey-Wainger 3. The
linearization result in Problem 84 can be used to define Toeplitz operators
and much of the classical theory of Toeplitz operators and the newer work
on finite sections of such operators can be extended to these more general
operators. See Hirschman 2 and Davis-Hirschman 1 and further references
given in these papers. ‘




CHAPTER V

LAGUERRE AND HERMITE POLYNOMIALS

Many of the properties of the polynomials with which we shall deal in this
chapter are very similar, and more or less analogous, to the properties of Jacobi
polynomials. For this reason we shall be brief and omit details, unless essen-
tial differences in statement or proof make the contrary necessary. Here, as
in the case of Jacobi polynomials, the treatment of some special problems
(zeros, extrema, and so on) is reserved for later chapters.

5.1. Elementary properties of Laguerre polynomials

(1) We define the Laguerre polynomials {L{”(z)}, for « > —1, by the
following conditions of orthogonality and normalization:

” -z, a7 (a) (a) _ n +a
(5.1.1) ﬁ e’ L,.. ()L (z) dz = T'(a + 1)( " >6nm,

n,m=20,12 ---.

In addition, we require that the coefficient of z” in the polynomial L{¥ (z) of
degree n have the sign (—1)". (This differs from condition (a) in the definition
of §2.2.) We also write L' (z) = L.(z).

Reference is here made to Lagrange 1, Abel 1, p. 284, Tchebichef 3, pp.
506-508, and Laguerre 1, pp. 78-81 (pp. 434-437), who, however, consider
only the case « = 0. Laguerre uses the notation f,(z) = n!L.(—z). Hilbert-
Courant (1, pp. 79-80) also considers only the case « = 0; the function there
called L.(x) is the same as n!L,(z) in our notation. Concerning the general
case L{¥(z) see Sonin 1, pp. 41-42.

We have the differential equations

' +@+1—2x)y +ny=0, y=L@),

2
22" + (z + 12 + (n +oF1- %)z =0, z=¢ 2L ),
(5.1.2) ot (n +(@+1)/2 n 1 — ot 3 l) W=0, u= ¢ DIz (@) (g
x 412 4 '

x2

1_ .2
v + <4n +2+2-—2t+52_2% > v=0, v=e" ML,
Once again let @ > —1. Then an argument analogous to that in §4.2 (2)
shows that a neccessary and sufficient condition that

(5.1.3) 2y ' +(a+1 -2y +xy=0
100
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- have a polynomial solution is that A = n. Also, L{*(z) is the only polynomial
solution. The latter statement follows from the relation

(5.1.4) u{(x)ug(x) — ul(:c)ué(x) = const.,

which holds for two arbitrary solutions ui(z), u,(z) of the third equation in
{5.1.2). Incidentally, this argument furnishes slightly more: for &« > —1, the
polynomials L{*(x) are the only solutions of (5.1.3) which are analytic near
z = 0.

The analogue of Rodrigues’ formula is

(5.1.5) ez L (z) = l' (—d~> (e™"z™).
nl\dz

To determine the constant factor we apply Leibniz’ formula (which leads to
(5.1.6)) and calculate the highest term of the right-hand member.
Further, we have the explicit representation

(5.16) 1w =3 (07 &,
ve0 \ W — » V!
the formula
(5.1.7) L) = (" e,
and the expression
@ _ (=1)"
(5.1.8) L = p

for the coefficient I5* of 2" in L{¥ (x). As a generating function we obtain

L@ + Li®@w + - + L @w" + - - -
=1 —w) " exp (— i :ﬁv >

w

(5.1.9)

The following recurrence formula holds:
nli¥@) = (—z2+2n + « — DLZ(z) — (n + o — 1)L (),
(5.1.10) n=234,..
L§®(z) = 1, Li®@) = -z + a + 1.

For the “kernel polynomial”’ K{* (z, y) we find

F(a + I)K;a)(.’l?, y) ;0 {(V + a>} LSa)(x)LSa)(y)
(5.1.11)

AL Gt a) (a)
(n + 1){('” + a>} Jﬁ. )(IIZ)L;.;.)l ?i) : ;J;-;-l(x)Ln (y) .
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The special case y = 0 is particularly important:

(51.12) =z Z L¥@) = (n + « + DL @) — (n + DL ().

(Cf. Theorem 2.5.) Finally, by means of (5.1.6), or (5.1.9), we readily obtain

2 L7 (z) = LM (2),

(51.13) v=0
Lf.“)(x) — Lf.””(x) L(a+l)( )
(5.1.14) (%Lf,"‘)(x) = —L@) = a0l (@) — (0 + @)L ().

(2) THEOREM 5.1. Let J, have the same meaning as in §1.71. Then

> {(" M “)}_XLS.“(x)LS.“(y)w"

(5.1.15) " *
= Pt D0 =0 exp{ =6 ) 2 b {2
1 —w 1 —w
and
(5.1.16) 5 D = o) 2

n=0 P(n+ o + 1)

See Sonin 1, p. 41, Wigert 1, Hille 2, Hardy 1, Kogbetliantz 12, Watson 4.
The first formula is a generalization of (5.1.9) (y = 0). The second formula
is obtained from the first one by replacing w by —y™'w, y — «.

Direct calculation leads readily to (5.1.16) on account of (5.1.6). The
formula (5.1.15) follows from (5.1.16) when we introduce for Lf,"‘)(y) the
integral expression which results from (5.4.1), and then integrate term-by-term.
Finally an integral formula involving Bessel functions (Watson 3, p. 395, (1))
must be used.

6.2. Generalization

By means of (3.1.6) the definition of Laguerre polynomials can be extended
to arbitrary complex values of «. No reduction in the degree ever occurs
(see (5.1.8)). Forn =1 wehave L{*(0) = 0if and only if « = —k, k integral,
1 <k < n. Inthiscasez = 0is a zero of precise order k, and from (5.1.6)

n—k v

ye=0 n—k—v V!

(5.2.1)
= (a2 Blm )

Formula (5.1.16) remains true for arbitrary real «. From here (5.2.1) follows
again,
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5.3. Confluent hypergeometric series; relation between Jacobi and Laguerre
polynomials; second solution

(1) In the notation of Pochhammer-Barnes, the confluent hypergeometric
series Is '

e Salat D) adr— D2
3. a;y;x) = y!
(5.3.1) 1Fila; v;x) 1+§7(7+1)...(7+y—1)v!'

This is obtained from the ordinary hypergeometric series [(4.21.3)] by the
limiting process

(5.3.2) lim Fle, 8; v; 8 ).
B0
We have
(5.3.3) Li¥(z) = (n ;: a) WFi(=n;a + 1; ),

and using (4.21.2), we obtain the following important relation between Laguerre
and Jacobi polynomials:
(5.3.4) L{¥(z) = lim PP(1 — 287'2).
B0

This holds uniformly in every closed part of the complex z-plane. Concerning
further properties of the confluent hypergeometric functions see Whittaker-
Watson 1, Chapter XVI. Compare equation (B) in Whittaker-Watson 1,
p. 337, with our third equation in (5.1.2).

(2) From (4.23.1), by a limiting process similar to that used in (5.3.4), we
obtain as a second solution of the first equation (5.1.2)

(5.3.5) NP (—n — a;1 — a; x).

For non-integral values of « the functions (5.3.3) and (5.3.5) are evidently
linearly independent. The same is true if « is a negative integer less than —n,
since in this case (5.3.5) is an infinite series. However, if « is an integer not
less than —n, these solutions are identical. (If —n < « < 0, use (5.2.1). In
case « = ¢, ¢ 2 1, it is necessary to multiply (5.3.5) through by « — g before
letting a — g.)

The representation (5.3.3) makes possible an extension of the definition of
L{¥(z) to arbitrary values of n.

b.4. Integral representations

TuEOREM 5.4. The following representation of Laguerre polynomials tn terms
of Bessel functions holds:

(56.4.1) e*z**L{(z) =7-},f e g (20t dt, n=01,2 - ;0> —1.
LR

For this representation, the reader may consult E. Le Roy 1, pp. 379-384,
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Erdélyi 1. The same representation is valid if « = —1,providedn + o > ~1.
From this, (5.2.1) follows again.
Several proofs of this formula may be given. The special case n = 0, that is,

(5.4.2) ezl =[ e"’t“”Ja{Z(tx)*} dt,
0

can be obtained by expanding J.(z) as in (1.71.1) and integrating term-by-term.
(The formula is due to Sonin; ¢f. Watson 3, p. 394, (4).) The general formula
then follows from calculation of the generating function of both sides of (5.4.1);
here (5.1.9) and (5.4.2) must be used.

T
N

Fic. 6

Another proof, from a more general point of view, can be given as follows.
We shall try to satisfy the second equation (5.1.2) by an integral of the form

I

(5.4.3) z = 2(z) / et T 20)) dt

with a proper path of integration. Substituting this expression in the left-hand
member of the equation mentioned, we obtain

/e"’t’”""/2 [tJ:{Z(tx)*l + (2 Yz + HJ.{2(t2)})
(5.4.4)

2

+ (n +3+1- Z?) JAZ(tx)*l]dt-

In view of (1.71.3) the expression in the square brackets becomes

(5.4.5) o202 + (0 + /2 + 1 — ). (2(t2)],
so that the entire expression will be
(5.4.6) / Ll () at.

Hence (5.4.3) is a solution of (5.1.2) provided that
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(a) the path of integration is a closed contour, and so chosen that
e T L (2(62)}) resumes its initial value, or

(b) the path of integration is an arc, and the expression in (a) vanishes at its
end-points.

For the interval 0 < ¢ < + », condition (b) is satisfied providedn +a +1 > 0.
Assuming first that @ > —1, we notice that the function z™*/% is analytic near
z =0, so that (see the remark concerning (5.1.3)) z = const. ¢ "z “/2L(°‘)(x)
The constant factor can be determined by comparing the “lowest terms,’’ that is,
the coefficients of z**. The restriction « > —1 can then be removed by means
of analytic continuation.

Another remarkable representation is obtained by choosing the contour as
in the figure. Condition (b) is again satisfied, and the same argument as before
yields z = const. ¢ “z**L{*(z). The normalization of the integrand requires
the determination of t* at a certain point. We agree to take arg t = 0 on the
rectilinear part of the contour with &t < 0 (in its- limiting position). Then
the “lowest term” becomes, if « > —1 and « # 0, 1, 2,

af?
—t ,,+a X _ -—-2ma —t n+a
T 1)/ “= : f “
o - T+ a4+ 1)
=2 Sl T € *“f—m— X

so that on account of (5.1.7), we have

—1 tw(a—i) 0+)
(5.4.7) e—"x“mLf.“)(x) (2 sin 77‘1) / ot tn+a/2Ja{2(tx)§} dt
e

n' 0

This formula can be extended to arbitrary non-integral values of «.

Further integral representations can be derived from (5.1.5) and (5.1.9) in a
manner analogous to that used in the case of Jacobi polynomials (cf. (4.4.6),
(4.4.9)). We have for instance, z # 0,

(5.4.8) e L) = L. / et — 2)T" N dt,
271

where the contour encloses ¢ = z, but not ¢ = 0.

5.56. Hermite polynomials
(1) These are defined by the conditions

+o0
(5.5.1) / e Ho()Hu(z)de = 7'2" 0 bpm, n,m=0,1,2, -
The coefficient of 2" in the nth polynomial is positive.

See the bibliography in Hille 1. Our notation agrees with that of Hille.
See also Hilbert-Courant 1, pp. 77-79 where the same notation is used. In
Polya-Szego 1 (vol. 2, pp. 94, 294, 295, problem 100), H,(z) is written for
(=1)"(2"*n!)'H.(27*) in terms of our notation.
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(2) The derivation of the f ollowing properties of Hermite polynomials presents
no difficulty:

y' = 2zy + 2ny = 0,y = H,(z),

(5.5.2) )

'+ @2n4+1 -2 =0z2= e—’mH,.(x),
(5.5.3) ¢ Ha(z) = (—1)" <(—%>ﬂ e,

H,.(x) B [n/2] (_1)v (zx)n—2v

(5.5.4) P Y AL

_ 1y (2m)! / _ (_qym (2m 4+ 2)! \
(6.5.5)  Hin(0) = (—1) pe H2ma(0) = (—1) CESNE
(5.5.6) lim 2™ H.(z) = 2",

Hl(x) H?(x) 2 Hn(x) n
R - R TRl

= exp (2zw — W),

(5.5.8) Hu(z) = 2xH,(z) — 2(n — 1)H,_o(z),

n=2234,.--;Hx) =1, Hi(z) = 2z,

659 % @ H@HG) = @y 2@ - Ty,

We notice the following “individual” properties: |
(5.5.10)  H.(z) = 2nH.(z), Halz) = 22H,(z) — H._i(z).
From (5.5.7) we obtain

(5.5.11) % () 1) = 22 + ),
and, by Cauchy’s formula,
H
(5.5.12) ——"—(—x—)~ = —1~ w" " exp (2aw — w') dw
n! 271 ’

where the contour encloses the origin.

5.6. Relation of Hermite polynomials to those of Laguerre

(1) Hermite polynomials can be entirely reduced to Laguerre polynomials
with the parameters « = =1, for we have

(5.6.1) Hom(2) = (=1)"2"m! LY (2",  Hamn(z) = (=1)"2""mlaLP ().

These formulas are in some respects the analogues of (4.1.5). Their proofs
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are similar to those given there. Note the fourth equation in (5.1.2) (a = £1),
and the second equation in (5.5.2).

Combining (5.6.1) with (5.3.4), we obtain a representation of Hermite poly-
nomials as limits of Jacobi, and in consequence of (4.1.5), of ultraspherical
polynomials. This can be ascertained from (4.7.23) and (5.5.7). In fact, we
have

2\ ~A

(5.6.2) exp (2zw — w*) = lim (1 ~2%y + 7_”_) ,
A~s00 A A

so that

(5.6.3) o) _ g AP Ha).

n' A—=s00

From (5.6.1) the explicit representation (5.5.4) follows readily when we use
(5.1.6). From Theorem 5.1 analogous expansions for H,(z) can be, derived
(see Watson 6). The generating function (5.5.7) follows from (5.1.16), while
the generating function arising from (5.1.9) for @ = =1 is of a different nature
(see Problem 24).

By using (1.71.2) and (5.4.1), we obtain the integral representations

e Ha(x) = (—1) "ot / e~ 1" cos (2at) dt, n even,
0
(5.6.4) w
e Hu(z) = (—1)["/2]2"“71-—*/ e’ 1" sin (2zt) dt, n odd.
0

(2) Conversely, Laguerre polynomials can, to a certain extent, be reduced to
Hermite polynomials. We have (Uspensky 1, p. 604, (14))

(a) _ (—1)‘"7{.* P(n + (o4 + 1) + 2\ a4 3 1
669 L@ = Lms Tk et D [Ta i@y, «> -4
This can be readily shown by using the explicit formulas (5.1.6), (5.5.4), and
(1.7.5).

(3) We conclude these formal considerations with the following remark con-
cerning the identities (4.21.7), (5.1.14), and (5.5.10) on Jacobi, Laguerre, and
Hermite polynomials, respectively. If the orthogonal polynomials {p.(z)}
associated with a distribution da(z) have the property that {p,(2)} is, save for
constant factors, a system of the same kind (that is, associated with a certain
distribution dB(z)), then {p.(z)} is (save for trivial linear transformations)
one of the three special systems mentioned before (classical polynomials).
(W. Hahn 3, Krall 1.) A similar statement holds if we replace {p.(z)} by
(p¥(2)} (Krall 2, W. Hahn 4).

Another problem of a similar nature has been considered by Bochner (1).
He determines all sets of polynomials {p.(z)}, where p.(z) is of precise degree n,
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satisfying a differential equation of the form
(5.6.6) Jo(@)y" + fix)y" + [fa(z) + Ny = 0, y = pa(2), A = As.

Bochner obtains, in addition to the classical polynomials, certain polynomials
related to Ja.y44(x), n integral, as possible solutions, as well as polynomials of
the trivial type az™ + bz™, where a and b are constants.

5.7. Closure

Here we prove the analogue of Theorem 3.1.5 for Laguerre and Hermite
polynomials. The main difficulty of these cases is due to the fact that the
orthogonality interval is infinite. Using the customary notation (§1.1), we
have the following theorem:

TueoreM 5.7.1. The system

(5.7.1) e~ Py ™, a>—-1,n=012 ...,
is closed in L*(0, 4 ) ; the system
(5.7.2) e n=2012 ...,

is closed in L*(— oo, 4+ ).

This statement is equivalent to the closure of the systems {e**z**L{ (z))
and {¢”*"*H,(z)}, respectively. Theorem 5.7.1 remains true, of course, if we
replace ¢ by ¢ * and ¢ = by ¢, wrespectively. The idea of the following
proof is due to J. von Neumann (see Hilbert-Courant 1, pp. 81-82).

(1) We start with the remark that for « > —1 the system

1 /2
(5.7.3) (log g;) y", n=2012 .-,

is closed in L*(0, 1). This is a consequence of Theorem 3.1.5, p = 2, since
(log (1/y))® is integrable in [0, 1].

Now let e **z*"*f(z) belong to L*(0, 4+ «). Then (log (1/y))**f(log (1/y))
belongs to L*(0, 1), and it can be approximated in mean by functions of the
form (log (1 /y))"‘”p(y), where p(y) is a polynomial. Thus, corresponding to
every ¢ > 0 a polynomial p(y) can be determined such that

(5.7.4) f ez {f(x) — ple D)) dz < e

Hence all that remains to be shown is that if m is a non-negative integer, there
exists for every 8 > 0 a polynomial p(z) such that

(5.7.5) /‘” ez e™™ — p(x)} dx < 6.

(2) For this purpose we use (5.1.9), writing




[57] CLOSURE 109

_om W
(56.7.6) w = e ¥ m =
and choosing
N
(5.7.7) p(z) = 1 — w)*? > L @)w"
N n=0
Then
(5.7.8) f e 2% e™™ — p(x))dr = (1 — w)*™™ f e—"x“{ > Lf,“)(x)w"}dx,
0 0 n=N+1 ’
which, in view of (5.1.1), is equal to
(5.7.9) (1 — w)*Pr(a+1) > (n + a> w™.
n=N+1 n

Term-by-term integration is permitted here since the series

-]

f” ¢2% | Ly(2) | | Lo (2) | de-w™™

o L] 4 © 3
> {[ e "z LS ()] dx} {f e z" [Lf.°5)(x)]2dx} wt

n,n’'=N-1

n,n’'=N+1

IIA

is convergent. The expression (5.7.9) becomes arbitrarily small when N is
sufficiently large, and this establishes the statement.
(3) Let e =*"*f(z) belong to L*(— «, 4+ ). Then both functions

} '
e—y/zy—d(y) ﬂ:Zf( y’)

(5.7.10)

1

belong to L*(0, + ). Therefore, by the preceding result (first taking & = —3%,
then « = +3), for every ¢ > 0 there exist polynomials p1(y), p2(y) which satisfy
the inequalities

« ! ! :
f {e-—-uﬂy'——}f(y) +1(=y) _ e"’”y“’px(y)} dy <

2

(5.7.11) . ; 5 )
f {e"’” y~iw_:2f£:g_? — eV yipg(y)} dy < e,
or . y
2 f o {J:(_‘L)izfg:f) - pl(x2)} dr < e,
(5.7.12) . )
9 f o {f(x) —ZL(___:C) — xp2(x2)} dr < e,
so that

to .
(5.7.13) /; e f(2) — po(x?) — zpa(a®) ) dr < 2.

o0
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4

For another proof based on the theory of integral equations, see Weyl 1, in
particular pp. 58-61, 64. See also Hamburger 1, pp. 200-205.
(4) The argument used in (2) leads to the following result:

THEOREM 5.7.2. The system

(6.7.14) e Tzt a>-1,n=012...,
18 closed in L(0, 4 ) ; the system
(5.7.15) PR n=0,1,2...,

ts closed in L(— o, 4 ).

We use again Theorem 3.1.5, p = 1. By means of (5.1.1) and Schwarz’s
inequality we find

(5.7.16) f”e"’x“ | L{(2) | dz = O(n*?).

For later purposes (§9.5 (1)) we note the following theorem:

THEOREM 5.7.3. The functions

(6.7.17) Ja(z) = ¢(x)x", n=2012 ...,
where

@) z*, 0<z<l,
5.7.18 z) =
( ) ¢ e, r 21,

o > —1, B arbitrary and real, form q closed system in L0, + «).

We apply Theorem 3.1.5 with da(y) = y ¢ (log (1/y))dy, 0 < y < 1, and
p = 1. Furthermore, we need a bound for

fm ¢(@) | L (z) |dz = 0(1) [18"%“ | L (2) |dx + /;w e 2? | L{Y(2) | dz.

The first integral in the right-hand member is O(n®’ %); for the second integral,
Schwarz’s inequality yields the bound

P 0 ]
{ / e_"xm_“dx}*{ /; e 2 (LS (x) P dx} = 0(n*").

Concerning further formal properties of the Laguerre and Hermite poly-
nomials, see Bateman Manuscript Project, vol. 2, Chapter 10, pp. 188-196.
Cf. also Problems and Exercises, 67, 68, 72-80.

For problems related to Laguerre polynomials and applications of Laguerre
polynomials see Szegd 26, Askey-Gasper 3, Askey 9, Peetre 1, and Roosenraad
1. For Hermite polynomials see de Bruijn 1.




CHAPTER VI
ZEROS OF ORTHOGONAL POLYNOMIALS

In §3.3 it was proved that the zeros of orthogonal polynomials are all real,
distinet, and lie in the interior of the orthogonality interval. We shall now
present a further and more detailed investigation of the location of these zeros.
Starting with certain theorems valid under very general conditions imposed on
the weight function, we proceed to the zeros of the classical polynomials and
point out various methods used in their investigation. A particularly important
tool in the latter connection is Sturm’s theorem (§1.82), which in various cases
leads to rather exact information concerning the zeros of polynomials satisfying
certain linear differential equations of the second order.

No claim of completeness is made for the present survey on the zeros. Con-
cerning the literature about zeros of Laguerre and Hermite polynomials, we
refer to W. Hahn’s “Bericht” (2).

The methods of this Chapter are quite elementary. In particular, no sys-
tematic use is made of the asymptotic properties of orthogonal polynomials of
a special and general kind (Chapters VIII and XII), from which important
information concerning zeros can also be derived.

6.1. Density of zeros

(1) TueoreM 6.1.1. Let da(x) be a distribution on the finite segment {a, b],
and let {p.(x)} denote the associated orthonormal set of polynomials. Let [a’, b']
be a subinterval of [a, b] such that forda(z) > 0. Then if n is sufficiently large,
every polynomial p.(x) has at least one zero in [a’, b'].

For the proof we shall usc the Gauss-Jacobi mechanical quadrature (§3.4).
Let p(z) be an arbitrary =, which is not greater than 0 in [a, b], except possibly
in [a’, b’]. Assuming that the polynomial p,(x) has no zeros z, in [a’, b'],
and taking 2n — 1 = m, we obtain '

(6.1.1) f o(2) de(z) = gx,pu,) <o

Hence, when we apply the theorem of Weierstrass (Theorem 1.3.1), it follows
that

(6.1.2) [f(x) de(z) < 0,

where f(x) is continuous in [a, b] and not greater than 0 in [a, b], except pos-
sibly in [a’, b']. If we define
111
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fiA
8
(A

in a Sad and b = 2z £ b,

0
(6.1.3) f(z) = { by

(x —a)® —z)in,a’ £z

A

we reach a contradiction.

(2) THEOREM 6.1.2. Theorem 6.1.1 remains valid for infinite intervals [a, b}
provided the zero of the greatest modulus of p.(x) is o(n).

This remark is due to W. Hahn (1, pp. 215-217).” If we write
max |z, — o' ||b — 2, | = M,, v=12 ...,n,
the assumption means that M, = o(n®). We now choose
p(z) = {Tu2M. (z — a")(®' — 2) + 11}, k=[n/2 — 1/4],

where Ti(z) denotes Tchebichef’s polynomial (1.12.3). If we next assume
that [a’, b’] contains no zeros, we have

-1 = M7z, — a)(¥' — z,) £0,
so that p(z,) < 1. It then follows that

[ s e = [ s@rda@ = Zrustw) s T = [ data)

v=1

Now Ti(z) is increasing for = 1, so that Tw(# + 1) > Tw(1)¢ = k°¢ for
¢ > 0; thus we have in [d/, b']

o(z) = K{2M7 (z — o) — 2)}%; f flp(:;) da(z) > Ck'M;7,

where C is a positive constant independent of n. Hence n’M7;' = 0O(1), which
is a contradiction.

Concerning the distribution of the zeros for large values of n, see Theorem
12.7.2.

6.11. Distance between consecutive zeros
Here and in the subsequent sections we consider distributions of the type
w(z) dz.

(1) TueoreM 6.11.1. Let w(x) be a weight function on the finite interval
[a, b}, bounded from zero: w(x) = u > 0. Let z1 > x2 > --. > x, be the zeros
of the associated orthonormal polynomial p.(x) in decreasing order.” On writing

(6.11.1) =z, = 3(a + b) + 3(b — a) cos 6,, 0<b6<mv=12-...,n,
29 He states (without a satisfactory proof)lthat if either a or b is finite, the subsequent

argument succeeds even with o(n2).
30 Of course, each z, depends on v and n, , = Z,n .
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we have

1
(6.11.2) b1 — 0, < K 9%?, p=0,1,2, -, n;0 =0, 0pp = 7.

Here the constant K depends only on u, a, and b.

See Krawtchouk 2; Erdos-Turdn (written communication). Erdés-Turin
require the existence of [ {w(z)} ™ dz instead of w(z) 2 u > 0. Their proof
(cf. 2) is based on the study of the distribution of the interpolation points
for which the associated fundamental polynomials (Chapter XIV) satisfy
certain conditions. The following proof for the special case w(z) = u > 0
has been prepared by B. Lengyel; he eliminated all references to the theory of
interpolation from the argument of Erdés-Turén.

(2) Let v be a fixed integer, 0 £ » < n, andy = (6, + 6,.1)/2. We then
define p(z) = p{3(a + b) + 3(b ~ a) cos 8} by

_ (sin {N(v + 6)/2} \™" sin {N(y — 6)/2} \™
(6.11.3) 2p(x) = (Nsin o e)/2}> + <m7§}'> ,

where N and m denote certain positive integers. The single terms in the right-
hand member represent the same trigonometric polynomial of degree m(N — 1),
taken alternately with arguments y + 6 and v — 4. Therefore, the sum is a
cosine polynomial of the same degree m(N — 1). If m(N — 1) £ 2n — 1,
Theorem 3.4.1 can be applied.

We then have

(6.114) (Bt — 0)/4 S v/2 < (v + 1)/2 S 7 — (Bos — 6,)/4;
whence for all values of k, 1 = k < n,

(6115) 0< (6y+1 - 6,.,)/4< (‘Y + 6k)/2 <m - (6,,4.1 - 6,,)/4,
so that

—~1 -1
(6.11.6) <sin L*;) < (sine”"l 9”) , k=12,

The same inequality, with < instead of <, holds for | sin (y — 6x)/2 |, since
17 - 6k| é (6v+1 - 611)/2. ThuS,

—2m
(611.7) o) s (V2= pmnz

By using (3.4.1) and (3.4.5), we obtain

(6.11.8) / @) ds < (N sin %#1 - 9">—2m / " w(z) de.

On the other hand, the value of p(z) for § = v is not less than }, so that
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if we write 2o = (¢ + b) + 1(b — a) cos v, we obtain from a later result (cf.
Theorem 7.7)

b b
(6.11.9) / p(x)w(z)dr = u/ p(x) dz 2 uCn2p(xy) = 1uCn?

where C is a positive constant depending on a and b only. Comparing (6.11.8)
and (6.11.9), we now have

1 v —2 . 0,“ - 6, —im b
zuCn™ = { N sin T w(x) da,

or

i

_ b 1/(2m)
(6.11.10)  sin 6’“4 5. < N7Y{(uC/2)  n2ylem {/ w(z) dx}

By substituting N = [n/log n], m = [log n], we see that the condition
m(N — 1) £ 2n — 1 is satisfied for large values of n, and (6.11.2) follows
immediately.

The same inequality (6.11.2) holds without essential change if w(z) =
u(l — 2)*1 + x)ﬂ, u > 0, where o and B are greater than —1. 1In this case,
the last remark in §7.71 (4) must be used. The constant K in (6.11.2) now
depends on u, a, b, a, and B.

(3) We note the following simple result:

TreorEM 6.11.2. Let w(z) be a weight function on the interval (-1, +1],
and suppose

(6.11.11) A= (1 - DHw) £ B, —1=<z = +1,

where A and B are positive constants. Ifr, = c0sf,,0< 9, <my= 1,2, ... ,m,
stand for the zeros of the orthonormal polynomial Pn(x) associated with w(z), in
decreasing order, we have

4=B }

112 v+l — Uy T Ty
(6.11.12) 8,41 0<An

v=0,1,2, - ,n;0=0,0,41 = .

This remark is due also to Erdés-Turdn (written communication). The
proof can be based on Theorem 3.41.1. We denote by \, the Christoffel number
corresponding to z, . Then

(611.13) A(OV-H - ev) é /;

By zy

w(cos 9) sin §d6 = / w@)dx =N + N,

v Zyt1

y = 0’ 1, 2’ "',n;)\0= )\n-i‘l = (.
On the other hand,

sin (0 — 8)/2) > <sin {n(6 + e,>/2}}>2

p(x) = p(cosf) = (n sin {(8 — 6,)/2] nsin {(§ + 6,)/2
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isa mp1inz = cos §. Furthermore, p(z,) = p(cos 8,) = 1, so that (cf. (1.6.5))
+1

Mg Dpe) = [ e e 5 B [ o tcospyas

6.11.14 B
( : _ B/+'<sin {n6/2}>2d6 _ 2B
7 J- \msin {8/2] T n

On combining this with (6.11.13), the statement is seen to be true.
Erdés-Turdn proved also (cf. 2) that if 0 < A < w(x) £ B, -1 <z £ +1,
and 0 < e < m/2, then, with the notations of Theorem 6.11.2,

(6.11.15) s <Op — 0, <—

provided ¢ £ 0, = 7 — e. Here K, and K, depend on A, B, and e.

6.12. Variation of the zeros with a parameter

A. Markoff proved (4) an important statement concerning the dependence of

the zeros of p.(z) on a parameter r which appears in the weight function
w(z) = w(z, 7).

(1) TueoreMm 6.12.1. Let w(z, 7) be a weight function on the interval [a, b}
depending on a parameter T such that w(z, 7) is positive and continuous for
a <z <brn<7t< 1. Also, assume the existence and continuity of the partial
derivative w,(z, 7) fora < x < b, 11 < 7 < 7o, and the convergence of the integrals

b
(6.12.1) / 2 w,(z, 7) dz, v=0,1,2 -..,2n — 1,

uniformly in every closed interval " < 7 = 7' of the open segment 11, 7o. If
the zeros of pn(x) = pa(z, 7) be denoted by 2,(7) > z2(7) > -+ > z.(7), the vth
zero z,(7) (for a fixed value of v) is an increasing function of = provided that w,/w
18 an wncreasing function of z, a < z < b.

The integrals (2.2.1) for the moments ¢,[da(z) = w(z, 7) dz] converge uni-
formly in 7/ £ 7 < 7”7, and the relations (2.2.1) may be differentiated with
respecttor;v = 0,1,2, ... ,2n — 1. Leta<a’ <V <b. Fora' 2z =V,
7 < r = 7", the function w(z, 7) has a positive minimum; whence the deter-
minants D,_; are uniformly bounded from zero'if 7 = = = 7 [(2.2.11)]
According to (2.2.6) the coefficients of p.(z), therefore also the zeros z,(7)
(which are all distinct), possess continuous derivatives for o, < 7 < 73.

Let p(z) be a fixed mz,_1. Apply Theorem 3.4.1 with da(z) = w(z) dz.
The Christoffel numbers A\, = A,(7) are obviously functions of = with a con-
tinuous derivative [(3.4.3)]. Differentiating (3.4.1) with respect to =, we obtain

(6.12.2) / e, ola) dz = 2N @(e) + 2N (o).
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Now we substitute

(6.12.3) plz) = ii’"f’)x}z , whence p'(z,) = {pnlz)}?,
so that
(6124) j: W,-(x, T) {fn_(_xl} dr = )\,(T){p;(x,)}zx:(r),

since p'(z,) = 01if u # v. The left-hand member can be written in the form

(6.12.5) /b{wf(x’,r) _w(z,, 1) w(x,r)} {fn(ac)}2 dz,

w(z,, 7) v

the second term being zero because of the orthogonality. The difference

wz, ) wlx,, 1)
(6.12.6) 0@, D) w0z, D)

has the same sign as z — z, according to the assumption. This establishes the
statement.*
(2) We point out the following eensequence:

TueEOREM 6.12.2. Let w(z) and W(x) be two weight functions on [a, b], both
posttive and continuous for a < z < b. Let W(z)/w(x) be increasing. Then if
{z,] and {X,} denote the zeros of the corresponding orthogonal polynomials of
degree n in decreasing order, we have

(6.12.7) 2, < X,, y=1,2 -, m
Defining w(z, 7) = (1 — nw(z) + 7W(z), 0 < 7 < 1, we see that
(6.12.8) w,(x, 7) W(x) — w(z) R !

wiz,n (1= nwa) F Wz = 1=r+ W) wk)

is an increasing function of z, 0 < 7 < 1. We also have w(z, 0) = w(x),
w(z, 1) = W(x).
Various applications of these results will be given in §6.21.

6.2. Location of the zeros of the classical polynomials

The discussion of this question, given in §3.3 for the general orthogonal
polynomials, was based on the orthogonality property. In the particular cases
called classical polynomials (§2.4) there exist various other approaches which
are interesting from the point of view of method. It is assumed that a > —1
and 8 > —1in the Jacobi case, and « > —1 in the Laguerre case; furthermore,
n 2.

31 This proof does not differ essentially from the original one due to A. Markoff, although
the present arrangement is somewhat clearer,
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(1) First of all, if we are dealing with the classical polynomials, a more precise
form can be given to the argument indicated in §3.3 (4). In fact, for the
polynomials in question the number of the sign variations in (3.3.5) forz = a
and z = b can be readily calculated.” We use (4.1.1) and (4.1.4) for Jacobi
polynomials, and (5.1.7) and (5.1.8) for Laguerre polynomials. In addition to
the reality and distinctness of the zeros, the statement as to their location
follows from the same argument. '

In the Jacobi case the value of

sgn (PE0(0)) - £ (P ()

at the zeros of Py*®(z) can also be determined by means of (4.5.7) (instead of
the method in §3.3 (4) generally given). In the Laguerre case, (5.1.14) can be
used. The situation is especially simple for Hermite polynomials ; we have
but to apply the first equation in (5.5.10).

(2) By Rolle’s theorem the formulas (4.3.1), (5.1.5), (5.5.3) of Rodrigues’
type furnish the statement again. We must bear in mind that the derivatives
of (1 — 2)"™*(1 + z)™** ¢™2", and ¢™" of the orders 0,1,2, ... ,n — 1 vanish
at z = 1,z = 0, 4+, and 2 = = «, respectively.

(3) The statement also follows from the differential equations (4.2.1), (5.1.2),
and (5.5.2). To this end we first show that the zeros of Jacobi polynomials
are different from —1, +1, and from one another. Differentiating (4.2.1) k
times, we have

1 =2 + 8 —a— (a4 8+ 2k + 2)zly*™
+hn+a+B+1) —k(k+a+p+ D® =0,

Were y to vanish for x = 41 or £ = —1, it would follow from (4.2.1) that
y’ = 0, whence from the equation just obtained (k = 1) 4"/ = 0, and so on;
that is, y = 0. (The coefficient of y**" is different from zero for z = =+1.)
Therefore, each of the zeros of P{*"?(x) is different from =£1. Moreover, the
zeros are all simple since (4.2.1) combined with y = 3’ = 0, z = =+1, yields
(1 — 2%)y” = 0, or y”” = 0. Using the equation for ¢, we find "’ = 0 in
the same way, and so on; that is, ¥y = 0 again.

Similarly, we show that the zeros of L{*(z) are simple and different from 0,
and the zeros of H,(x) are simple.

We next apply the following theorem due to Laguerre (Pé6lya-Szegé 1, vol. 2,
pp. 59, 244-245, problem 118).

Let f(z) be a wn and zo one of its simple zeros. Then any circle through the
points

' — 20— 1y 1)
(6.2.1) v and 3 =m = 20— 1) g

32 Professor P6élya has kindly called to my attention the fact that the same can be done
for the general orthogonal polynomials by using the determinant representation (2.2.6).
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contains some zeros of f(x) in both domains bounded by it, unless all the zeros
lie on the circumference of this circle. The same is true if a straight line replaces
the circle.®

The proof is as follows. Let f(z) = (x — z0)g(x), and let z;, 22, -+ , Znu
denote the zeros of g(2). Then g(z,) = f'(z0) and ¢'(x0) = %f"'(x0), so that
1 1 1 g’ (z,) I ()
6.2.2 e = = 1 )
622 n Tt st taTan T dwm PG

Hence (6.2.1) becomes

(623) —— (1 + o4yt >= L

n—1\zg — 11 29— o Ty — Tp—i 20— Zy
The linear transformation X = (2, — z)™" carries the points z;, 22, - -+ , Ta,
and z, into certain points X;, X, --- , Xay and X¢. Then we have
1
(6-2-4) ’;%—Ti (Xl + X2 + M + Xn—l) = X(;,

so that any straight line through X, separates the points X;, Xz, -+ , Xou
from one another, unless they all lie on this straight line. Referred back to the
z-plane, this yields the theorem.

For the Jacobi polynomials y = P{**?(z) we obtain from (4.2.1)

’ 2
25 YV = 1=2 if y=0
(6:25) ' a—B+ @Bt U
so that
' _ 2(n—1)

l—xo 1+x0

Let xo be a zero of y with the greatest imaginary part. If there were any non-
real zeros, we should have &(z) > 0, and

a1 B+1
oin o(EE)se o(-L)s

whence $(zo) > S(z0). Therefore zp lies in the half-plane S(z) > Si(zo),
and a circle can be drawn through z, and z; which contains no zeros. (The
zeros cannot all lie on this circle since they would then have to coincide with
Zo , an impossibility.) Hence all the zeros are real. Now let o be the greatest
zero, 7o = +1. If we had 2o > 1, (6.2.6) would give zo > z,. Considering
an arbitrary circle through zo and z, , we are again led to a contradiction.

In the case of Laguerre polynomials,

33 If f'"(zy) = 0, we have z{ = o, and a straight line through z; must be considered.
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2(n — 1)
| _ ¢ + 1
Zy
From 3(ze) > 0 we obtain, as before, J(z5) > S(zo). From z, < 0 we find
x(') <z
In the case of Hermite polynomials,

(6.2.8) 24 = 2o —

(6.2.9) To = To —

so that S(zo) > S(xo) if J(x) > 0.

(4) Laguerre’s theorem also furnishes certain bounds for the zeros. Let z;
be the largest and z,, the smallest of the zeros of P$*®(2). Then (a + 1)/(1 — z))
— B4+ 1)/(1 + z;) > 0 and (cf. (6.2.6))

2(n — 1)
2.1 —1 n < -
(6 0) <z | a+1_6+1<x1,
1-— 1 1 + Z1
so that
+1 B+1_20—-1) B—a+2n—2
211) & -
621) =2 " ¥a” 15¥n’ 2> BFFatom
orfor =2 a
n —1
(6.2.12) > st
1n the ultraspherical case x, = —z;, so that
+1 a+4+1_n-1 n—1 Y
2.1 ad - = ).
(6.2.13) 1 — 1+x1> 2 xl><n+2a+l>

(If n = 2, the sign > is to be replaced by =.) This bound is better than the
preceding one. Both bounds have the form 1 — (a + 1)/n + O(n™?). Simi-
larly, an upper bound can be obtained for z,, .

An analogous argument yields the bounds

(6.2.14) To > 4+ a ~ 1, 2o > {in - D}

for the largest zeros zo of Ly (z) and of H.(z), respectively. (For n = 2 the
second inequality becomes an equation.) These are very rough estimates
(Theorem 6.32).

(5) Another proof of the reality and simplicity of the zeros (also furnishing
a < z, < b) can likewise be based on the differential equation by using the
considerations of §6.7. It must be remembered that the polynomials in ques-
tion are the only polynomial solutions of the corresponding differential equa-
tions (see §4.2 (2), §5.1 (1)).

% From (6.2.8) we also find that the least zero is <a + 1.
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(6) In this connection, we refer to a very elementary method due to Laguerre
(8), which furnishes certain upper bounds for the zeros of the classical poly-
nomials. Since g''(z0) = 3f'"'(20), we have from (6.2.2)

1 1 o 1 _ g’ (o)
(To — 21)? + (To — 25)? + + (To — Ta1)? <dx0> g(xo)

- {gl(x0>}2 - g(:ro)g"(xo) ; {f”(l‘o)} - 4f’(2‘o)f”'(1‘o)
tg(zo)}? 12{f" (20} }*

and according to Cauchy’s inequality

n—1 1 2
1);(2?0—27)2_{;270_%} ‘

B = 4@ (x) () )

=-D 12{7 (xo) J2 TG ="

(6.2.15)

or
(6.2.16) 3(n — 2){f"(@)}* — 4(n — Df (zo)f""" (z0) 2 0.

This condition is necessary for each zero of a polynomial with real and distinct
ZEeros.
In the case of Legendre polynomials,

(1 — )" (x0) = 2f" (z0),
(1 — 20)f""(m0) = dzof” (m) — (n — )(n + 2)f (z0)
_2-n—n +(6+n+n)xof,( ),

1_270

so that
3(n — 24z — 4(n — D2 —n — 2’ + (6 + n + n)ai] 20

whence

]
(6.2.17) '\xo|§(n—1){%} =1_5_7{_2?+....

The “true’” constant, as n — «, in the second term is 7;/2 = 2.891592 . ..
(instead of 5/2), where j; is the least positive zero of Jo(z) (see (6.3.15)).
In the case of Hermite polynomials, from (5.5.2)

I (o) = 2aof’(me),  ["'(z0) = 2(225 — n + 1)f (z0),
3(n — 2)zs — 2(n — 1)(2:1:0 —n+1) =20;
whence

o — 1)

(6218)  |m| = ooy

= @n+ 1 = J@n+ D7 o
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This bound is better than that obtained by Sturm’s inethod (cf. §6.31 (4)),
although according to (6.32.5) the “true” order of the second term is n~Y¢

6.21. Inequalities for the zeros of the classical polynomials

A. Markoff’s theorem (§6.12) furnishes several remarkable inequalities for
the zeros of the classical polynomials.

(1) In discussing the zeros of Jacobi polynomials, we again enumerate the
zeros r, = cos 6, in decreasing order:

(621.1) +1>z>Z> - >2,> —1; 0<6, <0< -+ <8, <

Tueorem 6.21.1.  Let {2, = z,(, B)} denote the zeros of the Jacobs polynomial
PP (x) in decreasing order. Then

ox ox
21.2 g - =1,2 ..., n.
(6 ) Ey <0, Y > 0; 14 1: s ' N

In the ultraspherical casc a = B we have

(6.21.3) 0% <, v=1,2 -, [n/2].
oa

. Applying Theorem 6.12.1 to w(z, 7) = (1 — 2)*(1 + =)’ with a = 7, g fixed,

or 8 = 7, a fixed, we obtain the inequalities (6.21.2) (¢f. A. Markoff 4; Stieltjes

6, p. 76). In the first case we have, in fact, w,/w = log(l — z), which is a

decreasing function of z. The proof is similar in the second case.

The inequality (6.21.3) for the ultraspherical case is due to Stieltjes (6, p. 77).
For the negative zeros the opposite inequality holds. This inequality does
not follow directly from Theorem 6.12.1, since for w(z, ) = (1 — z%)” the ratio
w,/w = log(l — z°) is not monotonic. However, it follows immediately from
(6.21.2) by using (4.1.5).

[The proof of Stieltjes for (6.21.2) and (6.21.3) is entirely different from that
of Markoff and is based on. the differential equation (see below §6.22). Markoff
also attempts a direct approach to (6.21.3) through a general theorem, but his
proof is incorrect. In his notation (4, p. 181) the function

(y —eV(y, o
aV(y, &)
0%

is equal to y(log 1/(1 — %*))7"in the ultraspherical case. This function ap-
proaches 4+« asy — +0and — « fory — —0. Therefore, although f'(y) < 0,
nothing can be said about the sign of the ratio (f(y) — f(z:))/(y — ). Inci-
~ dentally, the condition 8V (y, £)/8¢ > 0 of Markoff is not satisfied in the ultra-
spherical case at y = ¢ = 0.

In the general case, f(y) > 0 for y > ¢, and f(y) < 0fory < e. This fact is
compatible with the decreasing property only if the denominator of f(3) becomes

fly) =
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0 as y — ¢. The function f(y) is, however, in any case discontinuous at y = e,
so that in the general case the same criticism applies as in the special case
mentioned before.]

Apparently, Stieltjes was in possession of the general theorem of §6.12 (see
6, p. 79, section 5, and the remark on p. 88).

(2) THEOREM 6.21.2. Let the parameters « and B of the Jacobi polynomial
PP (x) be subject to the conditions

(6.21.4) —3 S a = +3, -3 =SB = +3.
Then we have for the zeros (notation as before)

2y — 1 %
6.21.5 —— r. <6, = ' = cee o,
( ) 2n+17r_ __2n+17r, v =1,2, , A,
with equality only in the special cases « = —3, 8 = +2anda = +31,8 = -1,
respectively.

For Legendre polynomials, that is, for « = 8 = 0, this result is due to Bruns
(1). The general case is due to A. Markoff and Stieltjes. For the proof we
observe that according to (6.21.2) the maximum and minimum of z, = cos 6,
are attained in the special cases mentioned above. Now we use (4.1.8).

(3) TueoreM 6.21.3. In the ultraspherical case
(6.21.6) —1<a=8=< 41

we have the inequalities

(6.21.7) G-Bis6 sy, =120,
with the equality sign valid only in the special casesa = B = —3anda = 8 = +1,
respectively.

The first proof of these inequalities, which are more precise than the corre-
sponding inequalities (6.21.5) of ‘“Bruns’s type,” is due to Stieltjes (6). Mar-
koff’s proof is not correct (see above). For the proof of Stieltjes see §6.22.
Refer also to §6.3 (2) and (3). Corresponding inequalities for the negative
zeros can readily be obtained from the symmetry relation z, + z,.1—, = 0.

We base our proof on Theorem 6.21.1. According to (6.21.3), the maximum
and minimum of z, , » < [n/2], are attained if « = 8 = —}anda =8 = +3,
respectively. Now the zeros of the polynomials (4.1.7) are

(6.21.8) cos (v — %)g and  cosw »y=1,2, ---,n.

T
n-+1’

(4) In the case of Laguerre polynomials we have w(z, 7) = ¢ 2% with a = 7,
and w,/w = log r increasing. Hence the zeros of Laguerre polynomials are
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increasing functions of the parameter @, « > —1. Thus, on account of (5.6.1),
we obtain the following theorem:

TaEOREM 6.21.4. If
(6.21.9) -

1
§a_<_ 3

[

the zeros z, of L\ (z), arranged in increasing order, have the bounds
(6.21.10) £ =<a <7,.

Here £, and 7, denote the vth positive zeros of the Hermite polynomials Ha,(x) and
Hani1(2), respectively.

6.22. Proof of Stieltjes for the monotonic variation of the zeros of the
classical polynomials

Stieltjes (6, pp. 73-77) gives a proof of Theorem 6.21.1 along the following
lines. Substituting r = z, in (4.2.1), we have

la+1 18+1 1 1
2y+2x,~1+2x,—|—1 x,—x1+ +x,—xn
(6.22.1) lad 1 1841
[0 4
= (.
+2x,—1+2x,—|—1
Differentiation of this equation with respect to « yields
1 dxr, oxn 1 or, 0x2
@ - xoz(?& 62) T &= x2>2<a‘& 35) *
1 0r, 0x, 1 a+4+1 oz,
(6.22.2) (e - )+ &~ 1* o
1 g+1 oz 1 1
- P % 2t —p
+2(x,—|—1)2 da 2z, —1 !
or
= or, 1 1
T =5 =12 s 10
(6.22.3) F; Gt =5 y =1 n
where
1 ‘ 1 1
b = @ = o) § + (zy — 2,-1)* + (T, — Z41)?
(6.224) 1 1 a+1 1 B+1
[0 4
teo—zr 2mo i T
and
1
(6.22.5) oy = Ay = — v # u.

(xv - x#)2’
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The matrix (a,,) is positive definite since

n n
K = Z Z Gy Uy Uy

y=1 p=1

(6.22.6) . .
_1 w—uY | I a1 | B+1 ) s
2 v.u=l§"'"<xv - x#) + 2 ; {(x, — 1) + (x, + 1)2}%'
vyhp
Stieltjes. now uses the following theorem: If A = (a,,) is a positive definite

matrix with a,, < 0, » % g, then the reciprocal matrix (4)™ has only positive
elements.

[We can assume thata,, = 1,» = 1,2, ... , n,so that K = E — L, where E
is the unit form, and the coefficients of L are non-negative. Then the absolute
value of L is less than 1 if £ ='1, and the reciprocal form of K can be writ-
ten as follows:

(6.22.7) (K'"=E+L+LP+ L+ ....

All the forms of the right-hand member have non-negative coefficients, and the
coefficients of E + L are also positive.*]
By virtue of this theorem, the statement follows immediately from (6.22.3).
The proof for the second inequality of (6.21.2) is similar. The ultraspherical
case (6.21.3) can either be treated by means of (4.1.5), or directly handled (cf.
Stieltjes, loc. cit.). The same method applies to Laguerre  polynomials (Theo-
rem 6.21.4). In this case we have

1 1 1
Ay = (x,, "'-x—l)—2 + .. + (xv _ xy.._.l)2 + (xy _ xv+&)2
1 a+1
(6.22.8) + (xy — xn)2 + 2x% 3
1
Uyp = — G = ) v # p,

with (2z,)”" on the right-hand side of the equations corresponding to (6.22.3).

6.3. Sturm’s method; Jacobi polynomials

Sturm’s method (see §1.82) leads very simply to certain inequalities for the
zeros of Jacobi polynomials (see Szego 20, Buell 1). In this way we not only
confirm some of the results of §6.21, but we are also able to improve them to a
considerable degree. We assume in this section that

(6.3.1) —ySas+3 3=+

[N

3 This argument is different from that of Stieltjes, which is likewise very simple and
elementary. The present argument, however, furnishes similar theorems in more compli-
cated cases.
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excluding, in general, the case o® = g = i, we arrange the zeros z, = cos 6, of
PP (2) in decreasing order:
632) +1>m>m> . >2,>—1; 0<0,<b<... <0, <n

(1) TueoreM 6.3.1. Under the conditions mentioned we have

(6.3.3) 0y - 0v-l <

T
n—l—(a—l—ﬂ—l—l)/?_,’ y=1,2 .-, n+1.

This holds for o = §* = 1 with the = sign instead of <. Here we define

634) =] an =T Th =1 7 P> h
=60 i a= -}, 2r — 6, if B = —1
Wenotice that fora =g = —},a=8= 41 o = —B=%a=—-8= -1
(6.3.5) 0"=(”_%)g’ Vn—7|r—1’ ”n:;%’ ;;i”
v=0,1,--- n+1,
respectively.

Inequality (6.3.3) follows immediately from Theorem 1.82.1 by comparing
(4.24.2) with

2 2
(6.3.6) ‘;—62 + <n + Oiigj—-l) v =0,

We consider the solution v = sin {(n + (a + 8+ 1)/2)(8 — 6,—1)}. Fora> —1
the condition corresponding to (1.82.2) is satisfied at 2, = 6, = 0 (and similarly
forg > —dat Xo = 6,4 = 7).

(2) TreorEM 6.3.2. Under the conditions mentioned we have

v+ (a+p—1)/2

6.3.7 <4, - 4 =1:2:"': )
O30 e eveT R < <iTeTrTna™ g
whereas in the ultraspherical case « = § = N\ — 1
) v+a/2 -1 v —(1-1\)/2 _

(6.3.8) 6, > Fatl T = I T, v=12 ,[n/2].

The bounds (6.3.7) follow from (6.3.3) by addition and by using (4.1.3) (see
Buell 1, pp. 311-312). 1In case @ = —1, the factor » of the upper bound can be
replaced by » — 4, while if 8 = — 4, the factor » + (« + 8 — 1)/2 of the lower

bound can be replaced by » + (« + 8)/2. In the cases (6.3.5) the same bounds
hold, at times with = replacing <. These inequalities are more precise than
(6.21.5) provided & + 8 > 0. In the case of Legendre polynomials (a = 8 = 0)
they are identical with (6.21.5), that is, with the inequalities of Bruns D).
The inequality (6.3.8) holds only for the zeros 0 < 6, < /2; it becomes an
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equation for @ = # = —4ora = g = +3. It is more precise than the lower
estimate of (6.21.7).

For the proof of (6.3.8) we observe that according to (6.3.3), the sequence
(639) 0: =6, — v = 0: 1, 2: T [(n + 1)/2]:
is decreasing. Now for n odd, we have 6n412 = 0. For n even it suffices to
show that 6,2 > 0. This follows from (6.3.3), since 6, + Onjzn = .

A similar argument can be used to improve the left inequality in the general
case (6.3.7) provided the zeros considered all lie in a certain preassigned part
0 < 6, = ¢ of the interval [0, #]. For further proofs of (6.3.8) see (5) and
§6.6 (2). ’

(3) In this connection we prove the following theorem:

THEOREM 6.3.3. Lel n = 2. Under the condition —% < o = B < +3 the
sequence

(6.3.10) Bo, 01,02, ---, Ora2141
of the zeros of P ® (cos 0) is convex, that is, 6, — 6, is increasing.

~ This follows by applying Theorem 1.82.2 to (4.7.11), 0 < X < 1. In fact,
the coefficient of u in (4.7.11) decreases monotonically. Inthecasesa =8 ==+1
the differences 6, — 6,_, are constant. Here again 6, = 0 if « — 3, while
6 = —6,if « = —3%. If nis even, the last term of (6.3.10) lies in [#/2, =],
and then (1.82.4) is used. For « > —3 condition (1.82.5) is satisfied.

From Theorem 6.3.3 a similar convex property for the sequence {z,} can
easily be derived (cf. Hille 4).

By means of Theorem 6.3.3 the upper estimate of (6.21.7), more precisely

(6.3.11) 8, < —il<a<+%;v=12 --.,[n/2]

_r
n+1"
can be proved in another way (Szeg6 20, pp. 5-6, 8). For, let —3 < a < +3.
The sequence

(6.3.12) 6 =8, y=0,1,2 ..., [n/2] + 1,

14
a1
is convex; it therefore attains its maximum either for » = 0 or for» = [n/2] + 1.
Now 6y = Oinjeyq1 = 0if n is odd. If n is even, we must bear in mind that
Oz + Onjzar = 0.

(4) Finally, by means of Sturm’s method, we derive certain inequalities which
involve the zeros of Bessel functions. In some respects these are more precise
than the preceding inequalities, although not so simple.

THEOREM 6.3.4. Leta=8=N—%0< A< 1. Denotingby 1<j<js<---
the positive zeros of Bessel’s function J (x), we have
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(6.3.13) 6, < I »=1,2,3, ... n.

For X = 0 and N = 1 the sign < in (6.3.13) has to be replaced by the sign =.
The statement follows by comparing (4.7.11) with (see (1.8.9))

d'v AL — )
dg? 62
The estimate (6.3.13) of 6, is the best possible in the sense that for a fixed »

and for n arbitrary the factor j, cannot be replaced by a smaller one since
(Theorem 8.1.2)

(6.3.15) lim 76, = lim ng,, = j,.

n—+00 n—+0

(6.3.14) + {(n + 02+ }v =0, v=0.{(n+Nb},a=x—1.

Incidentally, for 0 < 6, < x/2, a similar lower bound for 6, can be obtained,
namely,

(6.3.16) 6, > 4{(n + N + 1 — N}

where k is a positive numerical constant (Szegé 20, p. 9). Then (6.3.15) follows
from (6.3.13) and (6.3.16).

(5) Finally, another remarkable property of the zeros 6, = 6,, of P (cos 6)
can be proved by a proper application of Sturm’s theorem. On substituting
6 = &/(n + M) in (4.7.11) we obtain

du A1 —N) -
(63.17) @ " {]L R CE Vo x)}}“ -

If 0 <X < 1, then (n 4 N\)?sin? {£/(n 4+ \)} increases with n provided £ is fixed
and 0 < £ < (n 4+ MN)x. Thus (n 4+ MN)6,, increases with n if »is fixed.®* From
these considerations the estimate (6.3.13) follows again if (6.3.15) is known.
Indeed, (n + N)b,n < liMasw (B 4+ N)b,n = J, .

As another application we can give also a new proof of (6.3.8) since

(6.3.18)  (mn+ Nbm = (20 — 1 + Nbhgs = (20 — 1 + N)7/2
for n 2 2v — 1. Cf. Problem 32.
6.31. Sturm’s method; Laguerre and Hermite polynomials
Suppose a > —1.

(1) Taeorem 6.31.1. Let 2, = zyn = Zyn(a), v = 1, 2, .., n, be the zegos
of Li¥(z) in increasing order. Then

(5./2)°
n + (e + 1)/2’

Here j, has the same meaning as in Theorem 6.3.4.

6.31.1) z, >

3 By the separation theorem (Theorem 3.3.2) 0,, decreases as n increases for fixed »,
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When we compare the third equation in (5.1.2) with

Y
(6.31.2) U+ <” tletl)/2 1~ “)U =0,
T 42

which has the solution

1
(6.31.3) U=2d. {2x* <n + @ ’5 1) }

(cf. (1.8.10)), the statement follows immediately. Condition (1.82.2), ' = 0,
is satisfied in the present case.

An upper bound of z, of a similar kind can alsq be easily obtained. Let w
be a positive constant such that w < 4n 4+ 2(a¢ 4+ 1). Compare the same
equation (5.1.2) as before with

\ 2
(6.31.4) v“+{"+(°‘+1’/2“"/4+1‘“}v=0,

z 4z

where 0 < z < w. Then

(3,/2)*
31.5 )

(6.31.5) TS Tt D2 = ofd

if the expression on the right-hand side is not greater than w. (For a fixed », this
'is the case, provided n is large enough.) The constant (j,/2)* in the inequalities

(6.31.1) and (6.31.5) is the best possible in the sense explained in §6.3 (4). For

a fixed v, we have, for the zero z, = z,,,

(6.31.6) lim nzm = (4,/2)%.

n—+»00

The same results can be obtained by use of (1.8.9) and the fourth equation
in (6.1.2). Condition (1.82.2), ' = 0, is again satisfied.

(2) Both equations (5.1.2) mentioned furnish upper bounds for the zeros
if we use Theorem 1.82.3 and take into account the fact that the correspond-
ing solutions vanish at £ = 4+ «. The bound which is obtained from the fourth
equation is slightly better. It is given in the following theorem:

THEOREM 6.31.2. The largest zero of LS (z) satisfies the tnequality
(6317 . <2n+a+14+{2n +a+1)?+1- A = 4n.

(3) Introducing z = {n 4+ (a -+ 1)/2}7't in the third equation (5.1.2),
we obtain

Fu 11— 1 a+1)*2} _

Since the coefficient of u increases with n, it follows that, for a fixed », the
expression
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(6.31.9) (n+ (a+ 1)/2}2, = {(n + (« + 1)/2}z,,

decreases with increasing n. The limit as n — o is (5,/2)* (according to
(6.31.6)). An interesting consequence of this decreasing property is

(6.31.10) {n + (a + 1)/2}z,, < 4+ (@+1/22,, n= v,v+ 1, ...,
Applying (6.31.7) and recalling (6.31.1), we obtain the following result:

Tueorem 6.31.3. Let & > —1; for the zeros z,, of L\ (x), arranged in increas-
ing order, the following estimates hold:

. 2
n—;—%: <t < (v + (@ + 1)/2)
(6.31.11) 2 ta+1+{@+at+D+1 -
n+ (e + 1)/2 ’
v=12 ..., n;n=12.
In particular, for the least zero z1, we have
(6.31.12) . +((];/i221)/2 <1 S G"Jﬁi"‘jf’), n=123 ...

Here j, has the same meaning as in Theorem 6.3.4.

If » is large, (j,/2)* > #%'/4 (cf. (1.71.7)), while the coefficient in the right-
hand member of (6.31.11) is =<4, For » = 1 we do not need (6.31.7) since
zu can be calculated explicitly. In fact, z;; = a + 1; whence (6.31.12) follows.

E. R. Neumann (2, p. 26) obtains for « = 0 an inequality similar to (6.31.11)
in a different manner. He finds in this case

(6.31.13) Zon = Con =2 v=1,2, - m;n=123 ...,

where § < C,, < 4. In view of the well-known estimate J > (v — Pn (ef.
(8.1.4) and Problem 32), we can derive the following inequalities of the type
mentioned from (6.31.11):

(6.31.14) (3r/16)* < C,, < 4.

(The upper bound 4 can not he diminished; cf. (8.9.15); also Problem 33.)
W. Hahn (1, pp. 228-238) generalizes and extends Neumann’s method to arbi-
trary real values of a.

A part of these results is more precise than those occurring in the literature
(see W. Hahn 2, pp. 228-230).

(4) The corresponding considerations for Hermite polynomials are very
simple. To begin with, the second equation (5.5.2) jurnishes the upper bound
(2n + 1)} for the zeros. This is not as good as the bound (6.2.18). Further-
more, assuming n = 2, we obtain the convexity of the scquence of the zeros




130 ZEROS OF ORTHOGONAL POLYNOMIALS (V1]

(6'31'15) Zon < Zin < Zon < MR

of H.(z), where 2y, = 0 if n is odd, and 2y, = —21, if 7 is even. In all cases,
Tin, Z2n, -+ - denote the positive zeros in increasing order. (See W. Hahn 1,
p. 244.)

On comparing the same equation with Z” + (2n 4+ 1)Z = 0, we find”
v — % -

@n F 1™
(6.31.16) ZTpn >

Wﬁﬂ', V=1,2,"',[n/2].

(This follows also from (6.31.1) for @ = =+1.) Now let « be a fixed. positive
number, w < (2n + 1)!. Then

y —

2n +1

| o=

N3
(6.31.17) Tn < )

14

Gnri=op™ =123 /2,

provided the right-hand members are not greater than w. For a fixed » we
see that the constants (v — 4)x and »r are the best possible.
By introducing z = (2n + 1)_*5, the differential equation mentioned is
transformed into
d*z —2
&?-{—{1— (2n 4+ 1)z = 0,
z=-exp{—©2n + 1) E/2|H.{2n + 1)),

The coefficient of z increases with n; hence (for fixed ») (2n + 1)*2,. decreases
as n increases. Therefore, we have (cf. (3)) (2n + 1)*:1:,,, < (v + 1)*:1:,.2” or
(4v + 3)x, 2,41, respectively. Thus

(6.31.18)

v — % . 4y + 1
2n + 1)} on + 1)’
(6.31.19) ( ) < T < (4 + 3)
v v ‘
@t Gy 7T LB
For the least positive zero 2, , we obtain (z;, = 27 z;; = (3/2)})
/2 < 5/2 >*
2n + 1)t 2n + 1/’
(6.31.20) < Tin =
m _ 21/2 >* w0
(2n + 1} 2n + 1/’ =

37 In this and subsequent formulas the upper line corresponds to the ease n even, while
the lower line to the case n odd.




[6.32] THE LARGEST ZEROS 131

The upper bounds are more precise than those resulting from (6.31.19) for
v = 1.

From (6.31.20) we can derive bounds for the minimum distance d. between
consecutive zeros. The convex property mentioned above easily furnishes
d, = Zin — Zon, thatis, d, = 221, if n is even, and d, = 11, If n is odd. It
follows that

(10t
2 ¥’
(6.31.21) T <d, = @n + 1)
@+ Y "2
In every case we have
x (21/2)}
(63122) m§ < dn = m—l—)}.

Concerning the extensive literature on this subject, we refer to Laguerre (2,
p. 105), Korous (1), Wiman (1), A. Brauer (1), Hille (4), and Winston (1).
Hille obtains the same lower bounds as in (6.31.20) and (by a suitable choice
of w in (6.31.17)) the upper bounds

(_537%_71?—17& {% + %[1 - <%__zf__*___1>2:r}—i’
(ﬂﬁﬂ{% + %[1 - < %2_1_1 >2T}—*-

These bounds are better than those resulting from (6.31.20), except for
n < 6. The results of the other authors are less precise than the preceding
inequalities.”

(6.31.23) T <

6.32. Sturm’s method; the largest zeros of Laguerre and Hermite polynomials
(1) Let @ > —1, and enumerate the zeros z, = z,, of L{(z) or H,(z) in
decreasing order:

Our purpose is to derive inequalities and asymptotic relations for z1., as well
as for z,, for fixed values of v as n — .

THEOREM 6.32. Let 1, < i < 13 < --- be the real zeros of Airy’s function
A@@) (§1.81,% > 0). If|a| =%, a > —1, the following inequalities hold for the
zeros {z,} of L% (2):

(6.32.2) b < (4n + 2a + 2) — 67 4n + 22 + 2)7H,,

38 An exception is the lower bound in (6.31.20) for the special valuesn = 2and n = 3
in which Wiman’s expression furnishes the exact values. For n = 3 the upper bound of
Wiman is the same as in (6.31.20).
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whereas for the zeros {x,} of H.(z):

(6.32.3) z, < @n+ 1P =672 + 17,
Furthermore, we have for a fized v _
(6.32.4)  x) = (4n + 22 + 2)! — 67 4n + 2a + 2)7Hi, + e,
(6.32.8) = @n+ 1! — 67 @n + 1)7Hi, + e,

in the Laguerre and Hermite cases, respectively, where lim, .« €, = 0.

These remarkable results possess an extended literature. (Zernike 1, W.
Hahn 1, p. 227. See also Korous 1, Bottema 1, Van Veen 1, and Spencer 1.)
In what follows, Sturm’s method is used to prove (6.32.3). A similar argument
can be applied for the proof of (6.32.2) (cf. the fourth equation in (5.1.2)).
Formulas (6.32.5) and (6.32.4) follow from a certain asymptotic expansion of
Hermite polynomials due to Plancherel and Rotach as well as from correspond-
ing expansions for Laguerre polynomials; (6.32.4) holds for arbitrary real c.
We discuss these formulas in Chapter VIII (cf. §8.9 (3)). They show that the
constant 7, in (6.32.2) and (6.32.3) is the best possible if » is fixed and 7 is
arbitrary.

We notice that the expressions
{(dn + 2a + 2)! — 67 4n + 2 + 2)7H0 )7,
(6.32.6) .o
@n + 1)} —67'@2n + 1)7%,

are upper bounds for the zeros of L\ (z) and H.(z), respectively, | a | = 1,
a > —1. Here the constant

(6.32.7) 67t = 1.85575 - -

cannot be replaced by a smaller one. These bounds are more precise than

those previously given.

Alternative forms of (6.32.4) and (6.32.5) are
= )t — 674,dn) ™ + onh),
(6.32.8) D 4
z, = (2n) — 67°40,(2n) 7 + o(n7), n— o,

respectively. Also, the first formula can be written as follows:
(6.32.9) z, = 4n — 2-6714,(4n)! + o(n}).

(2) Writing h, = (2n + 1)}, we substitute z = h, — £ in the second equation

(5.5.2) and obtain
2
(6.32.10) %{5 + (2h, £ — )z = 0.

Next we compare this equation with
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A

(6.32.11) e

+ 2h.¢Z = 0,
which has the solution Z = A{(6h.)*£}; here A(z) is Airy’s function defined
in §1.81. We can then apply Theorem 1.82.1 in [— «, + «]; condition (1.82.2)
is satisfied at £ = — o (cf. the last remark in §1.81). Thus we have (6 h,) %,
< hn, — z,, which establishes (6.32.3).

(3) We add a sketch of a direct proof of (6.32.5) based on Sturm’s method.
Let the real variable £ be subject to the condition | £ | £ 2h,e, , where 0 < ¢, < 1;

we shall dispose of ¢, later. Then
2hn E(l +e) if £

We now compare (6.32.10) with

d's

(6.32.13) 72

+ 2861 £ en)f = 0,

where the signs + and — correspond to £ = 0 and ¢ = 0, respectively. Using
the notation (1.81.1), we consider, for —2h,e, < £ < 0, the solution

03218 UERW'A + 't - HOR' + o'y K
with
(6.32.15) Xo= 6h)' (1 + e)'2hnes .

This solution vanishes for § = —2h,e,. On the other hand, for 0 = ¢ < 2h,¢a,
we shall consider the solution

(—-X,)
(=X,

(6.32. 16)<1+€"> H(6h)'(L — &' — E{(Bh)(1 — e)'e)

At ¢ = 01t has the same value and the same derivative as (6.32.14) on account
of (1.81.1). According to Sturm’s theorem, H,(h, — £) oscillates more rapidly
in the interval —2h.e, = & £ + 2h,e. than the function ¢ = {(¢) represented by
(6.32.14) and (6. 32 16).

The only negative zero of {(£¢) is £ = —2hne, . We now calculate the positive
zeros of (6.32.16), that is, the values of £ for which

{(6h)' (1 = en'e) _ <1 - en>* (=X2)
k{(6ha) (1 — en)t] 1+ e/ k(—Xa)

If ¢, is small and X, large, the right-hand member is nearly —1, and the »th
zero in question is, for a given », near to (6h,) (1 — &) %, . If X, is large
and positive, we obtain from (1.81.3) and (1.81.5)

(6.32.17)
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(6.32.18)

U= X,) A(=X) '
x) 1T (— Xn)——3*e?<p%—4(Xn/3)*}.

Now let vy be a fixed positive integer and e an arbitrary positive inumber.
We choose

(6.32.19) e = b %, X, = 2611+ el > 2.6k,

where w is a fixed positive number, so large that 2-6%w > i,y + 1, and ithe left-
hand member of (6.32.18) is less than e. For sufficiently small values of e,
and as n — o, the first vy zeros of (6.32.17) then have the form

(6.32.20) 6h) 1 — )76 + 9), y=12 -+, n,

where | § | is arbitrarily small with e. (At any rate let | 6 | be less than 1.)
We see that for large n, the expressions (6.32.20) are less than 2k, ¢,. - Hence,
when we apply Sturm’s theorem in —2h,e, = £ £ +2h,¢,, we have.

(6.32.21) hn — 2, < (6h) (1 — &), + ).
This latter relation combined with (6.32.3) establishes the statement (6.32.5).

6.4. Theorem of Pélya-Szego on trigonometric polynomials thh
monotonic coefficients

THEOREM 6.4. Letag > a1 > --- > am > 0. Then the functions
J(t) = apcosmt + a;cos(m — 1)t + -+ + @n-1COSE + Am, .
(6.4.1) g(t) = aocos(m + 3t + a1 cos(m — It + .- + am_y cos(3t/2)
+ an cos(t/2),

have only real and simple zeros; there is, respectively, exactly one zero in each of
the intervals ! :

1 1 l 1
k= 3 v+ oz +§

4.2). < B2 d A2 t < K2
(6.4.2) m+%7r<t m+%7r and n+17r< <X oo
where w = 1,2, ... 2my,and p = 1,2, --- |, 2m 4+ 1, respectively.

The first part of the statement is duc to Pélya (3, p. 359); his proof uses the
principle of argument (Theorem 1.91.1). The following proof furnishes Pélya’s
result again and, in addition, the inequalities (6.4.2) (Szegd 20, pp. 9-11). It
is based on Fejér's fundamental theorem (FeJer 1; see P6lya-Szego 1, \ol 2,

pp. 78, 269, problem 17) which asscrts that the sine polynomials
oa(t) = sin(t/2) + sin(3¢/2) + --- + sin(n + ),
6.4.3
( ) n=2012 .-..;0<t<2r,

are non-negative.
If f(t) and §(t) denote the conjugate functions of f(£) and g(?), recpcc’m ely,
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we have

(6.4.4) —Je ™I 4+ FWO)) = —F T Hg(0) + igt)} = 2 ausin(u + B,
#==0

which is positive for 0 < ¢ < 2, according to Abel’s transformation (1.11.4).
Therefore, :

@) sin(m + )t — J(¢) cos(m + 3)t > 0,

(6.4.5) .
g@) sin(m + 1)t — §(t) cos(m + 1)t > 0, 0 <t < 2m,
whence |
il 0 il 2 W R
(6.4.6) sgnf<m T3 ) sgng<m +17r> = (—=1)*",

This shows the existence of at least one zero in each of the intervals (6,4.2).
On the other hand, the functions (6.4.1) cannot have more than 2m and 2m. + 1
zeros, respectively, in [0, 2r]. -

6.5. Fejér’s generalization of Legendre polynomials

(1) Starting from the representation (4.9.3) of Legendre polynomials, Fejér
(9) defines the “Legendre polynomials F,(z) associated with a given seqdence
o, a1, az, -+ in the following way: :

Frn(cos 8) = 2apan cos n + 2aran_y cos (n — 2)0 + - - -
(651) n {2(1(,.._1)/2 Q(ny1)/2 COS 0, ifn (Ddd,
2

Qnfa, if n ¢ven.

The classical Legendre polynomials P,(z) are obtained if

1-3---(2n —1) 3
= = : = = =1 2 fe s
(6.52) (24)] GJo ]-, Qn Jn 2.4 - .- ) s N 3 )3) )

the ultraspherical polynomials P$’ (z) if (§4.9 (4))

-1
(6.5.3) a = 1; ‘a,,=<n+;’\ >’ n=123;""-.

Various properties, well-known in these special cases, can be extended to the
general polynomials F.(z) by imposing proper restrictions on the sequence {aa}.
These restrictions concern certain properties of monotony and asymptotic
behavior.

(2) TuroreM 6.5.1. The zeros of Fa(x) are real and simple and lie in the inter-
val —1 < z < + 1, provided a, > 0 and the sequence

(6.5.4) ay/an, aofay, -+, @nfQny, v
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[ VL]
is increasing.  More precisely, each interpal
- 1 1
6. . v 2 4 + 2
(6.5.5) n+17r<0<n+17r, v=1,2 , N,

6.4 if we write n = 2m or n = 2m + 1, accor
The condition in question is satisfied for
ultraspherical case for 0 <A<

The inequalities (6.5.5) are not so precise as the Bruns inequalities (6.21.5).
However, they hold for & comparatively general class of polynomials.

ding as n is even or odd, and 26 = ¢.
Legendre polynomials and in the

(3) THEOREM 6.5.2. Let the sequence {ay,}, a, > 0, be completely monotonic,
that is, for all the defferences,®

k k
(6.5.6) Aoy = Xn — (1) @ny1 + <2> Onyg — -+« -4 (*‘Ukan.;k = 0,

kyn=0,1,2 ...

Then the zeros z, = cos 6,,0 <0, < of F.(z) are not oniy real and lie in
[—=1, 41}, but they also satisfy the inequalities (6.21.7) of Stieltjes:

.
‘nF 1

A

(6.5.7) @*aggm v=1,2 -, [n/2.
Here the signs of equality hold 3f and only if F,(z) s Tchebichef’s polynomial of
the first (see below) or of the second kind, respectively.

See Fejér 17, pp. 311-312. According to an important theorem of Hausdorff
(1) the class of completely monotonic sequences {a,}, a, > 0, is identical with
the class of sequences which can be represented in the form

1
(6.5.8) a, = / " da(t), n=2012-..,
Q

where «(t) is a non-decreasing function, not constant, with 2a(t) = a(t + 0)
4+ at —0)for0 <t < 1. For sequences of this kind the condition of The;)rem
6.5.1issatisfied (Schwarz’sinequality). The ultraspherical polynomials PV (2),
0 <A <1 are obtained [(1.7.2)] if

n—+x-—1

1
>=w*mmw/fMﬂu—o“@ n=012:--.
n 0

(6.5.9) a, = (

Tchebichef’s polynomials of the first kind are a limiting case of (6.5.9) since

%% This definition of the differences of various orders is not the same as in (2.8.4).
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! 1
(6.5.10) "7t =2, n=1,2,3 -
n
so that
(6.5.11) ling X' Fa(cos8) = osné, n=123 -

Tchebichef’s polynomials of the second kind arise if an =71",0 < r £ 1, that is
a(t) has only one point of increase in 0 < ¢t < 1.
Fejér’s argument is as follows:

(6.5.12) F.(cos9) = ‘ll ﬁl{i t* 4" cos (n — 2k)0}da(t) dau).

k=0

?

An elementary transformation of the integrand gives

(¢t — W™ — u™™ 2tu(t™ + w™)sin’ 9 sin (n + 1)8

6.5.1

( 3) 1?2 — 2tu cos 20 + w2 cos nd +- £ — 2tu cos 20 + w2 sin 6 ’
so that

(6.5.14) Fa(cos 0) = 4,(6) cos o + B(g) {7 + 1

sin 8

where A4,(8) and B,(#) are positive functionsin 0 < § < = provided «aft) has
at least two points of increase. From this it follows that

sgn F,.{cos -1 Z} = —sgn F,,{cos;: T } = (—1)"*

(6.5.15) n+ 1

v =1,2,---,[n/2],

which establishes the statement.

The last part of this argument is similar to that used in the proof of
Theorem 6.4.

(4) Fejér considers (20, pp. 40-45) another remarkable generalization of
Legendre polynomials. He starts from the representation (4.9.5). Let
Bm | 0, and

G.(cos 8) = Bysin (n + 1)8 + By sin (n + 3)6 + - --

(6.5.16) .
+ Bmsin(n 4+ 2m 4+ 1)0 + -+ -.

This series converges for 0 < 8 < = (see §4.9 (2)). Legendre polynomials are a
special case, as well as the more general functions (sin 6)* 7P’ (cos 6),
N> 0, N #1,23 - (see (4.9.22)). In these cases the sequence Bn = f&

(using the notation of (4.9.22)) is completely monotonic. In fact, we have

(6.5.17) f'(nx) _ r(n)\-if _ 7(11)\){ nA 1 +>\('n + 2)) 1 } =M

n+rxm-+41 n+XN n+AN+m+1
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The sequence {v.,} is completely monotonic and, on account of a well-known
formula, we have

k

(6.5.18) Ak+1 79) — Ak{fn(t)\) _ "Ei)l — Z <ﬁ> Ayf,,(l)‘)Ak_y'ymH.

v=0

Hence the statement follows by induction.*
Fejér shows (loc. cit.) that G.(cos 8) has at least one zero in each interval

5.1 — 1T Ll =
(65 9) (V 2)n<0<yn+1’ 4 1727 7[77'/2]7
provided
(6.5.20) Bm 20,48, 20,4%, 20,4, 20, m=0,1,2,---.

His proof is based on the positiveness of certain special trigonometric poly-
nomials. We shall prove the following theorem:

THEOREM 6.5.3. The function Ga(cos 0) has at least one zero in each interval
(6.5.19) provided {B.} is a completely monotonic sequence.

This condition is more restrictive than that of Fejér. The proof is, how-
ever, very simple. Using (6.5.8), with 8, and B(¢) in place of a, and a(f),
respectively, we obtain

G.(cos 8) = /l{i " sin (n + 2m <+ 1)0} dﬁ(t)
(6.5.21) oo

! 2t dB () ) /‘ (1 —8ds@) .
_‘l 1 — 2t cos 20 _ht,zsmecosne-k o 1 — 2t cos 20 + t28m (n + 1)6.

From this point the statement follows in the same way as in the proof of
Theorem 6.5.2.

6.6. Recapitulation; additional remarks on ultraspherical polynomials

(1) We have obtained the following inequalities for the zeros z, = cos 6,
0 < 8, < =, (arranged in decreasing order) of the ultraspherical polynomial
P9@), a = X — %, provided 0 < X\ < 1:

(a) Inequalities (6.5.5), derived from the representation of P{**(cos 6) as a
cosine polynomial:

[S1

y — 3 v 4+

— 2 v = 1; 2: Tty e
(6.6.1) n+17r<0 <n+17r, v n
(b) Inequalities of the Bruns type:
v — % v
(6.6.2) =7 <0, < ., vy =1,2, , N,
b + 2

40 For A = 1/2 this follows directly from (4.9.9).
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V—_:“‘f‘ﬁ—}”<0”<ﬁfyi__>\“’ y=1,2 -, n.
Inequalities (6.6.2) follow from (6.21.2), which was proved by A. Markoff and
by Stieltjes in two different ways (cf. (6.21.5)); (6.6.3) is a special case of the
more general inequalities (6.3.7) proved by Sturm’s method. The inequalities
(6.6.2) are more precise than those of (6.6.1) and those of (6.6.3) with A < %;
the opposite is true if A > 3.

(¢) Inequalities of Stieltjes’ type:

(6.6.3)

1
(6.6.4) l»{—f T <6 < n_—:-_l T, v=12 --- [n/2].
These follow from (6.21.3) and were proved by Stieltjes. They can also be
readily derived from (6.21.2) (which is due to A. Markoff and to Stieltjes).
Fejér obtains them from (4.9.19) or (4.9.22) (cf. Theorems 6.5.2 and 6.5.3).
An alternative proof for the upper bound is due to Szegé (Sturm’s method,
§6.3 (3)). The upper bound is better than that in each of the preceding in-
equalities; the lower bound is better than that in (6.6.2), and is better than
that in (6.6.3) provided A < 1.

(d) Szegd’s lower bound:

vy — (1 —N\)/2
n+x

This follows by Sturm’s method in two different ways (¢f. 6.3 (2) and (5)).
For a third method see (2) below. This lower bound is more precise than
any of the preceding ones.

(2) By combining the integral representation (4.82.3) with thc argument
used in the proofs of Theorems 6.4, 6.5.2, 6.5.3,

(e) Fejér obtains (19, p. 208)

v — (1 —2)/2 y4+ A —1 .
, < LT A2 =12 - .
Y T <6 < e , 2, , [n/2]

The lower bound is the same as in (6.6.5). The upper bound is less or greater
than that in (6.6.4) according as A < 4 or A > 3.

For the proof we substitute the bound in (6.6.5) for in (4.82.3),0 < 8 < 7/2,
and find that

(6.6.5) 6, >

V=1,2,°~-,[n/2].

(6.6.6)

(6.6.7) sgn PR (cos ) = (—1)" sgn {7V (1 — ).
It happens that the last sign is constant if ¢ varics in 0 < ¢ < 1. Indeed, the
argument of the expression in the braces lies between 0 and —\(w/2 — 9).

Thus (6.6.7) becomes (—1)"*'.
Upon substituting the upper bound of (6.6.6) in (4.82.3), we have

(6.6.8) sgn PP (cos 6) = (—1) sgn {1 — )7} = (=1),

which establishes the statement.
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To recapitulate: the lower bound (6.6.5) is the best of all lower bounds given
here; while in the case of the upper bounds, either (6.6.4) or (6.6.6) is best
according as X > 3 or A < 3. Here we did not refer to inequalities which in-
volve zeros of Bessel functions.

6.7. Electrostatic interpretation of the zeros of the classical polynomials

Stieltjes gave (4, 6; 6, pp. 75-76; cf., also, Schur 1) a very interesting deriva-
tion of the differential equations of the classical polynomials, which is closely
connected with the calculation of the discriminant of these polynomials (cf.
§6.71) and can be interpreted as a problem of electrostatic equilibrium.

(1) ProBLEM. Let p and q be two given positive numbers. If n unit “masses,”

n 2 2, at the variable points 1, Xy, 23, - -+ , Tn in the interval [—1, +1] and
the fized masses p and ¢ at +1 and —1, respectively, are considered, for what posi-
tion of the points z,, x2, 23, -« - , Tn does the expression

(6.7.1) T(x1, 20, -+, 2:) = T(2) = I_nIl Q=20 +z) I lo—u=]

voum=1,2," 0y n

v<p

become a maximum?

Obviously, log (T™") can be interpreted as the energy of the system of electro-
static masses just defined. They exert repulsive forces according to the law
of logarithmic potential. The maximum position corresponds to the condi-
tion of electrostatic equilibrium. A maximum exists because 7' is a continuous
function of z;, 22, -++ ,zafor =1 =z, = +1,» =1,2,...,n Itisclear
that in the maximum position the z, are each different from =1 and from one
another. In addition, this position is uniquely determined. To show this, let
us suppose that (cf. Popoviciu 2, p. 74)

+1 >z >2> - > x> —1,
(6.7.2) , , )
F1>m>2> - >2,> —1
are two positions of this kind; we write
(6.7.3) y = (&, + z,)/2, y=1,2 .-+, n.
Then

7 7
‘?/v _?/nl = ‘xv_xn‘ _2+- ‘x" _x“‘ = ]x" ——x,‘]*]x: —x; i’

|1 +y] 2|1 x|l £ 2|,

so that T'(y) = {T@)}{T()}}, the equality sign being taken if and only if
z, = z,. This establishes the uniqueness.

TuroreM 6.7.1. Let p > 0,¢ > 0, and let {z,}, —1 = z, = +1, be a system

of values for which the expression (6.7.1) becomes a mazimum. Then the {z.}
are the zeros of the Jacobi polynomial PP (), where « = 2p — 1,8 = 2¢ — 1.
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From this fact the uniqueness of the maximum position follows again. For
a maximum we have the conditions 87/(3z,) = 0, or

1 1 1
4+ oo : + + .
x, — Ty — Ty v T Ay
(6.7.5) ‘ bom T B
1 p q
+x,~—x,.+x,——1+x,+1_0'
If we introduce the polynomial f(z) = (x — z)x — 23) --- (x — z,), this
becomes
1 f"(,) p g
(6.7.6) 5 Tz + P + o1 0,
or

(1 — &)f"(2) + 120 — 2p — (2¢ + 2p)z.}f'(z,) = O.

The last equation means that (1 — z%)f"(z) + {8 — « — (a + 8 + 2)z}f'(z)
1s a m, which vanishes for all the zeros of f(z); whence this expression is equal
to const. f(z). By comparing the terms in z” we obtain for the constant factor
the value —n(n + « + 8 + 1). The resulting differential equation reduces to
(4.2.1), so that according to Theorem 4.2.2, f(z) must be a constant multiple
of P{P(z).

See also Problem 37.

(2) The zeros of Laguerre and Hermite polynomials admit a similar inter-
pretation.

THEOREM 6.7.2. Let us consider the positive mass p at the fized point z = 0
and unit masses at the variable points z,, @y, --- , 2, in the interval [0, + =]
such that_the “centroid”’ satisfies

(6.7.7) w2 -+ 1, < K,
where K 1s a preassigned positive number. Then the mazimum of
(6.7.8) Uz, 23, -+, 2) = ][] 2? 1II lz, — z,|
k=] vp=1,2,"- -, n
vep

is attarned if and only if the {z,} are the zeros of the Laguerre polynomial L (c2),
where a« = 2p — 1, and ¢ = K'(n + a).

THeorREM 6.7.3. Let us consider a unit mass at each of the variable points

Ty, Tz, + -, Tn 10 the tnterval [— o, + ] such that the “moment of inertia’
satisfies
(6.7.9) n e 42+ 42k £ L

where L 15 a preassigned positive number. Then the mazimum of
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(6'710) V(xly Tay +0 -, xn) = H ]xy —_ x,.]

18 abtained if and only if the {z,) are the zeros of the Hermite polynomial H ('),
¢ = @L)*n - 1

The existence and uniqueness of the position of maximum is clear in both
cases. The corresponding z, are all different from one another; in the first
case they are positive. It is clear, furthermore, that for the maximum position
the sign of equality holds in (6.7.7) and (6.7.9). Hence, if p is a proper

“multiplier,” we have
1 1 1
et —— +2-2
y — 1 :Cv — X9 T, — :Cn. X, n
(6.7.11)
z.f"(x,) + <2p - %’—’x> (@) =
in the first case, and
1 1 1 2p
T, — X :c,—xz+ “+x,—x;_;1—"’

(6.7.12)
f”(xy) _ %xyf'(x,) =0

in the sccond. In both cases we have written
J@) = @ —a)(x — 2) -+ (z — z,).

If we replace z by cz, with ¢ a proper constant factor, these conditions can easily
be reduced to the first equation in (5.1.2) and to the first equation in (5.5.2),
respectively.. Therefore,

f(z) = const. LS (cx), @« = 2p — 1, ¢ = 20n7",
in the first case, while f(z) = const. H,(¢z), ¢ = (2p/n)! in the second case.
The constants ¢ and ¢’ can be determined from the conditions (6.7.7) and
(6.7.9), in which the equality signs now hold. We observe that according to
(5.1.6) the sum of the zeros of L{*(z) is equal to n(n 4+ a); according to (5.5.4)
the sum of the squares of the zeros of H,(z) is equal to n(n — 1)/2.

Cf. also Problem 38.

6.71. Discriminants of the classical polynomials

The maximum problems treated in the preceding section are closely related
to the caleulation of the discriminants of the classical polynomials (Hilbert 1,
Sticltjes 4, 5). The following method is due to I. Schur (2) (cf. Popoviciu 2).

(1) Let {pa(z)} be a sequence of polynomials satisfying the recurrence
formula
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pn(z) = (@nT + ba)onaa(z) — Capna(z), n=2,3,4,. ;

(6.71.1)
po(x) = 1; pi(x) = ayz + by.

We suppose that a,c, ¢ 0. Denoting by {z,,} the zeros of p,(z), we show that

(671.2) A, = IEI1 pr1(@m) = (=" V2] (a2 ™, n=1,23,---.

y=]

Suppose n = 2. The coefficient of 2" in pn(Z) is.@102 + - - @y_y, so that

n
An = (alaZ e an—l)n III (xm - xl.n—l) (xm - x2,n—l) cee (xvn - xn—l,n—l)
o

(6.71.3)

(ala2 e _l)ﬂ.
= (alaz P an)n—l p”(xlv”—l)pﬂ(x2,n—l) e pn(xn_lv,,_l).
n

Using the recurrence formula, we obtain

n—1
An = al a2 A an—l * a::""( - Cﬂ-) nl H pﬂ—z(x" 17"—1)
(6.71.4) =1

1-n _n—1

=. (_l)n—lalaﬂ *rOny 0y Cp An-—l,

which establishes the statement.

(2) TaEOREM 6.71. The discriminants of PP (z), L (z), Ha(z) are

(6715) Dsla,ﬂ) = 2—n(n—l) H Vv—2n+2(y + a)v—](y + B)v—l(n + v + o + B)n—-v’
v=1

(6.71.6) D = ITv ™0 + o),

pom]

po=]

(6717) Dn = 23n(n_l)/2 H Vv’

respectively.

We start from the familiar expression (cf., for instance, O. Perron 4, vol. 1,
p. 259, (12), (13); p. 260, (16))

Dﬁla.ﬂ) — {lia,ﬂ)}2n—2 H (x”l _ x;m)2

vu=12, " n
(6.71.8) r<H
= (_1)n(n—1)/2 {lsla.ﬂ)}n—2 InI Ps;a'ﬂ),(xyn),

y=]

where 15*® has the same meaning as in (4.21.6), and {z,.] denotes the zeros
of P*?(z). The discriminants D and D, admit a similar representation.
According to the first formula in (4.5.7), we have
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(6.71.9) (1 — x2)%{P§“'ﬂ>(x)} = 2%‘;:{5":35).1&‘:&”(@ if PP(2) =0,

so that

D(a.ﬂ) - (_l)n(n—l)/2{l(a.ﬂ)}n-—-2 2(n + a)(n + B) "
" " 2n + a+ B

n

JI (1 = 237 P (@)

=]

(6.71.10)

= (_l)n(n+l)/2{l(a.ﬂ)}n{2(n + a)(n + B)}n
" 2n +a +8

APEPPEP(— 1)) T PR (2im).
=1

The last factor can be calculated by means of (6.71.2), so that on account of
(4.21.6), (4.1.1), (4.1:4), and (4.5.1), we obtain (6.71.5).

The expression (6.71.6) can be calculated in the same way by using (5.1.14),
(5.1.8), (5.1.7), and (5.1.10); or even more simply, from (6.71.5) by using the
limiting process of (5.3.4). Indeed, if {z,, = 2,.(8)} denotes the zeros of
PP (z) in decreasing order, we have, for fixed » and =, :

(6.71.11) lim (1 — z,,) = 2£.,

B+ 0

where {£..) are the zeros of L\*’(z) in increasing order. Therefore,

Ds;a) — {lia)}2n—2 H (Evn _ E;m)2

=12, n

v<p
— (a))2n—2 1= n(n—1) _ 2
Griaz = WO lm @ L e = 2

r<p

- {lia) }271.—-2 lim (3/2)n(n-—-l) {lsla'ﬂ)}_2n+2D£;a'ﬂ)
B0
which establishes the statement.
The discriminant D, can also be obtained either directly, or from (6.71.5)
by using (5.6.3), or from (6.71.6) by using (5.6.1). The first method is the
simplest. By using (5.5.6), (5.5.10), (5.5.8), and (6.71.2), we find (6.71.7).

6.72. Distribution of the zeros of the general Jacobi polynomials

(1) Let « and B be arbitrary real numbers, n = 1, and let P{*?(z) denote
the generalized Jacobi polynomials defined in §4.22. Then (6.71.5) still holds.

It follows from (4.1.1) or (4.21.2) that z = +1 is a zero of P{*"*(z) if and
only if

(6.72.1) a=—-1 -2 ..., —n.
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(The multiplicity of this zero is |« |; cf. (4.22.2).) Similarly, z = —1 is a
zero if and only if (cf. (4.1.4))
(6.72.2) B=—1,-2 ... —n

Finally, it follows from (4.21.6) that + = <« is a zero, if and only if
(6.72.3) nt+a+pf=-1 -2 ... —n,

If such values of @ and B are excluded, the zeros of piP (z) are different from
#1 and «;in addition, (6.71.5) shows that they are distinct. (This follows
also from (4 2.1); cf. §62 (3).) Let N1, N:, Ns be the number of zeros in
—I1<z<+1, —-o <2< —1,and +1 < z < + =, respectively. We shall
now determine these numbers as functions of « and 8.

Hilbert (1) calculated the number Ny + N, + N; of the real zeros. A remark
of Stieltjes (5, p. 444) indicates that he obtained the numbers N; , N, , N3 three
years before Hilbert’s paper. The later results of Klein concerning the number
of the zeros of the general hypergeometric function (1, pp. 562-567) readily
lead to these numbers. (Cf. also Shibata 1, Fujiwara 1, Sen-Rangachariar 1)
By use of Klein’s.symbol

0 if w=0,
(6.72.4) E(u) =¢{ [u] if w > 0, u non-integral,
vu—1if =123, .
we can formulate the following theorem:
THEOREM 6.72. Let , B be arbitrary real values, and set
X=2Xep)=Ei(l2n+a+B8+1]|-|al-is|+1)
(6.72.5) Y =Y(e,B) = E{3(—|2n+a+ B+ 1|+ |a| —|8] + D},
Z=2ZapB) =Ei(-I2n+a+B+1]—|a|+ 8]+ D}

If we exclude the cases (6.72.1), (6.72.2), and (6.72.3), the numbers of the zeros of
PEP@)in —1<z <41, —o <2< ~1,4+1 <z < +, respectively, are

A + /2 i o (") (T8) >o
2aAX/2l +1 4 (-1 <"+“><"+B>
2A(Y +1)/2) of <2"+“+B><"“;B>>O,

oAv/2l+1  if <2"+°‘+B>< j;f’><0

(6.72.6) Ni = Ni(a, B) =

(6.72.7) N, = Na(e, B) =
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20(Z + 1)/2) if (2" Tt B) <" + “) >0,

n

2Mﬂk+1{f<%+ﬂ+ﬁ>c+ﬂ><0

n n

(6.72.8) N; = Ny(o, B) =

We notice that the numbers 2[(X + 1) /2], 2[X/2] 4+ 1 can be characterized,
respectively, as the even or odd of the numbers X and X + 1, so that N,
is either X or X + 1. We also see that the conditions in (6.72.6) are
equivalent to P.* ﬂ)(l)Pfl“'ﬂ)(—l) > 0 or <0, respectively. For instance, if
sglwﬁuwﬁW—n=(—nxmcqﬁﬂwmnM@Jn=Xoux+L
respectively. Similar remarks hold for N; and N; .

B
E-n—-8)=0 En + 1+ a) En+1)=n
En+1+a+p)|0 o
En+1+p)
E-n)=0
E-n-a)=0

F16. 7

It is sufficient to calculate N;. On account of (4.22.1) we obtain N, by
replacing « by —2n — « — 8 — 1in (6.72.6), while N; is obtained from N, by
interchanging « and B. The following proof is based on the continuity of the
zeros as functions of « and S. .

(2) For convenience, we introduce the notation M(a, 8) for the function of
the right-hand member of (6.72.6) so that we must prove Ni(a, 8) = M (a, B).
If the point (e, B) varies, the function N,(a, 8) can change only if (a, B) crosses
one of the straight lines (6.72.1) or (6.72.2). We first show that the function
M (e, B) has the same property.

An easy caleulation furnishes the value of X(a, B) in the seven regions
bounded by the a- and -axes and by the straight line 2n + o« + 8+ 1 = 0
(see figure 7). The only discontinuities of the function E(u) are at the points
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uw =1,23, ... ; hence, apart from the straight lines (6.72.1) and (6.72.2), a
jump of the function M(e, B) is possible only in the triangle where X(a, 8) =
E(n+ 1+ a + B) if n + 1 + a + B coincides with an integer k, 1 £ k < n.
Let @ = a and B = By be negative non-integers, n + 1 4+ a + B = k, and
let the integers p and ¢ be chosen such that

(6.729) —-p<a< —p+1, —¢<p< —q+1, 1Sp=nl1=qg=n

Then we necessarily have k = n + 2 — p — q. We investigate M(«, 8) for
n+l4+a+B=k=xe¢0<e<I where|a — al|and |8 — B¢| are suffi-
ciently small. Obviously,

sen (-1 (" F oI %) = 0= =

furthermore, X(a, 8) = E(n + 14+ o+ B) = E(k = ¢) = kor k — 1, respec-
tively. In other words k¥ = X or k¥ = X + 1, respectively. Then (see the
remark concerning Theorem 6.72) M(«, B) = k in both cases, so that no change
oceurs in M(e, B).

(3) We now show that when (a, 8) crosses one of the lines (6.72.1) or (6.72.2),
the jumps in Ny(a, ) and M(a, B) are the same. This will prove the statement
(6.72.6), since, for « > 0, 8 > 0, we have Ny(a, B) = n and X(e, B) =
M(a) B) = n.

Because of the symmetry in « and 8, it is sufficient to consider the case
a=—kzde¢e>0 1=k = n,Bnotaninteger, and to discuss the location of
the zeros near z = 1.

From (4.21.2) we obtain for « = —k 4+ ¢

2°k! (n — k)!
672100 *HatBtD -(rtatptE)(athk+1)-- (atn)

= a()) + a(e(@ — 1) + -+ + )z — D'+ (z — 1
+ ()@ — D + oo ()@ — D

P P(z)

Here the coefficients are real rational functions of ¢, regular for ¢ = 0, and

(6.72.11) @(0) = ¢(0) = .- = ¢,(0) = 0.

Furthermore,
eole) = 2k{<n>}_l (@+Da+2) - (a+ k) )
’ k) (ntatB+Dintatp+D  tatpt+h)

(6.72.12) 2\ (k — 1)!
c(0) = (=1)*2 {(k)} n+B)(n+p8— 1).--(n+B—k+1) =0

By means of a simple consideration from the theory of analytic functions (see
below), we now obtain the following result. If § is an arbitrarily small positive
number (8§ < sin #/k for k > 1), then for sufficiently small values of ¢ > 0, the
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function P (2), @ = —k 4 ¢, has exactly k distinct zeros in the neighborhood

of z = +1. More precisely, if »,, M2, s, + - -, M denote the numbers satis-

fying the equation

(6.72.13) sgn ¢o(0) + 7* = 0,

these roots lie in the circles

(67214) z =1+ (€ lC(,)(O) |)l/k(771‘ + 2), |2| < 6, v=12 ... )k'
By replacing ¢ by —e (thatis, for « = —k — €), the same result holds with

the circles

(6.72.15) z =14 (e co(0) N (¢, + 2), 2] < 5,

where {1, {2, - -+, {& are the roots of

(6.72.16) —sgn ¢ (0) + ¢ = 0.

The root corresponding to a real n, or ¢, is obviously real.
To prove the previous statement we introduce z = 1 + (e | co(0) | )"y in
(6.72.10) and obtain

*”! &) + - + al)e] ) P y

14

2
eco(0) + % &6(0) + - +

(6.72.17) + o+ cemale) (e [ eg(0) NEVET 46 [ 6s(0) | 4
+ crpa(€) (e e (0) NERM Lot 6 (e | eo0) )My = 0.

If this be divided through by e | ¢o(0) | , the “principal terms” are sgn c(0)
+¢*. Now we can apply Theorem 1.91.2 (Rouché’s theorem) ; whence the state-
ment follows immediately.

We are interested especially in the number of real zeros z < +1nearz = +1.
From the preceding result we see that this number increases or decreases by
one unit if we replace e by —e, according as (—1)*c,(0) is positive or negative.
With reference to (6.72.12) this is equivalent to the condition that

<n_lt_ﬁ><0 or > 0,

respectively.

(4) On the other hand, we discuss the jump of M (a, B) as (@, B) crosses
the line « = —k with 8 non-integral. First suppose 8 > 0, so that X (a, B)
=En+1+a). Fora= —k=+e¢ >0 wehave

n+4 —k,
(6.72.18) X(,8) =En+1—kxe = { ]
n —k,

respectively, and
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© (6.72.19) sgn (—1)"<" :: “><n :: B) — sgn (1) <n + a> _ {(—1)"*"“,

n (_1)n+k,

respectively, which in both cases is (—1)**®. Hence (cf. the remark to
Theorem 6.72) M(a, B) changes fromn + 1 — kton — k, a loss of one unit.

In this case
n+ B
(%)

Now let B8 be negative and non-integral. Then n + 1 + « + B is non-
integral near @ = —¥, so that X(a, ) remains constant in this neighborhood.
More precisely,

n+1—-k+[B if n+1—-k+4+8>0,
0 if n+1-k+8<0.
In the first case we have for @ = —k £ ¢, ¢ > 0,
—D*(~1 k~1 -1 [ﬂ]+l,
(6.72.21) Sgn(_l)n<n+a> <n+3> _ D=0 =)
n n (—1)”(_.1)k(_1)[ﬂl+1,

respectively, which are (—1)*?* gpq (=1)**P respectively. Hence (cf.
the remark to Theorem 6.72), M(«, B) changes from X (e, B) + 1 to X(e, B),
a loss of one unit. In this case, again

n+ B
(*+9)>0

Let us now consider the second case in (6.72.20). Then

sgn (—1)" <n :a> <n ;t_ B)

(6.72.20) X(, B) = {

(67222)  =sgn (—1>"<" M “) <" M B)f-;‘!(ﬁ+ DE+2) - B+n -k
(1) o (1)
respectively, fora = —k £ ¢, ¢ > 0. For instance, if
C1)en

M(a, B) changes from 0 to 1, a gain of one unit. The opposite is true if

n+B
(%) >0

This establishes Theorem 6.72.
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6.73. Distribution of the zeros of the general Laguerre polynomials

The discriminant formula (6.71.6) is valid for general Laguerre polynomials
L{(z), « arbitrary and real, n = 1. On account of (5.1.7), z = 0 is a zero of
L (z) when and only when '

(6.73.1) a= -1, =2 ...

(Its multiplicity is | « |; ¢f. (5.2.1).) If such values of « are excluded, the zeros
of L{*'(z) are finite and different from 0; in addition, we conclude from (6.71.6)
(or from the first differential equation (5.1.2)) that they are distinct. Let
n1(a) and ny(a) denote the number of positive and negative zeros, respectively.
By using Theorem 1.91.3 (Hurwitz’s theorem) and (5.3.4), we see that if 8 is
large, P{**?(z) has at least ny(e) zeros in [—1, +1], at least m(a) zeros in
[+1, + =], and at least n — m(e) — ne(a) zeros which are not real. There-
fore, using the notation of the previous section, we see that n;(a) = Ni(e, B)
and n:(a) = Ns(a, B) if B is large; that is,

(6732) nl(a) = ]Jim Nl(a, B), m(a) = lim Na(a, B)
B>+t B+t
Obviously, if « > —1, then ni(a) = 7, and ny(a) = 0.
Now suppose a« < —1, @ # —2, =3, ..., —n. From (6.72.5) we obtain
n -+ [a] +1 if o> -n,
lim X(a,8) =En+a+1) =
fsteo 0 f a< —n,

since the argument of E in the formula for X(«, B) is not a positive integer;
furthermore, '

lim Z(a, 8) = E(—n) = 0.

B-++00

nt+(al+l -
n + a (—1) f a> -n,
&n n 1 if a< —n.

Now

Thus, Ni(e, 8) = n + [a] 4 1 in the first case, and Ni(a, 8) = 0 in the second.
Therefore,

n+la)+1 if a> —n,
(6733) n1(a = .
0 f a< —n.
Furthermore,
(6.73.4) na(a) = 0 or 1,

according as

L) = (" + “) 2 0.

n
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THEOREM 6.73. Let « be an arbitrary real number, a % —1, —2, ..., —n.
The number of the positive zeros of L\ (z) s nif a« > —1;4tisn + [a] + 1 ¢f
—n<a< —-1l;i#1s0sf « < —n. The number of the negative zeros is 9 or 1.

This result can also be obtained by a direct method similar to that used in
§6.72. In fact, the numbers n;(a), n:(e) can change only if « passes one of the
integers —1, —2, ..., —n. If a decreases through an odd value of this kind,
a positive zero is lost and a negative zero gained. If the passed value is even,
a positive and a negative zero are lost.. For o < —n, there are no real zeros if n

is-even and one real zero (which is negative) if nis odd. (Compare Lawton 1,
W. Hahn 1))

6.8. Polynomials which satisfy a second-order linear homogeneous differential
equation with polynomial coefficients; theorem of Heine-Stieltjes

Heine (3, vol. 1, pp. 472-479) has studied the following problem:

ProBLEM. Let A(x) and B(z) be given polynomials of degrees p 4+ 1 and p,
respectively. To determine a polynomzal C(x) of degree p — 1 such that the
differential equation

d'y dy _
(6.8.1) A(z) o + 2B(z) Tr + Clx)y =0

has a solution which is a polynomzal of a preassigned degree n.

Heine asserts that, in general, there are exactly

(6.8.2) ¢ = Onp = <" TP 1)

n

determinations of C(x) of this kind.

The hypergeometric equations (4.2.1) and (4.21.1) are of this type with
p = 1. Lamé functions satisfy ar equation of the same type with p = 2.
These cases were the starting points of Heine’s investigations on this subject.

Stieltjes (3) discusses only a special case of (6.8.1) which, however, is of
primary importance. He obtains the following result:

TureoReEM 6.8. Let A(x) and B(z) be given polynomials of precise degree
p + 1 and p, respectively, and let the highest coefficients of A(z) and B(x) have the
same sign. If the zeros of A(z) and B(x) are real, distinct, and alternating with
one another, there are exactly o polynomials C(z) of degree p — 1 such that the
differential equation (6.8.1) has a solution which is a polynomial of degree n.
Here o has the meaning (6.8.2).

The proof of Stieltjes uses a part of Heine’s assertion, namely, that o is an
upper bound for the number of polynomials C(z) in question. He obtains,
however, not only the existence but also a characterization of the ¢ solutions
mentioned, in the following way: The n zeros of these solutions are distributed
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in all possible ways in the p intervals defined by the p -+ 1 zeros of A(z). (The
number of such distributions is obviously ¢.) The solutions are obtained by
means of a maximum problem similar to those treated in §6.7.

The following proof of Stieltjes’ theorem uses the latter’s idea based on a
maximum problem, but Heine’s elimination process (which furnishes the upper
bound o) is replaced by certain elementary considerations related to Sturm’s
theorem (see §1.82). Our proof is, consequently, independent of Heine’s work.

6.81. Preliminary remarks
We assume with Stieltjes that

(6.81.1)  A@) =@ —a)z—a) - (8—a), @<au<- - <o,

and

B(z) _ po p1 Pp o

(6812) A(x) Tz = a0+x_ (11+ +x__apy Pv>0,V—0,1;2, *t, D
This is equivalent to the assumption that the zeros of A(z) alternate with
those of B(z) and that the highest coefficients of A(x) and B(z) have the
same sign.

Let C(z) be a given polynomial. Then (6.8.1) cannot have two polynomial
solutions ¥ and z Hnearly independent of each other. Otherwise, we should
have for z # a,

A@@)y'z — y2') + 2B(z)(y'z — y2') = 0,

(6.81.3) 2
y'z — yz’ = const. exp {—-/ gﬁ@ dx} = const. ][ lz —a, ed
A(x) yas()

Since the last product approaches « as x — a,, this leads to a contradiction
unless ¢’z — y2’ = 0.

Now let y be a polynomial solution, y #% 0. We show thaty = 0atz = a,.
If the contrary were true, substitution of z = a, in (6.8.1) would give ¥’ = 0.
Differentiation of (6.8.1) k times results in a differential equation of order
k -+ 2 in y, which has the form

A(x)y“‘“) + {kA'(x) + 2B(x)}y”‘“) + - 0’

the further coefficients are again polynomials. Now from (6.81.2) we see that
B(a,) = p,A'(a)), so that kA’(a,) + 2B(a,) # 0. Thusy =y =¢y" = ... =
y® = 0 would imply y** = 0. In a similar way we can show that all the
zeros of y are distinct.

Next we prove that the zeros of y lie in the interval [a,, a,]. Upon writing
y = f(z) = const. (z — z1)(z — 22) -+ (z — z.), we have, according to (6.8.1),

(6.81.4) A(zy)f" (xx) + 2B(ze)f (k) = 0;
or, using (6.2.2) and (6.81.2),
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1 1 1 1
+ + o+
Ty —T1 Tk — Te Ty — Tpa Tk — Tpga
1 S v
+2 2=

xk bt x,. pya=() xk — G,

(6.81.5)
+

We assume that some of the zeros of f(z) lie outside of [a, a,]. Let zx be one
of these zeros such that the segment [a,, @,] and the remaining zeros all lie in a
closed half-plane with z, as a boundary point, the segment itself lying in the
open interior of the half-plane. Then the complex vectors

Tk = Tm, Tk — @,

lie in an angle not greater than = for all values of v and m, m = k, and the same
is true of the reciprocals of these vectors. The vectors z, — a, are directed into
the interior of this angle. But then we see that (6.81.5) is a contradiction.
(For this argument, see Pélya 1.)

Let n;, ne, .-+, n, be the number of zeros of y in [av, ai], [a1, @), - -+,
[ap—1, a,], respectively. Then we say that y is of the type {n;, na, - -+, np}.
Heren; + n2 + n3 + .- + n, = n, and o represents the number of all possible

types. It is our intention to show the existence of exactly one polynomial
solution of each type, corresponding to o different determinations of the poly-
nomial C(z) of degree p — 1.

6.82. A maximum problem

Following Stieltjes (loc. cit.), we first show that a polynomial solution of each
type exists. :

Let z;, 22, - -+, Z, be variable points, each different from the a, and dis-
tributed in [ao, @,] so that in each interval [a,;, a,] there lies a certain pre-
assigned number, say n, , of these points, Y o~ 7, = n. Letting each x, vary
in a fixed interval, we consider the maximum of the product

= — Py _ .
(6.82.1) w=_II Je—ap Il |o-al
yem0,1,+,p Nen

The existence and positiveness of this maximum are clear. In the maximum
position, the points z; are different from the a, and from one-another, and they
are of a preassigned type. Furthermore, we have aW/dx, = 0; whence (6.81.5)
again follows. If f(z) denotes the polynomial with the zeros z), the latter
equation means that A(z)f"”'(z) + 2B(z)f'(z) vanishes for £ = z; and hence is
divisible by f(z). If this ratio is denoted by —C(z), (6.8.1) follows. It is
clear that log (W™, apart from the constant terms p,p, log | a, — a, 2
is the “energy”’ of the system of masses p, concentrated at a, and of unit masses
concentrated at the z; . (Cf. §6.7 (1).)

Incidentally, the argument used in §6.7 (1) shows that the system {z;} with
the maximum property is uniquely determined. This is not the same as the
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uniqueness of the solution of a given type since (6.81.5) is not equivalent to the
maximum property. It is, however, easy to show (cf. (6.22.6)) that (6.81.5)
is equivalent to a relative maximum of W.

6.83. Uniqueness

Let C(z), y and D(z), 2z be two solutions of our problem of the same type,
C(x) ¢ D(z). Suppose both polynomials ¥ and z have positive highest coeffi-
cients. By combining (6.8.1) with the corresponding equation for 2z, we find
the relation

(6.83.1) - (yz — ye) + 2 ZJ o W -y + ’g(ﬂﬁa?)l)'@2

Introducing H = [[7=0 |2 — a.

z = (.

*» we obtain for z # a,

d , ny — D) = C(2)
o (Hly'z =y} = O

Suppose the function {D(x) — C(zx)}/A(z) is non-negative in the fixed interval
a,-1 <z <a,. Thenbetween two consecutive zeros e and 8 of y, @« < B, in this
interval, z must change its sign at least once. Otherwise, yz would be perma-
nently positive or negative, and therefore, H(y'z — yz’) increasing or decreasing
inae <z <pB. Forz =a-4 ¢e> 0, however, the last expression has the
same sign as y’z or yz, and forx = 8 — ¢, € > 0, the same sign as 3’z or —yz.
Hence it passes from positive to negative values if yz > 0, and from negative
to positive values if yz < 0. Either case contradicts the property of monotony
of H(y'z — yz’) mentioned before.

Under the previous assumption concerning {D(z) — C(z)}/A (), the function
z must change its sign also in [a,—;, ¥] and in [§, a,] if ¥ and § are, respectively,
the first and last zeros of y in [a,—1, a,]. Otherwise, ¥ and z would each have
a constant sign in those intervals; moreover, ¥ and z would have the same
sign in a given interval because they are of the same type. Then H(y'z — yz’)
would be an increasing function. It vanishes for £ — a,—; + 0 and also for z —
a, — 0, so that ¥’z — y2’ must be positive in [a,—;, ¥] and negative in [, a,].
Now for z = v, we have sgn (y'z — y2z’) = sgn y’z, which is the same as sgn (y'y)
atz = v — ¢, ¢ > 0, that is, negative. Thisis a contradiction. The same argu-
ment can be used at z = 4.

Finally, we remark, under the assumption made about {D(z) — C(z)}/A(2),
that the polynomial z must vanish in [a,_;, a.}, even if y has no zeros there.
Otherwise, because of (6.83.2), the function H(y'z — y2') would be monotonic.
This is impossible since H vanishes for £ = a,; and forz = a, .

~To recapitulate: this argument would furnish at least one more zero for z
in [a,_1, a,] than for y, which is impossible. Therefore, {D(z) — C(zx)}/A(z)
must be negative in some points of a,_; < z < a,. By interchanging C(x), y
with D(z), z, it is seen that the same function must also be positive somewhere
ina,; <z < a, ; whence D(z) — C(z) must have at least one variation of sign

(6.83.2) yeH.
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in [@,1, a,]. Since this is true forv = 1, 2, ... | p, the function D(z) — C(z)
has at least p variations of sign in [a,, a,]. However, this is impossible since
D(z) — C(z) is of degree p — 1.

6.9. Zeros of Legendre functions of the sécond kind; generalization

(1) In connection with Fejér’s second generalization of ILegendre poly-
nomials (§6.5 (4)) we consider the function

H.(cos 8) = By cos (n + 1)6 + B; cos (n + 3)6
+ -+ Bncos(n+2m + 1)0+ ...

(6.9.1)

Here 8., | 0, so that the series converges for 0 < 6 < . This is the conjugate
series of the function G. (cos 6) defined by (6.5.16). The function Q,(cos 6)
of (4.9.16) is a special case; then the sequence B is given by (4.9.5) and is
completely monotonic. Now we prove the following theorem:

THEOREM 6.9.1. Let 8, > 0 and let {Bn} be a completely monotonic sequence.
The function H, (cos 6) defined by (6.9.1) has at least one zero in each of the intervals

1
d 7r<9<y+2

(6.9.2) n + % m ™y

y=0,1,2 --,n.

More precisely, H, (cos 6) has an odd number of zeros in each of these inter-
vals. For the proof we again use Hausdorff’s representation and obtain for
(6.9.1)

ﬁl{ :) ™ cos (n + 2m + 1)0} dp(?)

m

(6.9.3)

0 a8,

=flcos(n+1)0—-tcos(n—-1)
0 1 — 2¢{ cos 20 + &2

where B(¢) is a function of the same type as «(t) in (6.5.8). Upon substitutiﬂg

v v+ 3
0—n+%7r and 0—n+%7r,

we find
(—1)"{cos (6/2) — t cos (36/2)},

(6.9.4) cos(n + 1)§ — tcos (n — 1)8 = {(_l)v-f-l{sin (6/2) + tsin (36/2)},

respectively. Both expressions in the braces are positive; this establishes the
statement. (For » = 0 and v = n we must take into account that

lim H.(cos§) = (=)™ lim Ha.(cos8) > 0
/]

6 —»+0 - r—0

(4o if D _meo Bm is divergent).)
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(2) TueoreMm 6.9.2. The function Q.(cos 8) (§4.62 (3)) has exactly n + 1
zerosin 0 < @ < m, which lie in the intervals (6.9.2).

In this special case of Theorem 6.9.1 there cannot be more than one zero
in each of the intervals (6.9.2); otherwise, P,(cos 8) would have more than n
zeros by Sturm’s theorem.

Inequalities (6.9.2) for the zeros of Q.(cos 6) are due to Stieltjes (8, p. 252),
whose proof is, however, different from that just given. Fejér obtains (20, pp.
51-52) less precise inequalities in a manner similar to that used above; his
conditions concerning the sequence {8.}, however, are more general.

(3) TueoreM 6.9.3. Legendre’s function of the second kind Q.(x) (§4.61 (1))
has no zeros 1n the complex plane cut along the segment [—1, +1), except x = o,
which is a zero of multiplicity n + 1.

This theorem is due to Hermite (3) and Stieltjes (9) (cf. also Hermite-
Stieltjes 1, vol. 2, pp. 80-104, no. 267-274). The following argument is a slight
modification of the second proof of Stieltjes.

* * * f;\
-1 +1
Fi1G. 8

We start from (4.62.10). This function Q.(z) has n 4 1 zero§ in the interior
of [—1, +1], which alternate with the zeros of P.(z) (cf. Theorem 6.9.2). Let
Fl=2o> 2> -+ > ZTu> Tay1 = —1 denote the zeros of (1 — 2°)P.(z) in
decreasing order. Then

(6.9.5) sgn Q.(z,) = (—1), v=20,1,2,...,n+ 1.

Furthermore, Q.(z) is a solution of (4.2.1), « = 8 = 0, so that Q.(z)/P.(z)
is increasing in the interval —1 = z £ +1 (cf. (4.2.6)); it becomes infinite at
each z, .

The curve in the figure encircles the points z = =1 and avoids the zeros of
P.(z) by means of semi-circles. Now we shall show that the variation. of
arg {Q.(z)/P.(z)} along this curve is equal to 2x(2n + 1). Then, according
to Theorem 1.91.1 (principle of argument), the function Q.(z)/P.(z) has
exactly 2n -+ 1 zeros exterior to this curve. But since it has a zero of multi-
plicity 2n + 1 at z = e, the statement will follow.

Let ¢ be a sufficiently small positive number. As z encircles +1 in the nega-
tive (clockwise) direction from 1 -+ e¢to 1 — ¢, the variation of the argument in
question is approximately (cf. (4.62.7)) the variation of arg {log 1/(z — 1)},
a quantity which tends to 0 with e If z describes the segment from z, — e
to 2,1 + ¢ v =0,1,2, .. ,n, along the “lower border” of [—1, +1], we have
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_Qu(z —10) _ir | Qu.(x)

Then y describes a straight line Sy = /2 in the direction of decreasing abscissas.
The variation of the argument of y is .

In the neighborhood of z,, v = 1, 2, - .. , n, the function Q.(z)/P.(z) differs
only by a bounded term from
Q.(z) 1 Q-(z,)
6.9.7 7 , Where 5 <0
( ) P.(z)z— =z, ' P, (z,)

Therefore, the half-circle in the lower half-plane around z, will be carried over
into a curve which approximates a large semi-circle in the lower half-plane; the
argument of y then increases by +m.

Finally, if ¢ = —1isencircled in the negative sense, from —1 + eto —1 — ¢,
the variation in arg y is again a quantity which tends to zero with e.

To recapitulate: While £ moves along the lower border from 1 + eto —1 — ¢,
the total increase in the argument of y is (n + )= + nr = (2n + 1)=. The
same is true on the upper border as x varies from —1 — eto 1 + e. This es-
tablishes the statement.

6.10. Further results

(1) Let {6,.} denote the zeros of P.(cos 6) in the interval [0, =], ordered in
an increasing way. Turin (1) proved that the sequence z,, — z,.._i, where
Z,.» = €08 0,,, 1s Increasing as v runs from 1 to [3(n — 1)]. Szego proved (in a
correspondence with Turén, 1946) the same fact for the differences 6, ,—; — ...
Cf. Szego-Turan 1.

(2) Concerning the topics treated in §§6.8-6.83, see also Makal 3.

(3) The argument of §6.9 (3) leads to a more general resylt concerning the
number of the zeros of @.(z) — aP,(z) in the complex plane cut along the
segment [—1, +1] where a is a given complex constant (Hermite and Stieltjes,
loc. cit.). This number is again = 2n + 1 if —7/2 < Ja < +/2, and =n if
Sa = +7/20r Ja = —7n/2.

Indeed, in the case —r/2 < Ja < +i/2 no essential change in the reasoning
is needed. Now let Sa > +r/2. If z describes the segment from z, — € to
Z,41 4+ 6 v =0,1,2 -+, n, along the lower border of [—1, +4-1}, the variation
of the argument of ¥y — a is —=. There is no change in the contribution of the
semi-circles around z, and of the whole upper border. Thus the total increase
in the argument of ¥y — ais —(n + L)z + nr + (n + 1) + nr = 2nm.

Let 3a = +r/2. On the segmént from z, — € to z,41 + € there is a unique
point ¢ such that Q. (§)/P.(§) = Ra. We must use an indentation of the contour
into the lower half-plane and take into account that for 6 > 0

@n(z — iO)) _ <Q_(}_;_'L_0_)> s[4 alz — 10) 'LO)} + o
<—W ottt P.(z) /., ldz  Pa.(z) |,
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the imaginary part of the right-hand side is /2 — 8’ < 7/2 where 8 > 0. The
argument is similar if §a = —=/2.

(4) Makai-Turan (1) have proved the following theorem of the Picard-
Landau type. Let H,(z) be Hermite’s polynomial. There exists a positive
(absolute) constant A such that every equation of the form

Hy(z) + H\(2) + v H,(2) =0

has a solution in the strip |3z) £ A; n =2, v arbitrary real or complex.
The exact value of A has been determined by Schmeisser 1. The extremal
polynomials are of third degree. The corresponding problems for quadrinomials
and more general equations remain open.

(5) Szegé 20 improved the right-hand estimates in Theorem 6.4 when
2a0—a;>a;, —a;208,—0a32 ++- 20,_; —A, = @, 2 0. Both sides can be im-
proved when (2k —1)a,_; = 2ka,> 0, k= 1. See Askey-Steinig 1.

(6) The results mentioned in §6.10 (1) have been extended to ultraspherical
polynomials in Szeg6-Turén 1.

(7) For the positive 6-zeros of the Legendre polynomials P,(cosd) and
also for the positive zeros of the Hermite and Laguerre polynomials, written
in increasing order, the second differences of the respective sequences of con-
secutive zeros are all positive, as an immediate consequence of the Sturm
theory (cf. Theorem 6.3.3). In L.Lorch-P.Szego 1, 2, it is conjectured that
all higher differences are also positive, but this remains unresolved. Sub-
stantiating numerical evidence is cited there and in Davis-Rabinowitz 1. The
latter present also similar evidence connected with P,(cos6). See also Lorch-
Muldoon-P.Szego 1, 2. ]

(8) If m,(x) is an arbitrary polynomial of degree less than or equal to n
and if '

(%) =boLo(x) + «++ + b, Ln(x)

is its Laguerre expansion, then the number of sign changes of m,(x) for x>0
is at least as great as the number of sign changes of the sequence of the differences

by, (bo — by), (b —2b; +by), « - -.

See Turéan 2.




CHAPTER VII
INEQUALITIES

No inequalities, except trivial ones, are known for general orthogonal poly-
nomials. However, inequalities involving an unspecified constant can easily
be derived under certain conditions concerning the weight function w(z).
Still more precise estimates can be obtained if w(zx) is monotonic, and a great
number of special inequalities follow from this added restriction.

Another very extensive class of inequalities can be derived for the classical
orthogonal polynomials, and in the present chapter we intend to enumerate and
compare the various methods used to obtain these inequalities. Aside from inte-
gral and series representations, the main tool is differential equations. Asregards
the latter, we remark that there is a special method for deriving inequalities for
the solutions of certain differential equations (cf. Theorem 7.31.1). In recent
years this method has been used in several special problems (not only for poly-
nomials), with slight variations, primarily by G. N. Watson and S. Bernstein;
it originated, however, in an idea of Sonin."

At the end of this chapter we use the above mentioned inequalities in dealing
with certain extremum problems which involve polynomials of a fixed degree.

The selection of the material treated in this chapter has been influenced by the
needs of later chapters, especially by those of Chapters IX, XIV, and XV.
Historically, the major part of the inequalities for classical polynomials arose
from the discussion of the corresponding expansion problems.

We shall postpone till Chapter VIII the asymptotic calculation of certain
maxima (which can also be expressed in terms of inequalities), since they
require more intricate asymptotic considerations. However, we have found it
necessary in the present chapter to anticipate certain asymptotic results of
Chapter VIII.

7.1. Rough bounds for orthogonal polynomials

In this section we make essential use of the representation of positive func-
tions discussed in §10.2. However, this does not play a réle in the further
course of Chapter VII.

(1) Let w(z) be a weight function on the interval [—1, +1] for which the
integral

(7.1.1) :1 (1 = 27 log w(z) dx

exists in Lebesgue’s sense. (This implies that w(z) cannot vanish on a whole

4t Cf. Sonin 2, pp. 23-24. I owe this reference to Professor J. A. Shohat.
159
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segment.) Let D(f; 2) = D(z) be the analytic function associated with f(6) =
w(cos §) | sin 4 | in the sense of §10.2 (2).
The conformal representation z = 1(z + 2') maps the unit circle |z| < 1
(or |z| > 1) onto the z-plane cut along the segment —1 <. z < + 1. For
z = ¢” we have z = cos 6. (Cf. §1.9.) '

THEOREM 7.1.1.  Let {p.(z)} be the orthonormal set of polynomials associated
with a weight function w(z), —1 < = < +1, for which (7.1.1) exists; then

(7.1.2) | #D@E@)pa@)z" | < 1 = |2 [V 2] <1,
where x = 1(z + 27') is an arbitrary point of the cut plane.

For, (cf. (10.2.9))

1 = /_1 (Pa(2)}? w(z) da-

+x
(7.1.3) = %/ {pa(cos 8) } w(cos 6)| sin 6 | df
— N 1 [* 1 ~I\1n |2 N2 8
= 11r1n0 5 |p,.[-2—(z + 2 ) ] | D(2)|" d, z=re

Now if f(2) = ) _m=0cm2™ is regularin | z| < 1, we have, according to Cauchy’s
inequality,

o0 o0 +x
(714 [f@QTF < Zlel 2]2™ =0 = [2H lim = | f(re”) | db.
=0 =0 r1—0 2T J—x
This establishes the statement.

The bound in (7.1.2) becomes infinite if z lies on the segment [—1, +1];
for all other values of z it furnishes a first appraisal of the magnitude of p.(z)
under a rather general condition. This information is comparatively precise
because we shall prove (cf. Theorem 12.1.2) that, for a fixed z, the left-hand
member of (7.1.2) tends to 2™} as n — . It is rather remarkable that no use of
the orthogonal property has been made in deriving (7.1.2); only the normaliza-
tion of p,(x) is employed.

(2) TeEOREM 7.1.2. Let w(x) be bounded from zero, that 7s, w(z) = p > 0.
Then, if x is not on the segment [—1, +1},

(7.1.5) |pa(z)] < A|z + (& — 1],

where (2 — 1)} is chosen so that | x + (2 — 1)} | > 1. The constant A depends
on x and u but not on n; A vs uniformly bounded in the exterior of any closed curve
which contains [—1, +1] in its interior.

We have in this case | D(z) | > | u(1 — 25)/2 |* (¢f. (10.2.10)), so that from
(7.1.2)
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(7.1.6) | 7u(l — 2/2 |} | pa(@)e™ | < (1 — | 2] )7, 2| <1,

follows.

(3) In the same case w(z) = u > 0, we can also easily obtain bounds for
Pna(z) on the orthogonality interval —1 £ z < 41 itself. In fact, if |2 | < 1,
we have, in view of (7.1.6), (ru/2)X(1 — |z |)} | pa(z)2" | <@ =1z Let
z+4 27"), where | z| = 1. Then p.(z)z"
=41,z =1r <1,
| pa(2) | = | pal)e”| < max | Pa ()" |

fj=r—1

r be on the segment [—1, +1], z = I(
is a m, in 2, and we have for —1 < z

2

=7 max | (86" | < 7P (mp/2)7M 1 — A7

Here £ = (¢t + ¢™"). On putting ¥ = 1 — 1/n, forn 22, —1 <z < +1,
we have

(7.1.7) | pa(@) | < (7u/2)71 = 2™ "0 < 4(ru/2) 0.
For —1 < z < 41, we can reduce the exponent in (7.1.7) from 1 to % (cf.
(7.71.28)).
~ (4) The same elementary method gives an idea of the magnitude of Jacobi’s
polynomial if n is large. In this case w(z) = (1 — 2)*(1 + 2)%, « > —1,
B > — land (cf. (10.2.13))

(718) D(Z) — 2—(a+ﬁ+l)/2(1 _ z)a-f-i(l + z)ﬁ-f-%.
Then by (7.1.2)
(7 | g) Wiz-(a+ﬁ~(~l)/2 | 1 — 2 ia-H ! 14z iﬁ+% | pn(x)zn | < (1 _ | 2 |2)—%,

r=3e+2"),]2| <L
Now assume —1 < z < 41; we obtain, as in (3),
(7.1.10) | pa(z) | < Cr7**(1 — ) max |1 — ¢ |14 ¢,
ifl=r
where C depends only on e and 8,and 0 < r < 1. Wechoose againr® = 1 — 1/n.

Discussing the right-hand member of (7.1.10) for | { | = r, R(¢) = 0, and for
| ¢ =7, NE) =0, we obtain

(7.1.11) | pala) | < Clpmex @l BeL D

Here C’ depends only on « and 8. The “true” exponent is max(a + %, 8 + %, 0)
(cf. (7.32.2)). .

For later purposes we give a formulation of (7.1.9) in terms of the Jacobi
polynomials P{*®(z) (cf. (4.3.4)). If z is exterior to the segment [—1, 4 1],
we have

(7.1.12) PE® (2) = n7t0( 2™, =1+, ]2 <1;
a>—1,>—1,n— .

—1=z=+1.

)
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This holds uniformly in the exterior of any curve containing the segment

—~1, +1] in its interior. Inequality (7.1.12) follows, of course, immediately
from the asymptotic formula (8.21.9).

(5) The following theorem is rather useful in obtaining bounds for ortho-
normal polynomials:

TueorEM 7.1.3. Let w(z) and %(z) be two weight functions on the segment
-1, +1], w@)/®(x) = k(z). Assume k() = k > 0, and let k(z) satisfy the
Lipschitz condition

If {pa(2)} and {pa(x)} are the orthonormal polynomials associated with w(z)
and w(z), respectively, we have

(7.1.14) | pa(@) | S 57| Ba@) | + Me7H| $0@) | + | Pos(z) |}.

This theorem is due to Korous (3). The proof follows from the identity
((3.2.3))

+1 n
+1 n—1
=L pa) + L pn“{é i)»(x)i»(t)}w(t) <1~_ l&@)dt

k., k(z)
=) 4 Fe L f“p O {Fn@Frsl) — Foa@pald)]
]-{';n n ]—{r;n k(x) ‘-1 n n n— n—. n

() 'i-»__._(“’i — t’“(t) dt,

where k, has the same meaning as in (2.2.15), and k, has the corresponding
meaning for p.(z). Now, according to Schwarz's inequality

1 +1 3 +1 ]
= = /_ | OB OD@ dt = { /_ 1 [p-(OF @ () dt} { /_ [B. (O @ (0) dt}

" 1

S B

+1 *
- {/_ [’“(‘>]"‘w<t>[pn<t>]2dt} < k™,

'5]:;*‘ = /_ f tPn () Pa(t)B(t) dt < /_ ] | Bna(t) | | Bult) | B(t) dt < 1,

n

+1 +1 3
/_ 1 Pa(O)Par(O)D () dt‘ < { /_ [p. () F D () dt} <kt

1

which establishes (7.1.14).

We mention two important special' cases which follow immediately from
(7.1.14) by use of the bounds of the Legendre and Tchebichef polynomials (con-
cerning the first case, sce (7.21.1) and (7.3.8)):

(a) If w(x) is positive and satisfies a Lipschitz condition |w(x) —— w(zs) |
< A — 2], we have
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H

A'(1 = a7 —1<z<+1.

Here the positive constants A and A’ are independent of = and =.
b) If wx) = (1 — 25 k(z) where k() is positive and satisfies a Lipschitz
condition |k(z;) — k(za)| < XN| 21 — x2]|, we have

(7.1.16) ' | pa(z)| < A, —1 <z <41,

where A is independent of x and «.
For other elementary considerations of a similar nature, see Shohat 4, pp. 165-
166 and Jackson 6, pp. 893-898. See, also, §7.71 (6).

(7.1.15) | pa(2) | <

7.2. Monotonic weight functions

THEOREM 7.2. Let w(x) be a weight function which is non-decreasing in the
interval [a, b], b finite. If {pa(x)} is the set of the corresponding orthogonal poly-
nomials, the functions {w(z)}® | pa(z) | attain their mazimum in [a, b] for z = b.

See Szegdo 3. A corresponding statement holds for any subinterval [zo, b]
of [a, b] where w(x) is non-decreasing.
The proof is based on the identity

b b
w®) PO — 0P @) =2 [ wOp0ph0 &+ [ 10 dwld,
which follows from (1.4.4). It suffices to show that this expression is non-
negativein @ < x < b. Denotingby z; < 2, < .. < z, the zeros of p.(x)
in increasing order, we have p,(£)pn(t) > 0 for ¢ > z, and () pr(t) < 0 for
t < z;. Therefore, the statement is trivial for z, < z < b and follows from

b , b z
l wOpaDph(t) dt = f wOpaO)ph(t) dt — f wOpa O () dt

- f " w(O)pa ()P 0) dt

a

fora < x < z;. Here we used the monotony of w(z) onlyinz < ¢ < b.

Nowletz, £z =<2,.,v=12, ... ,n —1,n = 2. If weintroduce the
new weight function

W) = w@)l@ - a)(@ — @) - @ — )]}

the corresponding orthogonal polynomial of degree n — v will be, save for a
positive constant factor,

Pa(2)
zT—z)(x —22) - (T — 1)’

Gns(z) = (

with the zeros z,1, Z,42, -+ -, .. In fact, if p(z) is an arbitrary m,_,—1,
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b b ,
/ W(z)gn(2)p(z)d2 = / w(@)pa(@) (@ — 21) (@ — 20) -+ (z — 2,)p(zx) dz = 0.

a

But W(z) increases monotonically for z, £ = < b, so that the preceding argu-
ment furnishes, forz, £ z £ 2,1,

W) {g2-n(0))* = W) {gus(@)}* = w(d) {pa(D)}* — w(z){pa(@)}® Z 0.

In addition we conclude that the equation w(b) {p.(b)}* = w(&){p.(£)}* holds
if and only if ¢ < z; and w(f) vanishes in [a, ¢] (this condition has, of course,
no significance if a = £), and is step-wise constant in (£, b]. Furthermore, p,(f)
must vanish at the points of increase of w(¢). (The weight function w(z) cannot
vanish for z = z, .)

7.21. Applications

On putting ¢ = —1,b = 41, and w(z) = 1, we obtain the important in-
equality
(7.21.1) | Pa(z) | = 1, -1=z = +1,

for the Legendre polynomials P,(z), P.(1) = 1. If n > 0, the equality sign
holds only for z = =+1.

Another interesting caseisa = —1,b = +1,and w(z) = |z [*, k> 0. On
account of (4.1.6) we have |z |* | P** (22" — 1)| = PO*P(1) = 1, so that

(7.21.2) (1 — z)/2}™ | Pe2) | =1, — 1222+, a2z -1

The equality sign holds only for x = —1. In the interval 0 < z < 1 this is,
for large n, less precise than the first inequality (7.32.6).

Incasea = 0,b = + =, and w(z) = ¢ %, we obtain for the Laguerre poly-
nomials

(7.21.3) e | L.(x) | = 1, z 20,
the equality sign holding only forz = 0if n > 0.
With regard to these special cases, see Szegd 2 and 3.
7.3. Legendre polynomials

A second proof of (7.21.1) and various other important inequalities can be
obtained by means of the differential equation for L.egendre polynomials.

(1) THeoreEM 7.3.1. Letn = 2. The successive relative maxima of | Pa(z) |,
when z decreases from 1 to 0, form a decreasing sequence. More precisely, if

B, B2, -+, Miwz denole these maxima corresponding to decreasing values of ,
we have
(7.3.1) L>pw > pe> -0 > pw.

From this (7.21.1) follows again.
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If n is even, we have

1-
Hnjz = |Pn(0)| =

3 ... (n—l)
2.4 ... :

For the proof let
(7.3.2) n(n + Df(z) = n(n + D{Pa(0)}* + (1 — 2°){Pr(2)}"
Then we have f(z) = {P.(z)}"if P,(z) = 0, 0orif z = +1. Therefore,
(7.3.3) ‘ max {P.(z)}" £ max f(z).

—1gzg5+1 —lgzs+1
Now, on account of (4.2.1),
3.0 n(n + 1)f'(z) = 2P,(z){n(n + 1)P.(z) — zPn(z) + (1 — 2))P\(z))
o = 2P, (x)-zP,(z) = 2z{P,(z)}},

so that f(z) is decreasing for £ < 0 and increasing for £ > 0. This establishes
the statement.

(2) TueorEM 7.3.2. Let n = 2. The successive relative mazima of
(sin 6) | P.(cos 6) | when 6 increases form 0 to =/2, form an increasing sequence.

From (4.24.2) we obtain fora = 8 = 0

73.5) %L + ¢(@)u = 0; u = u(6) = (sin 6)! P.(cos 6),
¢(6) = (2sin6)”" + (n + )"
Introducing
(7.3.6) 7(6) = {u(0)}* + () {w ()}, W) = {4(6)}7,
we have

(7.3.7) f'(6) = 2w (6) {w(8) + ¥(O)u"(6) + 3 (6)w'(8)} = ¢/'(6){w'(6)}".

Now ¢(6) is an increasing function in [0, 7/2], so that f/(8) > 0, and f(6) is also
increasing.  But f(8) = {u(6)}®if « (6) = 0; this proves the theorem.
(3) An important application of Theorem 7.3.2 is

THroreM 7.3.3. We have

(7.3.8) (sin 8)! | P, (cos 0) | < (2/x)'nY 0

1A
S
A
3

Here the constant (2/7) cannot be replaced by a smaller one.

The first proof of an inequality of the type (7.3.8), with a constant A instead
of (2/m)}, is due to Sticltjes (8, p. 241). Further proofs have been given by
Gronwall (1, p. 221) and Fejér (9, pp. 280-291). The following proof is due to
S. Bernstein (2, p. 236); it was the first leading to the precise constant (2/7):.

L.et n be even. Irom Theorem 7.3.2
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(7.3.9) (sin 6)* | Pa(cos 6) | < | P.(0) |, 0<6<m,

with the sign of equality holding if § = =/2. Now let n be odd. Then for
06~

(sin 6) | P,(cos 6) | < max {f(6)}}
(7.3.10) 0sfsr
= (f&/DP = {3 + (v + DY PLO),
where f(6) is defined by (7.3.6). Using the notation (4.9.2), we have®
| Pa(0) | = gare < (2/m)tn7,
| Pa(0) | = (0 + Dgiarn < @/min + 1)},

according as n is even or odd. (In the second case we can use (4.7.31).) Now
(2 4+ (n+ DY n + 1! < 27 therefore (7.3.8) follows.

That (2/7)" is the best possible constant is easily seen by considering | PA(0) | ,
n even. Besides this we have (¢f. (7.32.9), « = 8 = 0)

7.3.12) or;loix (sin 6)* | P., (cos 6) | = (2/x) n™, n— oo,

(7.3.11)

7.31. Theorem of Sonin; Bessel functions
The argument used in the preceding section can be generalized in various
ways. For instance, the following important theorem holds.
TaeEOREM 7.31.1. Let y = y(z) satisfy the differential equation
(7.31.1) ¥y’ + ¢(x)y =0,

where ¢ (x) 1s a positive function having a continuous derivative of a constant sign
mx <z < Xo. Then the successive relative maxima of | y | , as x increases
from xyto Xy , form an increasing or decreasing scquence according as ¢(x) decreases
or increases.”

If we write

(7.312)  f(z) = ly@))* + (6@} {y'@))* = ly@)}" + ¢(@) ¥’ @)},
we have, in fact, f(z) = {y(z)}*if ¥'(z) = 0, and
(7.31.3)  f'(z) = 2¢/' (@) {y() + ¥(@)y"' (@) + W @)y (x)} = ¥ (@) |y @))"

That is, sgn f’(x) = —sgn ¢’(z); whence the statement follows.

42 The sequence {m!/?g,] is increasing, so that m!/?g, < limm_,mY2g, = =12
43 Professor Po6lya has kindly pointed out to me the following generalization of this
theorem: Lel y(z) satisfy the differential equation

e(x)y’)" + ¢(2)y = 0,

where k(z) > 0, ¢(x) > 0, and both functions k(x), ¢(z) have a continuous dertvative. Then
the relative maxima of | y | form an increasing or decreasing sequence according as k(z)¢(x)
is decreasing or increasing. This was obtained independently by Butlewski 1.
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As an illustration, we apply this result to (1.8.9) for k = 1, z > 0. In this
case we have

2

1

(7.31.4) ¢lz) =14 22

x
so that ¢(z) is decreasing if & < % and increasing if o > 1. In the latter
case z must be taken so large that ¢(z) > 0. We then conclude that the
relative maxima of 2! J.(z) | form an increasing sequence if &* < %, and a
decreasing sequence if &° > %. In the first case z > 0, and in the second
x> (o — H

According to (1.71.7), there are infinitely many such maxima, and they

tend to (2/7r)*. Thus, we have the theorem:

TreoreM 7.31.2. If J.(x) denotes Bessel's function of order o, we have
(2/x)! if —
finite and > (2/x)!  if a >

lIA
IIA
rop

o

W=

(7.31.5) sup (2} | J2) |} =

[N

For a = =4 we can use formulas (1.71.2). Fora < —1 we havez!'J4(z) —
as ¢ — 40 [(1.71.1)]. The second statement holds in this case provided the
least upper bound in question is taken in an arbitrary interval [zo, + «] with
zo > 0.

See Szego 17, pp. 40-41, and compare similar theorems in Watson 3, pp.
488-489. See also §7.8.

7.32 Jacobi polynomials

(1) The consideration of §7.3 can easily be extended to ultraspherical poly-
nomials. A treatment of this case will be given in §7.33. First, however,
we discuss general Jacobi polynomials P{*'®(z). In applying the previous
methods to Pt (z), the main difficulty lies in the fact that there is no special
point z = £ interior to [—1, +1] at which P*?(z) and its derivative have
values which are easily calculated, as in the case of the ultraspherical, and
especially of the Legendre, polynomials at # = 0. This is the reason that here
we must anticipate certain comparatively simple results from Chapter VIIL.*
These are the following:

(a) The formula of the Mehler-Heine type [(8.1.1)],

lim n~* PP (cos 2) = (2/2)7"J «2),

n —~rw

which holds uniformly for |z | £ R, R fixed.

4t After completing the manuscript I received a paper of Korous (3) in which some of
the results of §7.32 are derived by use of the differential equation of Jacobi polyno-
mials but without using the asymptotic formulas (8.1.1), (8.21.10).
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(b) Darboux’s formula |(8.21.10)],
PP (cos 6) = nk(6) cos (N6 + ) + on™

—at —p—
k(6) = =~ (sin %) (cos %) ,

N=n+(a+8+1)/2 v= —(a+ Hr/2, eS0T —¢ n— o,

’

Here e is a fixed positive number; the bound for the error term holds uniformly.
In both cases, « and B are arbitrary real numbers.

Concerning the results of this section and subsequent ones, cf. Kogbetliantz
19, p. 125, S. Bernstein 2, and Szegé 17.

(2) TeeorREM 7.32.1. Leta > —1,8 > —1,

B—a
32, - Bzae
7320 SRRy
We have
n + Q ~ . — ( ﬂ) > _ 1
(7322) max lP;a.ﬂ)(x) l — n n 'qu max a, = o2

—lgr<+1

|Pi¢!.ﬂ)(x/) l ~ n—i if ¢ = max (a, B) < —

Here x' is one of the two maximum points nearest zo .

f

1
Fe

The symbols ~ refer to the limiting procedure n — «. In the second case
—1 < z¢ < +1; then we use (8:21.10). The subsequent argument furnishes
the more precise result that the maximum of | P{**?(z) | in the interval 0 < z < 1
is of order n™*@ =12 A gimilar result holds for —1 <x <0.

For the proof we generalize the argument of §7.3 (1) as follows. Letn = 1,
and let

n(n + a + 8 + 1)f(z)
(7.32.3) 2

= oo et 8+ DIPEOG + 0 = DL (o)

Then by using (4.2.1), we obtain

d e :
(7.324) n(n+a+ B+ 1Df@) =2fa—B+(@+B8+ 1)x}{% P; "”<x)} :
Thus f’(z) can change its sign only at z = .

We see that the condition —1 < 2y < +1 isequivalent to (a + 3)(8 + 3) > 0.
Now let « > —3 and 8 > —1. Then the sequence formed by the relative
maxima of | Py*®(z) | in —1 £ 2 £ 2o and by the value of this function at
z = —1, is decreasing, while the sequence of the maxima in 20 £ z £ 41 and

of the value of the function at # = +1, is increasing. Therefore, | P{*? () |
attains its maximum in [—1, +1] at one of the end-points.
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Incasea 2z —3and —1 < 8 £ —1 thelinear functiona — 8 + (a4 8 + 1z
is non-negative, so that the sequence of relative maxima in question is increasing
in [—1, 41], save for the case a = 8 = —3%, in which it is stationary; the situ-
ationis oppositein the case § 2 —%, —1 < a £ —1, Finally,let =1 < a < —4,
—1 < B8 < —3% sothat again —1 < xy < 41; then the sequence of maxima 1s
increasing in [—1, o] and decreasing in [z, , 41}, so that the absolute maximum
of | PSP () | in [—1, +1] is attained at the point of maximum nearest z, on
the left or on the right.

See Problem 39.

(3) TurorEM 7.32.2. Let « and B be arbitrary and real, and ¢ a fized positive
constant, n — «. Then

o~ to(n ) fen <9
on®) f0 =<9

A

/2,

~1

(7.32.5) PP (cos §) =

A

cn

See 5. Bernstein 2, pp. 225-232 where Sonin’s theorem is applied, but where
the proof is perhaps slightly more complicated than ours. Szegd (17, p. 77)
uses the asymptotic formula (8.21.17) which is, of course, a more complicated
tool than (8.1.1) and (8.21.10) used below.

The bounds in (7.32.5) are precise as regards their orders in n. They follow
also, as mentioned, from the more complicated asymptotic formula (8.21.17)
of “Hilb’s type.” By use of (4.1.3) we can obtain similar bounds for the
intervals 7/2 < 0 < .

We notice the useful inequalities

; 0,
(7.32.6) Pi®(cos §) = 0<8=1/2, az—1
o(n®),
(7.32.7) PP (cos 6) = O(n™), . 0<0=7/2 a= -1

which follow from (7.32.5). Concerning the second bound in (7.32.6), and
concerning (7.32.7), see §7.32 (2).

We observe that 67 4™ ~ n%if 4 ~ n”'; thus it suffices to prove (7.32.5)
for a special value of ¢. Apply Theorem 7.31.1 with [(4.24.2)]

9 at+ 6 B+
=10,y = u,(6) = (sin __> (cos «> P{®(cos 6),

2 2
5 )
4sin22~ 4cos2%

First, let 6 = é(e, B) be a fixed positive number, sufficiently small. Then ¢(6)
is positive and decreasing in 0 < 8 < §if &® < L. It is positive and increasing
inkn™' < 0 < 8if &® > 1; here k is a fixed number, k > (¢ — 1)} and n is
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sufficiently large. Thus in both cases, the function ¢(6) is positive and monotonic
inkn™ < 6 < 6, where k = k(a, 8), § = 8(a, B), and n is sufficiently large. The
same holds for o® = 1, 8" %« 1. Therefore, the sequences of the relative maxima of
| uo(8) | in the interval kn™' < § < 5 are increasing and decreasing, respectively,
for large n, according as o® < % ora® > 1. According to (8.1.1) and (8.21.10),
we find in both cases u,(6) = O(n™*). (We have (sin 6/2)*"(cos 6/2)°"
~ 6°*1)  This furnishes the first part of (7.32.5) with ¢ = k. 'The second part
follows immediately from (8.1.1).

In the case &’ = 8 = 1, excluded before, ¢(8) is constant. Then we know
PP (cos 6) explicitly (cf. (4.1.7), (4.1.8)).

(4) TueorEM 7.32.3. Let u.(6) have the same meaning as in (7.32.8), and
M, = max | u,(8) | when 0 < 6 £ /2. We have

7r—* 'Lf_%éaé'i'%y
> 3.

(7.32.9) lim ntM, = .
finite and > if @

n=—ree

Here B is greater than —1.

Cf. 8. Bernstein 2, pp. 225-232; Szeg6 17, pp. 79-80. Cf. Theorem 7.31.2.

The preceding argument needs only a slight modification. We have to discuss
the maximum of n! | u.(6) |ford < 0 < 7/2if —3 < a < +4%,and for 6 = n7'%,
0<z=cifa>}i Thefirstise r*asn— « (according to (8.21.10));
the second is :

atd
= max {(%) " e/2) | T ol2) |} = max (/2] 7.0

(according to (8.1.1)). For sufficiently large ¢ this is independent of ¢ and
greater than 7! (Theorem 7.31.2).

(5) Finally, as an application of (4.21.7) we point out the following generali-
zation of Theorem 7.32.2:

TrEOREM 7.32.4. Let a and B be arbitrary and real, and ¢ a fixed positive
constant, n — . Then

—a—k—} k~} ; —1
2\ o~ Ho(nF ) fen” =6 £ n/2,
7.32.10 f<—~> Pi,""”(x} =
( ) l d.l; ) z=cosf O(n2k+a) 'Lf 0 é 6 é Cn_l.

From this we find, uniformly inz, —1 < z £ +1,

k ’
(7.32.11) ((%) PP(z) = 0(n"), ¢ =max(2k + o, 2k+ B8,k — }).

7.33. Ultraspherical polynomials

In the ultraspherical case the preceding considerations can be simplified.
(1) By the same argument-as that in §7.32 (2) we find that
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nln+2f(z) = n(n+ 20 (PP (2)}* +(1—x2){ PO >}

is increasing or decreasingin 0 < z < 1 according as X > 0 or A < 0, A non-
integral, we assume n > 01in the first and n > — 2\ in the second case. Thus
we obtain the following theorem:

TaeOREM 7.33.1. We have

<n+2>\—1> x>0,
(7.33.1) max |PY(z)| = n
—~1szg1 Y . .
| P (') | if N < 0, \ non-integral.

Here ' is one of the two mazimum points nearest 0 if n is odd ;2" = 04f n is even.

In the first case (4.7.3) has been used (cf. also Theorem 7.4.1). In the second
case we obtain, if n is even,

7332 mex [PPG |- PP = (V22

whereas, for n odd,

max |P‘“(x)| < SO} = (nln + 2017 PO(0) |

= |27 | {n(n + 22)} 7 ‘ <>\ _(tz(ﬁ I)};ﬂ) '

Both bounds (7.33.2) and (7.33.3) are =~ 2'™ | P()) | W as n — w; the first
bound is attained for z = 0, the second bound 1s precise in the asymptotlc sense.

(2) By use of (4.7.11) we obtain in a manner similar to that in §7.3 (2), (3),
the following:

(7.33.3)

TuEoREM 7.33.2. Let0 < N < 1. Thenwehavefor0 <6 < =
(sin 6)* | PV (cos 6) |
(7.33.4) Qnj2 if n is even,
IML=N) + 0+ N1+ Doy if nis odd,

IA

and
(7.33.5) | (sin 6)* | P (cos 6)] < 2T (V) )M

Here the constant 2" {T(\)} ™ cannot be replaced by a smaller one; a, has the
same meaning as in (4.9.21).

In (7.33.4) the sign of equahty holds only for even n and § = =/2. Now
=~ (TN}, and a, < (T} (since {n a,} is increasing®™); more-
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over, (M1 = \) + (n + N7 + 1) < 21 % so that equation (7.33.5)
follows.

Less precise (but more general) inequalities can be obtained from the general
result (7.32.5) fora = 8 = A —%. We have -

6700, en = 0= 72,

0n™™), 0=6=<cn™;

H

PM(cosf) =
(7.33.6)
A arbitrary and real, A % 0, —1, —=2, ... ;¢ > 0.

(3) We point out an interesting special case of (7.33.6), namely, A = }
(cf. Szegd 16). We have P, (z) = Pf.*_)l(x) (cf. (4.7.14)), so that
670(nt), en™ <0 < /2,

on*) , 06 <en.

The first bound can be used for the whole interval 0 < 8 < »/2 [cf. (7.32.6)].
According to (7.33.1) the inequality

(7.33.8) | PL(z) | < nin + 1)/2, ~1 =2 = +1,

holds, the equality sign being takenif n = 0, 1,orn > 1,z = 1.
By using the first identity in (4.7.27), we find

(7.33.7) Pl(cosf) = {

1389 - D = "I ) - Puae).

Thus we conclude from the first bound in (7.33.7) (which now holds for
0 < 6 = n/2, cf. the previous remark) the following:

THEOREM 7.33.3. If P,(z) denotes Legendre’s polynomial, we have for 0 < 8 < =
(7.33.10) Pn_1(cos 6) — Pni(cos 6) = (sin 6)*0(n™?).
The bound of the factor O(n_*) s independent of 6.

This result, without the factor (sin 6)}, is due to Stieltjes (cf. Hermite-Stieltjes
1, vol. 2, pp. 174-177; Fejér 9, pp. 295-298). The present form of the theorem
is implied in the previous more general results of S. Bernstein, Kogbetliantz,
and Szego; cf. Szego 16.

7.34. Bounds for integrals involving Jacobi polynomials

TuEOREM 7.34. Let a, B, u be real numbers each greater than —1. Then as
n — o« (concerning the second part of the statement sce below)

4% In view of the concavity of log z, we have

v AQ—-—Nlog(n—1)+rlogn <log(n+rx—1),
(1 — )) log (n?) -+ Mlog {(n + 1)} < log {(1 — Mn? 4 X(n + 1)2].
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1 na—z“—z, 2u <a — 4§,
(7.34.1) /: (1 — 2)* | PSP (z) | dz ~ <{ntlog n, 2u=a — i,
n, 2u> a — 3.

See Szegt 17, pp. 84-86, where the existence of the limits of the corresponding
ratios is proved, and the limits are calculated. The proof of the second part
of (7.34.1) requires a more complicated apparatus [(8.21.18)]; here we prove
only that

‘ 1
(7.34.2)  wn. = 2} / (1 — 2)* | PSP(2) | dz = O(log n), and uy — o.
0

This is sufficient for later purposes (cf. §9.41 (5)).
We use (7.32.5); in fact, we have

1 =/2
ﬁ (1—2)*| PP () | dz = 0(Q1) / g+ | PL*P(cos 6) | db
0

n—1 w2
(7343) _ 0(1) / 02;4+1na de + 0(1) / l 02p+10—a—§n—§ de
0 n-

= 0(n* ™ 4 0(n™H{0Q1) 4 0(n**7)}.

If 2u — o 4 § = 0, the last term must be replaced by O(log n).
On the other hand,

n—1
A / 6%+ | PP (cos 6) | db,
1 0
(7.34.4) / (1 —2)* | PP (z) | dz > 2p <a-—
0

/2
A/ | PP (cos6) | db, 2u > « —

/4

[N )
~

e
~

where A is a proper positive constant. According to (8.1.1), the first bound is
~A Al (/)" n%(2/2)™ | Jo(2) | v d2 ~ n* 7%,
According to (8.21.10), the second bound is
~nt /://42 | cos (N6 + v) | do ~ 7,
Incase2u = @ — §, 2 > —3, we have

1 wn—1
/ (1 —2)* | PP (z) | dz > A’ / 64+ | PLP (cos 9) | db,
0 0

where w is a fixed positive number, and A’ is independent of » and w. From
this inequality, according to (8.1.1),
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1 w
lim inf n} ﬁ (1 — 2)* | PP (2) | dz = 2°A’ / 27| Ju(2) | dz
0

n—rw0

follows. The last integral becomes arbitrarily large with w; this furnishes the
second part of (7.34.2).

7.4. Fejér’s generalization of Legendre polynomials

(1) THEOREM 7.4.1. Let {an} be a sequence with positive terms. Then the
“Legendre polynomzals’ F.(x) (6.5.1) assoctated with the sequence {an} salisfy
the tnequalities

The sign of equality holds only if n = 0, orn > Owithz = —1lorz = +1.

lIA

r = +1.

This leads to a new proof for (7.21.1) and for the first part of (7.33.1).

(2) The inequalities (7.3.8) and (7.33.5), of the Stieltjes type, can likewise
be extended to the polynomials F.(z), though with certain larger constants.
We prove the following:

THEOREM 7.4.2. Let
an > 0, Aa, = ap — agp > 0, Ao, = a, — 20,1 + any2 > 0,
n=20,12 ...,
and

(743) f(Z) =ao+a12+a222+ —*—aﬂz"—*— e

Then for the ‘“‘Legendre polynomials’” F.(x) assoctated with the sequence {an},
we have

(7'44) | F(cos 0) | = 4C([(ﬂ+1)/2]| f(ezw) |) 0<0<mn=012-...

See Fejér 9, pp. 291-295; Szego 11, p. 179. Szegd obtains a larger bound
under a more restrictive condition. The inequality (7.4.4) and the present
proof are new.

Under the conditions (7.4.2) the function f(2) is regular for |2 | < 1 and con-
tinuousfor |z2| < 1,|z — 1| 2 4, where § is an arbitrarily small positive number.
Indeed, we see that lim,wwa, = o = 0 exists. If o = 0, we use a well-known
case of Abel’s inequality (1.11.6);if « > 0, we write an = (s — @) + .

Now from (6.5.1),

[n/2] [n/2]

_ / 2 ’ — 26

(7.4.5) F.(cos §) = z"* arani? + 2% D aron_iz k z=¢e",
k=0 F=0

where the sign Y indicates that for even n the last term k& = n/2 has to be
multiplied by 3. Hence,
[n/2]

/ k
Z o On_k 2
k=0

(7.4.6) | Fr(cos 6) | < 2 , z=ce
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By virtue of (1.11.6) we obtain

[n/2] .
(7.47)  |Fa(cos 0)| < 2anm L. "o, m=n—[n/2],z = .
Svs[n =y
Now, writing
(748) Pn(z) = a,2" + a,.+1z"+1 -+ a,.+gz"+2 + e,

we have, according to a theorem of Fejér-Szegé (1),

(1.49) @12 1n@ | 2la@ 2, Jz]slexl |
But |
L . po(2) = 3{pn(2) + Pnp11(2) ) n even,

(7.410) Z akz’” - 2{}) /2 Pn/241 }
g Pv(z) - P(n+1)/2(z), n Odd,

so that the modulus of this sum is in both cases not greater than 2| f(2) | ;
whence (7.4.4) follows.

We give here a sketch of the proof of (7.4.9). It suffices to show that | f(2) |
Z | @) |, 0r[f&) | 21/ — a |, or R[f)] = w/2for|2]| <1 Now
limuse, = @ = 0 exists. If f(2) is replaced by f(z) — a(l — 2)7}, it is seen
that we can assume « = 0 from the start. Then for |z | < 1

:ZAzan{n—i-l—i—nz—{—(n— D2+ - + 27
n=0

1
2

f(2)

i

Z%Azan(n + 1) + E_:f) Azaﬂ{(n—{— 1)/2 +nz 4+ (n - 1)22 + .. +z"}

ao/2 + Z;o Noan{(n+1)/24+nz 4+ (n — D2+ -+ + 2"},

But for a real 6
R + 1)/2 + ne® + (n — 1) 4 - 4 &™)

= Z(%+cos0+cos20+--- + cos v8)
y=0

% sin (v + 4)0 1<sin {(n + 1)0/2}>”

T & 2sin {6/2} 2 sin {0/2}

(cf. Fejér 1; see also Pélya-Szego 1, vol. 2, pp. 78, 269, problem 17).
Fejér (9, pp. 295-298) also gives an extension of Stieltjes’ theorem on
P y(x) — Pnyi(z) (cf. Theorem 7.33.3) to the polynomials F,(z).

7.6. Recapitulation

In the last sections we gave various derivations of the important inequality
(7.21.1):
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(a) from the orthogonal property, by use of the general Theorem 7.2;

(b) from the differential equation (§7.3 (1));

(c) from the trigonometric representation (4.9.3).

Moreover it follows also

(d) from Laplace’s integral representation (4.8.10);in fact,if —1 <z < +1,

|z 4+ (" — 1) coso | = |z + (1 — )} cos ¢ |
=@+ A -Deostoll = (& + 1 - D)} = 1.

7.6. Laguerre and Hermite polynomials

(1) TueorEM 7.6.1. Let o be arbitrary and real. The sequence formed by the
relative maxima of | L{ (z) | and by the value of this Junction at x = 0, 1s decreasing
Jorz < a + 3}, and increasing for t > a + 3. The successive relative mazima of
| H.(z) | form a decreasing sequence for £ 0, and an increasing sequence for
z = 0.

Indeed, the function
2
(7.6.1) n{Ly" @)} + z {% Lﬁ.‘”(x)}

is decreasing for ¢ < a 4+ } and increasing for £ > « + 1. The function
(7.6.2) 2 {Ha@))" + (Ho(z)}

is decreasing for £ < 0 and increasing for z > 0. Both statements follow by
differentiation as in §7.3 (1); we use the first differential equation in (5.1.2)
and (5.5.2), respectively.

(2) THEOREM 7.6.2. Let o be an arbitrary real number. The successive relative
mazima of

(763) e—a:/2x(a+1)/2 i Lia)(x) | and e—z/2xa/2+i ‘Li.a)(ib) \

Jorm an increasing sequence provided x > xo. In the first case

0 ifo® €1,

(7.64) T _2;;_;,_1; i o> 1.
In the second casc

0 if o <4,

(7.6.5) T (@ - b o> 1.

In the first case we take n so large that 2n + « 4+ 1 > 0.

Sonin’s theorem 7.31.1 applies to the functions » and v occurring, respectively,
in the third and fourth equations of (5.1.2). The larger zero v, of the coefficient
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of w is an upper bound for the zeros of « (cf. Theorems 1.82.3 and 6.31.2).*
The differential equation shows also that z = v, is the last point of inflexion of w;
thus v, is at the same time an upper bound for the points at which the relative
extrema of u are attained. Similarly, if v, denotes the larger zero of 4n +
20+ 2 —z+ & — Nz, we find in (vs)} an upper bound for the points at
which v attains its relative extrema. (The bound of Theorem 6.31.2 is Yu)

Now if 2o is chosen according to (7.6.4) and (7.6.5), we have

n+(@+1)/2 1-ad | n+ (a+1)/2 1-ad
p + i >0, — g - 5 <0
forzo < z < va,
(7.6.6) g Ly
in+24+2-c4+1—=>0, -1 -f—— <0

forzm <z < v'a,
respectively. This establishes the statement.
THEOREM 7.6.3. The successive relative mazxima of
(7.6.7) ¢ |H(z) |
Sform an increasing sequence for x = 0.

Here the second equation in (5.5.2) can be used.

(3) The bounds analogous to (7.32.5) are readily obtained by means of the
asymptotic formulas (8.1.8) and (8.22.1), which correspond to (8.1.1) and
(8.21.10), respectively. It is convenient to use the fourth equation in (5.1.2).
Then 4n + 20 + 2 — z + (3 — o)z is positive and decreasing in 0 < z < 6
if o* < %; it is positive and increasing in kn' < z < & provided o > %, k >
(¢ — 1)/4 and 7 is sufficiently large. Here § = 8(e) is a sufficiently small posi-
tive constant. Therefore, as in §7.32 (3), we obtain the following:

THEOREM 7.6.4.  Let a be arbitrary and real, ¢ and w fized positive constants,
and letn — . Then

QY ifen™ < )

=2 w
O(n®) Oz < en

(7.6.8) L) = {

Q
S

These bounds are precise as regards their orders in n; they follow also from
the more complicated formula (8.22.4) of Hilb’s type.
For « = — 3, both bounds hold in both intervals, that is,

x—a/Z—i O(nalz—})’
(7.6.9) L () = 0<z=<waz-%
o(n®),

# If this coefficient is constantly negative for = > o, |u| has no zeros and no maxima.
Similarly for v. These cases can be excluded.
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On the other hand,

(7.6.10) Li¥(z) = O(n**h, 0<z=<ow a= -1
And generally, with « arbitrary and real,
(7.6.11) Li¥(@) = 0(n"), a = max (ka — 1 a), 0<z=ow
Finally, we obtain the following analogue of Theorem 7.32.3:
THEOREM 7.6.5. Let M, = maXoczga ¢~z | L{(z) |. Then
—4 . 1 1
1 Yy —3=a= 43
(7.6.12) lim a4 L, = { frigests
n—w finite and > =~} ifa> 3.

The proof is very similar to that in §7.32 (4); of course, (7.6.12) also follows
directly from the deeper formula (8.22.4) combined with (7.31.5).

7.7. Problem of Lukics

(1) This problem (Lukécs 1) deals with a more precise form of the mean-value
theorem

(7.7.1) e /bf(x) dz < B,

where 4 = minec.< f(2), B = max.<. f(z), provided f(z) is restricted to the
set of all =, with a fixed value of n.

THEOREM 7.7. Let f(z) be an arbitrary m, with the minimum A and maximum B
in [a, b]; then

— b —
(7.7.2) a+B-4c 1 [ f@)dz < B - B =4,
Tn b — a Ja Tn
where ’
+ 1)° fn = 2m,
(7.7.3) D R yn=2m
(m + 1)(m + 2) if n = 2m + 1.

T he number 7, cannot be replaced by a smaller one.

This result i1s the analogue of an older theorem due to Fejér which deals
with the analogous question for trigonometric polynomials of a fixed degree #n,
b - a = 27. In this case 7, = n 4+ 1. The proof of Fejér’s theorem can
be based on Theorem 1.2.1; however, various other methods have been used
(cf. Pblya-Szegd 1, vol. 2, pp. 83, 277-279, problem 50).

It suffices to prove the first inequality of (7.7.2); the second one follows when
we replace f(z) by — f(z). In addition, there is no loss in generality in assuming
A = 0. It isreadily seen then that 7, is the greatest possible value of f(z) if z
varies in [a, b], and f(x) ranges over the class of the =, which are non-negative in
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la, b] and satisfy

1

(7.7.4) ,

[bf(x)‘dx = 1.

Let now max f(b) = M, for the same set of ma; we shall prove that 7, = M,.
It is clear that 7, = M, . On the other hand, if z, is an arbitrary point in [a, b],
we see, by means of a linear transformation, that

(7.7.8)  f(m) = M, 1 [:’0 f(z) dz, flx) < M, - 1 [ f(z) dz.

Ty — a b_xo

Multiplying the first inequality by z, — a, the second by b — z,, and adding, we
find

1

(7.7.6) flan) < Mo —

[bf(x)dx =M,.

(2) First method of calculating M, . See Pblya-Szegd 1, vol. 2, pp. 96, 297,
problem 108.

Assuminga = — 1,b = 4+ 1, we use Theorem 1.21.1 and represent the poly-
nomials in (1.21.1) as linear combinations of certain convenient polynomials.
For arbitrary and real u,, v, (subject only to the normalization condition (7.7.8)),
we write

m 2 m—1 Y2
{Z u,Pfo‘o)(x)} + (1 — xz){z v,Pﬁl'l)(x)} if n = 2m,
y=0

y=0

(777 jl=) = J(l _ x){zm; u,pﬁ””(ac)}2 + 1+ @{i vyPS"'”(ac)}2

y=0

ifn=2m-+ 1.

Because of the orthogonality of Jacobi polynomials, we have, in the notation of
(4.3.3),

m m—1 .
1 Z RGO 4 Z REMD 2 if n = 2m,
y=(0 =0
(7.7.8) 2= | fl@)dz =4 m
~1
DRI L D plony2 ifn = 2m + 1.
ve=0 ye=()

But

m 2
{Z u,P§°'°’(1)} ifn =2m
y=0

(7.7.9) )=y .
2{2 v,Pﬁ"'”(l)} ifn =2m 4+ 1,
)

so that
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2 2 (RO POY (1)) if n = 2m,

y==(

(7.7.10) M,=1{
4 20 (RO POY (1)) Cifn=2m +1,

y=0

which is attained for u, = const. {A>®}7'P2(1), v, = 0, and u, = 0, v, =
const. (AP} PP(1),» = 0,1, 2, ..., m, respectively. The corresponding
polynomials are obviously the “kernel”’ polynomials K" (x) (cf. (4.5.3)) for the
casesa = 8 = Oand a = 0, 8 = 1, that is, constant multiples of P%'”(z) and
P{P(z). In other words, we have f(z) = const. {Py”()}? and f(z) =
const. (1 + z) {PL""(2)}?, respectively. From (7.7.10) we now obtain (7.7.3)
by direct calculation or, more easily, by mathematical induction, reasoning from
m tom + 1.

(3) Second method of calculating M,. See Lukécs, loc. cit.” This method is
based on certain mechanical quadrature formulas related to considerations
similar to those in §3.4.

Let n = 2m, 2o = 1, and let the zeros of (1 — z) P (z) be denoted by
Zo,Z1, -+ ,Zm. Iff(z)isar,and L(z) the Lagrange interpolation polynomial
of degree m which coincides with f(x) at o, 2;, - -+ , Zm, then

fz) ~ L(z) = (1 ~ z) P& (2)o(z),

where p(z) is a proper 7n.—1 . Therefore,

+1 +1 +1
(7.7.11) 9 f(z) dz — /1 L(z) dz = /1 (1 - 2)P(2)p(z) dz = 0,

so that as in (3.4.1)

1

(7.7.12) 5 :1 flz) dz = zm:o NS,

where the coefficients A, do not depend on f(x). Upon writing

- x){P n '0)(””2}2 if v >0,
(7.7.13) (2) = Py
(PO ()} if v =0,

we show as in §3.4 (2) that the numbers ), are positive. Now in view of f(z) 2 0
and of (7.7.4), we obtain from (7.7.12)

(7.7.14) 1 2 A\f(1), fQ) =275
this is the precise bound of f(1), attained when an only when f(z,) = 0, v =
1,2, .-, m; that is, when f(z) = const. {P$”(z)}>. In order to find N, it is

convenient to write f(z) = v PY""(z) in (7.7.12) (cf. (3.4.3)), where v is a con-

7 T,ukécs uses this second method in 1;however, the first method was alsoin his possession
(ef. 1, p. 296).
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stant; then, on account of (4.5.3), « = 8 = 0,

1

o Y o (1,0) Y * (0,0) Y
= z)dz = = P, = 0 = . =
L B e e Y . S
Consequently, \g' = v P{P(1) = (m + 1)

Now let n = 2m + 1, 2 = 1, Zny1 = —1, and denote the zeros of the poly-
nomial (1 — 2%)P{?(z) by =, Z1, -+, Tms1. The same argument as before
leads to

1 +1 m+1
(7.7.15) Eljuwx=23mm, A > 0,
— v=0

where f(z) is an arbitrary =,. The maximum in question is again A\y", which is
attained when and only when f(z,) = 0,» = 1,2, ..., m + 1; that is, f(z) =
const. (1 + 2){PZ"(z)}%. In order to find Ao, we write f(z) = v (1 + z) P&V (),
so that on account of (4.53),a = 0,8 =1,

1 (™ y [T
- | fl@)de = _/ (1 + 2)PS P (z) dzx
2 /4 2 Ja

(7.7.16)

2r +1(1+x)K(°‘”(x)dx— 2y =1
m+2 /., ™ T m+2

and we obtain
N'=2y(m+ 1) = (m+ L)(m + 2).
7.71. Generalizations; applications

(1) Let da(z) be an arbitrary distribution on the finite or infinite segment
[a, b], {pn(x)} the associated set of orthonormal polynomials, and z, an arbitrary
but fixed point. Then if p(z) is an arbitrary =, with

(7.71.1) /‘b | o(z) Pda(z) = 1,
we have
(7.71.2) | p(zo) |* < ); | (o) I*,

with the sign of equality if and only if p(z) = const. Do p,(zo) 2,(x). This
was proved in §3.1 (3).

In certain special cases we can calculate the maximum of (or some upper
bounds for) the right-hand member of (7.71.2) if z, runs over a certain interval.
The bounds obtained hold uniformly in that interval for the set of all p(x)
which are = and satisfy (7.71.1).

In what follows we consider various distributions of the form da(z) = w(z) dz;
p(z) denotes an arbitrary =, which satisfies (7.71.1).

(2) Leta=—1,b=+1,w() =1.
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THEOREM 7.71.1.  Let p(x) be an arbitrary ., subject to the condition
+1
(7.71.3) / | p(2) [Pdz = 1.
—1

Then we have for — 1 < 2y £ + 1

27 m + 1),
AQ — 2l

(7.71.4) | p(z0) | = {

Here 4 is an absolute constani.

The first bound is precise; it is attained for zo = =+ 1 if p(z) is a proper 7.
‘These inequalities follow from (7.71.2) when we use (7.21.1) and (7.3.8).
Nowleta = —~1,b =+ 1, w(z) = (1 — z)* 1 + 2)°.

THEOREM 7.71.2. Leta > — 1,8 > — 1, and p(z) an arbitrary =, subject to
the condition

+
(7.71.5) L a- 21 + ) | p@) Pdz = 1.
Then
0.—&_*0 4 3 1l<pg<
(7.71.6) 2(c0s 0) = { (m?) if om™ < 6<r/2
O@m™™) gy 0=0=cm™

Here c ts an arbitrary but fized positive number, and the constants in the O-terms
depend only on o, B, and c.  Simzlar bounds hold in the interval [x /2, 7.

For the proof we notice that in this case p,(z) ~ n! P\ (z) [(4.3.3)], and
according to (7.32.5),

f: V{Pﬁa‘ﬁ)(clos 0)}2 = Z O (™) + Z v0—2‘f~10(1}_1)

=1 vi<e vize
— 0(0——20:—2) + 0—2a—10(m) — 0~2a—10(m),
if en™ = 6 < x/2. For the same sum we obtain the bound Yy vO(*%) =
Om**™*)if 0 < 6 < em™.

By use of (7.32.2) certain precise bounds can likewise be derived.
Leta = 0,b = 4+ o, w(z) = ¢ °. Then, according to (7.21.3),

=
=

(7717 e | plze) | £ (m + 1)}, 70 2 0, f’ e~ | plz) 'dx = 1.

This bound is attained if zo = 0 and p(z) is a proper =, .

The case ¢ = 0, b = + o, w(z) = ¢ "1% « > —1, can be treated by a
method similar to that used in the Jacobi case disctissed above (cf. (7.6.8)).

(3) Now let [a, b] be a finite interval and f(z) an arbitrary =, which is non-
negative in [a, b] and satisfies the condition
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(7.71.8) /b fx)w(r)dz = 1.

We intend to determine the maximum of | f(z,) |, where z, is a fixed real or
complex value.
By Theorem 1.21.1 we can write

{f: u,p,(x)} 4+ (z —-a)(b — 2) {mil v, q,(x)}2 if n=2m,

v=0 y=0

(7.71.9) f(z) = - \ -~ \
(z — a) {Z% u,r,(x)} + (b -z {Z:, v,s,(x)} if n=2m-++1,

where {p,(z)}, {¢.(z)}, {r.(x)}, {s.(x)} are the orthonormal sets of polynomials
associated with the weight functions
(7.71.10) w(z), (x — a)(b — 2)w(x), (x — a)w(z), (b — 2)w(x),a < z < b,

respectively. The third and fourth sets are special cases (zo = a, 2o = b) of
the “kernel” polynomials (Theorem 3.1.4); the second set can be calculated by
means of Theorem 2.5. In both cases, n = 2m and n = 2m + 1, we have for
the real numbers u, , v,

b m m
(7.71.11) / f@wE)de = 2 ul + 2k =1, v =0 U n=2m,
a y=0 v=-=0

so that according to Cauchy’s inequality

[f) | =

(7.71.12) | ™% {é | p() [, |20 — a[[b — = mgio | g.(z0) |2} if n = 2m,

max{lxo ~a é | r(z0) 5, [B — 20 gls,(xo) l2} if n=2m++ 1.

In case a < 7, < b, the absolute value signs can be omitted. The right-hand
side of (7.71.12) represents the maximum required.

(4) Leta=—1,b=+1,wkx) =1 —2)°(1 + z)’, «and 8 > — 1. Then
the four sets of polynomials mentioned in (3) are, respectively, constant mul-
tiples of

(77113) {PSa.B)(x)}, {P5a+1.l3+1)(x)}, {PSa.ﬁ+l)(x)}, {P5a+l.l3)(x)}.

In the special case 7o = 1, for the maximum of f(1) we obtain (cf. (4.5.3)):

m

2 ip(D) = KwP(1) if n = 2m,

y=0

(7.71.14) -
2> (n()} = 2K (1) if no=2m + 1.

y=0

Therefore, the following theorem holds:
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TuEOREM 7.71.3. Let f(x) be an arbitrary =, which is non-negative in [—1,+1]
and salisfies the condition

+1

(7.71.15) 3 @1 — o)A +2)fdz =1, a> —1,8> — 1.
Then
Q) =
2—a-—ﬁ—1 P(m+a+2)r(m+a+6+2) if n=2m
(7.71.16) IMa + 1)I'(e + 2)I'(m + DI(m + B+ 1) ’

g-ap-1_ Tm + a4+ 2)P(m+ o + 6 + 3)
IMa + DI'(e + 2)I(m + 1)I(m + 6 + 2)

. 2a+2
These bounds are precise; both are ~ m*** asm — .

if n=2m - 1.

Cf. Polya-Szegé 1, vol. 2, pp. 96-97, 298, problem 110. Upon permuting «
and B, we obtain the corresponding bounds for f(— 1). In general, we find,
under the same conditions as in Theorem 7.71.3 (cf. Theorem 7.71.2),

6720 (m) if em™ < 6 < 7/2,

O(m***? if 06 <cem.

(7.71.17) f(cos 8) = {

The bounds for f(cos 8) are similar in 7/2 < 8 £ =. Further, a bound of the
form O(m°) holds uniformly in 0 < 6 < 7, where ¢ = max 2a + 2,28 + 2, 1).
The constants of all these O-terms depend only on «, 8, and c.

(5) By means of Theorem 1.21.2 we can treat the following problem. Let
f(z) be an arbitrary =, , non-negative for z 2 0, and

(7.71.18) / e “z°flx)dr = 1, a> — 1.
0

What is max f(0)?
We write (cf. (5.1.1))

S {P(a + 1)(” J: “)}_i L (z)

v=0
m—1 —
P A G | T

v=0

2

2

4+ z

if n = 2m,

(7.71.19) f(x) =

2

Fulrer () e
> {r(a + 2) <” + . + 1)}4 L ()

y=0

2

4z

| if n=2m-+1,
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where the complex numbers w, , v, satisfy the condition
(7.71.20) 2wl + 2 ult=1.

y==0) y=0

(In the second sum v,, = 0if n = 2m.) Now in both cases we have (cf. (6.1.7))

10 =5 {r<a + 1)(” + “)’}_’LS'” |

14

(7.71.21) <3 {I‘(a + 1)<" T O‘)}*l{LS")(O)}"’

y=0 14

v=0

= {Pla + 1)} Zm: <V —:— a) = {I'(e + 1)}_1<m +"o: * 1):

and this is the required maximum.
If « = 0, we obtain

(7.71.22) 70) = [n/2] + 1, A i e f(@)dr = 1,

provided f(z) is a =, , non-negative for z = 0. We can readily prove the more
general. inequality

(7.71.23) e f(z) = [n/2] + 1,

where f(z) is subject to the same condition as in (7.71.22). 'To this end, let z,
be an arbitrary positive number. Applying (7.71.22) to

flz + Io){/)w e “f(x + x0) dx}

~1

which satisfies the required condition, we find
o —1
f(xo){[) e “flx + x) dx} =< [»/2] + 1.
Whence

i) < (n/2] + e / "o + a0 da

= ([n/2] 4+ 1) ]w e “flz)dz = [n/2] + 1.

See also Problem 42.

(6) Certain bounds for the orthonormal polynomials {p.(x)} can be derived
from the preceding results, provided the weight function w(zx) satisfies an
inequality of the type

fiA

(7.71.24) wx) Zu >0, a <z Zb;




|
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or

(7.71.25)  w(z) Zux —a)*b —2)’, a<z<ba>—18> —1;

or

(7.71.26) w(x) = ux’, 2> 0,a> — 1.

In the first and second cases a and b are finite.
Fror instance, under the condition (7.71.24) we obtain

(7.71.27) /; {(p.(2)}2dz < #—1/ {pl)Pwx)dz = u

Consequently, according to Theorem 7.71.1,

Am,
(7.71.28) | pa(mo) | < - B a <z <b.
{A’[(xo — a)(b — x)] ¢,

Here A and A’ are positive constants depending only on a, b and w.

A similar argument applies to the cases (7.71.25) and (7.71.26).

If we assume that w(z) satisfies a Lipschitz condition, the bounds m and m}
in (7.71.28) can be replaced by m! and 1, respectively. (Cf. (7.1.15).)

(7) Finally, by use of Theorem 7.32.4, we obtain the following generalization

of (7.71.28). letw(x) 2 u > 0,a = — 1,b = 4+ 1, and &k = 0, an integer.
Then .
(sin 9) 0 (n*™)
(k) _ !
(7.71.29) P, (cos6) = 0™ 0<0 <.

The bounds of the O-terms depend only on u and k.

For the proof we use an argument similar to that used in proving Theorem
7.71.2.

7.72. A problem of Tchebichef

(1) ProBLEM: Let w(x) be a weight function on the interval [a, b, and let W (z)
be a given real-valued function, defined on the same interval, and for which the
integrals

, .
(7721) / W(x)xkdx, k = 0: 1: 2: e, N,

exist. Let f(z) be an arbitrary polynomial of fixed degree n, not identically zero,
and non-negative in a < x < b.  To determine the mazimum and the mintmum of
the ratio

(7.72.2) /f(x)W(x)dx:ﬁf(x)w(x)dx.

Soe Tehebichef 7. First let @ and b be finite. By using the representation
(7.71.9) again, we easily find that the quantities in question are the maximum
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and minimum of the following quadratic forms in {u,} and {v,}:

L {Zn:o u,p,(x)} W(z)dx + / {2 v,q,(x)}Q(x —a) — 2)W(z)dx

(7.72.3) o ) if n=2m,
[1 {; um(x)} (x — a)W(z)dx + / {Z% v, 8 }(b — 2)W(z)dz
if n=2m41,

under the condition D ro us + D rovi =1. (In the first case v,, = 0.) Here
{p.(@)}, {g.(@)}, {r.(2)}, {s.(z)} have the same meaning as in (7.71.9).

Iet now a be finite and b = + o, Then we have to consider the maximum
and minimum of the form

o ([(n/2] [(n 1)/2] 2
(7.72.4) / { mzo uyp,(x)} W(z)dz + / { v,qy(x)} (x — a)W(z)dz

under the condition Y_ u) + D v2 = 1. Here {p,(x)} and {g,(z)} are the ortho-
normal sets associated with w(z) and (z — a)w(z), respectively, z = a.

In casea = — o, b = 4 o, we must consider the form
+o0 ([n/2] [n/2]

(7.72.5) I Sw p,(x)} W(z) dz, doul =1,
—00 y=0 y==0

where {p,(z)} is associated with w(z) in [~ o, 4+ o],

Thus, in all these cases, the problem in question is reduced to the determina-
tion of the greatest and least characteristic values of a certain quadratic form.
In dealing with the sum of two quadratic forms in {u,} and {v,}, respectively,
we determine the greatest characteristic value of the single forms, and the
greater of these values is the maximum in question. A similar remark applies
to the minimum. The actual application of this method 1s difficult, however,
and certain mechanical quadrature formulas (see below) are often preferable.

Similar considerations apply if the integrals (7.72.2) are replaced by Stieltjes
integrals.

(2) Leta= — 1,b =+ 1, W(z) = azw(z). It suffices to determine the maxi-
mum and minimum of

(7.72.6) [_:1 Lo(2) Vaw(x)dz :/:1 [ () }w(z)dx,

if p(z) is an arbitrary m., not identically zero with real coefficients. Having
done this, we must replace w(z) by (1 — = Hw(z), (1 & x)w(x), respectively; see
below. Let 2o, 2y, - -+ , T be the zeros of the orthogonal polynomial pn41(2)
associated with w(z); dccordmg to (3.4.1), we find for the ratio (7.72.6), the
representation

(7.72.7) 3 ez} Zx {p(z.)}’

v==0
where )\, denote the Christoffel numbers. Therefore, the maximum and mini-
mum in question coincide with the greatest and least zero of pmti(x), respec-
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tively. (Cf. §3.4 (3).) If p denotes the greatest zero of p(z), it is seen from
(7.72.3) that the maximum of (7.72.2) is, in this special case,

max (ﬁm+1 ’ ‘jm) : if n= 2m;
max (Fmyi, 8mp1) if n=2m+ 1.
The result for the minimum is similar.

(3) Here the general discussion of Tchebichef ends (cf. 7, p. 395). We can

prove, however, that the expressions (7.72.8) are pmy1 and 7oy, respectively,
so that the following theorem holds:

(7.72.8)

THEOREM 7.72.1. Let w(z) be a wetght function on the interval [— 1, + 1].
Let f(x) be an arbitrary ., , not tdentically zero, and non-negative in [— 1, 4 1].
Then the mazimum of

(7.72.9) /_Hf(x)xw(x) dx :/_Hf(x)w(x) dz

18 the grealest zero of Pmyi(x) if n = 2m, and the greatest z2ero of Pmys(—1)pmys(z) —

Prti(—=1)Pmie(x) if n = 2m + 1. Here {pa(2)} s the set of the orthonormal
polynomzials associated with w(z) wn the interval [—1, +1]

According to Theorem 2.5,
269 Pmi1(2)  Pal)
(1 — 2°)gm(z) = const.|pn(~1) DPmyr(—1) | Pmyz(—1) |,
Pn(l)  pnia(l) Prms2(1)
Pu(T)  Pys(2)
Pu(—=1) Pppa(=1)
Pn(z)  pmya()
Pn(1)  pmys(1)

First, let £ > & > ... > £, be the zeros of pmyi(z) in decreasing order. We
show that the first determinant in the right-hand member of (7.72.10) is non-
zero 0 if £ < z < 1. Indeed, according to (3.2.1)

(77210> (1 + x)rm(x) = const.

b

(1 — z)s,(x) = const.

Pu()  Pmii(z)  Pria(2) Pn(®)  Pmyil@)  Tpmy(a)
Pn(=1) Pryai(=1)  Pmipa(—1) = Amp2 | Pm(=1) Pmp(—1) = Pmpa(—=1)
Pn(1)  Pmpr(l)  Pmya(1) (1) (D) Pmi1(1)
hMz) 1 =«
= Awns2 Prit(@) Pmis (= Dpmpa(1) [R(=1) 1 —1],
(1) 1 1

where h(z) = pn(z)/pmu:(z). Now, by using (3.3.9), we see that the last
determinant is positive in § < z < 1, since
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(z—-¢&)70 1 2
2(1 — 2%

(—.1 e g,)—l 1 ——1 = > 0
1 — (g — '
N A

On the other hand, h(z) decreases from -+ o to — oo between & and &, and
from 4+ o to h(1) between &, and 1 (cf. the proof of Theorem 3.3.4). Fur,ther-
more, h(— 1? < 0, (1) > 0. Thus the greatest zero of rm(Z), or h(z) — h(— 1)
1s greater than the greatest zero of s,.(z), or h(z) — (1), z < 1. ,

(4) Tchebichef discusses in detail the case

(7.72.11) a= —1, b= 41, w(x) =1, W(z) = x.

(Problem of the “centroid,” see loc. cit., p. 399; cf. also Szego 13, pp. 627-629.)
Save for constant factors, we now have

Pmt1(2) = Prya(2); gn(z) = PV(2) = const. P, . (z),
(7.72.12) rmiuz) = PO (x) = const. {P,1(z) + Pop(@)}(1 4+ 2)™"

Smi1(2) = Pr(nliox)(x) = const. {Pni(z) — Pop(2)}(1 - 2)7,
This yields the following theorem:

THEOREM 7.72.2. Let f(z) be an arbitrary w,, not identically zero, and non-
negatwe for — 1 < x < 1. Then the maximum of

+1 +1
(7.72.13) /4 zf(x)dx : /_1 flx)dz

1s the greatest zero of Pmyr(x) if n = 2m;if n = 2m + 1, it is the greatest zero of
Pri1(x) + Pmia().

The distance from the maximum valueto lis~n"2agsn — . Theminimum
is obviously the corresponding negative value.

For other refinements of the mean-value theorems, the reader is referred to
Tchakaloff 1. Cf. Problem 43. Concerning other extremum problems for poly-
nomials and connected inequalities, see Geronimus 2, 3, 4, and Shohat 2.

7.8. Further results

(1) From Theorem 1.82.5 we conclude the following refinement of Sonin’s
Theorem 7.31.1. Let y = y(x) satisfy the differential equation (7.31.1) and let
y(z) have an infinite set {z.} of zeros ordered in the increasing way:z, <z <
z; < -+ . The function ¢(zx) should be positive, continuous, and decreasing.
Let p be a fixed positive number. Then the integrals

/' gy ()l de

are increasing.

A similar statement holds if ¢(x) is increasing.

For p — 0 this reduces to the assertion of Theorem 1.82.2. Taking the pt* root
of the integral, for p — = we obtain the assertion of Sonin’s theorem. Hence,
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the assertion above is a common generalization of hoth theorems (Makai 2).
In Makat 2 one finds various remarkable special cases of this useful theorem.
(2) Let .. be the successive relative maxima of 172, (x)! when x decreases

from +1to —1. We have (Theorem 7.3.1):

> pim > ppn > - >y, where h = [n/2].

Now for a fixed r, we have (Szegi 23)

(78]) ,urrnn > ,urr.n+ly n 2— r + l
These inequalities also hold for the relative maxima of | PP (x)] /P,(1)
when a =8> — }, Szész 2, and from this for a> g = — { by use of (4.1.5).

The same result for «> B> — 4 is probable, but still open. Somewhat
surprisingly these inequalities fail for

PO (x) = P,(x) +2Pn—1(x)

and graphical evidence suggests that the inequalities (7.8.1) are reversed
for this function. See Askey-Gasper 4 for a problem which would be solved
by these inequalities.

For the orthonormal Hermite functions defined by

_ Hy(x)e™*/?

xR

(%)

Szasz 3 proved inequalities similar to (7.8.1) and used them to prove
| Zo(x)| = (%) ==~V

Stronger inequalities in which the right-hand side goes to zero in n are
known. See Askey-Wainger 1 and Muckenhoupt 3. They also obtain refine-
ments similar to that given in Problem 40 and similar inequalities for Laguerre
polynomials.

(3) Many inequalities, involving in particular the classical orthogonal
polynomials, have been investigated by Karlin-Szegé 1. Problem 70 (Turan’s
inequality) is a special case. See Gagper 5 for a Turan type inequality for
Jacobi polynomials.

(4) Theorems 7.31.2, 7.32.3, and 7.6.5 have been sharpened for « > — 3§ by
Lorch 3.

(5) The inequalities (7.71.12) have been refined in Schoenberg-Szego 1.

(6) Turan 3 considers the problem of maximizing the Markoff-type functional

S5 |wh(x) )% *dx
S5 ma(x) e *dx
over polynomials 7, of degree <n. He shows that the exact maximum Is

1
2sinw/(4n +2)°




CHAPTER VIII
ASYMPTOTIC PROPERTIES OF THE CLASSICAL POLYNOMIALS

The consideration of the asymptotic properties of the orthogonal polynomials
{pa(z)}, n — o, leads to two fundamental problems: the asymptotic behavior
of'the polynomials in question outside the orthogonality interval, especially
in the non-real domain, and the asymptotic behavior on the orthogonality
interval itself. In general, the second problem is deeper and more difficult than
the first one. In our treatment we start with a discussion of Legendre poly-
nomials, obtalning various important asymptotic formulas for them. We
intend not only to give a survey of results, but also to point out the various
methods used. The extension to ultraspherical and general Jacobi polynomials
will also be indicated. The asymptotic investigation of Laguerre and Hermite
polynomials, in general, requires new considerations, although essentially the
same methods as before can also be applied to these cases.

The simplest special case,

Ta(z) = 3" + 277, z=3c+27),

the case of Tchebichef polynomials of the first kind, furnishes a good illustration
of the characteristic features of our results. If xis located outside the interval
[— 1, 4+ 1], we can take | z| > 1, and we then see that

T.(x) =~ 2"/2, n — o,

1)

On the interval [— 1, 4 1], we write z = ¢”, T.(x) = cos nf. Here the poly-
nomials have an oscillatory behavior.

These results need only a slight modification for Legendre, and even for Jacobi,
polynomials as long as r ¢ £1. A new difficulty will, however, arise in the
vicinity of the end-points == 1, which are in some respects exceptional. This
is ultimately due to the fact that the coefficient of dé in

(1 — 2)*(1 + z)’dz = —(1 — cos 6)*(1 + cos 6)® sin 6d8

vanishes, in general, or becomes infinite at 6 = 0 and § = =. When this occurs,
functions of the type cos 76 are not suitable for the approximation of the poly-
nomials in question in the neighborhood of x = 1. For this purpose we shall
use certain Bessel functions.

Usually, the problems and results for Laguerre and Hermite polynomials are
similar. But it is rather curious that, in the corresponding asymptotic expres-
sions, the quantity n' appears instead of n. In the general Laguerre case,
Bessel functions are needed near £ = 0, whereas for the Hermite polynomials
the origin z = 0 does not play an exceptional role. Inboth cases new difficulties
arise due to the fact that the interval of integration is infinite. For the expan-
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sion problem it is of great importance to have asymptotic formulas that hold in
intervals which become infinite as n — o«

8.1. The formulas of Mehler-Heine type

These important formulas are elementary in character, and we shall discuss
them briefly before entering into the general considerations of §§8.21-8.23.

(1) TueEOREM 8.1.1. Let a and B be arbitrary real numbers. Then

n—owo n—+0 2n?

2
(8.1.1) lim n~*P{? (cos Z) = lim n~*P{*? (1 — i) = (2/2)7"J.(2),

where Jo(2) has the same meaning as in (1.71.1). Thas formula holds uniformly
in every bounded region of the complex z-plane.

For Legendre polynomials, « = 8 = 0, formula (8.1.1) is due to Mehler (3,
p. 140) and Heine (3, vol. 1, p. 184). Concerning further literature we refer
to Watson 3, p. 155. In case a = 8 = 0, a very simple proof follows from the
first integral of Laplace [(4.8.10), (1.71.6)]. For o« = = % the function in the
right-hand member of (8.1.1) is a constant multiple of 2™ sin z and cos 2, re-
spectively (cf. (1.71.2)). Formula (8.1.1) is trivial for the elementary cases
(4.1.7) and (4.1.8).

The proof can be based on (4.21.2). In fact, we have for the (v + 1)st term
of (4.21.2) if x = cos(z/n), zand v fixed and n — «, the following asymptotic ex-
pression:

1 Tht+ae+B+r+1) F(n+a+])<—sin2 z>”

viln —»)! T o ) Tvb+a+t+1 on
(8.1.9) n—=v)! Tn+a+8+1) T+ a+1) n

e na _Z—2>v
T wIT + e+ 1)\ 4/
Here we exclude the case of a negative integer . Passing to the limit under the

summation sign is valid because of the existence of a dominant for the total sum
which is readily derived. Indeed, we have, if n is large enough,

n® Tnt+a+B+v+1)T(n+a+1)
n—»)! Thn+a+p8+1) 2rn2
<" _w@n+ o+ B)”P————-——~(n ;_:2+ b

n!

uniformly in », 0 < v < n. The argument needs only a slight modification if «
is a negative integer.

Formula (8.1.1) gives a complete characterization of the function P (cos 6)
for 6 = O(n™). As an important consequence we note the following:

THEOREM 8.1.2. Let 21, > 2o > - - - be the zeros of PLP(z) in [— 1, + 1]
in decreasing order (a, B real but not necessarily greater than — 1). If we write
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Tyn = €OS Oyn, 0 < 0,, < m, then for a fized v,
(8.13) lim n0yn = jv;

where j, 18 the vth positive zero of J .(2).

(2) Relation (8.1.1) enables us to derive some properties of Bessel functions
from the corresponding properties of Jacobi or Legendre polynomials. We use
the symbol (a) — (b) to indicate that in writing z = cos (z/n), a certain formula
(a) is transformed into another formula (b) by the limiting process n — .
Then we have the following relations:

(4.1.7) and (4.1.8) — (1.71.2),

(4.2.1) — (1.71.3),

(4.22.2) — J_4(2) = (— 1)'Ju(2), Ll an integer,

(4.24.2) — (1.8.9),

each of (4.8.6), (4.8.10), (4.9.3) — (1.71.6) in the special case o = 0, and

(4.9.19) — (1.71.6) in the general case.

See also Problem 44.

From Theorem 1.91.3 (Hurwitz’s theorem) the reality of the zeros of z7%J .(2)
follows for« > — 1. From (6.6.5) and (6.6.3) (or (6.6.2)) we obtain for the
positive zeros j, of J4(2), A\ = o + 3,

(8.1.4) (v + 3¢ — P = 5, = vm, v=123 ..., — +

The upper bound can be replaced by (v + )7 if — 3 < « = 0 (cf. (6.6.6)).
Furthermore (cf. Watson 3, p. 49, (1); cf. (7.31.5)),

(8.1.5) (7.33.1) = T(a + 1)(2/2) | Jul2) | = 1, z >
(8.1.6) (7.33.5) = 2% | Ju(2) | = (2/m)"%, . z2>0, — 1% +

The expansion (4.9.17), (8.21.5), and the inequality (8.21.6) of the remainder
term furnish the important formula (Stieltjes 8, p. 242):

Jo(2) = (.2_>* pil {1-3-+- (v —D}*cos {z — (v + Hn/2}

w2/ =0 24 ... 2 2% v

2\ {1:3--- (2p — 1D} 1
lép(z), = (;_‘é) 2:4 .- 2p 92p zp’ z> 0.

[
IIA
R
IIA
(=

[2

o

Iv

[2

IIA
IIA
f= [

+ fp(z);
(8.1.7)

Thus the error e,(2) is numerically less than the first neglected term (replacing
cos by 1). For p = 1 we obtain the special case « = 0 of (1.71.7) (with a
numerical constant in the bound of the remainder).

(3) Tueorem 8.1.3. Let o be arbitrary and real. Then for an arbitrary com-
plex z

(8.1.8) lim n”* L (z/n) = 272 J (22},

n—>o0

uniformly if z vs beunded.
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This formula is of a type similar to (8.1.1) and yields similar results. The
proof can be given along the same lines as there. In the special cases @ = = 3,
we again obtain trigonometric functions. From this case an analogous formula
for Hermite polynomials can be derived. See Problem 45.

Both formulas (8.1.1) and (8.1.8) can be extended to an asymptotic expan-
sion. Concerning the case of Laguerre polynomials, o« = 0, see Moecklin 1, p. 28.

8.21. Asymptotic formulas for Legendre and Jacobi polynomials

From the point of view of the asymptotic problem, the Legendre polynomials
P.(z) represent the simplest non-trivial case. We start with an enumeration
of some classical results concerning the behavior of P,(z) as n — «. The
proofs, based on various methods, are given in subsequent sections. In what
follows, € denotes a fixed number with 0 < ¢ < 7/2, so that the interval [e, 7 — €]
lies wholly in the interior of [0, 7]; p is a fixed positive integer.

(1) Tueorem 8.21.1 (Formula of Laplace-Heine; Heine 3, vol. 1, p. 174).
Let z be an arbitrary rcal or complex number which does not belong to the closed
segment [— 1, + 1]. Thenasn — «,

(8.21.1) Pu(z) 2 (27n) 2@ — 1) {2 4+ (2 — 1)V

Here (zfF — 1)7" (2® — D', and {z + (" — 1)'*}"** are real and positive if x
is real and greater than 1. This formula holds uniformly in the exterior of an arbi-
trary closed curve which encloses the segment [— 1, + 1], in the sense that the ratio
tends uniformly to 1.

Turorem 8.21.2 (Formula of Laplace; Heine 3, vol. 1, p. 175).
P.(cos 8) = 2%(xn sin 8) 2 cos {(n + 1)6 — n/4} + O(n™*"),

(8.21.2)
0<0<m

The bound for the error term holds uniformly tn the interval e £ 0 < ™ — e.

TureoreMm 8.21.3 (Generalization of Iaplace-Heine’s formula). Let z be in
the complex plane cut along the segment [— 1, + 1};letz = Xz +27), | 2| > 1.
Then

p=1
P.(z) = g.2" 2.9,
(8.21.3) v

1:3---(2v—1)
2n—-—1)2n—-3)---2n—2v+1)

z~—2v(1 _ z——-Z) —v—}

+ 0™ | 2|").
Here g, has the same meaning as in (4.9.2), that s,

=1-3---(21»—12

-1.923 ....
3.4 -9, 7 v=123,

g=1 g

Formula (8.21.3) holds uniformly in the same sense as tn Theorem 8.21.1.
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TueoreM 8.21.4 (Darboux’s generalization of Laplace’s formula; Darboux 1,
p- 39).
p=—1
1-3 -+ (20 — 1)
P, 0) = 2ga y R _
(cos 6) g ;g 2n—-1)@2n—-3)---(2n —2v + 1)
cos {(n — v + P8 — (v + Dr/2)
(2 sin 9)»+

(8.21.4)
+ o(n™" Y, 0<0<r.

Here g, has the same meaning as tn Theorem 8.21.3. The bound for the error term
agarn holds uniformlyin e £ 6 £ 7 — e

THEOREM 8.21.5 (Stieltjes’ generalization of Laplace’s formula; see Stieltjes
7, 8).

4 2:4.---2n
Puleos®) = s mn D)
52, cos {(n+v 4+ 10— (v + Pr/2)
(8.21.5) ;’h” (2 sin )+ + R,(6),
0<o<r.
Here h, has the same meaning as in (4.9.18), that s,
b = 1: h=1-3---(2v—1) 13- (v— 1% 3
T 2 AP+ (b )
v=123,---.
We have
4 2.4...2n M
(8.21.6) | B,(0) ] < T35 - (2n+ 1) ho (2 sin §)7+¥’

M = max (|cos 8], 2 sin 6).

The factor M s between 1 and 2. Thus the error is numerically less than twice the
first neglected term (replacing cos by 1).

TuroreM 8.21.6 (Formula of Hilb; Hilb 1).
(8.21.7) P.(cos 8) = (8/sin 0)*Jof (n + 26} + O(n™Y),

uniformly for 0 < 6 = m — e. More precisely, for the error term we have the
bounds

O™ if en = 0= —
(8.21.8) ) . »
6°0(1) if 0<0=cn,
where ¢ 18 a fixed positive constant.

(2) Some of these results can be extended to Jacobi polynomials. The
extension of (8.21.1) is due to Darboux (1):




196 ASYMPTOTIC PROPERTIES OF CLASSICAL POLYNOMIALS - [ VIII]

THEOREM 8.21.7. Let o and B be arbitrary real numbers. Then,
PrP@) = (z — )™ @ + D™ (@ + 1)' + (@ — 1}
@) (" — D7He + (2 - DY,

where x 1s outside of the closed segment [—1, +1], This formula holds uniformly
in the same sense as in Theorem 8.21.1. The determination of the multivalued
functions occurring in this formula is obvious.

(8.21.9)

The extension of (8.21.2) is also due to Darboux (1); this is the important
formula to which we referred in §7.32:

THEOREM 8.21.8. Let o and B be arbitrary real numbers. Then

PP (cos ) = n™k(6) cos (N8 + ) + O(n™,

—a} ~6-}
(8.21.10) k() = »* (sin g) (cos g) . N=n+(atg+1)2

vy=—(a+Hr/2, 0 <6 < 7.
The bound for the error term holds uniformly in the interval e, 7 — .

The extension of Theorems 8.21.3 and 8.21.4 to Jacobi polynomials is readily
achieved. However, the law of the coefficients is, in this case, rather com-
plicated.

THEOREM 8.21.9. Let o and B be arbitrary real numbers. There ezisls a se-
- quence of analytic functions ¢,(2) = é,(, B; 2) which are real for real z and regular
for|z] > land 2| =1,z ¢ 31, such that

p—1
(821.11) PP (z) = §¢,<z>n-v~* +0m™); =1+, 2] > 1,

uniformly for |z | > R, R > 1.
Furthermore,

3 p-‘l .
(8.21.12) P ®(cosg) = 25)?{6"’0 > qs,(e"’)n“”“%} + O(n_”"%), 0<8 <,
v=_
untformly for e £ 6 < 7 — .
These extensions attain, in the ultraspherical case, the following more pre-
cise form:

Taeorem 8.21.10. Let = 3(z 4+ 27), |2z] > L,and A > Oor A < 0, A
—1,-2,-3,---. Then

1=MN2=7) (-2
"MAHN=DEFN=2) - (n+r—)

271 — 277N 02 ).

p—1
P;M(x) = a,2" Z o
(8.21.13) =0
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Furthermore,

o\ _ = (1=N@2 =N ---@-N
Pa"(cos 0) _za"yg’)“”(vw-)\— D ErA—2) - (nEr—17)
_cos {(n—v4+N0— v+ Nr/2}

(2 sin )+

(8.21.14)

Oy, 0<0 <

Here «, has the same meaning as in (4.9.21). Regarding the uniformity, the same
remark holds as in the previous theorem.

The special case of an integral value of A is discussed in §8.4 (5).
An extension of Theorem 8.21.5 to ultraspherical polynomials is the fol-
lowing:

TueoreM 8.21.11. Let 0 < AN < 1. We have

Fn+20) E T+ MTv — A+ 1)
'\ S viTn+v+r+1

_cos {(n4+v+ N0 — @+ Nr/2)
(2 sin §)*+

P8 (cos ) = (2/7)sin Arr

(8.21.15)

+ R,(9), 0<0<m,

where

n4+20) T+ MNI(p—r+1) M
')  pITn+p+rx+1) (2sing)rt’

Here M has the same meaning as in Theorem 8.21.5.

(8.21.16) | R,(0)] < (2/7)sin Ar

(3) Finally, we mention the following formula of “Hilb’s type” (cf. Szego
17, p. 77; Rau 2, pp. 691-692).

TureoreM 8.21.12. Let « > —1, and let B be arbitrary and real. Then we
have
@ 8 )
(sin g) (cos g) PP (cosg) = N~ P@—‘:—T—t}) (8/sin 6)* Jo(N6)
(8.21.17) [ oo™ if en 207 — ¢
0°"*0(n®) if 0<6=<cn’,
where N has the same meaning as in (8.21.10); ¢ and € are fixred positive numbers.

Obviously, the remainder term is always 6*0(n™}). If we use (4.1.3), a
similar formula can be obtained in the intervals ¢ < § < = — ¢n”' and
r —cn ' £ 60 < roprovided 8 > —1. In view of (1.71.7) this leads to the
following important result:

Tucorem 8.21.13. Let « > —1, 8 > —1. We have, with the same notation
as in (8.21.10),
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(8.21.18) P{*® (cos ) = n™*k(8) {cos (N9 + v) + (n sin 9)70(1)},

ent09w—enh

Here ¢ is a fized positive number.
This formula (Szego 17, p. 77) is more precise than (8.21.10); for « = 8 =
A — 3 0 < N <1, i1t follows from Theorem 8.21.11, p = 1. The restriction
a > —1, 8> —1is not essential (cf. Szegd, loc. cit.). See also Obrechkoff 2.
(4) Analogous formulas hold for Jacobi’s functions of the second kind Q%% (z)
and, particularly, for Legendre’s functions of the second kind Q.(z), if z is

in the cut plane, as well as for Q.(cos 8) if 0 < 8 < ». Here we point out
only the analogue of Laplace’s formula (8.21.2):

TrroreEM 8.21.14. For0 < 6 < =
(8.21.19) Q.(cos ) = =*(2n sin ) cos {(n + 36 + r/4} + 0(n™¥).
This holds uniformly in the interval [e, # — €.

8.22. Asymptotic formulas for Laguerre and Hermite polynomials

Similar, but slightly more complicated, formulas hold for Laguerre and
Hermite polynomials. In what follows n — o ; we denote by e and w fixed
positive numbers, ¢ < w, by p a positive integer.

(1) TaeoreMm 8.22.1 (Fejér’'s formula; Fejér 3). Let « be an arbitrary real
number; we have

LP(z) = om0 eos {2(n2)! — ar/2 — 7/4)

8.22.1
( ) + O(na/Z-—i)’ z> 0.

The bound for the remainder holds um'formly m [e, w].

TrHeoREM 8.22.2 (Perron’s generalization of Fejér’s formula; Perroﬁ 2, p. 78,
(49)). Let a be an arbitrary real number; we have for z > 0

L (z) = o te e 0t cos {2(nz)} — an/2 — 7 /4)
p—1
. {Z A,(z)n™"* 4+ O(n_”/z)}
y=0
+ 7P gin (2(n2)! — ar/2 — 1/4)

: {If B,(x)n™" + O(n“”/z)},

v=(

(8.22.2)

where A,(z) and B,(z) are certain functions of x independent of n and reqular for
z > 0. The bound for the remainder holds untformly in [e, w].

We notice that Ao(z) = 1 and Bo(z) = 0.
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TaroreM 8.22.3 (Perron’s formula in the complex domain; loc. cit.). Let «
be an arbitrary real number. Then

LE(z) = a7t (—2) ™" 0" exp {2(—nx)?)

(8.22.3) - |
: {Z C,(x)n™" + O(n"””)},

v=0

where C,(x) 1s again independent of n; it 1s reqular in the complex plane cut along
the posttive part of the real axis. Formula (8.22.3) holds if x s in the cut planc
mentioned; (—z)" "t and (—z)* must be taken real and positive if x < 0. The
bound for the remainder holds uniformly in cvery closed domain with no points in
common with x = 0.

Here we have Co(z) = 1.

TuroreM 8.22.4 (Asymptotic formula of Hilb’s type). For o > —1 we have
e—:r/Zxa/ZL(na)(x) — N—a/Z I:‘(Z?'A:}__C:_—'}—}) Ja{z(Nx)}} + O(na/2~%)’
(8.22.4) n!

N=n+{(a+1)/2,z >0,
the bound holding uniformly in 0 < z < w. More precisely, the following bounds
are valid:

20 () if en =1 2o,

T
- (8.22.5)
2o n%) if 0<z<en

In case « = O the last bound is to be replaced by a* log (x7*n™); in (8.22.5)
¢ 1s a fixed posttive number.

Evidently, the remainder term (8.22.5) is equal to z”*0(n*"*"%) throughout
0<z 2o

As a consequence of (8.22.4) we obtain the following analogue of (8.21.18),
which is more precise than (8.22.1).

THEOREM 8.22.5. Let a > —landen™ £ x £ w; then
L7 (z)
= g e P Heos [2(nx)t — an/2 — 1/4] + (nr) (1)),

Here ¢ and w are fixed positive constants.

(8.22.6)

We observe that N' — n! = O(n*;) where N has the same meaning as in
(8.22.4).

(2) Substituting « = =} in (8.22.4), we find, by using (5.6.1) and (1.71.2),
a formula of Hilb’s type for Hermite polynomials. This is contained in the
more general theorem:

TaeorEM 8.22.6 (Asymptotic expansion for Hermite polynomials). For a
real x
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p—1
Nile " P H o (2) = cos (N'z — nw/2) 2 wu,(x)N™

y=(

p—1
(8.22.7) + N7 sin W'z — nr/2) ZO v()N”" + 0(n™?),

N =2n+1,
where
_ I'(n 4+ 1) or I'in 4+ 2) N
T r(n/2 1) I(n/2+4+3/2)" ’

according as n is even or odd. The coefficients u,(z) and v,(z) are polynomials
depending on v; they contain only cven and odd powers of x, respectively. The
bound for the error term holds uniformly in every finite real interval, whether it
contains the origin or not.

For arbitrary n, we have A, = (I'(n 4+ 1)/T(n/2 + D){1 4+ 0™}, and
uo(z) = 1, vo(x) = 2°/6, so that
2(12/2____—_}-_12 e ?H,(z) = cos (N'z — nr/2)
I'(n+1)
(8.22.8)

3
+ % N7tgin Wz — nx/2) + O(n™Y).

THEOREM 8.22.7 (Asymptotic expansion for Hermite polynomials in the
complex domain). The expansion (8.22.7) holds in the complex z-plane if we
replace the remainder term by exp {N*{ J@) §O(n™").  This is true uniformly
for |z | £ R where R is an arbitrary fized positive number.

(3) Finally we deal with another type of asymptotic formulas requiring a
more elaborate consideration.

TreoreM 8.22.8 (Formulas of Plancherel-Rotach type for Laguerre poly-
nomials). Let a be arbitrary and real, € and w fized posttive numbers. We have

(a) forz = (4n + 2a + 2) cos’ ¢, ¢ < ¢ < 7/2 — en”})
e PLE (2) = (—1)"(x sin ¢) g2t pel2t
tsin [(n + (a + 1)/2) (sin 2¢ — 2¢) + 3x/4] + (nz)~0(1)};
(b) for z = (4n + 2a + 2) cosh’ ¢, ¢ < ¢ < o,
e—x/ZL;a)(x) = 1(—=1)"(r sinh ¢)»—éx~a/2~} not
rexp {(n 4 (a4 1)/2)(2¢ — sinh 2¢)} {1 4+ 0(n™)};
(c) for z = 4n + 2« 4 2 — 2(2n/3)Y, ¢ complex and bounded,

(8.22.9)

(8.22.10)
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(8.22.11) L) = (1) "r 23 HA W) + 07},

where A(t) is Airy’s function defined in §1.81.
In all of these formulas the O-terms hold uniformly.

The corresponding formulas for Hermite polynomials (Plancherel-Rotach 1)
are given by the following:

TueoreM 8.22.9. Let e and w be fized positive numbers. We have
() forz = 2n 4+ 1) cosd, e < ¢ < 7 — ¢

¢ P H (z) = 2" (n )} (xn) "H(sin ¢)
(8.22.12) . .
- {sin[(n/2 + 1) (sin 2¢ — 2¢) + 3r/4] + O(n™)};
(b) forz = (2n + 1)} cosh ¢, ¢ < ¢ = o,
e PH () = 2V ) (rn) ¥ (sinh ¢)
(8.22.13) V() (sinh ¢) B
-exp [(n/2 + 1)(2¢ — sinh 2¢)] {1 4+ O(n7)};
(¢) forz = (2n + 1)} — 27377 ¢ complex and bounded,
(8.22.14) ¢ T’H.(z) = 3712 () A () + 07D}
In all these formulas the O-terms hold uniformly.

Note that (8.22.12) holds uniformly in the vicinity of z = 0.

8.23. Remarks on the preceding results

(1) Of all the formulas enumerated in §8.21, formula (8.21.1) has the simplest
character. It can be proved by various methods. An extension to an asymp-
totic series is given by (8.21.3). Corresponding formulas hold for Jacobi poly-
nomials (§8.21 (2)). The following simple consequence of (8.21.9) is important
for various purposes:

(8.23.1) | PP (@) "' = |z + (2 — 1), n-— o;

here z is in the cut plane. The right-hand member is >1 and represents the
sum of the semi-axes of the ellipse with foci at £1 and passing through z.
We compare (8.23.1) with the following formula for Jacobi’s functions of the
second kind:

(8.23.2) QW= y ~ @~ DL
Here y is again in the cut plane and the right-hand member is <1. (Cf.
(8.71.19).)

We shall give also several proofs for the classical formula (8.21.2) of Laplace.
It can be similarly generalized in various directions.

Darboux’s formula (8.21.4) is the most important illustration of the method
due to him (1). This method furnishes asymptotic formulas for the coefficients
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of power series whose singularities on the circle of convergence have a certain
simple character. The same method yields (8.21.3), as well as similar expan-
sions of Jacobi polynomials. (Cf. §8.4.)

The significance of the formula of Stieltjes is due to its unrestricted validity
in the interval 0 < 6 < = (although the bound for the remainder given by
(8.21.6) becomes infinite if § — 0 or § — 7). In view of this fact, it can be used
in various cases not only in a fixed interval in the interior of [0, =], but even in
the vicinity of the end-points where the formulas of Laplace and Darboux
fail in general. For p = 0it holds in the sense that P,(cos ) = Ry(68). Then
(8.21.6) furnishes inequality (7.3.8) but with a larger factor on the right side
(with 2(2/#)! instead of (2/7)?). From the formula of Sticltjes an arbitrary
number of terms in (8.21.4) can readily be derived. However, it seems diffi-
cult to obtain the general law of the coefficients of (8.21.4) in this manner.

The importance of Hilb’s formula also lies in its unrestricted validity in the
neighborhood of § = 0, with the additional advantage that the remainder term
tends to 0 uniformly in this neighborhood. It furnishes the Mehler-Heine
formula (8.1.1) immediately and yields Laplace’s formula (8.21.2) by means
of (1.71.7). The bounds (8.21.8) are a slight improvement over Hilb’s result.
Our proof (§8.62) is essentially the same as that of Hilb. Szegd (15) gives
an asymptotic expansion in terms of Bessel functions of increasing order and
generalizes Hilb’s result. Analogous formulas hold for Legendre’s function of
the second kind. Szegé also obtains (15, p. 450) an analogue of (8.21.1) which
holds in the cut plane, arbitrarily near its boundary. This formula involves
Bessel functions with imaginary arguments.

Another formula of a type similar to (8.21.7) has been given by Watson (2)
with a numerical estimate of the remainder. It involves Jo(2) and Y(2).

Theorem 8.21.12 is the extension of Hilb’s formula to Jacobi polynomials.
The proof given in §8.63 follows the same line of argument as that in §8.62.

The proofs of Theorems 8.21.1-8.21.14 are based on the following methods:

(a) Explicit series or integral representations;

(b) Darboux’s method;

(¢) method of Liouville-Stekloff (method of the integro-differential equation);

(d) method of steepest descent.

A short survey of these methods will be given at the proper places.

(2) Fejér’s proof of (8.22.1) is based on the generating function (5.1.9),
which in this case has the essential singularity w = 1 on the circle of con-
vergence |w | = 1. This argument is of a character similar to Darboux’s
method. The more complicated type of singularity in this case naturally
requires a more careful discussion; it is carried out by Fejér by an clementary
method similar to the second mean-value theorem of the integral caleulus.

In Perron’s first proof of (8.22.3) (in the special case p = 1, see 1), complex
integration is used. He obtains the complete expansions (8.22.2) and (8.22.3)
by using certain general asymptotic results concerning confluent hypergeometric
functions.
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Further proofs of Fejér’s formula (partly giving more exact bounds for the
remainder and holding on certain segments the end-points of which tend to +0
and + «) have been given by Rotach (1), Szegé (10), and Kogbetliantz (14).
They use either the method of steepest descent or similar arguments. Fejér’s
tormula is contained in (8.22.4); the latter result follows from certain general
asymptotic theorems of Hilb’s type due to Wright (1, p. 261, however only
for fixed z). We give a proof for (8.22.4) by using the Liouville-Stekloff
method (§8.64).

The special cases a« = =% are equivalent to Hermite polynomials (see
(8.22.7)) ; in these cases, Fejér’s theorem was known previously by Adamoff (1).
Adamoff obtains the remainder term with certain numerical bounds.

We derive (8.22.7) by using the method of Liouville-Stekloff. Uspensky’s
formula (5.6.5) then leads immediately to a corresponding asymptotic expan-
sion for Laguerre polynomials involving Bessel functions. We indicate this in
§8.66. Concerning this expansion see Wright, loc. cit.; its first term is (8.22.4).
From this expansion Perron’s formulas (8.22.2) and (8.22.3) follow readily. A
second proof of these formulas can be based on the method of steepest
descent (§8.72).

The first term of the asymptotic expansion mentioned for Hermite poly-
nomials furnishes (8.22.8). Adamoff’s formula is less precise. (On the other
hand it contains numerical constants.) Comparison of (8.22.8) with Us-
pensky’s formula (1, p. 597, (6)) indicates that it is convenient to work with
N = 2n 4+ 1 instead of N = 2n.

A very detailed asymptotic investigation of Hermite polynomials is due to
Watson (1, second paper).

We mention the following simple consequence of Theorems 8.22.3 and 8.22.7:
Let z be in the complex plane cut along the non-negative real axis. Then

(8.23.3) n log | Ly (z) | — 2R{(—2)'}, n— .
Here (—z)! is taken real and positive if z < 0. However, if z is non-real,

I'(n/2 4+ 1)

(8.23.4) (2n)"* log {—m

lHn<x>1}—»1s<x>1, ps oo,

Theorems 8.22.8 and 8.22.9 are closely related to the important results of
Plancherel-Rotach (1). These authors deal exclusively with Hermite poly-
nomials and use the method of steepest descent; they obtain a complete asymp-
totic expansion in all three cases of Theorem 8.22.9. Their argument has been
applied to L.(z) by Moecklin (1). We shall derive (§§8.73-8.75) only the
principal terms of these expansions, however, for general Laguerre polynomials
L{¥ (z), by using the method of steepest descent. Our argument is based on
the generating function (5.1.16) and on the asymptotic expansion of Bessel
functions in the complex domain.
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The formulas (8.22.9)-(8.22.11) describe Laguerre polynomials in the
“oscillating region,” in the region beyond this, and in a certain vicinity of the
largest zero, respectively. The same is true for (8.22.12)—(8.22.14).

Van Veen (1, 2) derives the asymptotic series corresponding to (8.22.12)
with numerical estimates. Schwid (1) applies the method of Liouville-Stekloff
(in the more precise form due to Langer (1)) to the asymptotic investigation of
Hermite polynomials.

8.3. “Elementary” proof.of the formulas of Laplace-Heine and Laplace

(1) We start from the representation (4.9.4) and first prove (8.21.1). Let
z=1%z+2",|2z| > 1; then

(8.3.1) Pu(z) = > Gognn2' " = g,2" ZO g—";—"f gn2” "
We next show that
(832) lim Z <g;:—~m - 1> gmzﬂi" = 0’

n-+0 m=0 n

uniformly for |z | 2 R, R > 1. Indeed, the expression in the brackets tends to
zero if m is fixed and n — . On the other hand, it is easy to find a dominant;
we have, for instance,

0< <-‘7"‘"‘— 1>gm§M’.

gn Gn
Now (n 4 1)g, is bounded from zero and from infinity, and
3
(n + 1) V=1, 0<m< n.

(n —m + 1)¥m + 1)

(2) We can prove (8.3.2) in another way, by use of certain very clementary
properties of the sequence {g.}. Let 3 > 0be arbitrary, and let M be a positive
integer, such that

o0

>, R™™ <.

me=M-+1

The numbers gn—/g. — 1 are positive and increase with m; we therefore have,
ifn > M,

M M
3 <€£":1" - '1> g™ < <g;‘” — 1> 2. guRT-

m==0 n n m=(
< <g';M - 1> D gk
n m=0

The last expression tends to 0 as n — o since ga/g.—1 — 1. On the other hand,

n

i <.(,_7_";"l - 1> ng_Qm < Z gn-'mgm R—ﬁm.

m=M+1 Jn m=M+1 (n
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NoOW gm/gm~1 1S increasing, so that

IrnIn < or 21

gn——'m-} lgm—l

accordingasm < (n + 1)/2orm = (n + 1)/2. Consequently, ¢,_ngn attains
1ts maximum, as m varies from 0 to n, for m = 0 or m = n; hence Jnemfm = Gn,
so that

Z (gn~m__1> ng—i’mé Z R™™ < Z R™ < 5.

mes M1 gn me= M+1 me=M+1

This establishes (8.3.2).
Therefore the expression

(8.3.3) (a2") " Pa(z) = 2 gnz™"
m=0
tends to 0 as n — oo, uniformly for |2| 2 R, R > 1. The last sum tends to

a1 - z—“’)"*; whence (8.21.1) is readily derived.
(3) For the proof of (8.21.2) we use (4.9.3). We havefor0 < 6§ < =

) [n/g] ‘
Pn(COS 0) — 2gn93{e—zn0 Z’ Inwm gme2zm0}

m=0 (n
(8.3.4) [ ino 2] /g 4 [ 1LY N,
= 20,9 ¢7 2. <-—"—?—T - 1> gmeﬂ’"“’}-k 2. 967" gmcw}
\ m=10 gn \ m=0

where 2" has the same meaning as in (7.4.5). The sequence {g.} tends
monotonically to 0, so that for 0 < ¢ < =

Z gme2im0 — (1 . eZiG)—} — ei(‘)r/4—0/2)(2 Sin 0)—}
m==(
This series converges uniformly for e £ § < 7 — e
Now, if é is an arbitrary positive number, we determine the positive integer M
so that

M

Z g e2im0
m

me=M !

(8.3.5) < 8, M'>M > M.

The numbers g._./g. — 1 being positive and increasing with m if n > 2M, we
have, according to Abel’s inequality,

M
Z <gn—m _ 1> e ™
m= gn

= <g—'1"—M - 1> max
Jn 0Sug M

where K is a fixed constant. On the other hand,

(8.3.6)

M ool
2 g™ | < K <@—“—‘—" - 1> ,

me=y gn




206 ASYMPTOTIC PROPERTIES OF CLASSICAL POLYNOMIALS [ VIII]

KnZ:/?}
n—m 1 " 2imb '
m=M-+1 ( n )g ¢

< <g—~——""["/2] — 1> max < § In=tnizl

gn Mcug(n/2]) Jn

Since g./g2n is bounded, we see that the first 2.’ in the right-hand member of
(8.3.4) tends to zero. Hence we have

(8.3.8) (2.) ' Pa(cos 6) = Ft{e™ ™. T2 5in 6)7H + b,

(8.3.7)

[(n/2] o

’
Gme
me=gy

2imé

where 6, — 0 uniformly in e £ § £ 7= — e. This is the formula of Laplace with
a remainder term o(n™?).

(4) Although they do not lead to the remainder term O(n™}) stated in (8.21.2),
these elementary arguments are important since they use only some very
simple properties of the sequence {g.}. At the same time they yield certain
asymptotic formulas for Fejér’s polynomials F.(z), introduced in §6.5, valid
in the cut plane and in —1 < z < 41, respectively, provided certain condi-
tions regarding the sequence {a,} are satisfied. We have the following:

THEOREM 8.3. Let {an} be a positive sequence, am — 0, and let am/am—y T 1.
Then the following asymptotic formula holds:

(8.3.9) Fo(z) 22 anz™ D, oam? ", n— o,
mu=()

where T s in the cut plane, * = 3(z + 27N, |z| > 1. If in addition am/asm

remains bounded, we have

(8.3.10) F.(cos6) = 2a,,sn{e“"" > ame*“'""} + o(an), n— o,
ma=()

where 0 < 0 < . Both formulas are valid uniformly in the same sense as (8.21.1)

and (8.21.2), respectively.

The generalization (8.3.9) of the Laplace-Heine formula is new; concerning
the generalization (8.3.10) of Laplace’s formula, see Szegé 11, pp. 186-187.

We observe that the series in (8.3.9) is convergent, and the series in (8.3.10)
is uniformly convergent in e £ § < 7 — e. With regard to the latter fact we
note that am/am-1 < 1, so that a,, is decreasing. As an application of Theorem
8.3, we obtain the analogue of (8.21.1) and (8.21.2) (with a less precise estimate
of the remainder in the second case) for the ultraspherical polynomials P ()
provided N > 0.

8.4. Darboux’s formula proved by Darboux’s method

(1) We shall prove formula (8.21.4), as well as others, by means of an impor-
tant method due to Darboux (1), and we begin with an illustration of this
method. Supposing 0 < 6 < =, let us consider the generating function of
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Legendre polynomials (cf. (4.7.23))
(8.4.1) hw) = (1 — we—io)_i(l _ wez‘o)-g

in the neighborhood of ¢¥:

) s 2i6 )
Rw) = (1 — we ™) (1 — )7 {1 — e“’%‘:l (1 - we“w)}
(8.4.2)

216

=1 - 621‘9)-% Z=% g <_e~> (1 — we-—m)y-a'

6219 — 1

A similar representation holds in the vicinity of e”*. Denoting the Lth partial
sums of these expansions (stopping at the terms » = L) by s"’(w) and s (w),

respectively, let us consider the difference
(8.4.3) Hw) = h(w) — s’ (w) — s (w).

We see immediately that the Lth derivative H''(w) possesses continuous
boundary valuesin |w | ='1. Thus if we expand H(w) in a power series about
w = 0, the coefficients of H'”’(w) tend to 0. This simple remark shows that
the coefficients d, of H(w) satisfy the condition

(8.4.4) lim n"d, = 0.

Each of the terms of the finite sums s (w) and s’ (w) has only one singu-

larity on the -unit circle. The »th term of s’ (w) contributes to the coeffi-
cient of w” in h(w) (and therefore to P.(cos 6)) an expression of the form

: 240\ —} e’ (v — % —if\n
(8.4.5) (1 —¢") g» e p— n (=e™ )",

The sum s (w) contributes the conjugate of (8.4.5). Both terms are O(n™™.
For a fixed value of p the coeflicient of w" in H(w) is of higher order than n
provided L is sufficiently large.

By use of the same argument, the following general theorem can be obtained:

THEOREM 8.4. Let h(w) be reqular for |w| < 1, and let it have a finite number of
singularities

(8.4.6) PRI AP PRGIPIALLS a # B,
on the unit circle | w | = 1. Let
(847) h(w) = Zo C,(,k)(l _ we——i¢k)ak+vbk, Lk = 1, 2, L ,Z,

in the vicinity of ¢ where by > 0. Then the expression
14

o 1
(8.4.8) Z Z Cik) <a/,- -; ka)(—ci‘”)"

v=0 k=1
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Jurnishes an asymptotic expansion for the coeffictent of w™ in h(w) in the following
sense: if Q vs an arbitrary positive number, and if a sufficiently large number of
terms is taken in the sum D_y—g in (8.4.8), we obtain an expression which approxi-
males the coeffictent 1n question with an error equal to O(n~%).

A simple discussion shows that it suffices to stop at the term v = p — 1 of
the sum, where p is a positive integer such that
(8.4.9) p 2 max bi'{Q — RN(ax) — 1}.
1<k<l
Proper logarithmiec singularities of A(w) can also be admitted.
(2) In the case of P,(cos 6), this asymptotic expansion becomes

(8.4.10) 20 {é g.(1 — e2f°)‘5<gm§;i>y<" ” %>(—e"“’)"}.

The general term is O(n™7%); thus, if we stop at v = p — 1, the erroris O(n™?™).
This agrees with formula (8.21.4). It is also clear that the bound for the
remainder holds uniformly ine £ 6§ < 7 — e

The same method can be used for the proof of the expansion (8.21.3), which
corresponds to the Laplace-Heine formula (8.21.1). (Actually, this case is
simpler than the preceding one.) Indeed, let |z| > 1; then

hw) = (1 — 2w) 1 — 27 w)?

= (1 -2 f:g»< a ),(1 — 2w)";

y=() 2_2 - 1

(8.4.11)

whence (8.21.3) readily follows.

(3) The infinite series which corresponds to Darboux’s formula (8.21.4) is
convergent in the ordinary sense and represents P,(cos 6) provided 2 sin 6 > 1,
that is, 7/6 < 8 < 5x/6. In fact, the representation (8.4.2) holds uniformly
near w = 0 if

(8.4.12) [(1 — we ™)™ — 1) < 1.

See 8.92 (4).

(4) Darboux’s method also applies to the general Jacobi, and in particular
to the ultraspherical, polynomials and leads to the Theorems 8.21.9 and 8.21.10.

Another method of deriving the expansions of Theorem 8.21.9 will be indi-
cated in §8.71 (4) and (5).

(5) Finally we observe that the expansion (8.21.14) stopsat v = A — 1 if A
is a positive integer. Then we obtain the exact representation

» B = (1 =NNC=N--0=2xN
P (eos ) = 2an »z=:oay(n+)\— Din Fh=2) - (n + % =)
_cos {n —v 4+ N0 — (v 4+ N7/2)
(2 sin )"+ ’

n=0’1’2".'; >\=172737...; an=<n+2—l>.

(8.4.13)
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In fact, the difference (8.4.3) (with L = X — 1) is in this case a rational func-
tion which has no singularities for any w (including w = «) and which van-
ishes for w — . Hence it must be identically zero.

The analogous representation of P’ (z) for | 2 | > 1, \ a positive integer, is
slightly more complicated; it can be readily derived from (8.4.13).

8.6. Proof of the formula of Stieltjes

(1) Stieltjes’ formula (4.9.17), (4.9.18) has been derived in §4.9 (3) from the
integral representation (4.8.17). This argument furnishes for the remainder
R,(6) of (8.21.5) the representation

1
(8.5.1) R,(6) = gs{e""“"’e“”““"”’(z sin 6) / (1 — )7 p,(t) dt}.
™ 0

Here (g, has the same meaning as in Theorem 8.21.3)

i(0—=/2)

(8.5.2) pp(t) = (1 —2)7 — Z(; gv2 e=@1=1 2sin6’

According to Stieltjes we have

gy =" 1 sin” ¢ do,

p=l LI PSS
G-t Sgr o [ 2800
0

=0 1 —2zsin?¢

(8.5.3)

The last formula is obvious first under the assumption that | 2| < 1; it then
can be extended to the whole strip 0 < R(z) < } without restriction. Now,
writing (1 — ¢) sin® ¢ = r, we find

|1 —zsin®¢|* = |1 — r/2 4 (ér/2) cot 6 |* = [sin 6 — r/(2 sin 6)]* + cos® 6.

The minimum of this expression is cos’ § or (2 sin §) 7, according as 2sin* 0 < 1
or 2 sin’ # = 1, so that

(8.5.4) | o(D)] = g,(1 — )72 sin 6)" M,

where M has the same meaning as in (8.21.6). Thus

|R,(0)| < 3(2 sin 6)~* [ "(1 — )71 — 1)Pg,(2sin 6) " M dt

(8.5.5)
_2 T+ Urp+3 M

=0 I'(n+p+4%) (2sing)rH’
which is equivalent to (8.21.6).
The analogous formula of Theorem 8.21.11 for the ultraspherical polynomials
P®(cos 6), 0 < N < 1, results from (4.82.3) (cf. Szegd 17, pp. 57-60). It is
the expansion (4.9.25) completed with an estimate of the error if we stop at the
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term » = p — 1. The error is again less than twice the first neglected term in
which cos is replaced by 1. The proof is the same as before; we use for the
quantities a, of (4.9.21) the representation (cf. (6.5.9))

(8.5.6) o = 7 'sin Ar / | tan ¢ !”"1 sin” ¢ d.
0

The same remark as in §8.4 (3) applies to the infinite series corresponding to
Stieltjes’ formula and to its generalization. (Cf. (4.9.17), (4.9.25).)

8.61. Method of Liouville-Stekloff; formula of Laplace

We shall now derive the formula of Laplace from the differential equation
(7.‘3.5). The essential idea is the transformation of this equation into an
integral equation of Volterra’s type which permits a successive improvement of
the asymptotic formula in question. The idea is very old, and appears in the
investigations of Liouville on differential equations of the Sturm-Liouville type.
Stekloff (1) applied this method to the asymptotic discussion of certain classical
polynomials.

Recently, Langer (1, 2, 3) employed this method systematically and improved
its efficiency considerably. He generally considers ‘“‘singular’’ cases like (4.24.2),
or any of the equations (5.1.2), in the neighborhood of 6 = 0 and z = 0, respec-
tively, and obtains general asymptotic formulas of “Hilb’s type.” He takes up
also applications of this method in the complex domain.

(1) We write the differential equation (7.3.5) in the form

(5%)2 {(sin 0)! P.(cos 8)} + (n + 3)? (sin 8)! P.(cos 6)

(8.61.1) __(sin 8)' P.(cos 6)

- 4sin20

Interpreting this relation as a non-homogeneous equation for (sin 0)§P,.(cos 6),
we can apply (1.8.12); the corresponding homogeneous equation has the funda-
mental system {cos (n + %)0, sin (n + %)6}, so that with certain constants
00 , C1y, C2,y

(sin 6)} P,(cos ) = ¢; cos (n + 3)8 + ¢ sin (n + )6

(8.61.2) 1 [} Sin {(n + %)(0 _ t)} ‘ .
- n + _%_ /;0 4Sin2t (Sln t) Pn(COS t) dt.

If we assume 6y = 7/2, 0 < 6 < =, the last integral and its derivative vanish
for § = 7/2. This remark enables us to determine ¢; and ¢,. We find

(sin 6)} P.(cos 6) = A. cos {(n + )6 — x/4}
(8.61.3)

0 . 1\(p —
sin {(n +.2)(0 B} (sin £)} P.(cos &) dt,
.2 4 sin? ¢

(¥

1
n +
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where

Gnr2 if n 1s even,
(8.61.4) xn = n + ]_

m Jnybr2 if n is odd.

This is the Volterra equation mentioned above.
~ If 6 is confined to the interval [¢, # — €] and M., denotes the maximum of
the absolute value of the left-hand member of (8.61.3), we have

(8.61.5) M. £\ + 2—77’{?1 4_2%2_;
Therefore, if n is sufficiently large,
M, < 2\, = O,
or
(8.61.6)  (sin 6)' P, (cos 6) = N, cos {(n + $)8 — n/4} + O(H),
which readily furnishes Laplace’s formula.

(2) Successive application of (8.61.3) leads to an expansion of Darboux
type, namely, to the formula

(sin 6)* P.(cos 8) = cos (n + )8 {pz_jl Ay(o)n""_*}
(8.61.7) "=

p—1

+ sin (n + 3)0 {Z By(())n"""*} + o7y, eS0T —¢
ya=()

where 4,(0) and B,(6) are certain functions analytic in 0 < § < = and inde-
pendent of n and p. The explicit determination of these functions, that is, the
identification of (8.61.7) with the formulas of Darboux or Stieltjes, seems,
however, to be rather difficult.

For the proof we use mathematical induction. Assuming (8.61.7), we obtain
from (8.61.3),

(sin 6)! P,(cos 6)

= N\, cos {(n 4+ )6 — n/4} —

1 (% sin{(n 4+ 5@ — 8}
K/ﬂ

n 41 4 sin?t
p—1
. {cos (n + Dt Z% A,

p—1
+ sin (n + 3¢ 2 B,(t)n_""i} dt + O(n™™h),
ye==()

Now 2sin {(n+ 3)(0 — t)} cos (n + 3)t =sin (n + 3)0 +sin {(n + 2)(6 — 2¢)},
and integration by parts yields
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[ sin 1o+ 06 - 20) 2O
— cos (n + 3) 0{2 a#@)n—#} +sin (n + 3) e{z b#w)n-”} + 0,

where a,(6) and b,(6) are certain functions of the same type as 4,(6) and B,(#).
The integrals involving B,(¢) can be dealt with in the same way. This leads
by use of Stirling’s series (cf. P6lya-Szegd 1, vol. 1, pp. 29, 193, problem 155),
to a representation of the form

(sin 8)*P,(cos 8) = cos (n + 1) 0{5: A S”(o)n_"_*}

ye=(}

yd

+ sin (n + %) 0{2 BE"(o)n‘"‘*} + 0™,

y()

Comparing this with (8.61.7), we see that

ASD(o) = A,(0), le)(o) = Bv(o)y v = 0’ 1’ 2’ Tt ’p - 1
This establishes the statement.
We have

(8.61.8)  Ao(8) = (2/x) cos (r/4) = 7}, By(6) = (2/x)} sin (x/4) = =%,

The same method can be used for the asymptotic evaluation of Q.(cos 6),
(see Problem 18), as well as of the ultraspherical polynomials. In the first
case we obtain Theorem 8.21.14. The application of the method to general
Jacobi polynomials is more difficult because no explicit values for these poly-
nomials are known at the point § = #/2 (or at any other fixed point in 0 <
0 < 71").48

8.62. Method of Liouville-Stekloff ; formula of Hilb

(1) We again deduce an integral equation for P,(cos8), different from
(8.61.3) and involving Bessel functions. Writing (7.3.5) in the form

(%)2 { (sin 6)} Pa(cos 8)} + {5—02 + (n + %)2} (sin 6)* P,(cos 6)

(8.62.1)
46° 4mno

= { 1 1 } (sin 6)! P, (cos 6),

we apply (1.8.12). The corresponding homogeneous equation is (1.8.9) (a = 0,
k = n 4+ 1) with the solutions

(8.62.2) o' Jo{(n + 16} and 6 Yo{(n + )6}

48 Cf., however, Korous 3.
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Consequently, with certain constants 6y, ¢, c, , we have
(sin 6)' Pa(cos 6) = c16'Jo{(n + 3)6} + c26' Yol(n + 1)0)

" 6! /"t_; Jol(n + D6} Yol (n + Pt} — Yol(n + 1O}Jo{(n + 3)t)
(8.62.3) " n+ 1), Jol(n+ 1t} Yel(n + Dt} — Yo{(n + Dt} Jo{(n + Nt}

1 1 o
(472 4 sin? 1 t) (sin #)* Pa(cos ¢) dt.

According to (1.8.14)

2
m(n 4+ it
Furthermore, ™ — (sin )% is analytic at ¢ = 0; that is, we can take 6, = 0,
and we then obtain

(sin 6)} P(cos 6) = 6" Jo{(n + 3)8} + .6 Vo{(n + 1)6}

(8.62.4) Jol{(n + DB Yo[(n + Bt} ~ Yo{(n + D)ol (n + Pt} = —

=50 [ AU+ DAY+ D — Tl + DOIILn + el

1 1 Y

(52 m) (Sln t) Pn(COS t) dt.
If this equation is divided through by ¢* and ¢ approaches 0, the last term
tends to 0, whereas the left-hand member tends to 1. Hence (cf. (1.71.10),

(1711))02—0 ca =1,and wefindfor0 < ¢ <

(22 0) Puleos0) =l + Do) + 2 [ aln + Doy viln + B
(8.62.5) \
= oty + Dl (Y — 1) (Y peosa

This is the integral equation required.
(2) First assume 0 < n8 < 1. Then according to (1.71.1) and (1.71.4)

Jol(n 4+ $)0}Yo{(n + Dt} — Yol(n + H6}Jo{(n + 1)t}

— Dol(n + Do) [ log {(n + DiIol(n + Dt} + o<1>]

8.62.6
8620 —Jottn+ 9t} | Zlog (0 + DOVl n + Do) + o |

2 - 8
= =2 Jol(n + D0 al (n + 1)t} log 7 + (1) = 0 log ! + 0(1).
Therefore, the integral of the right-hand member of (8.62.5) is (by (7.21.1))

('] ('] 1
o(1) A tloggdt + 0(1) A tdt = 0(1)02£ t log %—dt + 0(6®) = 0(6%.
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(3) On the other hand, let n6 = 1, § < 7 — . Then, according to
(1.71.10) and (1.71.11), the contribution of the interval 0 < ¢ < n7" to the inte-
gral previously considered, is

omwﬂfﬁwmmm+mwﬁquMWMt

= 0{m) 7"} -0 = 0(67'n7) = (o) 0@ n ) = 0@*n ).

Finally, we find for the contribution of the interval n™! < ¢ < 6, according
to (7.3.8),

0{(n8)™) / 0 (nt)He(nt) ™ dt = 0@ 7).

8.63. Method of Liouville-Stekloff ; extension of Hilb’s formula to
Jacobi polynomials

By use of complex integration, Szegd (17) has extended Hilb’s formula and
the corresponding asymptotic expansion mentioned in §8.23 (1), to ultraspher-
ical, and even to general Jacobi, polynomials. Following Rau (2), we deduce
the principal term of this general expansion by means of the Liouville-
Stekloff method and obtain formula (8.21.17). The bounds for the remain-
der are better than those in Szegd 17, p. 77, (47), and in Rau 2, pp. 691-692,
(29), (30).

(1) Let « > —1. We write (4.24.2) in the form

2 1 2 2__1
‘_i_l‘+{£_ﬁ_““_+N2}u= B *0+(—1——-a2)<012—_1._—> u,

dg? 6

4 cos? - 4 sin? =

(8.63.1) 2 2
u = (sin §> (cos §> P P(cos8), N=n+ (a+8+ 1)/2.

Again applying (1.8.12), we obtain, because of (1.8.9),

6 at+d 0 B+4
<sin ~2-) (cos §> PP (cos §) = a6 J(NO) + ¢, o' J_.(INO)

gt [° - Jo(NO)J _o(Nt) — J—o(N6)J(N?)
N Jow  JalNOJT_oNt) — JL.(Nt)J(N?)

8.63.2 G | 1 1
(8.63.2) St ra-a (-
4 cos? = 4 sin? =
2 2

¢ at+} ¢ B+4
. (sin §> (cos é) P (cos 1) di.

Here and in what follows J_.(2) must be replaced by Y.(2) if « is an integer.
We refer again to the identity (1.8.14), by which

+
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(8.63.3) To(NOT_aNE) — T o(NOTL(NE) = 2 S“]i,;’”".
™

(If «1s an integer, sin ar is to be replaced by —1.) Therefore,

" .8 a+} 0 B+1% (a.B)
67 ( sin 5 cos 5 P, (cos 6) = ¢;Jo(NO) + ¢ _o(NO)

l

(8.634) + ﬁ 0 (Ja(NO)T _a(Nt) — J_o(NO)TLNE) }E1(2) (sin é)aﬂ (cos §>ﬁH

PP (cos t) dt,

where f(f) is regular in 0 < ¢ < =, and independent of 7.
The last integral is convergent for 6, = 0; as § — 4-0 it becomes (n fixed)

'] U] ']
0(1) f (0% + 67 at = 0(6%) f tdt + 0™ f et dt = 0(*"Y).
0 0 ¢

This is true whether « is an integer or not [(1.71.10)], except for « = 0. Then

we obtain
[}
0(1) / (logl + log l) fe dt = 0(492 log l)
0 ¢ 6 0
Dividing (8.63.4) by 6%, 8§ — 40, we find [(1.71.1)] a relation of the form

(N/2)"
I'la + 1)

(The last term must be modified for & = 0.) Hence if « 2 0,
c2 =0 and =27 "N"*"rln + a + INCH

The same result holds when —1 < a < 0 if we take into consideration the
fact that the “principal term” of 67“J_.(N6) is 67**. Thus, for 0 < 6 < ,

at+i B+%
0"*(sin g) (cos Q) PP (cos9) = 27N F—(E—_%(;!—_F—l) J«(N6)

27 PLA(1) 4+ 0(6%) = cl{ + 0(02)} + 6T _(NO) + O(6%).

2

[ at+d 4
(8.63.5) fo (J (NO)T _o(NE) — J_a(No)Ja(Nt)}t*f(t)(sin é) i (cos é)“
P (cos £) dt.

(2) Now let n — «. We find bounds for the last integral in a manner
similar to that in §8.62. First, let 0 < n§ < 1. Then for a # 0, the integral
is (cf. the second bound in (7.32.5))

9
0(1) f {(n8)*(nt)™% 4+ (n6) " *(nt)*}ttHn= dt = O(n"6"™).
0

In case o = 0, we reason as in §8.62 (2) and obtain the same bound, that is,
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0(6"). On the other hand, let n°' < 6§ £ = — e The contribution of the
interval 0 < ¢ < n'is (cf. the second bound in (7.32.5))

o) f )| J_aNt) | + | Ju(VE) |} 0
= 0(1)(n) ™" "n" = 067~ *) = (no)‘lo(o*n—*) = 0(6'™).

(Here J_, must be replaced by Y, if « = 0.) Fort = n~', we use the first
bound in (7.32.5) and obtain

o(1) / 0 () (mt) Y dt = O(6*n 7).

8.64. Method of Liouville-Stekloff; asymptotic formula of Hilb’s
type for Laguerre polynomials

By use of the fourth equation in (5.1.2) this method readily leads to (8.22.4).
The third equation could likewise be used, but the calculation would then be
slightly more complicated. Concerning an extension of (8.22.4) to an asymp-
totic expansion (at least for a > —3) see §8.66.

(1) Let > —1. Writing the equation in question as

2

1
T — —2
v+ (4N + 4 po ) v = :czv; v=c¢€ /2:c“+*Lf,°"(:c2),

(8.64.1)

N=n+ (a + 1)/2,
we can apply (1.8.12) and (1.8.9). Hence with certain constants z,, ¢, ¢,
e L (D) = et . (2N*z) + cz."c*J_a(2N*:c)

I / Jo2N'5)J_o(2N't) — J_o(2N'2)Jo@N*) _isjziase
r0 TL(ZNOT_(2NY) — J@N0) TN ©

(a)
S L () dt.

Once again we use (8.63.3) and obtain

L) = ol (2N'5) + af o2N')

+

f (J 2N D) J_o(@NY) — J_o(@N*2)J (2NY)} 2P L () dt.

2sin

If « is an integer, J_.(z) must be replaced by Y.(2) and sin ar by —1.
Let zo = 0. For a fixed n, as x — 4 0, the last term is

0(1) /z (xat_a + x—ata)ta-{-a dt = 0($a+4).
0

(If @ = 0, this bound must be multiplied by log (1/z).) Therefore, as in §8.63,
¢ = 0 and L{¥(0) = ¢ N**{T'(a 4+ 1)}7*; whence

(8.64.2) a=N""rn+ a4+ DnH™
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Consequently,

T ap () = N2 F__(”_j:_ﬁ_i:_ll J(2N*z)

(8.64.3)

f {J (2N )T _o(2NY)

2 sin o
— J_2N*2)JL2NY)} 4L () at.

(2) As n — «, the remainder term can be estimated in the same way as
in the previous cases. However, we avoid here the use of bounds of the type
(7.32.5). (In §7.6 (3) we derived such bounds as a consequence of (8.1.8)
and of Fejér’s formula (8.22.1); this is almost (8.22.4), which is just what we
must prove now.) In the following proof we apply only the elementary
formula (8.1.8) of the Mehler-Heine type, in particular only the second bound
in (7.6.8).

First, let 0 < z < n~'. Then we have L) = O(n®) for 0 S ¢t < =
It then follows that the integral term in (8.64.3) is

(8.64.4) 0OQ) / (g n T - T2y TN dt = 0(x*Mn®);

fora =0 thls bound must be multiplied log (z™'n7%).

Nowletn? <z < !, where w is a fixed positive number. Let M, be the
maximum of ¢ =/*z® t L“"’(:v ) | in this interval. Then the contribution of the
part 0 St = n” of the integral term is, a = 0,

(8.64.5) 0Q1) f (T T e e @ = 0@,
0

The same result holds if we have a = 0. The contribution of the other part
nt <t<zis

(8.64.6) 0Q1) / nTir T, At = OW)n ' M, = M,-o(1).

Taking account of (8.64.3), and using the same argument as in §8.61, we find
that

(8.64.7) M. = 00" 00 2h = O(x_§n°"/2**).

(This is, of course, identical with the first bound in (7.6.8).) Therefore, in

view of (8.64.5), (8.64.6), and (8.64.7), we obtain for the remainder term, if
-1 }

n'=2r 2w,

O(x_§n°‘/2_9“) + 0(1)n~*:c30(x_§n“/2_*)
= 0(2;_}71,‘1/2_9/4) + 0(x5/2 a/2—) = 0(x5/2na/2—'}).
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8.65. Method of Liouville-Stekloff; Hermite polynomials

(1) The integral equation (8.64.3) assumes a particularly simple form in case
a = =}, that is, for the Hermite polynomials. Using (5.6.1) and (1.71.2),
and writing n = 2m,a = —%,andn = 2m 4 1, « = 41, respectively, we obtain

¢ H . (z) = A\, cos (N*:c — nr/2)

(8.65.1) .
+ N / sin {N'(z — 0)}8e " H..(¢) dt,
0
where
(8.65.2) A = | Ha(0) |, or |H.(0)|N*

according as % is even or odd, and N = 2n + 1. However, it is more con-
venient to deduce this directly from the second equation in (5.5.2).
We prove (8.22.7) by mathematical induction. The statement is true for
= 0, replacing both sums >_7%' by 0. In fact, if M, denotes the maximum
f ~<tiz | Hq.(z) | in a fixed real interval, we find from (8.65.1) that

(8.65.3) M, £ M+ 007D .M,

Then M, = X\.0(1).
(2) Now assuming (8.22.7) for an arbitrary p, we obtain from (8.65.1)

¢ PH (z) = A cos Nz — nr/2)

(8.65.4) + AN / sin {N}(z — 1)} {cos (Nt — nr/2) }:t wON™

+ N tsin W — nr/2) ’:}_: £ v,(t)N—"} dt + 207",
y==(}

The second term of the right-hand member contains expressions of the fol-
lowing type:

AN / sin {N'(z — )} cos (Nt — nx/2)¢" dt
0
= 2k + 2)" "\ N sin Wz — nr/2)

+ N /x t* sin {N'(@z — 2t) + nx/2} dt,
0
(8.65.5) .
AHN""*I/ sin {NM(@z — 6} sin W — na/2) dt
0

= —(2 4+ 2)7" NN cos (Ve — nn/2)
+ %)x,,N*H/ £ cos {N'(z — 2t) + nn/2} dt,
0

where kiseven and lis odd (k = 2,1 = 3). Integration by parts furnishes
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f t*sin {N*(z — 20) + nr/2} dt = IN"*2* cos (W'z — nn/2)

0
=3 [T s (e — 2) + n/2
(8.65.6)
f t' cos {N*(z — 2t) + nr/2}dt = N2 sin (Wz — nr/2)

0

+ %lN_’/ ' sin {N¥z — 2t) + nr/2} dt;
1]
the second formula holds also for I = 1, and

(8.65.7) ﬁ sin {NYz — 2f) 4+ nr/2} dt = {?V ~+ cos (Ntz — nr/2)

according as # is even or odd.
This consideration leads to a formula of the type

»
e "Ho(z) = \a {Cos (Nz — nr/2) Z u(@N~

+ N7} sin (Vs — nr/2) Z v ()N~ + O(n_”"*)}
By repeated application of the same argument

e PH () = A\, {cos Nz — nr/2) g wP(@)N™

+ N sin (Vz — n/2) 2 0P @N + o(n""‘)}.
y=0

We readily see that ui’ (), ui?(@); v’ (2), v P (z) are polynomials of the same
type as u.(z); v, (z), respectlvely, and u,(z) = w’(x) = w? (@), v.(x) = vV (z) =
v P(x), » < p — 1; whence (8.22.7) follows.

The proof of Theorem 8.22.7 can be given along these same lines.

8.66. Application to Laguerre polynomials

(1) The asymptotic expansion (8.22.7), combined with the formula (5.6.5)
of Uspensky, readily furnishes an asymptotic expansion of Hilb’s type for the
Laguerre polynomials L*(z), at least for « > —3%. We shall give only an
outline of the proof.

Substituting (8.22.7) in (5.6.5), we obtam an asymptotic expansion of which
the general term is, apart from trivial constant factors depending on n,

(8.66.1) /—:1 (1 — &) {cos [(4n + 1)*2*f]u, (2HE)

+ (4n + D7Hsin [dn + Didttln(te)) at
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Here the u,(r) and the »,(2) are even and odd polynomials, respectively, and
both are independent of n. The expression (8.66.1) is a linear combination of
terms of the form

+1
(1 — &)@ 0)* cos {(dn + 1Patt) dt,
—1
(8.66.2)

+1
(4n + 17! 1 (1 — O™ (gH) sin {(4n + Diabe} @,

where k& and ! are non-negative integers, k¥ even and ! odd. If we expand
¢*7*'* in a power series about 7 = z, we obtain for the first integral terms of

the type

+1 ,
1 — & cos {(dn + Dzt de,
-1
with ¢ integral, and ¢ = 0. This can be expressed in terms of Bessel functions
[(1.71.6)]. A similar method furnishes for the second integral (8.66.2) terms
of the type

+1
/ (1 — &) Hsin {(4n + D2t} de,
-1
¢ again being integral, and ¢ = 0. These can also be expressed in terms of
Bessel functions (combine the second formula (1.71.5) with (1.71.6)).

If we stop the expansion of the first expression (8.66.2) at a certain term, the
remainder appears in the form

+1
(8.66.3) / (1 — 5zl — )] cos {@n + 12} @,
where f(t) = cnt™ + Cmpa™ ' 4 - - - is an integral function with a zero of order
m at + = 0; here m is an arbitrary integer. The remainder is of similar form
for the second integral in (8.66.2). Writing

g(t) = 1 — Az — )],

we see that the functions g(t), ¢'(t), ¢"’(®), --- , ¢ °(t) vanish at ¢t = =+ 1;
they are all z™0(1), where O(1) is uniformly bounded in —1 < ¢ £ +1, and in
a fixed finite interval @ < z < b containing the origin or not. Integrating by
parts, we find for (8.66.3) a bound of the form O(n™™), where K is arbitrarily
large with m, uniformly in z, ¢ < =z < b.

Similar remarks hold for the second rémainder.

(2) The first term of this expansion furnishes (8.22.4). We also obtain
readily an extension of (8.22.4) to the complex domain.

Now assume 0 < ¢ £ 2z £ w. Then applying (1.71.8), we find Perron’s ex-
pansion (8.22.2). (Cf. Uspensky 1, pp. 608-610.) There is no difficulty in
deriving the complex formula (8.22.3) of Perron in the same way.
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In all these considerations we assumed « > —21. An extension of Perron’s
formulas to arbitrary real values of « is possible by means of the second formula
in (5.1.13). Concerning a second proof of Perron’s formulas (by use of the
method of steepest descent), see §8.72.

8.71. The method of steepest descent; Legendre polynomials and
related functions

(1) This method can be used for approximating integrals of the form

(8.71.1) /{F(t)}"g(t)dt = /e"""g(t)dt,

extended over a certain arc or closed curve, where F(t) = ¢/ and g(t) are
given analytic functions regular in a certain part of the complex {-plane, and
n — . According to Cauchy’s theorem, a deformation of the contour is
possible. In many cases it is convenient to make it pass through some of the
points ¢ at which f'(fy) = 0 (saddle point); in addition, the direction of the
contour at ¢ (critical direction) must be determined according to the condition
that (assuming f"/(t) # 0) the expression

(8.71.2) nf! (o) (¢ — t)*/2
1s real and negative if ¢ is sufficiently near ;. Then
{F)}" = {F(t)}" exp {nf"(t)(t — t)*/2 + nf"" o)t — t)*/6 + --- }.

Hence under proper conditions concerning the behavior of f(¢) on the comple-
mentary part of the path of integration, the neighborhood

(8.71.3) t — bt = O°h), 0<é<iy,

L]
of the saddle point furnishes the “principal” part of the integral as n — o.
Tts contribution is of the form

+nd 3

(8.71.4) ¢’ “g(ton? / , €xXDp (—ap?) dp = enf(‘(’)g(t())(&%) ;a>0n— o,
(Additional difficulties arise if f”/(f,) = 0; concerning a case of this type, cf.
§8.75.)

The term ‘“method of steepest descent” arises from the following consider-
ations. Let ¢ = w + ww. Then representing u, v, R[f(¢)] as cartesian coordi-
nates in the ordinary euclidean space, we obtain a surface with a saddle point
at t = &, and the curve with the critical direction is the ‘“‘steepest’” curve on
the surface through this point.

There is, of course, considerable freedom in the choice of the contour; only
its direction through the saddle point is restricted. However, the exact calcu-
lation of the saddle points ¢, from /(%) = 0, and particularly that of the corre-
sponding critical directions, might well be a complicated task in certain cases.
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For this reason, the following observation may greatly simplify matters. In-
stead of the critical direction itself, any other direction through the saddle point
can be taken for the path of integration, provided it forms an angle of less than
7/4 with the critical direction. Then the constant a in (8.71.4) becomes com-
plex with a positive real part. Geometrically, this condition means that in
passing through the saddle point on the surface, no higher level is reached in
the neighborhood of this point than at the point itself.

For our purposes, we shall prefer a contour satisfying the last condition, and
along which R[f(?)] varies monotonically. Then the discussion of the integrand
exterior to the neighborhood (8.71.3) becomes comparatively simple.

Concerning the history, further details, and important applications of this
method, the reader is referred to Watson 3, pp. 235-236.

(2) As a first illustration let us consider the Legendre function of the second
kind, that is, the special case « = B = 0 of (4.61.1). Let z = cos § — 10,
0 <8 <w. Then

(8.71.5) QL® (cos b —40) = Q. (cos § — 0) =%f<1 L1 ) =

2t —cos8/ cosf — ¢t

The original path of integration, —1 < ¢ £ 41, can be deformed into the upper
half of the unit circle described in the negative sense. The saddle point con-
dition is

(8.71.6)

d(l tz—l)_1t2—2tcoso'+1

= — 1
dt\2t —cosg) 2 = 0, whence t = ¢,

2  (t — cosf)
and we see that the path of integration passes through the saddle point ¢ = e”.
If t = ¢ we have

d\(1 & -1 ) 1
(8.71.7) (32) <§ t —cos8/ ising’
so that near this point
. 1 t2 -1 o (t _ ei0)2
(8.71.8) 2f—cosf + 2¢sin 8

—1(0+x/2) (t

Along the critical direction, e — ¢™)* must be real and negative; that is,

(8.71.9) arg (t — €’) = 9/2 4 37/4 or 6/2 — x/4.

Now, the angle between this line and the tangent to the unit circle at the point
9 s
e” is

(8.71.10) arg {e' OV f @Y g g/2,
and | 7/4 — 6/2 | < 7/4 — ¢/2if e £ § < ¥ — e. We can therefore use the
circle | ¢ | = 1 as the path of integration.”

49 The critical direction is given by that of the bisector of the acute angle between the
tangent at the point e’ and the horizontal direction.
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Substituting ¢ = ¢, 0 £ ¢ < 7, we find that

,} £ —1 _ sin ¢
2¢t—cosf! {(cos¢ — cosh)?+ sin?¢}?

- 2 -4
_ {(cos ¢. cos 0) n 1}
Sin ¢

is an increasing function of ¢ for 0 < ¢ =< 6, and a decreasing function for
6 = ¢ = w. We next consider the contribution of the arc

(8.71.12) $=0+n"p —n'=p= 4,

(8.71.11)

where § is a properly chosen positive number. On this arc we have

. . ) , -~ \2
e — e’ = ¢ (exp [in"p] — 1) = ¢* {in_*p + @12_"2 + },

and, in view of (8.71.8),

1 t2 -1 i 621'0

- T = - -1 2 —4 e T,
2¢t—cosé ¢ 2z'sin0n Pl 4 an”p + aln™p) + b

provided § < 3. Herec,,¢c;, - - - are certain functions of 8 independent of n, for
which ¢» = O(A™) holds uniformly in ¢ £ 6 < = —¢, and in m; 4 = A(e).

Now
1 -1\ e’ o\ w
(ét~coso) = eXp{ 2sing” [°
9

== ¢ 2‘ _* _* 2 LI
W = 2isin0p{cln p+ c(np) + -}

where

0 1 10 v - o _ ,

- Z—( = )nl p"(1+ enp 4 --)
y=2 ¥ \2¢sin 6

Let & < %; then if M is an arbitrarily large positive integer, W and ¢” can be

reduced to a finite sum plus a remainder which is O(n™). This yields the re-

lation

1- t2 - 1 n_ eino ex _ Cio 2}
8.71.13) \2 i —cos8) ~ ° “P1 T Zsine”
{14 wlo,0)n7" + walp, )0 + us(p,0)n ™" + -+ 1.

The series in the braces is an asymptotic expansion. If only m terms of this
are taken, the error is less than an arbitrarily large power of n~ ' provided m is
sufficiently large; here u.(p, 6) is a polynomial in p and a function of 6, analytic in
€= 0 <7 —e Inadditionu,(—p, §) = (—1) u,(p, 9).
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(3) Now multiply (8.71.13) by
1 dt 1 de®de 1 e g,

2 cos0—¢ 2cosh — e 2 cos @ — efein

6

—* ’ _% ’ —* 2 . o 0
5" {14+ can™p4 ca(n™p)" + -- -} dp,

where {c.,} is a sequence similar to {cm}; this does not change the essential
character of equation (8.71.13). We obtain, as the contribution of the arc
(8.71.12), :

ei(n+1)0 3 —nd eio \
(871.14) 2sin6 " /ns eXp{_%sian}

A1 4+ vlp, )™ + 3o, O™ + vs(p, ) + - -} dp,

where {v,(p, 6)} is a sequence of polynomials similar to {u,(p, §)}. The last
series is again an asymptotic expansion of the same type as (8.71.13).

At the end- pomts of the arc 1n question the modulus of the integrand of
(8.71.14) is O(e™**" ), that is, O(e™*"" ) ¢ > 0; the same is true of the contribution
of the complementary arc because of the monotonic character of the function
(8.71.11). 'Thus,

Q.(cos § — 70)

i(n+1)8 . 4nbd _61.0 )
T 2. nﬂ/ eXp{_ — P}{l + oo, O)n " + m(p, O + -} dp

né —nb 27 81n 4

[\ TN

+ 0.

The terms corresponding to the odd powers of n! vanish after integration.
Upon completing the interval of integration, we obtain

e':(n-l-l)o +o eio . )
Q.(cos 8 — 10) = —— n'*/ exp{— — p}dp + O(n™%)

2sin 8 o 21 81n 8

ei(n+1)0 _*{61'(0—,/2) —

]
. = * _s
(8.71.15) 55" 13 <o 0} x4+ 0(n™%)

]
~ (553) & Uil + D0 + =41 + 067,
the bound for the remainder holding uniformly for e £ § £ 7= —e.

This method leads to a complete asymptotic expansion of Q,(cos 8 — ¢0) of
the type (8.61.7) for ¢ £ 6 < m —¢, but seems to be too difficult for use in
finding the general law of the coefficients.

From (8.71.15) we obtain the corresponding asymptotic expansion for
Q.(cos 6 + 70) by merely replacing 7 by —<. From this, and (4.62.8), we
easily derive Laplace’s formula. Formula (8.61.7) can also be derived in this
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way. At the same time we obtain a similar asymptotic expansion for Q'” (cos 6)
= Q.(cos §) with the principal term (8.21.19). ‘

(4) The analogous considerations for the Jacobi polynomials P " (cos 6)
are immediate. Here o and g8 are arbitrary and real, n — o, and 6 again
satisfies the condition ¢ < § < 7 —e. According to (4.4.6) we have

1 1 &#—1 Y\
P*? (cos 0) = 2 {*/ g . E
(cos 6) % 271 2t — cosé

(8.71.16)
(o) () =
1 — cosé 1+ cos8/ cosf — ¢}’

where the contour is the same as that used in (2).* The additional factor

— a 8
(8.71.17) 2 (-l——i-> (J—f—‘-)
mt \1 — cos @ 1+ cosé

does not cause any new difficulty and furnishes for ¢ = ¢”

™

—a s
(8.71.18) %(sin %) (cos %) exp [¢{a(d — 7)/2 + 88/2}].

Therefore, we find (8.21.10) and an expansion of the type (8.21.12).

(5) The same method can readily be applied to the functions Q.(z), P.(z),
or more generally to Q**®(z) and P{** (r), where z is arbitrary real or complex
but not on the scgment [—1, +1]. This leads to (8.21.9) and also to the
expansion (8.21.11). In the case of Q\*” (), we start from (4.61.1). It.is
convenient to replace the half-circle used above by the circular arc through
+landz = z — (2" — 1)}, | 2] < 1, (z is in the cut plane), which was intro-
ducedin §4.81 (1). The resulting integral is the same as (4.82.4). Applying the
method of steepest descent, we obtain a formula of the type

(8.71.19) (z — )%z + 1)°Q¥ (@) = n Mz — (* — D)} a(2),

where |z — (2* — 1)' | < 1, and ¢(x) is independent of n, and regular and non-
zero in the cut plane.

8.72. Method of steepest descent; Perron’s formulas for Laguerre polynomials

As a further application of this method we again prove the expansions (8.22.2)
and (8.22.3). The present proof is based on the integral representation (5.4.1),
which is valid for an arbitrary real «, provided = is sufficiently large.

(1) Let z be arbitrary but nonzero. We start from the asymptotic expan-
sion (1.71.8) of the Bessel function J.(z), z complex. The contribution of the
segment 0 < ¢ < 11in (5.4.1) is (n!)7'0(1). We can therefore confine our at-
tention to values of ¢ = 1, so that (1.71.8) may be applied. Substitution of
this expangion into (5.4.1) leads to integrals of the type

50 We must avoid the points ¢t = #1 by means of small semi-circles.
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—7%7] e (1) ™™ cos (2(t2) — ar/2 — 7/4) dt, m even,
®721) O
;ll“, f e~ T (tr) ™  sin {2(tz)! — an/2 — 7/4) dt, m odd,
*JO

m=012 --.

(Here the range of integration has again been completed t0 0 < ¢ < ».) The
remainder term will be of the form

(8.72.2) %f e " exp (28| R(—2)t |} dt,
tJo

with ¢ a fixed positive number which can be chosen arbitrarily large; the deter-
mination of (—z)! is the same as in Theorem 8.22.3. If z is a fixed positive
number, this is obviously O(n**™?). If z is complex, the discussion of this
remainder term requires greater care. Subsequent considerations furnish a
bound in this case also.

(2) For the sake of convenience we shall first discuss the integral

1 —n «©
1 'e f (e'™*t)" exp [n} tel de,
: 0

72 Tt b=
(8.72.3) 7?']0 et exp [Eldt = m

(¢ # 0, arbitrary complex) to which the integrals (8.72.1) and (8.72.2) can be
reduced ; here n — + o, but 7 is not necessarily an integer. In the last integral
the saddle point is “‘essentially’’ ¢ = 1, and the positive real axis corresponds
to the critical .direc’cion.51 If we write, as in (8.71.12),

(8.72.4) t =14 ntp, —nt < p = 40,
we obtain, for 0 < § < 1/6,
(€7')" = exp {n(1 — ) + nlog 1 + (¢ — 1]}

y=3

=e M1 + wl)n™ + wl)n™ + -1,

where the u,(p) are polynomials in p independent of n. This is an asymptotic
expansion similar in character to that in (8.71.13). Furthermore,

exp [n'g] = exp {n't + nde((1 + ¢ ~ D) - 1)}
8.72.6 @
( : = exp {n*&‘ + pt/2 + 't ;—; cy(n_*p)”},

where the ¢, are certain numerical constants. This furnishes exp (nt + p£/2)

81 This case is not a direct applicatlzicz)n of the method indicated in §8.71 (1) since the
integrand has the form {F(¢)}*{G(t)}" ",




[8.73 ] LAGUERRE POLYNOMIALS 227

multiplied by an expression similar to that in the braces in (8.72.5). The
coefficients corresponding to the w,(p) are in this case polynomials in p and &.
We also see that the contribution of the range of integration complementary to

(8.72.4) is O(exp [—cn™]), ¢ > 0. Therefore, we have in the same sense as in
(8.71.14)

f(&%ﬁuﬂ#ﬁﬁt

+nt

= n"texp[n¢] , XD [—0%/2 + p&/21{1 + vs(p, )n ™ + m(o, On " + - -+ } dp

+00
=n"texp[n'¢] exp(—p'/2 + p£/21{1 + 0o, 1™ + wlp, 0" + -+ -} dp,

-—00

where the v,(p, £) are polynomialsin pand £. Now if ¢ is a non-negative integer,
we have, in general,

+00 +o0
/ exp [—p°/2 + p&/2] p%dp = &' / e (o + £/2)%dp,
and the last integral is a =, in £&. (For ¢ = 0 we get (2m)!e!"’®.) According
to Stirling’s formula an expansion of the type

exp (W' + £/8) {1 + su(®)n ™ + va(O)n ™ + - .-}

results for (8.72.3), in which the v,(£) are polynomials.

By applying this result to the expressions in (8.72.1), (replacing n by
n + a/2 — m/2 — 1/4), we obtain the required expansions. The special case
£ > 0 yields the required bound for the remainder term (8.72.2).

8.73. Method of steepest descent; Laguerre polynomials for
l1=z=(4—-mn

Here and in the next two sections we derive formulas (8.22.9), (8.22.10), and
(8.22.11) by the method of steepest descent. We notice that in the first case
the condition z = (4n + 2a + 2) cos’¢, ¢ < ¢ < 7/2 — en”’, means that z
satisfies the inequality zo = = = (4 — n)n, where ¢, 2o, and 7 are fixed positive
numbers, ¢ < 7/2, n < 4, n large. The parameter « is arbitrary and real.

(1) We start with formula (5.1.16) (cf. the remark at the end of §5.2), in
which we replace z by £ and w by —w’/4; thus

(8.73.1) ' zw: ___L_f.a)(f—z’)_ (_w2/4)n _ 2ae—w2/4(Ew)—aeari/2J (e—ir/2gw).
e =0 T(n+ a+1) *

Consequently,

L@ e

— —w?/4 —2n—a—l1 mrz'/2J"z —ir/2 dw.
Tntetl) o2m J° ¢ (7 ) du

(8.73.2) (-9
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The integration is extended over a contour enclosing the origin. We choose
it as a circle with center at the origin and radius to be determined later. The
funection (8.73.1) is real if w is real.

Since ¢ = x",

(8.783) t=1l.cos¢, L= (@n+2a+2} e=<¢=1/2— e

Then £ is bounded from zero. According to (1.71.9); as | w | — =, we have
uniformly in0 < argw =< 7,

e T (e " Ew) = @rgw) et {1 + O w ™))
(8.73.4) L . o
+ @rtw) 7 exp [—fw + (@ + D] {1 + OGEw| ™}
Hence from (8.73.2), for ¢ = 1, cos ¢, w = l,2,

1\ Lsta)(g) __ oy« —}~2n—a—} 1 1

where

G = /z_} exp {— 152 + iz cos ¢ — 212 logz) de,
(8.73.6) H = ¢t / e exp {— L2 —lzcos ¢ — L2 logz} de,

K = O(E_IEI)/]exp{—i—lizzzi:lf.zcos¢—%lf. log z}] | dz|.

Here the integration is extended over the upper half-circle | z | = 1, and log 2z
is zero if z is 1. In the last integral we choose the plus or minus of the ambigu-
ous sign according to which gives the integral the larger value. If now we set

(8.73.7) fiz) = — 32> +zcos¢ — 2loge,

we find the saddle points of the first integral from the equation f'(z) = —z/2
+ cos¢ — (22)™ = 0, thatis, z = €*™. Since f’(e*) = sin¢ ¢~***"'®, we have
in the neighborhood of e,

(8.73.8) f2) = f(e*) + Lsing e TP — )} 4 ... .

Therefore, the critical direction can be found in a manner similar to that used
in §8.71 (2). ‘
(2) On the circle z = ¢"

8.73.9) R{fE?)} = — Lcos 2 + cosy cos¢

is increasing if 0 < ¢ =< ¢, and decreasing if ¢ < ¢ =< 7. Consequently, it
suffices to consider the contribution of the arc

18.73.10) Y =0¢+ 0, — W= p= 47
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where § is a fixed positive number, § < 1/6. Now we have

. . 7—1 \2
2 = e“/’ =ci4’{l +’ll:1p+ (_Z_l_'_'2_'l2_ -+ },
, -7—1 2
(8.73.11) dz = &l {1 ity + Sl ...}dp,

. . 71
z — e ="l {1 + “_1_2"'4’ + .. }
Whence from (8.73.8)
(8.73.12)  f(2) = f(e*) — } sin o’ VLI 1 + ali'p + () + -

where the ¢, are functions of ¢, independent of » and p, and ¢, = O(A™) uni-
formly in e £ ¢ = 7 —¢, and uniformly as tom; 4 = A(e). (We note that
this condition for ¢ is more general than thatin (8.22.9).) Hence, we have in
the same sense a% in (8.71.14), the following asymptotic expansion:

G = ¢ exp (11(™) )it
+nd .
(8.73.13) / , exp [ — §sin e {1 4 L eip + )
+ l;z(C; p2 + C;’p4 + c;ﬂpﬁ) + .. } dp,

/ 1 / 1 1"t . . .
where ¢; ,¢1 ,¢2,¢2 ,¢2 , --- areconstants. The principal term furnishes

G - e—i¢/2 CXp {lif(e"ﬁ)} 61¢7:l;1(27r)}(8in ¢)"§e—i(¢/2-—1r/4) {1 + 0([;2)}

or \ . .
(873.14) (ei’n%) exp | = i@n+ e+ D + 3ri/4|l
| exp {3 cos’ + L2 + Ll sing cosol il + OWDY,
since the integrals with odd powers of p vanish. The bound for the error holds
uniformly fore £ ¢ = 7 — e
The integral in H is obtained by replacing ¢ by = — ¢, so that

]
H = (‘2~7_r_> exp {(a + P)wi — i(2n + a + D)(x — ¢) + 3wi/4}
(8.73.15) Sin ¢

dlexp (3l coso + 113 — Ll singcosol{l + 0@D}.
Taking the absolute values of the integrands in (¢ and H, we obtain, ¢ = ¢ =
/2 — en”
(8.73.16) K = OO expld B cos” ¢ + Hal

We easily see that, except for terms of higher order, H = —@G. Therefore,
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1 2 } ] 1 72 1 2
(8.73.17) 9?{2m G+ H + } (W Sin¢> I." exp {31, cos?’¢ + 115}

{sin [}l sin ¢ cos ¢ — (2n + & + 1)¢ + 3v/4] + O LN},
since I, = O(¢7'l;"). Introducing this into (8.73.5), we obtain

(__ l)n L(a)(Ez)
Y Ton+at+l)

{sin[3 5 sing cosd — (2n + a + 1) ¢ + 37/4] + O(F'I)}.

= (sin ) ¢ "2 L exp (41 cos’¢ + 11}

Now
l, = 2n} exp( + 1) {1+ 0n™},
4"T(n + a + 1) = #2" " e (1 4 o™},
And since n™! = O(£7;"), we have
L(E) = (— 1)"(xsin¢) o Hp0
exp {—n — (a4 1)/2} exp (§ £+ n + (a + 1)/2}
{sin[} i singcosd — 2n+ a + 1) ¢ + 3n/4] + O(F7'IH},
e L () = (—1)"(wsin g) Mg
~{sin [(n + (& + 1)/2) sin 26 — (2n + o + 1)¢ + 3x/4] + O£},

This is identical with (8.22.9).

We observe that in the application of this result to Hermite polynomials
certain simplifications are possible. For @« = =1 the O-terms in (1.71.9) and
(8.73.4) vanish identically, so that K in (8.73.5) can be cancelled, and £ can be
arbitrarily near zero. Therefore, (8.22.12) follows readily by use of (5.6.1).

(8.73.18)

8.74. Method of steepest descent; Laguerre polynomials for
(4+nn sz < An

We start again from (8.73.2) and integrate along a proper circle about the
origin. Using a notation analogous to that in the previous section, we assume
that

(8.74.1) £ = l, cosh ¢, €< ¢ = o, w = Iz

Then we have

(a) /52
(__l)" Ln (E)

— 9% e—a(5 —% y—2n—a—}

(8.74.2)

-{—l—.Gi + = H1 + 29?( G2> + 29?(»1—.11;) + K'}, |
271 2w
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where

Gl = /z‘} exp {—1022° + 2z cosh ¢ — 112 log 2} dz,
(8.74.3) Hj = &P /z'} exp {—1122" — 2z cosh ¢ — 112 log 2} dz,

K =0¢' LY / lexp {—%05.2° & 22z cosh ¢ — 412 log z}]| | dz].

In each of G; and Hj, we integrate along both ares
—7/4 < argz = + 7/4, 3r/4 = arg z < 57/4,

of the circle | z| = ¢, while in G; and H; (which have the same integrands as
Gy and Hj, respectively) we take m/4 < arg z < 37/4; in K’ we take the arc
0 = arg z < = of the preceding section. Then (8.73.4) can again be used
[ef. (1.71.9)].

In this case we discuss

(8.74.4) f(z) = —12* 4+ z cosh ¢ — %1log 2.
The condition f/(2) = O furnishes z = ¢**, and we have f”/(¢™*) = (¢ — 1)/2
= ¢® sinh ¢. Therefore, the circle | z| = ¢ passes through the saddle point

with the smaller modulus and has the critical direction at that point. For the
second integral we obtain the saddle points —e*?, from which it follows that the
circle | z| = ¢”* can be used here again. Obviously, forz = ¢,

(8.74.5) R{f(2)} = —2e ™ cos 2¢ + ¢ * cosh ¢ cos ¢ + ¢/2

decreases as ¥ increases from 0 to =.
On writing ¢ = %, —n’ < p < + 7%, 0 < 5 < 1/6, we obtain

R -1 \2
z=¢* = e“"{l_ + 03 + (?l;!f’>. + }

-1 \2
(8.74.6) dz = e *4l;} {1 + i + (Ll._2‘f’> + } dp,

—1
z—e? = e_"’il;lp{l + 2—%10 + },
whence

(8.74.7)  f(2) = f(¢™®) — isinh ¢ e * 120 {1 + ala'p + a(la p)® + -+ }.

. . / 7" / 7" 1
Here the coefficients ¢;, ¢z, --- (and also ¢1, ¢1, ¢z, ¢2 , ¢z, --- below) are

analogous to those in §8.73. Hence, in the same sense as before, we have the
asymptotic expansion
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n

+nd
G = e*” exp{l5f(e™*) eI / , &p {—3}sinh pe*p’}

AL+ Lleip + o1 0°) + 123 en” + ¢i'o' 4+ ¢a0%) + -+ 1 dp

8.74.8
( ) = ¢ exp {2f(e™*) }e 40, (2n) (sinh ¢) {1 + O@D)}

— 2r \! (2n+a+1)¢ 2 2 192 2¢ —2
_<si_nﬁ_:p>e a7  exp {12 cosh®¢ — 1l%e {1 + 02}

The “principal parts” of Gi and H; are given by the arcs
—7/4 < arg z £ +7/4, 3r/4 = arg z < br/4,

respectively. If we replace z by ez in Hi, we see immediately that these
principal parts are identical. Consequently, we have G; = H, except for terms
which are of higher order than the remainder term in (8.74.8); furthermore, G;
and H; are of higher order than the same remainder term. Therefore, because
of £ = 0(1%), we have

(8.74.9) ;
B <7r siih ¢> e®rtetDe -l oxp {15 cosh® ¢ — 1156} {1 + 0(0)},
so that '
L(a)(£2) . _— L
(_%)n______l______, = 7 (Slnh ¢) E 2aln n—a—j
I'(n 4+ o+ 1)
(8.74.10)
.eXp{fz_ 2 2¢+ (2n+a+ 1)¢}{1+0(l:2)};
or
(8 74 11) 6‘52/2145‘“)(&2) = %(—1)"(,". Sil’lh ¢)—§ E—a—gna/z_%

-exp {[n + (a4 1)/21(2¢ — sinh 2¢)} {1 + O(™)}.

Returning to the variable z, we obtain (8.22.10). From this result (8.22.13)
follows immediately. '

8.756. Method of steepest descent; Laguerre polynomials for

z = 4n + 0}
(1) First, let ¢ be real and bounded. We write as before
= £, =1, — 6lL)7Y% w=1lgz

(8.75.1)

(a) /2
(_ 7i_)n Ln (E) =92 E—a(27r£)—;l—2n—a_;2m{ G,; + 5
7wl

'n+a+1)

where

_}__‘ HII + KII}’
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G = / z—i exp {lifl(z) —_ 6‘*l1‘t2} dZ,

(8.75.2) H"=eW*”/}*equﬁﬁ@)+6ﬁuud4
K" = 0(;%) / | exp {I2£,(2) F 67 4ez}| | dz [, vy =12
with
filz) = =124+ 2 — Lloge,
(8.75.3) 1 2 28
fo@) = — 12—z — }loge.

The integrals in (8.75.2) are extended over the upper half of a proper curve
symmetric to the real axis for which | z | and | z | ™" are bounded.

The “saddle point condition” fi(z) = —2/2 + 1 — (22)™' = 0 furnishes
z = 1, and we notice that f;'(1) = 0 and Q) = —1. Therefore, this saddle
point is of a different character from the preceding ones.

We first integrate along the segment
(8.75.4) z =1+ 6 e 0

3
n

lIA
A

p

y

where 4 is a fixed positive number, 5 < 1/6, then along the segment symmetric
to this one with respect to the imaginary axis, and finally along the arc of a

1 +0 A

F16.9

circle with center at z = 0 which connects the ends of the segments mentioned

(see Fig. 9). For certain constants ¢;, ¢s, --- , we have

f1(z) = (1) +;1—'(z — 1)3f1"(1) + ...
(8.75.5) 3!

=§ -0+ o) + o) + -
Furthermore, if 7 is the radius of the arc of the circle, then
(8.75.6) RNifilre®)} = — 2P cos2¢ + rcosy — Llogr

is decreasing for 0 < y < 7, since rcos ¢ < 1. We now obtain the following
expansion
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G" = exp {§ln — 67} .6l
nd
(8.75.7) : / exp {— 0" = pe™ ) {1+ (clp + ¢p%) I3}
0
+ (c2” + ez’ + &3Pt + - -] dp.
This is an asymptotic expansion in the usual sense. At the end-point p = 2’
we have the bound O(exp [—cn™]), ¢ > 0, for the integrand, which isat the same

time a bound for the contribution of the remainder of the contour. (The slight
modification of the circle around z = —1 is immaterial.) ‘Thus

G" = exp {31, — 67Ykt} .6t
{f exp (— p* — pe?i’3y) dp + O(Z;E)}_
0

In the same way we see that the principal part of H" is due to the small segment

(8.75.8)

(8.75.9) z=—1+ 61" 0<p=n
We find
1 1"
L@ =D+ =G+ DR(-1) + -
(8.75.10) 31
=3/4 —in/2 — 1% + --..
Therefore,
H" = — glathmig=init oury {g 2~ %” [ 6—%}
(8.75.11) -
-6' e 3{ f exp (— p° + pe™) dp + O(ZZ*)},
0 .
and
(8.75.12) K" = 0@  exp {215 — 6744¢).
Now we can readily show that H" = — G" except for terms of higher order.
Consequently,
L2 (&) - —a—} ~2n—a- -
__1\® n - g?a'H } —a—%1—2n—a—7/6 £l2 _ }l]
(-1 ThtatD " 6 &, exp {3, — 6711 ¢)
(8.75.13)

{3 [ezm'/a fw exp (_pa _ pe27rt'/3t) dp] + O(ZZi)}

The imaginary part in the braces is Airy’s funection A(t) (Problem 2). Sub-
stituting the approximate values of 4"T'(n + a -+ 1), l;z”“"‘*”", and £}
= 1;7H1 + 0(;*®)}, and observing that

(8.75.14) £/2 =10/2 — 671t + 0@,
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we obtain
e*e2l2L£‘a)(£2) — (__ l)n"r-lz-a—égén—i{A(t) + O(ZZ;) }’
which is (8.22.9) with the less precise remainder term on™).
(2) Direct calculation of a further term in (8.75.5) leads to
(8.75.15) C = %ff“(l)@/aes"m = 36'3¢58,

Furthermore, from (8.75.4)
(8.75.16) 2 =1- 16, 0@ ").

Consequently, the expression in the braces in (8.75.8) can be written as follows
[ exp (_p3 —- pe27ri/3t) dp [1 +(___%6§ e2ﬂ'/3p + %_64/3681i/3p4)l:i + 0(54/3)].
[ .

The corresponding more precise form of (8.75.13) can be obtained by replac-
ing the expression in the braces by

3([6211'/3 f exp (__pa _ pe2ﬂ'/3 t) dp]
g
— %6*l:13 [6411'/3 f exp (__p3 — pe2‘l’t'/3t).p dp]
0

+ %64/3l;]3 [61011'/3[ exp (_p3 _ pe27rt'/3t)p4dp] + 0(l;4/3)
0

=AW + 3640 + $6C 4O + 0+
= A0 + 3671 A() + 0(;*).
Here the differential equation (1.81.2) has been used. Now (8.75.14) can be
also written in the more precise form
£/2 =1,/2 — 670t + 367107,
so that
¢ = exp [—1n/2 + S U1 — 1671 4 0GHY).
From this, (8.22.9) readily follows with the remainder term O(;**) = O(n™).
(3) The case of a general complex ¢ can be settled by a slight modifica-
tion of the argument in (1).

The corresponding asymptotic formula for Hermite polynomials follows
immediately by means of (5.6.1).

8.8. Differentiation of certain asymptotic formulas

Differentiation of an asymptotic formula with respect to a parameter occurring
in that formula is in general not permitted. In some of our previous formulas,
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however, the permissibility of differentiation is readily established. We must,
of course, modify the remainder in a proper way. We shall discuss the formulas
(8.21.18) and (8.22.6), involving Jacobi and Laguerre polynomials, from this
point of view, using the important identities (4.21.7) and (5.1.14).

(1) First let us consider (8.21.18) which contains Darboux’s formula (8.21.10).
We shall prove that

(8.8.1) g@ {P{®(cos )} = n'k(6){— sin W6 + v) + (nsin 6)7'0(1)},
a > -1, > —1, n <67 — cn—l’

with the same notation asin (8.21.10). We note that k'(6) = k(6)(sin ) '0(1).
In the proof, we write for the left-hand member of (8.8.1),

—3sinb(n + a + B8 + P (cos 6)
= —}sinf(n + « + 8+ Dn — 1) k()

-<sin g Cos g>—l{cos (N6 + v — 7/2) + (nsing)™'0(1)},

which establishes the statement. Evidently, the remainder term of (8.8.1)
can be replaced by o™ ifen? £ 6 = 7 — e, and by O(n™h) if
e 01— ¢e

From (8.8.1) we derive the following important formulas:

PP (cos 8) — PP (cos 6,)
6, — 6,

= nth(e) (N6, + 70)1 - gzos (N6: + 7v)

+ 7007 + (r — ) o™,

(8.8.2) P{P(cos 6) — PL® (cos 62)
cos 61 — cos b,

— ko) °° (N6, + v) — cos (N2 + v)
! cos 8 — cos 6

+ 6770 + (¢ — )P o™,
a>—-1,8>-Len 'S <6 =<m—cn.

Similar formulas hold with k(6;) instead of k(8,) in the right-hand member.
For the proof we apply the mean-value theorem to

#(8) = P& (cos 6) — n  k(6) cos (N6 + 7).
Thus
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$(6) — ¢(8)
6, — 6,

But, we have ¢'(r) = n'k(r)(n sin )7'0(1), which is 67" 0(m™") or
(r — 67 O(n™"), according as 71 < 7/2or 1, = /2. Moreover,

k(61) cos (N6, + v) — k(6:) cos (N6, + )
6, — 6

= k(o) =2 (N, + ’)/0) - ocos (No: + ) + cos (N6, + v) k@) — k()
1= 61 — 6

The latter ratio is k() = 67°70(1) + (= — 6)™*70(1), 6, < 7 < 6,. A
similar argument leads to the second formula in (8.8.2).

If both 6, and 6, are confined to an interior interval e £ § £ 7 — € of [0, 7,
the remainders in the formulas (8.8.2) are simply O(n_é).

(2) Next we consider (8.22.6), which contains Fejér’s formula (8.22.1).
We write (8.22.6) in the form

L (z) = k(@)n*™* {cos [2(n2)* + +] + (n2) P O(1)},
(8.8.3) | k(z) = nte/ 2ot v = —(a+ r/2,

—1
a> —1l,en 2z 2w,

$(6) — ¢6) _  ¢'(r2) 61 <7<,

cos §; — cos 6, sin 7o’ 61 < 79 < 5.

= ¢,(Tl);

where ¢ and w are fixed positive numbers. By means of (5.1.14) we now obtain

884 L5 (LY@) = 2@n"™ = sin 20 + 91 + ()0},
noting that d{k(z)}/d(z!) = k(z)O(™), and that (n — 1)} — 2! = O(™H).
The mean-value theorem furnishes, if both z, and z. belong to the interval
en L2 2w,

Lﬁ;a)(l‘l) - Lf“')(a:z)
i — 2}
(8.8.5) — k(xl)na/z—i €os [2(7%9171)g + 7] — cos [2(7%272)} + 7]
) — a:; :

+ xl—a/2—i0(na/2—}) + xz—a/2—’}0(na/2—}), 'a > -1

The proof is similar to that used in the case of Jacobi polynomials.

8.9. Applications; asymptotic properties of the zeros of Jacobi and
Laguerre polynomials

(1) We shall first point out some consequences of the formulas (8.21.18)
and (8.8.1), which will be important for the discussion of interpolation with
Jacobi abscissas (Chapter XIV). Setting ¢ = 1 in (8.21.18), and using the
same notation as before, we have the result:
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THEOREM 8.9.1. Leta > ~1,8> —1,andlet 0 < 6, << .- <0<
be the zeros of Py (cos 6). Then

(8.9.1) 8, = n or + 0Q)},

with O(1) being uniformly bounded for all valuesof v = 1,2, ... n;n=1,2,3, .- .
Furthermore,

(8.9.2) | PSP (cos 8,) | ~ v n"T, 0<6, = /2

tn the sense that the ratio of these expressions remains between certain positive
bounds depending only on « and f.

Let p be a fixed number, 0 < p < 7/2. Substitute in (8.21.18)
(8.9.3) No=(@—3)m—v=%op v > 0, » an integer, 0 < 6 < 7/2.

Then the first term on the right, that is, 2= (—1)"n*k(6) sin p, is the principal
term provided the remainder 67°?0(n™?) is less than n*k(6) sin p. This
is so if » and n are sufficiently large, v = M = M(a, 8, p). The same is true
for the formula (8.8.1). We have also § > 0if M is properly chosen. Further-

more, let ( — )7 — v + p = N7/2, so that § < /2. Then for the values
(8.9.3)

(8.9.4) sgn PSP (cos 6) = (=1 and (—1)",

respectively. Hence P4 " (cos 6) has at least one zero between the bounds
given hy the values (8.9.3) and, since (8.8.1) shows that it is monotonic in this
interval, it has only one zero there. Also, we see that in the same interval
(8.9.5) (% (PP (cos 6)} ~ nPk(g) ~ née*"—*,

and in the “complementary intervals” of [0, /2],

(8.9.6) | PSP (cos 6) | ~ nk(8) ~ n o7,

The statements (8.9.5) and (8.9.6) hold in the sense that the ratio of the ex-
pressions in question remains bounded from zero and infinity, uniformly in 6
if 8 lies in the intervals mentioned; here n is sufficiently large, v = M(«e, 8, p),
and (v — )7 — v + p = N7/2.

Thus PY**®(cos 6) has no zeros in the “complementary intervals.”

In theinterval 0 < § £ N"'{(M — Y7 — v — p} we have a bounded number
of zeros which have the form n ' (jx + e.), where j. denote the positive zeros of
J«(2) and e, — 0 (cf. (8.1.1) and (8.1.3)). This furnishes (8.9.1) for 0 <
9, < =/2. Taking into consideration the formula (4.1.3), the full statement
(8.9.1) follows.

In addition, we find, by use of (8.9.5), that

(8.9.7) lPi‘a'ﬂ),(cos ey) l ~ 0,_17?}0,_“.—; — n; 0;—0—3',
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provided the conditions mentioned are satisfied. The extension to the total
interval follows again by means of (8.1.1). Combining this result with (8.9.1),
we obtain (8.9.2).

For the zeros 6, from a fixed interval [a, b] in the interior of [0, =], that is,
0 <a<b<m, (89.1) can be written in the more precise form

(8.9.8) y =N — Dr —v + Er + e,

where K is a fixed integer (depending only on q, g, a, b), and e, — 0. In this
case, (8.9.2) attains the simpler form

(8.9.9) | PSP (cos 6,) | ~ .

(2) The analogous statements for Laguerre polynomials follow from (8.22.6),
(8.1.8), and (8.8.4). We use here the same notation as before.

THEOREM8.9.2. Leta > —1,andletz; < 12 < --- <z,bethezeros of L (2);
then we have for the zeros x, from a fized interval 0 < z < w

(8.9.10) 2z} = v ur + 01)).
Moreover,
(8.9.11) | LY () | ~ a2t o ey et

Let p be a fixed positive number. Introducing in (8.22.6)
(8.9.12) 2nz)t = (v — D1 — v = p, v > 0, v an integer, 0 < z < w,

we obtain values of opposite signs provided v = M = M(«, p), and n is suffi-
ciently large. Then we see from (8.8.4) that L{*(z) is monotonic between
the corresponding values of z, and hence L\*’(z) has precisely one zero in the
corresponding interval. Taking (8.1.8) into account, we find (8.9.10) as in (1).
Again, from (8.8.4) and (8.1.8),0 < z, < w,

| L") | ~ 2k ()n
For the zeros z, from a fixed positive interval ¢ < z, < w, ¢ > 0, we obtain
(8.9.13) | {7 (2,) | ~ n®?H,

(3) Let a be arbitrary and real. The preceding results (especially formula
(8.22.11)) enable us to discuss the largest zeros of L{*(z,. Let 7, < 7, <
iy < --- be the zeros of Airy’s function A (f); then the only zeros of L (z) in
the interval

(8.9.14) x=4n + 2a + 2 — 2(2n/3)*t, t real and bounded,

are those corresponding to the valuest = 7,. (Near{ = 7, we have precisely one
zero if n is sufficiently large; this follows from the uniform validity of (8.22.11)
for bounded complex £, by use of Theorem 1.91.3 (Theorem of Hurwitz).)
On the other hand, the upper bound (6.31.7) of the zeros belongs to this interval.
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Consequently, if we arrange the zeros z; > z; > 23 > - - - of L{*(z) in decreasing
order, we have

(8.9.15) 1z, = n = 4n + 20 + 2 — 22n/3)} (%, + €), limen = 0, » fixed.
This is identical with (6.32.9). An analogous result holds for Hermite poly-
nomials, namely (6.32.5). It follows immediately from (8.22.14). This
formula was proved in §6.32 by use of Sturm’s method.

8.91. Applications; asymptotic properties of the maxima of Laguerre and
Hermite polynomials

Another application is the discussion of the magnitude of the Laguerre and
Hermite polynomials for non-negative and for real values of z, respectively.

(1) THEorEM 8.91.1. Let o be arbitrary and real, a > 0,0 < n < 4. We
have for n —>

al2 .
n if a=z=4—1n
(8.91.1) max ¢ g | L (2) | ~ "+ ,
n* 4f oz 2 a;
—a/2_af2+) | T (a) Pt f a3 = (4 — )
(8.91.2) maxe "z [ Ly (z) [ ~ a1z o >
n if z 2=a.

Thesec maxima are taken, respectively, in the intervals pointed out in the right-
hand members.

These asymptotic formulas play an important rble in the discussion of
Laguerre series (Chapter IX).*

A more exact characterization of these maxima when n — <« is also possible.
We can replace ~ by =~ by introducing into the right-hand members the
constant factors

@/mdn — 1Y, 7 '(12) max A();

(8913) 7!'_;(477_1)}7 71"_1(18)& max A(t),

respectively. This follows readily from the subsequent proof. We note that
these factors are independent of a and a. The first maximum of A(f) is posi-
tive, and is actually the greatest value of | A(f) | for all real values of t. (Cf.
Theorem 7.31.1 and (1.81.2).)

(2) Lett = ji be the first maximum point of A(#), 0 < ji <. Now choose
two values , ¢ such that 0 < ¢ < " < j; and denote the corresponding

52 Kogbetliantz (22, p. 144;23, pp. 39, 51-53), states erroneously the appraisal Lf“") (z) =
O (¢*/2z—al*"1spal>~14)  z > a. Theerroris madein 22, p. 154, where a certain bound valid for
H.(z),if | z| < cn', is applied to an arbitrary Hm(z), m S n. Unfortunately, the main
results of the paper 23 (and partly also those of 24) are based on this erroneous statement.




[8.91] ASYMPTOTIC PROPERTIES OF THE MAXIMA 241

values of z in (8.9.14) by z’ and z”/, respectively, so that 2’ > 2" > 2, if n
is sufficiently large. Then A(') < A(¢"), so that by (8.22.11)

(8.91.4) (=D)L (@) < (=1)"e = L (2.

Therefore, 2" and 2'" both cannot be on the left of the last extremum point of
e “"L{* (x), whence this extremum point lies in the interval (8.9.14).

The same consideration applies to e *"*2*L ¥ (z), where A is an arbitrary but
fixed real number. Indeed, z* = (4n)*{1 + O(n™%}. Thus, a formula analo-
gous to (8.22.11) holds for e_mx)‘Lf.")(a:) with the additional factor (4n)" in
the right-hand member.

(3) In the interval @ < 2 £ (4 — 7)n formula (8.22.9) can be applied.
Since

+1)/2 ¢ 4 _—al2—=} aj2~ T - — 2
2 (sin ¢) T = 2t (sin ) Ha T ~ 0 (ot ),
244 ~} —a/2—1  aj2— . - —1
g™ (sin ¢) 2T P = (sin ¢)Hn
. . . 2 —1 .
the maxima in question are ~n®* and n** ‘, respectively.

In order to calculate the maximum in the interval + = a, we use Theorem
7.6.2. The sequence of the relative maxima of

(8.91.5) PV LY (@) | and e L) |

. is increasing for x > z,, where z, is a certain non-negative number depending
on «, and n is sufficiently large. Therefore, on account of (1), the absolute
maxima of the functions (8.91.5) for z = a are attained in the interval (8.9.14).
According to (8.22.11) these maxima are ~ n‘***”n74 and n***n~} respec-
tively. Between a and z,, Fejér's formula (8.22.1) must be used. This
furnishes the complete proof.

(4) We also readily prove the following more general theorem:

THEOREM 8.91.2.  Let a and \ be arbitrary and real,a > 0,0 < n < 4. Then
forn — «

(8.91.6) max e’z | L (z) | ~ n?,

where

lIA
8]

max (A — 3, /2 — 1) if a

max (A — 3, /2 — 1) i 2z =a.

= (4 - 77)"7
(8.91.7) Q=

In the first case, that is to say, in the interval a < z < (4 — %)n, we again
apply (8.22.9). Now
2 (sin ¢) g et O n*H(cos ¢)>" ¥sin ¢) 7.

This expression attains its maximum in the interval e < ¢ < 7/2 — en™?
forg =eor¢p = /2 — en? according as'N = a/2 + 1 or\ < /2 + 1.
The maxima are ~n*"? and n*i(HP? = n®**t respectively. This
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establishes the first part of the statement. We also see that the maximum is
attained nearz = (4 — n)nif A 2 @/2 4+ 1, and nearz = aif A < a/2 + 1.
In the interval (4 — 9)n < 2 < 4n + O(n*), we have

max e—x/2x)\ | Ls‘a)(x) l ~ n)\—(a+1)/2 max e—x/2x(a+1)/2 { Ls‘a)(x) ,

Because of (8.91.1), this furnishes the second part of the statement. The
maximum is attained near z = 4n if A — 3 > /2 — % and near z = aq if
A —i<a/2 -1

(5) By use of (5.6.1), or directly from (8.22.12) and (8.22.14), we obtain the
corresponding results for Hermite polynomials.

THEOREM 8.91.3.  Let \ be arbitrary and real, a > 0,0 < n < 2. Then
(8.91.8) max ¢ =72 | Ha(z) | ~ (2"nhin®,
where
max (A\/2 ~ 1/4, =1/4) ¥ a = |z| 2 [©2 - p)n),
max (\/2 — 1/12, —1/4) i |z| = a; z real.

We have, for instance (Theorem 7.6.3),
(8.91.10)  max e ™| Ha(z) | &2 2"l 2i8taEn 2 max A(p).
Here z and ¢ range over all real values. (Cf. Hille 1, p. 436, (30).)

(891.9) 8 = {

8.92. Further results

(1) Gatteschi (1, 2) investigated various asymptotic formulas involving the
classical polynomials and their zeros, and replaced the (usually unspecified )
constants occurring in the O-terms by numerical values. As an illustration we
mention the following remarkable refinements of Theorem 8.21.6.

We have

P, (cos8) = (8/sin 0} Jo{(n + 1)0} + ¢
where
lo] <0.0962 if 0<6=<x/(2n),

lo] < 0.636int if x/(2n) <6 £ x/2.
The following formula is even more informative:

6

mt]d(n’f'%)o} + ¢

<—S—1%—0>§ Pa.(cos8) = Jo{(n + )8} —

where
o'} < 0.036* if 0<6=x/(2n),
lo'| <0256t if =/(2n) <6 = /2.

These formulas can be used for the asymptotic evaluation of the “first’’ zeros
with specified constants in the error terms. See also Tricomi 4.
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(2) Further information concerning the asymptotic behavior of the Jacobi
and Laguerre polynomials and their zeros can be found in Bateman Manuscript
Project, vol. 2, Chapter 10, pp. 196-202; also Tricomi 5, pp. 219-224, Thorne 1,
and Erdélyi-Swanson 1. See also the literature quoted at these places.

Recently, Erdélyi 3 has obtained two new asymptotic formulas for the
Laguerre polynomials L$’(z) valid for z < a(d4n + 2« + 2) and for z =
b(4n + 2o + 2) where @ and b are fixed, 0 < b < a < 1. These formulas
involve Bessel functions and Airy’s function, respectively, and hold on the
above ranges which overlap and cover the entire real axis. This is an important
result.

Erdélyi only proved these asymptotic formulas for « = 0. They were ex-
tended to @> —1 by recurrence relations by Muckenhoupt 1.

(3) The formula (8.21.1) of Laplace-Heine has been used in the estimation
of the smallest eigenvalue of the truncated Hilbert matrix (1/(i +i+1))N .
See Szegé 27 and Widom-Wilf 1. The size of this eigenvalue gives a measure
of the degree of difficulty in finding the inverse of this matrix.

(4) The remark in §8.4 (3) is not quite correct. The infinite series corre-
sponding to Darboux’s formula (8.21.4) is convergent for =/6<8 < 5x/6,
but it converges to 2P,(cosf) rather than P,(cosf). See Olver 1. While
asymptotic series in the sense of Poincaré must converge to the “‘right” function
. if they converge this is not true of more general asymptotic expansions; so
great care must be exercised when using them.




CHAPTER IX

EXPANSION PROBLEMS ASSOCIATED WITH THE
CLASSICAL POLYNOMIALS

The formal expansion of a function in terms of general orthogonal poly-
nomials having been defined in §3.1 (cf. (3.1.3)), we shall now turn our atten-
tion to expansions in terms of the classical polynomials. In this connection we
shall deal with the following problems:

Expansion of an analytic function in series of Jacobi, of Laguerre, and of
Hermite polynomials; discussion of the domain of the convergence.

Expansion of an ‘“arbitrary’” function in series of Jacobi, of Laguerre, and
of Hermite polynomials; discussion of equiconvergence and summability
theorems.

In the main, our principal concern will be with the second problem, and we
agree that “arbitrary’’ function shall mean a function restricted only by certain
conditions of integrability, or continuity, and by conditions involving the
existence of certain integrals.

Two series D wo%n and 2 meo®s are called equiconvergent if the series

w0 (n — vn) or, more generally, if

2:0 (un — Av,), A =0,
is convergent. We shall try to find simple trigonometric (Fourier) expansions
equiconvergent with a given type of polynomial expansion. Such a procedure
will enable us to reduce the discussion of the polynomial expansion to the dis-
cussion of trigonometric series under very general conditions.

Of the various methods of summability, we shall be primarily interested in
that of Cesaro. A series Y mwo Un is called (C, k)-summable, k¥ > —1, with
the sum s if

()

where

o0 0
1 =)yt = > s® ",

n=0 n=0
(1 _ r)—k—l _ Z Cs.k) "= 2:0 <n :‘ k) ",
n=( n=

Obviously, k¥ = 0 corresponds to convergence in the ordinary sense. If &' > £,
it is readily shown that (C, k)-summability involves (C, k’)-summability with
the same sum.

244
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A necessary condition for (C, k)-summability, k = 0, is u, = O(n").

Cesaro summability of any order k implies Abel summability; that is, the
existence of the

0
lim D war™

r—+1—0 n=0

with the same sum.

9.1. Results

(1) The formal expansion of a function f(z) in a Jacobi series is (compare
(4.3.3))

f(x) ~ f:() anP;a'ﬂ)(x)y

(9.1.1) +1
BB g o /_1 (1 — 2)*Q + 2°f(z) PP (2) dz.

The expansion of f(z) in a Laguerre series is (cf. (5.1.1))

f@) ~ 3 0l @),
(9.1.2) "

’

+00
I'e + 1)(n j; a) n = l e 2 f(z) LY (z) da;

and in an Hermite series it is (cf. (5.5.1))

1@) ~ 3 aull(2),
(9.1.3) "
22"nla, = / e f(z)HA(z) dz.

00

In all these cases f(z) is a measurable function, and the existence of all
integrals occurring is required.

In what follows we assume « > —1, 8 > —1 in the Jacobicase and « > —1
in the Laguerre case.

(2) In this connection the following results may be stated:

TueoreM 9.1.1 (Expansion of an analytic function in a Jacobi series). Let
f(z) be analytic on the closed segment [—1, +1]. The expansion of f(z) in a
Jacobi series is convergent tn'the interior of the greatest ellipse with foct at £1,
tn which f(z) is regular. The expansion vs divergent in the exterior of this ellipse.
Using the notation (9.1.1), we have the following representation for the sum R of
the semi-axes of the ellipse of convergence

(9.1.4) R = liminf |a,[™""

n—+o0
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TrEOREM 9.1.2 (Equiconvergence theorem for Jacobi series in tlﬂe interior

of the interval —1, +1). Let f(z) be Lebesgue-measurable in [—1, +1], and let
the integrals ‘

+1
/1 (1 — 2)*(1 + 2)° | f(2) | da,
(9.1.5) -

L 1+1 (1 — 271 + 27 f(z) | dw |

exist. If sa(x) denotes the nth partial sum of the expansion of f(z) in a Jacobi
series, and Sa(cos ) the nth partial sum of the Fourier (cosine) series o_)[

(9.1.6) (1 — cos 8)**(1 + cos 6)***f(cos 9),

then for —1 < z < +1, |

(9.1.7) lim {sa(@) — (1 — 2)"71 + )" Fs,()} =0, |
n—+00 |

untformly in —1 + ¢ £ z = 1 — ¢, where € 1s a fived positive number, e < 1.

TaeoreM 9.1.3 (Summability theorem for Jacobi series at the ehd—points
xz = =£1). Let f(x) be continuous on the closed segment [—1, +1]. The émpansion
of f(zx) in a Jacobt series is (C, k)-summable at x = 41, provided k > o + 1.
This vs in general mol true of k = a 4+ 3. An analogous statement holds for x
= —1, a being replaced by B.

THEOREM 9.1.4 (Generalized summability theorem for Jacobi seri*es). Let

f(x) be Lebesgue-measurable in [—1, +1] and continuous at x = +1.| Then if

I
we assume the existence of the integral ;

+1
(©.1.8) f T - 2+ 2 1) ds,

the Jacobi series ts (C, k)-summable, k > a + %, at x = +1, provided t#zat in the
case ‘

(9.1.9) B> -3 a+i<k<a+B+1,

the following additional “antipole condition’ is satisfied: the untegral
0
(9.1.10) / 1 + 2’77 f(z) | d=
-1

exists. (Fork = a -+ B 4 1 no antipole condition is necessary.) Fork < a -+ 3

or for k > o -+ 3, but without the antipole condition, the statement is not true.

TrEOREM 9.1.5 (Equiconvergence theorem for Laguerre series for‘ix > 0).
Let f(x) be Lebesgue-measurable in [0, + o], and let the integrals

(9.1.11) / ) 2% | f(z) | dz, ﬁ 274 f(2) | da
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extst. If the condition
(9.1.12) / e PP 1) | de = o(n7H), n— o,

18 satisfied, and if s.(x) denotes the nth partial sum of the Laguerre series of f(z),
we have, for x > 0,

ey .
(91.13) lim {sn(x) _ 7r—1 / + f(Tz) sSin {27?/*(27* —_ 7')} dT} - 0,

n—+00 e 2 3 — 7

where & s a fized positive number, 8 < z}. This holds uniformly for every fixed
positive interval ¢ £ z S w, 8 < €.

The same equiconvergence theorem (9.1.13) s valid if the integrals (9.1.11) exist
and condition (9.1.12) is replaced by the following:

/; e—zlzxaﬂ—i [ f(a;) ( dzx 18 convergent;
(9.1.14)

/m ez | f(z) Pdz = o(n™}), n— .

TaeEOREM 9.1.6 (Equiconvergence theorem for Hermite series, z arbitrary
and real). Let f(z) be Lebesgue-measurable in [— o, + ], and let the integral

(9.1.15) /+a | f(z) | dz
exist for every a > 0. If the condition
(9.1.16) fw e @) | + | f(~2) |} da = o(n™), n— »,

1s satisfied, and if s.(z) denotes the nth partial sum of the Hermate series of f(x),
we have, for an arbitrary and real z,

(0.1.17)  lim {s,.(m) Y {(2;‘)_;_(?” il dt} 0,

n—+0 -0 14

where 8 is a fized positive number. Moreover, (9.1.17) holds uniformly in every
finite interval.

The same equiconvergence theorem (9.1.17) holds if the integral (9.1.15) exists
and we replace condition (9.1.16) by the following:

/ i el M| f@) | + | f(—~2) |} d 1s convergent,
9.1.18) 7
[. e f@) I + | f(—2) P} dz = o(n™), n— o,

TueoreM 9.1.7 (Summability theorem for Laguerre series at * = 0). Let
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f(zx) be Lebesgue-measurable in [0, + =] and continuous at x = 0. If we assume
the existence of the integral

(9.1.19) [ T gt | f(=z) | d,

the Laguerre series of f(x) is (C, k)-summable at x = 0 with the sum f(0) provided
k> a+ 2. This statement vs not true fork < « + 3

9.11. Remarks

(1) Theorem 9.1.1 is well-known in the Tchebichef and Legendre cases.”
The determination (9.1.4) of the ellipse of convergence is analogous to the well-
known Cauchy-Hadamard formula.

(2) The importance of Theorem 9.1.2 is due to the possibility of applying it
to convergence and summability problems for Jacobi series similar to those
which are found in the classical theory of ordinary Fourier series. This theorem
has been proved in the special case « = 8 = 0 (Legendre series) by Haar (2)
and W. H. Young (1) with conditions concerning f(z) somewhat different from
those arising from our general theorem in the special case o = g = 0. W. H.
Young considers also series proceeding in terms of Legendre polynomials, with-
out being Fourier expansions in the ordinary sense. The proof of Theorem
9.1.2 given in §9.3 is due to Szegé (17, pp. 88-92). Recently, Obrechkoff (2)
has treated the same problem, using as his main tool Darboux’s formula in the
more precise form (8.21.18).

Summability theorems for interior points were investigated earlier (in the
ultraspherical case) by Adamoff (2) and (in the ultraspherical as well as in the
general Jacobi case) by Kogbetliantz (1, 2, 3, 7, 18, 19). Concerning properties
of these expansions analogous to those treated in Riemann’s theory of trigo-
nometric series (in particular theorems of uniqueness) see Kogbetliantz (6, 20)
and Zygmund (1).

In setting up the expansion in Jacobi series, we must require the existence of
the first integral (9.1.5). Using an obvious notation, we readily see that

(0.11.1) / A = 2)° /@) | do / A = 2| f(2) | da,

according as @ = —3or —1 < a« = —3%. That the condition of the existence
of the second integral cannot be ifnproved upon for « > —3% follows when we
consider the special function f(z) = (1 — z)* with 4 = —a/2 — 3/4 (cf. §9.3
(4)). The existence of both integrals (9.1.5) follows from that of

+1
(9.11.2) / A — 2)°A + 2)°{f(x)} dzx

83 The Legendre case is usually attributed to F. Neumann (cf. Whittaker-Watson 1,
pp. 322-323).




[9.11] REMARKS 249

Instead of (9.1.6) the function
(9.11.3) (1 — cos 8)*"(1 + cos 6)*f(cos 6)

may also be considered (cf. Szego, loc. cit.). The change, necessary in (9.1.7)
for this function, is at once apparent. Both functions (9.1.6) and (9,11.3) are
integrablein —r < § < 4. The difference (9.1.7) may be written as

010 = 90 + O KSP(a, 0)
(9.11.4) J—1

— (1 —2)™H 1+ 2)P7 1 — 7 1 + )R TP (2, )

where the notation (4.5.2) has been used. Comparison of s.(z) = s.(a, 8; )
with s.(v, 8; z), where v and 6 are arbitrary, is also possible.

(3) Theorems 9.1.3 and 9.1.4 have an extensive literature. Gronwall (1, 2)
has investigated the special case « = 8 = 0 (Legendre series). His proofs have
been simplified to a considerable extent by Lukéecs (2), Hilb (1), and Fejér (8).
The ultraspherical case has been considered in great detail by Kogbetliantz
(2, 4, 19; 21, pp. 70-73) (cf. also Obrechkoff 1). The method used in §§9.4-9.42
is new and comparatively simple. It is based on a peculiar relationship between
the Jacobi polynomial P{****#(z) and the “kernel” of the kth Cesaro mean
of the Jacobi series which corresponds to the parameters « and 8. (In the case
of Laguerre series the corresponding relation is trivial (ef. §9.6).) The case
of a Legendre series (if we consider the series at the end-point x = 4-1) is equiva-
lent to a Laplace series; whence the term ‘“‘antipole condition”. At the end-
point x = —1 a similar theorem holds; in this case the summability index %
must exceed 8 + 1, and an ““antipole condition’’ must be satisfied near z = +1.

Theorem 9.1.3 furnishes the convergence of the Jacobi series at the end-point
z = +1 provided f(z) is continuous in [—1, 41} and —1 < a < —3% (cf. also
Rau 1; Szego 17, §20; Loreh 1, 2).

In the case of Legendre series the ‘“‘kernels’” of the Cesdro means of the second
order are non-negative (Fejér 4). This fact has, of course, important conse-
quences. Concerning similar theorems in case of ultraspherical expansions,
cf. Kogbetliantz 19.

In the special case of Legendre series Kogbetliantz (16) gave important
refinements of Theorems 9.1.3 and 9.1.4. He studied, among others, the C-
summability of proper order at the end-points x = =1 if f(x) becomes infinite
of a certain order at the antipole.

Asregards certain older (very complicated) results on the convergence of ultra-
spherical expansions at the end-points £ = =1, see Adamoff 2.

(4) The equiconvergence problem for Laguerre and Hermite expansions
has been treated (the first only in the special case « = 0) by Rotach (1), and
(in all cases) independently by Szego (10). For the special Laguerre case a = 0
the conditions of Szeg6 are more restrictive than those of Rotach, and the same
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is true in the Hermite case. The conditions formulated in §9.1 are, however,
slightly more general than those of Rotach.”

That the condition of the existence of the second integral (9.1.11) cannot be
improved upon is shown by considering the expansion of the function f(z) = z*,
p = —a/2 — 3/4,in a Laguerre series (§9.5 (6)).

Neither of the two sets of sufficient conditions formulated in Theorem 9.1.5
contains the other. Indeed, the function f(z) = ™% ** satisfies (9.1.14),
but not (9.1.12). On the other hand, if

1, m*sxz<m?+1,
0, otherwise, m = 1,2,3, - -,

(9.11.5) e PP () = {

then (9.1.12) is satisfied, but not the second part of condition (9.1.14).
Condition (9.1.12) implies, of course, that the integral on the left side exists.
From the condition (9.1.12) the first part of (9.1.14) follows. In fact, if we write

(9.11.6) u(z) = /w ¢RI gy | dt,

we find from (1.4.4) that

(9.11.7) /Iw 2 du) = oulw) — u1) — %./lw iuz) dx

is bounded as w — o, since u(z) = o(x"*).
A sufficient condition for the validity of (9.1.13) is that

(9.11.8) f(z) = Oz~ 1%, 8> 0,z +oo.

Then (9.1.14) is satisfied. On the other hand, for f(z) = ¢**z~**** conditions
(9.1.11) are satisfied, but not (9.1.12) and (9.1.14), and (as we are going to show
in §9.5 (7)) the Laguerre series is divergent for x > 0.

A sufficient condition for the validity of (9.1.17) is that

(9.11.9) f@) = 0" |z |™), >0,z — .

Then (9.1.18) holds. An analogous ‘‘Gegenbeispiel”’ here is f(z) = ze™ %,
From Theorems 9.1.5 and 9.1.6 there follow the usual theorems on the con-
vergence and the summability of Laguerre and Hermite expansions. Indeed,
the integrals occurring in (9.1.13) and (9.1.17) are essentially the partial sums
of order [n'] of a Fourier series (cf. (1.6.4)).
As early as 1907 Adamoff (2) obtained a convergence theorem for Hermite

5¢ Rotach’s second condition b; on p. 8 makes the first part of b, superfluous. His
first set of conditions is equivalent to (9.1.11) plus (9.1.14) (for @ = 0), whereas his second
set is more restrictive than (9.1.11) plus (9.1.12). In the theorem on p. 6, the second
condition b, must be corrected to read «[Pe=2"/4 | f(s£2) | 2872 dz exists.”” (I owe this toa
written communication from Mr. Plancherel.) This, of course, implies b;. Here the
first set of conditions is more restrictive than (9.1.18), and the second set is more restrictive
than (9.1.16). (Rotach’s notation differs from ours; we must write z = 2}z.)
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expansions. There is an extensive further literature on this subject; E. R.
Neumann (1), Galbrun (1), Wigert (1), Hille (1, 2, 3), Cramér (1), Uspensky (1),
Korous (1, 2), Stone (1), Mintz (1), and Kowallik (1) have all given direct
treatments of Laguerre and Hermite expansions of an ‘“arbitrary” function.
(Concerning the expansion of an analytic function inte Hermite series see Wat-
son 1 (first paper).) Theseauthors have obtained convergence and summability
results but, no equiconvergence theorems, except Korous (loc. cit.). The con-
ditions which all these authors use at £ = « are more restrictive than those in
our theorems. For instance, in case of Laguerre expansions, the convergence of

(9.11.10) ﬁ RN | f(z) | d=

is required by Korous; for Hermite expansions, convergence of the integrals

(9.11.11) /lw e | f(£z) Pdz, lw e x| f(xz) P dx

are required by Uspensky and Kowallik, respectively. In addition, we mention
the earlier treatment of Laguerre and Hermite expansions by means of the
theory of integral equations (Myller-Lebedeff 1, Weyl 1).

Concerning Kogbetliantz 22, 23, 24, see the footnote in §8.91. Concerning
Theorem 9.1.7, see Szegé 10 and Kogbetliantz 10. The condition regarding
(9.1.19) is satisfied if

(9.11.12) flz) = 021, 3> 0, & — +o.

On the other hand, the series is not (C, k)-summable for the function f(z) =
e k> a + 1/2 (cf. §9.6 (3)).

Gibbs’ phenomenon in the case of Hermite expansions has been studied by
Jacob (2).

9.2. Expansion of an analytic function in Jacobi, Laguerre, and Hermite series

1) TueorEM 9.2.1. Assume a > —1,8 > —1, and let Pﬁ,“'ﬂ)(af), QP (z),
and hi*? have the same meaning as in Chapter IV (see §4.61 and (4.3.3)); then

2 et plad sy L= D+ D7

where z lies in the interior of, and y in the exterior of, an arbitrary ellipse with foct
at £1. This expansion holds uniformly if  and y belong to closed sets which are,
respectively, in the interior and exterior of the ellipse mentioned.

The functions (y — 1)*(y + 1)%Q{*? (y) are single-valued and regular in the
complex y-plane cut along [—1, +1].

This important formula is well-known in the special case « = 8 = 0 (Heine 3,
p. 78). The general formula is obtained from the identity (4.62.19) by letting
n approach o. Wewritez = &(z + 27,y =3¢ + ¢7); 1<zl <[¢]. By
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use of (8.23.1) and (8.23.2) we find the “remainder term’’ of (4.62.19) to be

27 I'(n 4+ 2)I'(n + a + 8 + 2)
n4+a+p+2I(n+a+ DI'(n+ 8+ 1)

PED ()P () — PP (2)QL (y)
T—Y
asn — o, with ¢ > 0 arbitrarily small. This tends to 0 asn — « provided e is
sufficiently small.

(2) Now let f(z) be regular if z is in the interior of the ellipse |z| = B > 1.
On multiplying (9.2.1) by (x)"'(y — 1)*(y + 1)’f(y) and integrating over
theellipse | { | = R — ¢,0 < € < R/2, we obtain an expansion of f(z) in a Jacobi
series whicn is uniformly convergent for |z | £ R — 2e. The usual term-by-
term integration over the segment [—1, +1] identifies this expansion with the-
expansion (9.1.1), and for the coefficients a, we obtain the representation

(9.2.2)

= 0@)0[(|z| + "0 [ + "]

an = (mihP) / W — 1 + 1P )f(w) dy,

(9.2.3)

n=0’1’2’...’
where the integration is extended over the ellipse | { | = R — e in the positive
sense.

(3) By means of (8.23.1) we can discuss formal series of the type
924)  @Pi?@) + aP"P @) + PP @) + - + @ PP @) + -1

which are not necessarily Fourier expansions in the ordinary sense. Let R
have the same meaning as in (9.1.4), and assume B > 1. Then (9.2.4) has as its
domain of convergence the ellipse of Theorem 9.1.1. In the interior of this el-
lipse it represents an analytic function.

(4) Expansions in terms of Jacobi’s functions of the second kind, which are
the analogues of Laurent expansions, can also be readily discussed.

THEOREM 9.2.2. Assume a > —1,8 > —1, and let F(y) be regular at y =
w with F(w) = 0. Then
025 ¢ DTOHDTIIG) = hOETG) +00TG) + BATTG)
B + "'+anf.“'ﬂ).(y)+....

This expansion is convergent in the exterior of the smallest ellipse with foci at =1,
in the exterior of which F(y) is regular. It 1is divergent in the interior of this ellipse.
The sum of the semi~azes of this ellipse is given by

(9.2.6) p = lim sup | b, ™

7n ~+0

Obviously, p = 1. In case p = 1 the statement needs a slight modification.

The following representation holds for the coefficients:
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9.2.7) bo = {mhiP}! / F)PP(x)de, n=0,1,2 ..,
where the integration is extended over theellipse | z| = p + ¢, 2 = %(z 4+ z7),

¢ > 0, in the positive sense. For the proof we again use (9.2.1).

Formal series proceeding in terms of Jacobi’s functions of the second kind can
also be discussed.

(5) The boundary of the convergence domain of a Laguerre series

9.28)  @Li®@) + aiL{”@) + & Li%@) + - + e L@ + - -

can be characterized by the condition R{(—=z)'} = const. Therefore, this
boundary is a parabola with its focus at the origin. The series is convergent in
the “interior’” of this parabola and divergent in its “exterior”’. The analogue
of Cauchy-Hadamard’s formula holds. The proof is based.on (8.23.3).

For an Hermite series

(9.2.9) aocHo(z) + lel(x) + asHy(z) + -+ + a Hu(z) + -+

the corresponding condition is | 3(z) | = const., which defines a strip with the
real axis as axis of symmetry (cf. (8.23.4)). The series is convergent and di-
vergent in the “interior” and in the ‘“‘exterior” of this strip, respectively. The
analogue of Cauchy-Hadamard’s formula holds again.

Concerning the expansion in an Hermite series of a given analytic function
regular in the strip | 3(z) | £ a, @ > 0, see Watson 1 (first paper).

9.3. Proof of Theorem 9.1.2

(1) First let us replace f(z) by a polynomial p(z). Then s,(z) = p(z) if n
exceeds the degree of p(z). Furthermore, (1 — z)”** 71 + z)™#*¥s,(z) — o(z)
as n — oc, according to elementary tests for the convergence of Fourier series
(see for instance Zygmund 2, p. 25). Now the integral

{a = min (a, «/2 — 1/4),
b = min (8, 8/2 — 1/4),

can be made arbitrarily small by proper choice of p(z) (cf. Theorem 1.5.2). Itis
therefore sufficient to show that the difference (9.11.4) admits an estimate

93.1) f 1 — 00 + ' 1) — pO)ldt,

+1
(9.3.2) 0(1) /_1 1 — O 4+ 8" [f®) | dt + o(1), n-— o,

where both bounds hold uniformly inz, — 1 + ¢ £ 2 £ 1 — ¢ and O(1) is
independent of f(z).

(2) In subsequent considerations we use Darboux’s formula (8.21.10) for
P{*®(cos 6), as well as the second formula (8.8.2) for the difference ratio. In
the latter case we assume that both arguments 6, , 6; lie in an interval which is
entirely in the interior of [0, =].

According to (4.5.2), we have
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Ks.a.ﬂ) (:C, t)
(933) ] (a,8) _ (a.B) ) _ (@)
= i\, {Pf,"'ﬂ)(x) P (t)t P3Y(z) P (5) PP — P, (x)}’
-7 t—z
where
(9.3.4) » =277 + 0}

Writing z = cos 6, ¢ = cos ¢, and using the notation of (8.21.10), we find for
—1<z< 41, -1 <t < +],

Ks.a.ﬂ) (:C, t) — 2—a—ﬂ—lk(0)k(¢){cos (N0 + ')’) COS[(N+1)¢+’Y] - COS[(N+ 1)0+ 7]

cos ¢ — cosf

— cos [(N + 1)6 + v

jcos (N + 7) — cos (N6 +7) 0(1)}

cos ¢ — cos

— 2—a—ﬂ—2k(0)k(¢) {COS [N(¢ + 0) + ¢ + 27] -+ cos []V(d> - 0) + ¢]

cos ¢ — cos f

035 _os[N@+6) +6+2v]+ cos [N —6) — 6] 0(1)}
cos ¢ — cos f
R —— sin [(N 4 $)(¢ + 6) + 2]
=2 k(e)k(qs){ Y
sin
2
sin [(NV + $)(¢ — 8)]
+ —5—6 + 0(1)}.
sin )

Nowassume —1 +e=<z2z =<1 —¢e Then

/ 1_‘:2 1 — 91 + P FOKP (z, 0) dt
—1+4¢/2

r—n ¢ 2a+1 ¢ 2841
= / g th+ (sin 5) (cos §> f(cos @)K P (z, t) dep,
Jn

where cos = 1 — ¢/2. Next replace K (z, t) by (9.3.5). By Riemann’s
lemma (Zygmund 2, p. 18), the result will be

1 r—y Sin (2n + 1) (2‘“2_—’9 1—e/2
[ s o s+ 0w [ 150 a0t

(9.3.6) 2w sin ¢_;__

asn — .

The bound of the term O(1) is independent of f(z). When we replace « and 8
by —4%, and f(2) by (1 — §)***(1 + ¢)***¥1(t), repeated application of Riemann’s
lemma yields




[9.3] PROOF OF THEOREM 9.1.2 255

1—e/2
/_ A =" A + P HOKT P (2, 0) at

1+¢/2

. ¢ — 8
1 r—n Sin (2n + 1) T

1 _ /2t Bi2+}
= 5= (1 — cos¢)** (1 + cos $)**** f(cos ¢) 5 d¢
sin

1—e/2
(9.3.7) + 0(1) /_1+ i |f(®) | dt + o(1)

sin 2n + 1) ?——;—g

®— 8
2

d¢

= ~217r(1 — ¢0s8)**(1 + cos g)#/*+ / ) f(cos ¢)

sin
1—e¢/2
+ o) / 17O | dt + o).

Consequently, the part of (9.11.4) which corresponds to — 1 + /2 £t £
1 — ¢/2 has the form (9.3.2).
(3) We consider now the expressions

PR — PP ()
t— 1z

938 O®) | P ()|

1—e/2

(1 — 01 + 0% |0 | d,

O(n) | PP (z) |

(9.3.9) 1
Ll

and the corresponding integrals extended over —1 < t £ —1 + ¢/2. The first
integral is

P i—é)(t) _ P —i)(x)
t— =z

(1=} + 04 1) | at,

0wow™ [* PO 1+ PG 10 = 0% + 07 170 |
= 000G™) [ | P cos )| 6 | (eos 9) | a5

+ 0(n)0(nHo(n™) /_ j (1 — %1 + 0% | 7t) | dt.

From (7.32.6) and (7.32.7) it follows that the first term of the right-hand mem-
ber is

o(1) / ¢~ ¢" ™ | f(cos ¢) | dp = o) | (1 DL+ 0™ () | 4,

or 1is
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0w [ 11tcos 9 18 = 00) [ = v+ P 50 |4

according as « 2 —j or @« = —3. In view of (4.1.7) the expression (9.3.9) is
1

0mO0@™MOE™) | (1 = 0™ 1 + 0" 5 | &

= O(1) f :1 (1 — A + "7 1) | dt.

The integrals corresponding to —1 £ ¢ £ —1 4 ¢/2 are similarly treated.
(4) Finally, we consider the Jacobi series of the function (see, in the special
case a = 3, Kogbetliantz 19, p. 184, (62))

(9.3.10) fz) = (1 - 2y,

and we show that for proper values of u the first integral in (9.1.5) exists, but
that the second does not. Moreover, the Jacobi series is divergentin —1 < z <
+1. Herea > —1.

To this end we note that, according to (4.3.1) and (4.3.3),

+1
T /_ =0+ P PP (@) dt

— {h(a.ﬂ)}—l(_l)” #(# - 1) T (# —n+ 1)
i 2% n!

+1
(9311) (1 _ t)n+a(1 + t)n+ﬂ(1 _ t)u—n dt
-1
n*!
o~ 2—a—ﬂ n 2”1,(_#) 2n+u+a+ﬂ+l n—u-—a-—l P(/J + a + 1)
~ p el asn — .
If weassumethatu4+a> —1,4u0,1,2, ... Jandtake 0 < 6 < =, the general

term of the Jacobi series has the form n ™7 cos (N6 + ¥). The required
values of u are those which satisfy the condition

(9.3.12) —l—-—a<us —a/2 - 3/4
9.4. Proof of Theorem 9.1.3; preliminaries
(1) We first derive the following important identity:

(a+b+LB) N __ oathtl I'(n + 8 4 1)
i e R CE T EYE)

_" I'n+v+a+B8+k+2)
v I'(n+v4+a+8+2)

where 1{**® and C{¥ have the usual meaning (see (4.3.3) and the introduction to

(9.4.1)
C2 =P PP (1) PP (@),
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Chapter IX). This is a generalization of (4.5.3) (last identity), to which it re-
duces when k& = 0.

For the proof we calculate

+1 :
(9.4.2) /1 Plethtl®) () p ) @1 — 2°Q + 2)°dz.
According to (4.3.1), this last expression is equal to

v +1 v
(_1) . Ps.a+k+l'ﬂ)($) (i) {(1 _ x)v+a(1 + x)v+ﬂ} d:C

2 p! dz
1 + vta v+8 d ’ (a+k+1,8)
= | (1 —2)"(1 4+ 2) e {Px P(z)} dz;
or, by (4.21.7) and (4.3.1), it is equal to

5—,,1;!21,(%+a+ﬁ+k+2)(n+a+ﬁ+k+3)---(n+a+ﬁ+k+v+1)

+1 .
(1 _ x)v+a(1 + x)v+ﬂps‘a_-l;k+v+l.ﬂ+v) (:C) d:C

-1
(=D Ttrta+B+k+v+2
- 2 yl(n — w)! 'n+a+ B84+ k+ 2)

+1 d ney
(1 _ x)—k-—l <__> {(1 _ x)n+a+k+l(1 + :C)MLﬂ} dz
-1 dz
_k+DE+2) -kt n—») Tt a+B+Ek+v+2)
- 2 yl(n — w)! I'n+a+B8+Ek+2)

+1 :
(1 _ x)—k—l—n+v(1 _ x)n+¢x+k+l(1 + x)ﬂ+ﬂ dz,
-1
which, if (1.7.5) is taken into account, furnishes the statement.
(2) On substituting the explicit expressions for P{*® (1) and h{*® (see (4.1.1)
and (4.3.3)), we obtain

PLeHEHL) () _ I'n+8+1) ~“Tn+v+a+B+k+2)
" T Tnt+a+B+k+2)im% Tn+rv+a+B+2)

G+ atB+1) pes
P, .
TG+ 68+ 1) @
Since this is an identity in «, 8, k, we may replace « by « + k + 1 and k by
—k — 2. Whence the inversion formula
I'(n+B8+1) S~ I'(nd+v+a+B+1)
'n+a+B+1)imT(n+v+a+p+k+3)

To+a+B8+k+2) @titrn
GFETD @

(9.4.3)
CE 2+ a+B+1)

PP (g) =
(9.4.4)

CEP@ +a+B+k+2
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follows. Consequently,

8:°() = 2, CL2u (i # )7 PP ()PP (2)

m==0

2_“—ﬂ—1 n
(9.4.5) = T G P@ +at B+ b+ 2)
T +a+B+k+2)

(a+k+1,8)
O S VR @),

with

_ S A (k) I'm+v4+a+p+1)
(9.4.6) G,(n,k>_"§c*,._mcm_. (2m+a+ﬁ+l)r(m+y+a+ﬁ+k+3),

The expression Sf.k)(:v) represents the numerator of the nth Cesaro kernel of
order k. .

9.41. Continuation; the Lebesgue constants of order k

(1) For the proof of Theorem 9.1.3, according to Theorem 1.6 (Helly’s the-
orem), it is sufficient to show that the sequence of the “Lebesgue constants”’

©41.1) LY = (@) f_ T 27+ o [P0 | ds,

is bounded if and only if ¥ > a + 1/2. Since for k > a + 1 (cf. (7.34.1), first
and third case),

+1

1 (1 — 2)°(0 + 2)° | PP (2) | da

©41.2) _ 05 ﬁ 1 = 27| P9 g 4 01) l U= 2| PO )]s

= 0(" ) + 0™ = O™,

we have from (9.4.5) .
(9.41.3) LY = 0™ 20 |G, (n, k) | /.
y=0

The last factor »**' must be replaced by 1 for » = 0.
(2) First let k be a non-negative integer. Then in (9.4.6) we must consider

only the terms » < m < v 4+ k + 1, so that G,(n, k) can be written in the form
G(n — » — 1), where®

8% If v+ k + 1 > n, certain additional terms not permitted by (9.4.6) occur in G(x).
However, these terms vanish if we substitute u = n — » — 1, except if v = nand m =
n + k + 1. Now the contribution of this term to G(u) = G(—1) is O(m)(m + »)~*2 =
O (n~%1). This multiplied by the factor »?**! = n2t*1 which occurs in (9.41.3), furnishes
a total contributionO(n*)0(n*) = O(1).
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~ k
k+1> 'm+v+a+pB+1)
2
(m @t et b+ ) a5+ k13

This is a 7 In u, containing » and k as parameters. Newton’s formula shows us
(cf. Markoff 6, p. 15; notation as in (2.8.4)) that

(9.41.5) Gu) = Zk: (;f) A G(0);

p=0

G ="“§1(_1)m_., (u +k4+1—-—m+ u>
(9.41.4)

and from (9.41.4) it follows that
v+o+1

me=y _P m — v

I'm+4+v+a+8+1)
Tm+rFaFB+k+3)

- 1 /l red! (_l)m—V(zm + (24 + ﬁ + 1) tm+v+a+ﬂ(1
k—p)Jo mm (M=) p+1—m=+ »)!

. 1 1 2v+il-l e tm+v+a+ﬂ(1 _ t)k+l
(9.41.6) = (k— p)!/:{_ ,,.-m(_l) m =% =Dl +1<m+

rtpt1 s grivtatbp _ gk
+(2V+a+'3+1)"§(_]) (m—v)!(P+1—m+V)!}dt

1
= - p) ll(p F iy ﬁ {_Z(P 4 1)t gkt

+W%+a+ﬁ+nﬂwwl—m”ﬂm
= 067" D)+ 000G = 0( ), V

The last integral formula also shows that A*G(0) = 0, »
G) =0fork = 0,» = 1. Both facts hold also for » =
tinuation with respect to « 4+ B shows. This settles the case
remark in the last footnote. Fork > 0,

Cm+a+p+1)

_ t)k+l dt

v

1.

2 1; in particular,
0, as analytic con-
k = 0in view of the

k=1

(9.41.7) G,(n, k) = 2, (n — »)* O™,

p=0

to which (according to the same remark) the term O(n™*™') must be added if
y = n. In this case the factor (n — »)’, in the case » = 0 the factor » I
must be replaced by 1. For k > « + 3, this provides, as desired,

—~1 k-1

L(L) - O(n k) E n® + O(n-—k) E E (n _ V)p —k—p—2 2k+l

=0 y=1 p=0

(9.41.8)

1

+ O(n—k) {Z n—b—p-z n2k+1 + n-—k-—l n2k+1} - 0(1).

=0
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(3) We now consider the case & > o 4 4, k not an integer. Then, according
to the previous result,

(9419) ' LSuk’) = A, n = O; 1; 2; Tty

where k£’ = {k] 4 1, and A is a proper constant independent of 7.
Let ¢ > k. If we write u,(z) = (AP} PP )PP (2), the definition
(9.4.5) furnishes

o0

D8EN @)t = (1 — )L f;) u(2)r™.

n=0

Thus,

f: SO = (1 — )71 — ry™F f: Ua(2)r™ = (1 — r)¥'~ Zw: 8¢ (2)r",

n=0 n=0 n=0
so that S (z) = 2o CYZE "V 8% (z) and
Li‘a) < {Ci‘v) }—1 En: Ci‘v_—’:cl’-l) C,(,f’) Lr(nk’) < A{C(o)}—-l }n: C(a—k’—l) C(k’)
=0 = n 0 n-—m m .
Consequently,
(9.41.10) LY < A, o2k, n=012 ...
This holds in particularif e =k + 1,k +2, ... .
(4) Now we prove the identity
I'n+v+a+pf+k+ 2)C(k) _ P(2ni—_a+ﬁ+2k+3) f: (1)
©.41.11) In+v+a+B+2 "7 TI@n+a+B+k-+3)=

<h+ﬁ0@w o kE=D - k—p+D
o )T @ntatB+EF3) @utaFBFkte+2)

0Zv £n.

The series on the right converges absolutely if n =2 1. (For p = 0, the last
fraction is to be replaced by 1.) For the proof we use the following trans-
formation of the left-hand member:

I2n+a+pB+2k+3) 1 k(] et g,
I(n+v+a+B+2) (n—nITEk+1) )
_T@n+a+B+2k+3) 1

T Tn+v+a+B+2) (n—nITEk+1)
0 1
E (_ ])p<l;> / tn—-v+k+p(1 _t)n+V+a+ﬂ+l dt.
0

p=0
Calculation of the last integral completes the proof. Term-by-term integra-
tion is permitted, since the terms are, save for a finite number of exceptions,
all of the same sign.
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Consequently, from (9.4.1) we have the representation
P(a+k+l B8) (:C) 2a+ﬂ+1 P(a _+_ 1)

_ T+8+DICntat+p+2%+3) 5 _ 1)p<k+p>
(9.4112) T(n+a+B+k+2)T2n+a+ B+ k+3) =0

. k(k - 1) M (k — P + 1) S(k+p)($)
@n+at+B+hk+3) - @n+at+tp+hk+po+2) " ’

or
S¥(z) = { 2°HH (o + 1)

_ T(n+p+1)I2n+a+8+ 2 +3) }“Fﬂmm@)
rn+a+B8+k+2)T2n+a+B+k+3) 7

(9.41.13) Z(WG+§

p=1

. k(o — 1) -~k —p+1) S+ ()
@ntat+B+k+3)- - @n+tatBth+p+2) " '

On account of (9.41.2), this gives
(9.41.14) LY = 0(n"0®*™MO@* ") + 0(n "4, _oa)+0m*mﬂ

where

A==i<h+ﬂ bk —1) - (k—p+ 1)
(9.41.15) "N e /CntatB+EA3) - @ntatBtEktot2)

- /_ "1 = 90 + 2 |8 (2) | d.

1

Now, according to (9.41.10),

méAiG+ﬁ

p=1 P
. ek — 1) -+ (k —p + 1) O+
@nt+at+B+k+3)--@n+tat+B+Ek+r+2

(0.41.16) = 0(1) 3. <> (’j’“)

p=1
_ (n+k+1) - (n+k+p
@n+ta+B+k+3) - Cnta+pt+k+r+?2)

. k+2) - k+p+1) — O(n*
—O(n);<>(a+3+k+5) (a+3+k+P+4)—0(n)

since (n +k +1)/(2n + a + B + k + I + 2) decreases as n increases provided
I>a-+8—k-+ 2. This completes the proof of the first part of the statement

in Theorem 9.1.3.
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(5) Finally, let k = « 4+ 3. Using the previous notatiori, we have

al —1
L® {QM-IP Lo+ 8+ D@+ o+ 8+ 2k + 3) }
> (o + )P(n-l—a+3+k+2)P(2n+a+B+k+3)

oWyt /.:1 (1 — 2)°Q + x)ﬂlP;“HH'ﬁ)(x) ldz — {CP}7 A4,

from (9.41.13). The first term on the right is ~ ' 0 log n = log n (ac-
cording to the second part of (7.34.1)*°); the second term is bounded, according
to the result of (4). That is,

(9.41.17) LY > 4 log n, A>0 k=a-ti
so that the expansion of a continuous function in Jacobi series is, in general, not
(C, k = o+ %)-summable.
9.42. Proof of Theorem 9.1.4
(1) Let f(z) be continuous at z = 1, let f(1) = 0, and assume k > o + %.

First we discuss the integral

+1 .
(9.42.1) f_ @10 -2+ 2)P L PO () | da

asn — «. Denoting by e an arbitrary positive number, ¢ < 7/2, we decompose
the interval 0 £ 6 £ =, 2z = cos 6, into

(9.42.2) 0 =6 = eSS 0= 7 — ¢ T— €= 0= T

The corresponding integrals I, IT, III, can be estimated as follows (cf. (9.41.2),
(7.32.6), and (7.32.7)):

1
I = max | f(cos 6) | / (1 — 2)°(1 + 2)° | PSP (2) [ de

0gbge o8 €

= max |f (cos 6) I O(nk_aul),

11 = O(n_i) - O(nk—a-—l)’
fw“@wﬂw—mmwwﬂw=omﬂ=aw*m

f W | f(cos 8) | (r — 8)**'0(n®) db

III = 3 .
= 0" f | f(eos 0) | (= — 0)** do,

L/‘ ’ | f(cos 8) | (r — 6)*"'(r — OO do = 0(n™h) = o(n* ™",

56 If we use only (7.34.2), we obtain L§" — « asn — w«; this is sufficient for our purpose.
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accordingas -1 <8 =< -4, ~31 <8<k —q — lL,or>k —a—~1. In
the last case we use the antipole condition of Theorem 9.1.4. Since ¢ is arbi-
trarily small, it appears that in all cases the integral (9.42.1) is o(n*™*7Y).

(2) Next we introduce the constants

+1
MY = {cPy / — )" Bl S®
(9.42.3) {Ca"} . /@) [ (1 — 2)*0 4 2)° | 85 (2) | da,

n=0,1’2,...,

where S%(z) has the same meaning as in (9.4.5). We obtain the following
analogue of (9.41.3):

MP = 0mn™ VZ:% | Gy(n, k) | o™ ™).

The last factor o(»™*") must be replaced by 1 for v = 0. Therefore, if & is any

positive integer, we have as in (9.41.8),

k—1 n—1 k—1
M =0@™) z; n* + 0™ 22 2 (n — 0Py (MY
o= =1 p=0

(9.42.4) .
+ O(n—k) {Z n~k~p—2o(n2k+l) + n—k—lo(n2k+l)} — 0(1)

p=0

The same holds if & = 0, for then G(u) = 0 (see the remark in the footnote of
§9.41 (2)).

(3) For non-integral & we use (9.41.13) again. Let ¢ be an arbitrary positive
number, and let no be so chosen that, for ¥’ = [k] + 1,

(9.42.5) M =e i nzn.

Then forn = no, ¢ > k' we find, as in §9.41 (3),

M(a) < {C(a)}—l zﬂ: C(a—k'—l)C(k')M(k')
== n = n-—-—m m m .
We decompose the latter sum into the sums D> %' and D n_.,. In the sec-
ond part (9.42.5) can be applied so that

no—

1 n
-1 (o—~k'—1 k’ k’ -1 (o—k’—1) (k')
M < {C) 20 CYni Vel MY 4 o) Y ol %,

m=0 —o
The second term of the right-hand member is less than e, Therefore,
(9.42.6) M7 < e+ AfCV)TIOTTHTY,

where A is a positive constant depending on e and independent of ¢. This
holds in particular if ¢ = k 4+ 1,k + 2, ---. We must replace ¢ ™ by
Cﬁ.":,’f;li) if e < k' 4 1, which occurs when ¢ = k£ 4 1, but not when ¢ 2 & + 2.
Consequently, we obtain, as in (9.41.14),
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Mi‘k) < 0(n~k)0(na+1)o(nk—,a—1) + O(nwk) f: <k + P)

=1 p

(9.42.7) oo JEE=-D -k —p4+ D]
o @nt+a+B+k+3)---Cntatpft+b+o+2)
_{eci‘kﬁo) + ACi;,H—p—k'—l)}.

(For p = 1 we must replace CS** ™7 by C¥*2—£7")) The first term of the
right-hand memberiso(1). The second term can be decomposed into two parts.

The first part has the form ¢O(1), according to §9.41 (4). To estimate the
second part we use the fact that

Ci‘k+p-k'—l) 3 P(n +k +p . kl)r(k + P + 1) B< k + P >k'+l

CHP T T T(nt+k+o+ DI+ — k) n+k+p

where B > 0 depends only on k. For the second part we therefore obtain the
bound (cf. (9.41.16))

0(1) f: <k> m+k4+1) - (n +_kj— p) o
=1 \p/i(@2n+a+B+k+3) - Cn+a+B+i+po+2)

k4o \H

(n+k+) ‘
Decomposing this sum into the sums D r—; and D .ps1, where Pis an arbitrary
positive integer, we obtain the bound

P k+p )k'+1
0(1),,2-:1<n+k+p

00

+0Q) X

p=P+1

G), k42 - k+p+1) __
p/l(a+B+k+5) - (atB+h+p+4)

The first term tends to zero as n — . The second term is arbitrarily small if
P is sufficiently large. Therefore MY = o(1) as n — .

Concerning the case £ = a + %, compare §9.41 (5).

(4) REMARK. The continutty at z = +1 can be replaced by the more general
condition

(9.42.8) /: | f(cos 8) — f(1) | d6 = o(s), 6 — +0.

Only the estimation of the integral I (cf. (9.42.2)) must be slightly modified.
We have, by use of (7.32.5), if f(1) = 0,

I =0@™) A " | f(cos )] db + O(n™) / il 6= | f(cos 6)| db.

In both integrals we integrate by parts (cf. Fejér 8, p. 280). Let
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[ | f(cos t)| dt = F(6).

Then we find

n—l
I — O(na+k+1)n—2a—-lF(n—l) + O(na+k+l)/ 92aF(0) dé
0

+ 0@ + 1 HFa) + 0™ [ 6710

= o(n* ™) 4+ o(* ) + 0(n}) + o(®* ™) + 0(* ) max {67'F(9)}

0<Oge

= o(* ™) + 0(* ™) max {67F(6)}.

0<hse
(6) Finally, we show that the assertion of Theorem 9.1.4 does not hold in
general if the “antipole condition” is not satisfied. We consider the function
(cf. §9.3 (4))
(9.42.9) fiz) = 1 4+ )"
Its expansion at the point z = 1 is

S (") [Ta - a4 e @ e

1

(9.42.10)

- f} (—1)”{h£.“-">}“(" Jg “) /_:1 (1 — z)**1 + 2)* P8 () dz.

n=0

According to (9.3.11), up to a fixed constant nonzero factor, the principal part
of the general term of (9.42.10) is

(9.42.11) (=1%o (=1)neleTtTR Y,
But (9.42.10) cannot be (C, k)-summableif £ £ o — 8 — 2u — 1 = X\. Indeed,
(9.42.12) (1 — )™ 2 (=1)"CPr = (1 - 7 +

n=0
Darboux’s method (§8.4) yields for the coefficient of r" in the power series
expansion of this function, the principal term
(9.42.13) ACP + B(-1)"C,

where A and B are fixed constants, different from zero.
Now let (9.1.9) be satisfied. If we take

(9.42.14) B—-l<pusSia—-8—-k—1),

the Jacobi series exists, the integral (9.1.10) is divergent, (since we have
ia — B —k —1) < —B/2 — 3/4), and the series (9.42.10) is not (C, k)-sum-
mable.
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9.5. Proof of Theorems 9.1.5 and 9.1.6

(1) We start from the representation
(9.5.1) sn(z) = f e (K P (2, H)dt
1]
of the nth partial sum of the Laguerre series of the function f(z), where the

“kernel” K{*(z, t) has the meaning in (5.1.11). We write the formula given
there in the more convenient form

Pla+ DE () = ~F L L@ L300 = L @ L0
n ’ (n + a) T — t
n
(a—-1) _ a1
(9.5.2) n+41 {Lf.?l(x) LeP @) — LTV (2)

n

() (a)
- Ls‘trl-l)(x)Ln+l(ll _l£n+1($)}'
This follows from (5.1.11) if for L{¥(z) we substitute L% (z) — LT (@),
and similarly for L& (¢) (cf. (5.1.13)).
First we assume that the integrals (9.1.11) exist and that the condition (9.1.12)
is satisfied. Then the first integral (9.1.14) exists (cf. the remark in §9.11 (4)).
Let f(z) be a polynomial p(z); then the statement (9.1.13) is true. Therefore,
according to the closure property pointed out in Theorem 5.7.3, it suffices to
show that the difference in (9.1.13) admits an estimate of the form

1 ©
(9.5.3) 0(Q1) / 1 £ | dt + 0(1) / P f() [ dt 4 o(1), n— o,
0 1
where ¢ = min (e, a/2 — 1/4), and the bounds O(1) and o(1) hold uniformly in
z, e £ z < w. Furthermore, both factors O(1) are independent of f(z).

(2) Let us consider the contribution to s.(z) of the interval 0 £ ¢ < ¢/2. In
accordance with the first formula (9.5.2) and (7.6.9), for @ = 3 thisis

€/2
O(nl—-a) / ta |f(t) | {na/‘z—-} t—(a—-l)/2-—§n(a—1)/2“} + n(a-—l)/2'—} t-—a/?.—ﬁna/i’“}}dl
o .

(9.5.4) = 0(1) ﬁ et f@) | dt + 01) ﬁ et 1@ | dt

i

0w [ e 150 1 a

If —1 < a <3, weuse (7.6.9) and (7.6.10); if « < — 3}, we use (7.6.10). In the
first case the result (9.5.4) remains valid, while in the second case we obtain

0@) fo ¢t 1f() | dt.
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(3) We next consider the contribution of the interval ¢/2 < ¢ < 2w, and we
apply (8.8.3) and (8.8.5) to the second formula (9.5.2). Here the variables are
confined to a fixed positive interval; so the remainders in (8.8.3) and (8.8.5)
depend only on n. We find (notation as in (8.8.3))

K(a)(x t) - n-—-a af2—1 (a—l)/2~1 IC(:E)IC(l)

PR
g ) sin [2(nt)! + 4] — sin [2(n2)! + 4]
(9.5.5) {t cos [2(nz)’ + ¥] p—
_ :E* sin [2(7’133)* + ]COS [2(nt) _j: 1;1 : :(;:)S [2(7’&33) + 7] + 0(1)}
The mean-value theorem allows us to replace n’ = n + 1 by n. Suppose,

for instance, that ¢(m, {) = cos (2m't + ). Then

[¢(n’, ) = ¢(n, )] = [¢(n', 2) — ¢(n, )] _ ¢
(n'—n)(t—=) = omaot

taken at a proper place i, I, where 7 is between 7 and n’, and { is between z
and ¢. This readily furnishes

« k(@)k (D) [2(nt)* + v] = sin [2(n2)* + 4]
K{(z,t) = ;c_*_ i i{cos (2(nz)! + ]Sm n ;; - ilf n R4

(9.5.6) — sin [2(n2)! + ] oS [2(71[)*i 1;1 : (;(;s [2(nz)* + 4] + 0(1)}

— 1xi{k(x)l2t—i5in {277}0* - x*)}

i +0(1).

Thus, according to Riemann’s lemma, if € < 1 < w,

[t or @ 0w = ey [ o 2 oDl

/2 xt

+oa) [ 150 |a

= [méf(f)s_‘ll_@_"_“ — ),

b r =

(9.5.7)

+ o) f O it o) / T ) Ld o).

(4) In the interval 2w = ¢ £ 3n (n large), we have, according to the first
statement (8.91.2),

(9.5.8) | L0 @) | = 0(n),
Consequently, from the first formula (9.5.2) it follows that
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dn

/ 3"e“t"f(t)Ks:’)(x, tydt = O(n'~*)n=*" l e T ) || LSGTE @) | dt

20 w

3n
+ O™« f T LR | at
(9.5.9)

In
- —. —1)/2— —t/2 af2—1
— O(nl a)na/2 }n(a D/ }/ ¢ ¢t/ tG/ 2
2

1@ | at

w

3n
+ O(n1-a)n(a-1)/2—} na/2—} /; e—-l/2 tﬂ/i"—f’ | f(t) | dt,

@

which is equal to
(9.5.10) o(1) / e 1) | dt.
1
In the interval 3n £ ¢ < + «, Theorem 8.91.2 (z = a, A = /2 + 1/12),
tells us that

95.11) TR L @) | = 0,
Therefore, from (5.1.11), on account of (9.1.12), we have

L ) K (2, 1) di

9.5.12) = O~ ﬁ Tt @ 1 LTL2 @ |+ [ Laa() 1} at

— 0(n1-a)na/2—-} na/2—-} / e-t/2ta/2—-13/12 lf(t) ldt — 0(1)

3n

(5) If the condition (9.1.12) is replaced by the requirements of (9.1.14), a
treatment of the interval 2w < ¢t < 3n, the same as that given in (4), applies.
In 3n =t < 4+ « we use Schwarz’s inequality:

Ot~ ﬁ ot g0 1 L9 |t

= O(nt™*"% { L i et 1) P dt}i{ ﬁ i e LT OF dt}‘.

The last integral is O(n%) (see (5.1.1)), and this establishes the statement.
(6) Let

(9.5.14) fz) = 2*

(Blumenthal 1, pp. 32-33). We shall show that for proper values of u the

first integral in (9.1.11) exists, but that the second does not; furthermore the
Laguerre series is divergent for z > 0. Here a > —1.

The coefficient a, of the corresponding Laguerre series is given by

[(a + 1) (" : “) an = f ez LY (z) dz
0

_1 ® d”-:tn+a

(9.5.13)

(9.5.15)
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(see (5.1.5)). On integrating by parts, we have

g +a+1) I'(n—p)
9.5.16 Ap = .
( ) " I'(—p) T+ a+1)
Here we assume u + a > —1, 4 % 0,1,2, ... Then a, ~ n™ *" and in

view of Fejér's formula (8.22.1), the principal term of the Laguerre series
behaves like

(9.5.17) n T oos {2(nz)! — an/2 — w/4}
for z > 0. This series is therefore divergent (cf. Problem 47) when and only
whenu + a/2 +§$ =3 Ifa> —%and

(9.5.18) —a—1<up= —a/2 — 3/4,

the first integral (9.1.11) exists, but the second does not, and the series is
divergent for z > 0.

(7) We consider also the function
(9.5.19) fl) = &7,

and we show that for a proper value of u (particularly for p = —a/2 + 1/4) the
integrals (9.1.11) exist, but the conditions (9.1.12) and (9.1.14) are not satis-
fied; in addition, the Laguerre series is divergent for z > 0. Here a > —1,
a4+ u> 1.

The integral
(9.5.20) (e + 1) (" + “) an = £ e Pt L (3) dz

n
can be calculated by means of the generating function (see (5.1.9))

Z I'(a + 1) (n + a) a”T” — (1 _ r)—-a—l / e—-z(i-l-r/(l—-r))xa-l-ﬂ dz
0

n=0 n

(9.5.21)

_ —a—] 1 r Temed
= Tt ut+ D0 =05+ 1 15)

= Ia + p+ 12771 — r)*Q + r)7*L
Thus, Darboux’s method (§8.4) gives for a, the principal term

(9.5.22) An™* ' 4 B(—1)"n*, n— o,
" where A and B are fixed constants, 4 = 0, B = 0. We have 4 = 0 if
p=012 ...

If z > 0, this shows, on account of Fejér’s formula (8.22.1), that a,L* (z)
does not tend to zero if p = —a/2 + 1/4.
(8) Finally, we discuss the Hermite series

(9.5.23) f(x) ~ aoHo(z) + a1 Hi(z) + -+ + @ Ho(z) + --- .
Writing ¥y = 2°, we readily see that (see (5.6.1))

z:o a2mH2m(x) and z% A2am41 H2m+,1(x)
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are the expansions of

{f) + f(—2)}/2 = {f(&") + f(~4)}/2 and
@) = f(=0)}/2 = I — f(=h)}/2

into a Laguerre series with the parameters o = — and a = + 3, respectively.
Applying Theorem 9.1.5 to these functions with @ = —1 and a = +3, respec-

tively, we obtain the conditions (9.1.11), (9.1.12), and (9.1.14) in the fol-
lowing form:

1 1
ﬁ y (21 |dy = 2£ | f(£2) | dz exists;

0

ﬁ Uy (29" |dy = o(n™), or f T | f(x2) [dz = o(n™);
/1 Py (&) |dy = 2 / ¢ | f(%2) | dz exists;

ﬁ ey | f(=y) Fdy = o(n™), or / €5 | f(%2) Pde = o(n™).

This establishes (9.1.17), provided z belongs to an interval not containing
the origin.

In order to accomplish the proof, if z lies in an interval of the form {—e¢,
+¢], we have only to show that

0524) ¢ 3 @vaV T H@H, () — .~ SR L@@ =) _ 5y

y==0 r — 1

uniformly if both z and ¢ belong to [—e¢, +¢]. The first member of this dif-
ference is, according to (5.5.9),

(9.5.25) (2"+‘n!w*>“‘é"‘2{ffn+l<x L0~ By H"*‘(Z:If"“w}.

Now, by using the the notation of Theorem 8.22.6, we obtain
Ate " H (z) = cos N1z — nxr/2) + o™,

¢ TP HA@) — MH0) _ cos (N'e — nm/2) — cos ('L — nr/2)

A
rx—1 z—t

+ 0(1).

The second formula follows by an argument similar to that used in §8.8 (cf.
the first formula in (5.5.10)). Its left member can also be written in the form
)\;16—32/2 Hn(x) — Hn(t) + 0(1)

z—1

Replacing N*! by (N + )}, ¢ a fixed constant, we find the error committed in
the right-hand member to be O(1).
These asymptotic formulas furnish for (9.5.25), by use of Stirling’s formula,
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Q™! ) N hagre” {sin (N'z — nr/2)

cos (Nt — nr/2) ~ cos (N¥z — nwr/2)
r—~1 -

o 3 : 3
— cos (N'z — nr /) 50 (Nt — n7r/2zc - jln (N'z — nn/2) n 0(1)}

= g} §i{l_{_Ni(-’C — t)} +0(1) =+ s_irL{_(Qn)*(:c - t)}
r—1 z—~1

9.6. Proof of Theorem 9.1.7

(1) The Cesaro means of the Laguerre series at z = 0 can be represented in a
particularly simple form. For, from (5.1.7),

+ 0(1).

(9.6.1) éanL(,.“)(O) = {Pla + 1);-1§fe-'t“f(t)z,sf>@ dt.

Hence, by applying (5.1.9), the Cesaro means of order k are found to be

o0

(9.6.2) ([CET(a + D} ﬁ et fOLET () dt. |

Assume £ > a + 3, and subdivide the interval [0, + ] into [0, €], [¢ w),
and [w, +«]. Then we find for (9.6.2)

O(n™) max | /() | f L L) | a
05ige 0
(9.6.3) + 0 f TS IO L L) | ar

+ 0™ [T o 1L |
By use of (7.6.8) the first integral becomes

n=1 € . .
(9.6.4) 0(1) / tana+k+1dt + 0(1) / 1tat—(a+k+l)/2—}n(a+kH)/2—. dt = O(nk)'
0 n—

The second integral is O(n'“"***™) = 4(n*). Now, using Theorem 8.91.2,
g ; g

with « replaced by « + k¥ + 1, and A = & + 3, we see that A — 1 =
k> (a4 k + 1)/2 — %; whence the third integral is

(9.6.5) 0(1)/ eI | T e = 0(n) / e~ PR 1) | dt.
Thus (9.6.2) can be represented in the form
(9.6.6) o) max | f@) | + 0(1) / T 1) L dt + o(1).

Stse w

Here the bounds of the terms O(1) are independent of e and w. If it is assumed
that f(0) = 0, the siatement is established.
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(2) Let ¥ = o 4+ %, and apply Theorem 1.6 (Helly’s theorem) to the linear
operations

W () = {CFT(a 4 1)}7! [ 1 e fOLET ) dt,

U(f) = £(0).
It suffices to show that the second condition in (1.6.10) is not satisfied. As a
matter of fact, if this condition is not satisfied, then a continuous function
f(z), 0 £ z £ 1, exists for which

- lim Ua(f) = U(S)

does not hold. Extending the definition of this function to » > 1 by means
of the condition f(x) = 0, we obtain the “Gegenbeispiel”’ required. (By use
of the remark made in connection with Theorem 1.6, a continuous function
f(z) can be constructed for which (9.6.2) is unbounded when n — «.)

Now if @ is a positive constant independent of 7,

(9.6.7)

1
(C¥T(a + 1)} l T | L) | e
(9.6.8) .
> An_k/ ta l L'('a+k+l)(t) Idt,
]

where A is positive and independent of € and n. The last expression is, ac-
cording to (8.1.8),

Q Q
Nﬁ zaz—(a+k+1)/2 l Ja+k+1(2z§) l dz = 'l Z_’ l Ja+l:+1(22’) le-

This integral becomes arbitrarily large with Q.
(3) Integral (9.1.19) exists if

(9.6.9) f(z) = O(e gFo 1), 8> 0,z 4.

On the other hand, there is no difficulty in proving that the Laguerre series
20 anL5P () of f(z) = €”*2* % is not (C, k)-summable at z = 0. Here the
condition k > o + % is satisfied. Indeed, from (9.5.21) we obtain, p = k - «,

S @ _ TE+1)
(9.6.10) (1 — 7 Z%anL,. 0)r" = "G D
Darboux’s method furnishes for the coefficient of 7" in the expansion of this
function the number
(9.6.11) C(—=1)"n* + o(n"), C>0,n— o.

This establishes the statement.
We also notice that the Laguerre series is (C, k)-summable at z = 0 with
an arbitrary k¥ > o + 1/2, provided f(z) is continuous at z = 0, and

(9.6.12) flz) = 079, z— + .

Again, the Laguerre series of the special function f(z) = ¢”*z! is not (C, k)-
summable at £ = 0 with any k> a + 1/2.

2k+1(1 _ T)—a-l(l + T)_k_l.
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9.7. Further results

(1) Using a generalized translation operator which can be defined by means
of (4.10.21) it is possible to use Theorem 9.1.3 to show that the Jacobi series
of a continuous function is uniformly (C, k) summable for k > max(a + 4,8 + %)
when ,82 — 3, or a+82 —1, and «,8> — 1. See Askey-Wainger 4 and
Gasper 3, 4.

(2) Fora =82 — { Kogbetliantz 19 proved the positivity of the (C, 2o +2)
means of the formal reproducing kernel. A simple proof was given in Askey-
Pollard 1. For the general Jacobi case it is likely that the (C,a +8+2) means
are positive when o,82= — . This has been proven for max(8 —1, —g8) <
a=<B+1 and max(8 —2,3 —8) S a = B+2. See Askey 8.

(3) Theorem 9.1.2 can be used with the Carleson-Hunt theorem (Carleson
1, Hunt 1) to obtain almost everywhere convergence of Jacobi series when
the function satisfies the conditions of both theorems.

(4) Slightly stronger equiconvergence theorems for Laguerre and Hermite
series were obtained by Muckenhoupt 4. Again almost everywhere convergence
theorems follow from these results. These improvements and the mean con-
vergence results to be given below use Erdélyi’s relatively recent asymptotic
formulas in an essential way. These estimates are described in 8.92 (2).

(5) If S/4|f(x)]*dx < =, if f(x) is expanded in a series of Legendre poly-
nomials, and if s,(x) denotes the partial sums of this series, then Pollard 1

proved that .

lim | f(x) —su(x)]| Pdx =0

n-— o -1

for 4/3 < p <4 and these bounds are best possible (Newman-Rudin 1). This
theorem has been extended to Jacobi series (Pollard 2, 3, Muckenhoupt 5),
and Laguerre and Hermite series (Askey-Wainger 1, Muckenhoupt 2, 3). A
slight simplification in the proof was given in Askey 6, and this result and
the positivity of some Cesaro mean was used in this paper to solve a problem
of L? convergence of Lagrange interpolation at the zeros of Jacobi polynomials.

(6) There are a number of other interesting positive summability methods,
e.g. the analogues of Poisson-Abel summability (Bailey 1); Gauss-Weierstrass
summability (Bochner 2, Karlin-McGregor 3); and the de la Vallée-Poussin
method which uses Bateman’s formula (4.10.23). Horton 1 used this formula
to prove that the de la Vallée-Poussin method is positive and variation
diminishing.

(7) Muckenhoupt-Stein 1 have introduced a number of the deeper functionals
from classical Fourier series into the study of orthogonal polynomials and
were able to construct a theory of H? spaces associated with singular Cauchy-
Riemann equations and prove an analogue of the Marcinkiewicz multiplier
theorem. Another proof of this theorem by mapping the theorem for Fourier
series to Jacobi series was given by Askey-Wainger 2 and Askey 3. Another
extension of the Marcinkiewicz theorem was proved by Bonami-Clerc 1. They
were motivated by work of Coifman-G. Weiss 1.

(8) Hirschman 1 has constructed a theory of variation diminishing trans-
formations associated with orthogonal polynomial expansions which parallels
Schoenberg’s classical theory.




CHAPTER X
REPRESENTATION OF POSITIVE FUNCTIONS

In the present chapter we deal with an extension of Fejér’s representation of
non-negative trigonometric polynomials, given in §1.2, to certain general classes
of non-negative functions. In particular, we are interested in the discussion
of this representation if the given function is subjected to certain continuity
conditions. Extensions of Fejér's theorem in this direction are important for
the investigation of the asymptotic behavior of the general orthogonal poly-
nomials associated with a distribution on a finite real interval or on the unit
circle (Chapter XI). It seemed convenient to separate these considerations
from the subject proper.

Concerning the results of this chapter see Szego 6, 7, 8, 9. See also Grenan-
der-Szego 1, 1.12-1.15.

10.1. Fatou’s theorems

TueoreM 10.1.1. Let f(6) be integrable in Lebesgue’s sense, and let
+ 2
1 -7

1) 1— 2rcos(t—6)+ r? dt

(10.1.1) i(r,0) = .23;

-

be the corresponding Poisson integral. Then we have almost everywhere in
-7 =0 = +7T,

(10.1.2) lim f(r, 8) = f(6).

re+1—0

See Zygmund 2, p. 54, §3.442.
TraeoreM 10.1.2. Let

(10.1.3) Fe)=c+az+cd+ - +caz" + ---
be reqular for | 2| < 1, and let the integral
+ .
(10.1.4) -2-1-‘ [ F(re®) |* do
m J—=

be bounded for r < 1. (This condition is equivalent to the convergence of

(10.1.5) leo P+ |all+ |+ -+ e+ -0
Then we have almost everywhere in —w = 0 = +=
(10.1.6) lim F(re®) = F(e¥).

r—+1—0

Furthermore, F(e™) is measurable, and | F(e®) |* 4s integrable in Lebesgue’s sense.
The Fourier series of F(e) is obtained by writing z = ¢” in (10.1.3).
274
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This theorem is due to Fatou (1). We say that F(z) is of the class H,. A
function F(z) which is regular and bounded in | z| < 1 belongs to this class.
Concerning the more general classes H;, see F. Riesz 2 and Smirnoff 2. In
particular, if F(z) is of the class H;, the boundary values F(e™) exist (almost
everywhere), | F(¢”) | is integrable in Lebesgue’s sense and Cauchy’s theorem
can be applied on |z | = 1. (Cf. F. Riesz, loc. cit., p. 94, ¢); Smirnoff, loc. cit.,
pp. 337-338.)

10.2. Generalization of Fejér’s representation

Concerning this section, see Szegé 7.

(1) Let g(6) be a non-negative trigonometric polynomial not vanishing
identically. According to Theorem 1.2.2, there exists a polynomial 2(z) of the
same degree, uniquely determined by the following conditions:

(a) g(6) = | h(2) |*, where z = ¢”;
(10.2.1) (b) h(2) is different from zeroin |z | < 1;
(c) h(0) is real and positive.

We obviously have
(10.2.2) log g(8) = 2R {log h(z)}, z = ¢

The function log A(z) is regular for | z| < 1 except at the points z = ¢* which
correspond to the zeros of g(6), at which both functions log ¢g(6) and log h(z)
become logarithmically infinite; log 2(0) is real. The function 2% {log h(z)}
is regular and harmonic for | z| < 1 and has absolutely integrable boundary
values log ¢g(6). Applying the mean-value theorem of Gauss, we obtain

+x

(10.2.3) %7; i log g(6) d6 = 2R{log h(0)} = 2 log A(0),
so that

. ) 1 +x
(10.2.4) {h(0)}* = exp {-2; /:r log g(6) dO} = O(g).

The last expression is called the geometric mean of the function g(8).

(2) The relation (10.2.2) enables us to extend this consideration to arbitrary
non-negative functions f(6) (instead of g(6)), defined in [ — 7, + =] and integrable
in Lebesgue’s sense, provided &(f) > 0. This last condition is equivalent to
the existence of the integral

(10.2.5) [_ +' log £(6) db = /

r 0</ ) 51

log f(6) do + /;(0»1 log f(6) d6.

The existence of the second integral on the right follows from the integrability
of f(6). Thus, the condition &(f) > 0 is equivalent to the existence of the
first integral on the right-hand side. This is a restriction on the ‘‘nearness”
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of f(8) to 0. A consequence of this condition is that f(6) can vanish only on a
set of measure zero.

We now introduce the harmonic function u(re) defined by, Poisson’s integral
of % log f(6)

2

" 1 +r 1 r
(10.2.6) u(re”) i /_r log f(¢) e — d, 0=r<1.

In the case of a continuous function f() > 0, we know that (see for instance
Zygmund 2, p. 51)

(10.2.7) Iirln0 u(re®) = 1 log f(6),

uniformly in 8. In the general case considered above, this is true only with
the exception of a set of measure zero and without uniformity in general (see
Theorem 10.1.2). If now u is completed to an analytic function u + v = k(2)
with the condition that %(0) is real, then k(z) is uniquely determined. Writing
D(z) = ¢®, we obtain the analogue (generalization) of the function &(z) con-
sidered before. This function D(z) = D(f; z) has the following properties
(Szegd 7, p. 237):

(a') D(z) is of the class H, (§10.1); almost everywhere in —7 < 6§ < 4,
(10.2.8) lim D(re®) = D(e”) exists, and f(6) = | D(e®) |;
r—+1—0
(b’ D(z) £ 0in |z| < 1;
(¢’) D(0) is real and positive.

We have again {D(0)}* = &(f); this is obvious from (10.2.6). Furthermore,
we show that for an arbitrary continuous function F(8) of period 2,

+or . +x
(10.2.9) lim F(8) | D(re”) |*do = / F(0)f(6) de.
r—+1—0 J—r -
If D(z) = do + diz + do?® + - - -, according to Schwarz’s inequality, we have

+r . . 2
{/_' || DE*)* — | D(re”) ] do}

+= . . +x . .
< /_ (| D(e?)| — | D(re™)|)? do-f (| D(e®)| + | D(re™)|)*do

n bt 4

<2 /_ | D) — D(re™) [ do- f_ " (DE + | D)) do

+x . ad
< 871'/ IDE)[Fds-2 (1 — #*)?|du 2> 0
~— nwl

forr— 1 — 0. Here (a’) is used. (See also Smirnoff 2, p. 338.)
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It should be observed that the function D(z) is not uniquely determined by
the conditions (a’), (b’), and (¢’). For instance, we can multiply it by
exp {—(1 4 2)/(1 — 2)}. For this point see Szegd 7, p. 241.

(3) By means of (10.2.6) we can obtain the following explicit representation
of D(z) in terms of f(6):

(10.2.10)0 D(2) = D(f;2) = exp {41 [_ logf(t) L + 2" dt} lz| < 1.

If f(6) is an even function, the expansion of D(z) around z = 0 has real coeffi-
cients. Let fi(6) and f2(6) be arbitrary functions satisfying the same condi-
tions as f(6), and let p be arbitrary and complex, p ¢ 0. Then

(10.2.11)  D(f1; 2)D(fz;2) = D(fif252);  {D(f; 2)}* = D(f*; 2).
As an example we mention the case f(§) = g(8) considered in (1). We have
(10.2.12) D(g;2) = h(z), D(g7;2) = {h(z)}".

In the second formula we assume that g(6) is positive.
A further example is

f(0) = 27°(1 — cos 0)"(1 + cos 6)°;  D(f;2) = (1 — 2)"(1 + 2)’;
v> —% 6> —4%.

(10.2.13)

10.3. Further study of the representation of positive functions

The derivation of an asymptotic formula for the polynomials orthogonal on
the unit circle requires some further properties of the representation defined
before. In particular, we shall deal with the behavior of the function D(z) on
the unit circle | z| = 1. In this connection certain restrictive conditions on the
function f(6) are necessary.

(1) First let us consider again the case of a non—negatlve trlgonometrlc
polynomial g(6) not identically zero, and let g(8) = |h(2) |}, z = ¢”, be the
normalized representation defined in Theorem 1.2.2. Then, by (10. 2 10), we
have for 0 = r < 1,

n

. +x £(0—t)
(103.1) D(g; Z) = h(z) = h(rew) — exp _1_ . log g(t) 1 + re _ dt
47 J_ — et

Whence
sgn h(re”)

16y |—1 10 ) 2r Sin (0 - t)
= | h(re”)| 7 h(re )—exp\4 / log g() = — 0= t)+7.2dt}

(10.3.2)

oo {1 [ o a0 — 0w g0 20 a).

Therefore, for all values of 6 with the exception of the zeros of g(6),
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sgn h(e”) = [ (") he”) = {g(0)} FR(e")

= ex —i/“lo @ coto — tdt
(10.3.3) = P&y L, 89 2

= exp {f;—r /_H [log g(t) — log g(8)] cot 6 ; tdt}.

n

The first integral is taken in the sense of Cauchy’s principal value; the second
integral is absolutely convergent.

(2) This consideration can easily be extended to a positive continuous funec-
tion f(6) which satisfies certain conditions sufficient for the existence of the
integrals corresponding to those in (10.3.3). Since f(6) is continuous, defining
D(z) as in §10.2 we now have, uniformly for all values of 9,

(10.3.4) lim | D(re®) |* = f(6).
710
If the integral
[+r o —t
(10.3.5) / | log f(t) — log f(8)] | cot —5— ‘dt
exists, then
* 0 —t
(10.3.6) / log f(t) cot 5 dt

exists in the sense of Cauchy’s principal value. We then show the existence
of the boundary values of

sgn D(re”) = exp {i / " logf(t) —2rsin (0 = 1) dt}

(10.3.7) dm J 1 —2rcos (9 —1t) +r2
0. . 7 +x o Sin (0 ~ t)
= exp{z; /;_ llog 1) ~ log f(0)] y——— =0T 7ﬁzdt}.

Indeed, if € is a fixed positive number, we have

2rsin (0 — t)
— 2rcos (8 — t) + r?

lim [log f (t) - log f(6)] 1 dt

r—=1-0 J|6—t|>¢

_ /1 .12, log ) = log )] ot 6 - at,

On the other hand, 1 — 2r cos (6 — &) + * = 2r{1 — cos (8 — )}; so

_ 2r sin (f — 1)
/lo—tlge[logf(t) ~ log £(6)] 1 — 2rcos (6 —t) + r? tl

fw_”gllogf(t) ~10g0) | 220 Ola,

A

and the last integral is arbitrarily small with e.
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Therefore, under the condition mentioned,

(10.3.8) lim D(re”) = D(e")

r—+1-0

exists, and a representation analogous to (10.3.3) holds for sgn D(e"),

0 O 0 — ¢
sgn D(e”) = exp i log f(t) cot 3 dt

T

(10.3.9)

+r

= exp {fv-r f_r [log f(t) — log f(6)] cot 6 ; tdt}.

In this case we have f(§) = | D(e”) |.

‘The condition (10.3.5) is satisfied if the function f(6) fulfills the Lipschitz-
Dini condition

(10.3.10) |76 +8) — f(6) | < L|logs|™,

L and \ being fixed positive constants. This is assumed in the present section.
Then (10.3.8) exists uniformly in 6, and D(e”) 1s continuous.
‘The preceding exposition could be considerably simplified by using the
theory of conjugate functions (see Zygmund 2, pp. 50, 54, 55, §§3.321 and 3.45).
(3) Let m be a positive integer. Then there exists a positive trigonometric
polynomial ¢g(8) of degree m such that

(10.3.11) 1 7(8) — {g(®)}™" | < P(log m)™"7,

where P is a constant, depending on the minimum and maximum of f(6) and
on L and \. This follows by applying Theorem 1.3.2 to the function {f(6)}~,
which satisfies the Lipschitz-Dini condition

|16 + )} — {7(0)}™ | < {min f(8)}°L | log 8 | ™.

If D(z) and h(z) denote the functions defined in §10.2 which correspond, respec-
tively, to f(8) and ¢g(6), we can show that.

(10.3.12) | D(z) — {h(z)}7"] < Q(log m)™

uniformly for | z| = 1. The constant @ depends on the minimum and maxi-
mum of f(#) as well as on L and .

It suffices to prove this for | z| = 1. An analogous inequality for the differ-
ence of | D(z) | and | h(z) | is trivial (even with (log m)™™). We therefore
need a hound only for

sgn h(e”) {sgn D(e”) — sgn [h(e")] ™)

(10.3.13) i _
— exp {f; /_ " (log £) — log lg@]) cot - ‘dt} _ 1

or, what amounts to the same thing, for
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+x

(10.3.14) / {log /() — log [g(t)™"} coto ; tdt.
To this end, we use Theorem 1.22.1. We have

(10.3.15) | (6 + &) — g(6) | = ém{max g(§)},

so that

(10.3.16) llog g6 + 8) — log g(6) | < amﬂ‘?x——g%).

Let £ = E(o m, \) denote the set of t-values defined by the condition
lo —t] = m™ (log m)™, and let E’ be the complementary set with respect to
[—m, +7]. On writing (10.3.14) in the form

L {10g 7(®) — 108 76) — log [g@]™ + log [g(8)]™" cot o
(10.3.17)

+ [ tog ) ~ tog g1 cot 5 et

2
and using (10.3.10) and (10.3.16), we obtain for the first integral

0(1)fllog|o—tll““*lo—t|“dt+0(m)[|o—t|

= Ol(log m)™"] + O(m)O[m™(log m)™] = O[(log m)™].
On the other hand, (10.3.11) yields the bound

Ol(log m)™"™] /

for the second integral. This establishes the statement.

cot

o_t‘dt

ct————ldt Ol(log m)™]

10.4. “Local” properties of the representation of positive functions

In this section we prove certain theorems on the representation and approxima-
tion of positive functions, important for the purposes of Chapters XII and XIII.
(1) We have the following theorem:

TuEOREM 10.4.1. Let f(6) be integrable in Riemann’s sense, and let it have
the form

(10.4.1) ) =(0) | (z = 2)"(z — =) --- (z — 2)"' |, z=¢",

where 0 < A < ¢(0) B, and z, = ™ are distinct points on the unit circle,
o >0,v=1,2,...,1. Let f(6) be differentiable at the fixed point 6 = a,
a=¢"#z v= 1, 2, ..., 1, and let the following be bounded near § = a:

16) — fl@) = f(a)6 — &)
(10.4.2) o
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If D(f; z) denotes the analytic function corresponding to f(6) in the sense of
§10.2, there follows the existence of the limits
lim D(f; ™) = D(f; ¢'*) = D(f; a),

r—+1-—~0

lim D'(f; re’*) = D'(f; ¢*) = D'(f; a).

r—+1—0

(10.4.3)

This is true under more general conditions (see Zygmund 2, pp. 52, 53, §3.44,
and pp. 62, 63, example 13). The following elementary argument is based on
the formula (10.2.10).

If we integrate with respect to ¢ only over a fixed arc not containing a, the
corresponding limits obviously exist. If ¢ is near @, we can write

(10.4.4) log f() = ¢ + d(e™ — ¢ + 0)(t — a)’,
where ¢ and d are certain constants. But if | z| < 1, then

1 [ —it —ia, 1+ ze —ia
(104.5) 5; - {C "I‘ d(e — € }T?_Ee_‘“dt =c — de .

Hence it suffices to show that if ¢ > 0 is small enough, the function

+e —1¢
(10.4.6) o)t — )* % _ gy
J—e 1 — ze™

as well as the derivative of this function with respect to 2, is arbitrarily small
if z=re"",r—1 ~ 0. Thisis true for the derivative since

/‘*‘ (t —a)dt /’*‘ (t — ) it

— |1 —refe2 ™ |, 1 — 2rcos (@ — &) + 72

(10.4.7) 1 /+. (-,
4T —e sin2 a — t

2

The argument is even simpler for the function itself, for in the last denominator
we then have | sin {(e — ¢)/2} | instead of sin® {(a« — £)/2}.
(2) Now we prove the following theorem: :

THEOREM 10.4.2. Let f(8) be integrable in Riemann’s sense, and assume
0<A=f6) Bif —7v =0 = +w. Also suppose f(6) differentiable at the
fized point 6 = a and the expression (10.4.2) bounded near 6 = «a.

If € 1s an arbitrary positive number, there exist positive trigonometric polynomials
g1(6) and go(0) such that

(10.4-8) fx(o) = f(o) = fz(o), fl(a) = fz(a),
where f1(8) = {g1(6)}7, f2(0) = {g2(6)}", and
T 12(6) — f1()

6~ o

2

(10.4.9) do < e.

—_

sin?
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Let m and M be the lower and upper bound of (104.2) for —7 < 6 £ +.
The function f1(6) ©s greater than a positive number depending only on m, A,

f(@), and f'(a); stmilarly f2(0) <s less than a number depending only on M, f(a),
and f'(a).

We observe that (10.4.8) implies .
(10.4.10) fil@) = fla) = fol@),  fil@) = f'(a) = fala),
so that the integral in (10.4.9) exists; furthermore, (10.4.9) implies

+r
- sin® —5— =

where ¢ is arbitrarily small with .
For the proof we apply Theorem 1.5.4 to the functions

{(fO} ™" —c—dsin (@ — )

p@ = —— : ¢ = S},
sin? 5
(10.4.12) d= —f(a){f@}?
g =10 = 1) = @) sinto = ),
sin? 5

which are both integrable in Riemann’s sense. Therefore given § > 0, there .
? ?

exist certain trigonometric polynomials P(6) and Q(6) such that

4x
p(6) = P(6), f_ AP(6) — p(6)} do < 3,
(10.4.13) i

+x
q(6) = Q(0), f_ ] {Q(8) — q(8)} do < s.

Here max P(#) and max Q(#) are less than certain constants depending on
m, A, f(), f'(«), and on M and f'(a), respectively. Writing

(104.14) ¢1(0) = ¢ + dsin (0 — «) + P(p) sin® 0_;__0:, f100) = {g:1(0)}7,

we find that {f(0)}™" < g.(6), or £(6) =<'f(6), fila) = f(a), and that

(10.4.15) IO =16 g _ [ o) 2O = UOTT g
" sin® -——;—3 o sin? ¥ ; *

Here f,(6) is greater than a positive constant depending on m, 4, f(«), and f(c).
On the other hand, considering the continuous function




T
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G

{f (&) + f"(e) sin (6 — &) + Q(O) sin 6

(10.4.16) sin?? ; o

{R(0)]_l—r—ds1n(0—a) _l—c—ds1n(0—a)

-1
_a} —c—dsin(® — «)

20 — « 20 — «

SlI] sin

we have f(6) < R(6) < R, where R is a positive constant depending on M,
f(@), and f'(a). Now accordmg to Theorem 1.3.1, a trigonometric polynomlal
S(6) can be determined such that

R —¢ —dsin (@ — o)

.20 — «
Sin 5

(10.4.17) < 80) <GB < 8©) + .

If we write

a

(10.4.18) ¢:(6) = ¢ + dsin (6 — «) + S(6) sin? ? ; , 0 = {g:0)}7",

we find that

0 — «
5
Furthermore, g;(8) < {f(6)}™". On account of the last inequality in (10.4.19)

and (10.4.13) we have
f . 9 0 - a}-l
- «$92(0) + & sin — f(6)
IO Z1O) 4y / 1 "

" sin? f—«
2 2

wr 1020} = {92(0) + 5 sin?? ; “}__
dé

(10.4.19) R™ < g2(6) <{R(®)} ™" < go(6) + 6 sin’

~T

sin®

+ —
- sin? 5
(10.4.20) )
tr e {ge@)} 7 — {92(0) + 5 sin® }
< / E@) — 0= 16) 45 + i 2
sin? —2% - sin?
2 )
-1
+r {ga(0) ) — {92(0) + 4 sin® 6 5 “}
<é+ r— do
- sin?

2
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The last integral is arbitrarily small with & (since g.() > R™).

Combining (10.4.15) and (10.4.20), and taking & sufficiently small, we ob-
tain the statement above.

(3) TurorEM 10.4.3. For the analytic functions D(f1; 2), D(f; 2), D(f: ; 2),

corresponding to the functions f1(6), 7(6), f2(6) of Theorem 10.4.2 n the sense of
810.2, the following inequalities hold:

(10.4.21) | D(f;a) = D(f,;0a)| < ¢, | D'(f;a) = D'(fu;0) | < ¢,
where a = ¢'* » = 1, 2; here € s arbitrarily small with «.

The symbols D(f; a), D'(f; a) have the same meaning as in (10.4.3).
According to (10.2.10) we have for | 2| < 1, » = 1,2,

+x —it
log DU;2) —log DU 2) = - | llog S0 — log 0} -2
(10.4.22) Dt ) DD 1 +:' —it
z D((;;:) — 2z D((év'r:) = ./; {log f(t) — log £,(t)} a —‘—eZeJ‘)E dt,

and forz = re'* = rg, r > 1 — 0,

2

W043) D(fia) DGia) | _ 1 [T log) ~ log s , |

D(f; a) D({,; a) 87 Jr . b=« ' !
S1n ——2—-‘

Both integrals are absolutely convergent and arbitrarily small with e (see

(10.4.11)); D(f; a) is a fixed number different from zero.

(4) TueorEM 10.4.4.  Let f(6) be a function satisfying the conditions of Theorem
10.4.1.  Gwen an arbitrary positive number e, there exist posttive trigonometric
polynomials g,(6) and g(6), such that on putting

fi(6) = {91(0)]_1 |z —2)(z — 2) - - (z—2) ], z = eeo’

¢ [T a — !
log D(f; @) — log D(f,; a) = E/_ {log f(t) — log £,(t)} cot dt,

(10.4.24) »

f2(0) = {g:(0)} 7,
we have
(10.4.25) 0 = fu6) = f(0) = £00, file) = fala),
and '
(10.4.26) / 7 log /2(0) 810 gy

" sin? 5

Here o is the least even number greater than max (o1, o2, - - -, 0;); max fo(0) is

bounded from above, while min {g,(8)}™" ¢s bounded from below, and both bounds
are independent of e.
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For the functions D(f1; 2), D(f; 2), and D(f: ; 2), corresponding, respectively, to
f1(6), £(8), and f2(8), a statement similar to that in Theorem 10.4.3 holds.

REMARK. We can choose for ¢ any even number which is greater than
max (o1, 02, -+ -, 0y); In particular, we can choose an even number divisible
by 4. This is important for certain later purposes (cf. §13.5 (2)).

Let the function f(6) be identical with f(8) except in certain closed intervals
around 6,, » = 1,2, --- 1, in which f(6) = 1. These intervals are chosen so
small that they do not overlap, they do not ‘contain «, and in each of them
f(6) = 1. Furthermore, let

(10.4.27) / " log f(6) - _10g 16) 4 - Z
N sin? @

2

Then f(8) < f(6) for each 6, and f(6) = 7(6) in a certain neighborhood of «
which can be chosen independent of e provided e is small enough. The func-
tion f(6) = f(e; 6) satisfies the conditions of Theorem 10.4.2 and depends on e,
although it has an upper bound independent of e. The same is true for the
upper bound M of the ratio corresponding to (10.4.2).

We now determine the trigonometric polynomial g,(6) such that, for f2(6) =

{9:(8)} 7,

w

78) =79 = £(8);  fl@) = () = fale);

(10.4.28) /*" log f(6) — log f(6) Q<€
0 — « 4’
2

-

sin?

We observe that max fz(g) is less than a number independent of e. (Here we
use the independence of M of e.)

On the other hand, let f(6) be identical with f(6) except in certain closed
non-overlapping intervals around 6,, » = 1, 2, -.- , I, not containing «, and
such that in these intervals

(10.4.29) |(z — z21)(z — 22) -+~ (2 — 2)|" < I(z —2) 2 —2)% - (2 — )",

z = ¢”. 1In these intervals we define

(10.4.30) J0) =00 |z — 2)(z — ) - -+ (2 — 2)[, z = é”.
Furthermore, assume

+r _ ¢
(10.4.31) f log f(6) - _logf ©) 3 < 2

o sin? x

2
Then f(6) = f(6), and f(6) = f(6) near 6 = o. Moreover,
i

(10.4.32) fO |z —2)(z —2) -+ (2 — 2)|7, z=c¢e",
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satisfies the conditions of Theorem 10.4.2 and depends on e, although it

has a positive lower bound independent of ¢, the same is true for the (not

necessarily positive) lower bound 7 of the ratio corresponding to (10.4.2).
We determine a positive trigonometric polynomial g1(6) such that

(10433) (@O} S 1O |G- 20— 2) - (2 — 2) [, 2= ¢

with equality for 6 = «, and

(104‘34) /'*‘7" log {f(o) |(Z _ zl)(z - 22) o (Z - ZI)I_’} — IOg {gl(o)}_l de < E
-7 Sin2 0 — « 4
2
Then, using the notation (10.4.24), we obtain
+r
(10.4.35) / log f(8) — log f:(6) do < <.
- ) 0 . 4 4
sin "—2*

Addition of the inequalities (10.4.27), (10.4.28), (10.4.31), and (10.4.35) es-
tablishes (10.4.26). We observe that min {g,(6)}™ is greater than a positive
constant independent of .

The assertion concerning D(f; ; 2), D(f; 2), and D(f, ; z) follows as in Theorem
10.4.3.

(5) TurorEM 10.4.5. Let f(6) be an even function which satisfies the conditions
of Theorem 10.4.1; assume that $(8) = ¢(— 0), and that all non-real “zeros” z, of f (8)
occur wn conjugate pairs with the same “multiplicity.” Also, let 0 < a < .
Then the functions f1(8) and f(6) of Theorem 10.4.4 can be chosen as even func-
tions, and we have instead of (10.4.26)

" log f2(6) — log £,(6)
(10.4.36) ﬁ (205 6 — cos &) df <e.

An analogous supplement can be made to Theorem 10.4.2. Previous proofs
need only a slight modification. Instead of the first ratio in (10.4.12), consider
{(fO} ™" — ¢ — d (cos8 — cos a)
(10.4.37) (cos 8 — cos a)?
o= {f@}7, dsina = f@{fl@)
The other ratios occurring in the proof of Theorem 10.4.2 must be similarly
modified. The supplements to Theorems 1.3.1 and 1.5.4 concerning even func-
tions have to be observed. The functions f(6) and f(6) occurring in the proof
of Theorem 10.4.4 can be chosen as even functions. The inequality (10.4.36)
is equivalent to (10.4.26), since the function
sin® {(0 — «)/2}
(cos§ — cos a)?

is bounded from 0 and <« if 0 £ 8 £ 7.

’

(10.4.37)




CHAPTER XI
POLYNOMIALS ORTHOGONAL ON THE UNIT CIRCLE

A weight function on a given curve having been assigned, we may extend the
definition of polynomials orthogonal on a real interval to the more general
complex domain. The corresponding polynomials are then orthogonal with
this given weight function on the specified curve in the complex plane
(Chapter XVI).

Of all the special instances, that of a circle is most interesting, and in the
present chapter we shall consider the polynomials orthogonal on the unit circle
with a given weight function. It will be seen that these polynomials possess
properties which are in some respects simpler than those derived for poly-
nomials orthogonal on a real interval. Moreover, there exists a relation between
the case of the circle and that of a real, finite interval which enables us to
apply certain results of this chapter to polynomials orthogonal on a real interval.

Concerning §§11.1-11.4 see Szegd 4. See also Grenander-Szeg6 1, Chapter 2.

11.1. Definition; preliminaries

(1) Let f(6) be a non-negative function of period 2, integrable on [—m, -]
in Lebesgue’s sense, and assume

+r

(11.1.1) 1(8) do > 0.

bl 8

We introduce the Fourier constants
1 +r im
(11.1.2) ¢ = 5= / f@)e™ " do, n=0 %1, £2 ---

Obviously, c_» = €n, S0 that the matrix of “Toeplitz’ type”
(11.1-3) Tn = (Cy_“)’ V’ m= O’ 1’ 2’ PR ’n’

is Hermitian.‘ The corresponding Hermitian form

(11.1.4) H,= E Zc,_,‘u,‘u,. ~ 1 f(f)) | uo + wiz + ug2® + -+ - +un2” | de,

=0 =0 2r J—x
where z = ¢, is positive definite and has the positive determinant
(11.1.5) D, = [c,—], vwpu=20,1,2---,n
(2) DerFINtTION. If we orthogonalize the system™

87 Cf. the last remark in §2.1 (4).
287
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(11.1.6) {(f(g))*zn}, z = ew; n=012--- )
we obtain a system of polynomials
(11.1.7) b0(2), ¢1(2), $2(2), - - - , Pal2), - - -

with the following properties: .

(8) ¢a(2) ©s a polynomial of precise degree n tn which the coefficient of 2" is real
and positive;

(b) the system {¢n(2)} s orthonormal; that is,

+r - .

(11.1.8) él; J0)n(2)pm(2) 8 = by, z=¢nm=0,1,2 ---.

Moreover, the system {¢.(2)} is uniquely determined by conditions (a) and (b).
If f(6) is an even function, that is, if f(§) = f(—0), the coefficients of ¢.(2)
are real.

(3) We show (see §2.2 (2)) that

Co Co1 Ca “** C_q
C1 Co (V] C—n41
(11.1.9) ¢n(2) = (Duoa D)oo
Cne1 Cn—2 Cpn-3 C1
1 z Z z"
CoZ — Cy C_1Z2 = Cg  ***  C_pp12 = Con
— (Dn—-an).—* €12 — Co €2 =~ C1 *** Cony2Z ™ Conil|
Cn-12 — Cn2 Cp-22 — Cpn_3 Co2 — C-1
¢o(2) = Di?, n=123,---
The coefficient of 2" in ¢,(2) is
(11.1.10) kn = (DaaDFHL

The analogues of the representations (2.2.10) and (2.2.11) can also be readily
derived.

(4) We pass now to considerations corresponding to those of (1), (2), and
(4) of §3.1.

TueorEM 11.1.1. Let F(e®) be a given measurable Sfunction for which
+

(11.1.11) "f(o) | F(e®) |* do

extsts. The weighted quadratic deviation

+x ;
(11.1.12 o | J®17@ ~ o) [ as, 2=,

Il
[\
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where p(2) ranges over the set of all w,, is a minimum tf p(2) is the nth partial
sum of the Fourier expansion

F(z) ~ Fopo(2) + Fin(z) + Foga(2) + -+ + Fugal®) + -+,

\ i
Fo=o- | 70F@#1 a, t—en=0,1,2 -

(11.1.13)
' 27|" —r

As a ready consequence, there follows Bessel’s inequality

(11.1.14) |Fo|2+|11«"1|2+|F2|2+---+|Fn|2+---§21

T J—

+r ]
] 1) |F (e |*db.

In addition, Parseval’s formula (that is, (11.1.14) with the equality sign) holds
if one of the following sets of conditions is satisfied:

(i) F(2) is regular and bounded for |z | < 1.
(ii) f(8) is bounded and F(z) is of the class H, (see §10.1):

Concerning a more general condition, see Smirnoff 2, p. 363.
A consequence of Theorem 11.1.1 is the following:

THEOREM 11.1.2.  The polynomial k;, ¢.(2) minimszes the integral

+r .
(11.1.15) % f0) 12" + a1z"™' + -+ 4 a,|*db, z=¢"

if 2" + aiz” + ... + a, ranges over the set of all w, with the highest term z".
The minimum 1s k.
11.2. Example

An important special case in which the system {¢.(2)} can be calculated
explicitly, except for a finite number of terms, is

(11.2.1) ~f0) = {g(8)}7,
where g(6) is a positive trigonometric polynomial of degree m.

TueorEM 11.2.  Let f(6) be defined by (11.2.1), and let g(6) = | h(z) [, z = €,
be the normalized representation of g(6) defined in Theorem 1.2.2. Using the
notation of (1.12.4), we have

(11.2.2) ¢a(2) = 2" "h*(2) = 2"R(z7Y), n=mm-+1,m-+2 ---.

Evidently, condition (a) of the definition in §11.1 (2) is satisfied. In order
to show the orthogonality, let o(2) be an arbitrary =,_;. Then, if z = e,
we have, according to Cauchy’s theorem,

L™ (s @ptE ds = -

2_7; - ¢” P - 27" | z]=al
B 1 zn—lp(z—,l) _
=5 ‘[m_l ___h(z) dz = 0.

(R@RE) e R a2
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In addition

1 +’r 2 1 i =2 | 0T ¢ —1\ |2
o f<o>|¢n<z>|de=ﬂf_ A 1 1% (Y [fdo = 1.

—_T

The simplest case is f(§) = 1. Then
(11.2.3) Pn(2) = 2", n=2012---

Concerning other cases in which an explicit calculation of $.(2) is possible,

we refer to Szegé 4, PP 187-188; and 12, pp. 245-247. See also (11.5.3) and
(11.5.4).

11.3. A maximum problem

Because of the similarity between this problem and that treated in §3.1 (3),
we can omit details.

(1) Tueorem 11.3.1. Let p(2) be an arbitrary ., subject to the condition

(11.3.1) %r _:”f(o) | o(2) do = 1, z=e"
For a fixed value of a, the mazimum of | p(a) |* is attained if

(11.3.2) p(2) = e{sa(a, @)} Fsa(a, 2), le| =1,
where

(11.3.3) sn(a, 2) = ;&W@(z).

The maximum itself is s.(a, a).

These “kernel polynomials’ s,(a, 2) can be used for the representation of the
partial sums of the expansion (11.1.13) in form of integrals (see (3.1.11)).

(2) TueorEM 11.3.2. For a # 0 the polynomials (11.3.2) satisfy the following
identity:

(11.3.4) sn(a, 2) = (@2)"s. (7, a7Y).
Furthermore,
(11.3.5) Sn(O, z) == Zo <—i>:(6)¢»(z) = Kn 2" &’n(z—l) = Kn ¢’:(z

where k., has the same meaning as in (11.1.10); finally

(11.3.6) $.(0, 0) = Z 16,00) |* = «% = Do_t/D, .

The last formula also holds for n = 0if D_; = 1.
Introducing p*(2) = r(z) or p(2) = r*(z), we have
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(11.3.7) 2% /_j 6) | p(2) |°do = % _:”f(f)) |7(2) |°do = 1, z = e,
and, for a # 0,

(11.3.8) | p(a) [* == | a"F(@™) [* = [a [ |r(@) "

This yields s.(a, @) = |a|""s.(@™", @), that is, (11.3.4) for z = a, and also
(11.3.9) {sa(a, @)} Fsala, 2) = €e[{s.(a7, a7} Hsu(@7", 2)]*

where e is a proper constant with |e| = 1. (The symbol * refers to the

variable z.) On combining this with the first result, we obtain (11.3.4). In
the limiting case a = 0, the identity (11.3.5) arises, from which, for z = 0
(11.3.6) follows.

)

(3) Tueorem 11.3.3. Let log f(6) be integrable in Lebesgue’s sense.® Then
the following limits exist:

(11.3.10) lim sa(a, @) = 2 | () |, la| <1,
n—w y=0
(11.3.11) lim s.(a,2) = 2 ¢ (@)s(2), la| <1, |z] <1,
n—w y=0
(11.3.12) lim«, =« > 0, lim 27" ¢.(2), lz| > 1,
n =0 n—0
(11.3.13) ,}l.f?o(b"(z) = 0, 2] < 1.

We first consider the special case f(§) = p > 0, assuming |a| < 1. Let
p(z) have the same meaning as in (11.3.2). Then we have, because of Cauchy’s
inequality (see (7.1.4)),

. i ’
M@Vé~L"%[|MWW

1~|a|22 ”
(11.3.14) )
L T @ s = o,
=1 =Taf 2r J-s P 1 —aP ’

consequently, the same inequality holds for n — . Thus (11.3.10) and
(11.3.11) are established in this case. For a = 0, (11.3.6) and (11.3.5) show
that the limits (11.3.12) exist; (11.3.13) follows from the convergence of
(11.3.10).

In order to prove the statement generally, we first observe that the maximum
in the problem of Theorem 11.3.1 is attained for a polynomial p(2) which is
different from zero for |z| < 1; here again |a| < 1. In fact, if 2 is a zero of
p(2), | 20| < 1, then

3 Cf, §10.2 (2).
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e

Now assume a = re”®, 0 < r < 1,z = ¢”; according to (1.11.3),

1= —}- +1rf(t9) | o(2) |2d¢9 > 1 il
27[' —_ - 1 + r 27!‘ —_

1—7r 1 [* 1 -7
= 1+ rexp{% /;w log £(6) 1—2rcos(d —¢) + da}

1 [+ 2 1 -7
exp {Zr /;, log [5(2) | 1 —2rcos (§ —¢) + r2d0}'

The last integral is Poisson’s integral of the harmonic function 2% log [p(2)],
which is regular for | 2| < 1. The last exponential factor is therefore equal to

exp {2% log [p(a)l} = | p(a) I*;

this establishes the boundedness of max | p(a) |* = s.(a, a).
The further formulas follow as before. Later (§12.3 (6)) we shall calculate
the limits (11.3.10)-(11.3.12).

B=1; |p@f < [(@ —wel
Z()i

—r 1 [* 9 1 -7
1) Ip(z)l — 2rcos (0—¢)+r2d

11.4. Algebraic properties

(1) Let a be fixed, |a| < 1. The above considerations show that the zeros
of s,(a, z) e in |z| = 1. The same is true, of course, for |a| £ 1. From
(11.3.5) we find that the zeros of ¢,(z) liein |z | = 1.

We now prove the following more informative statement:

THEOREM 11.4.1. For |a| < 1thezerosof s.(a,z) liein|2| > 1,for |a| > 1
inlz] <1l,andfor|a| =1on|z| =1 Thezeros of $.(2) licin |z| < 1.

Let 2, be an arbitrary zero of s.(a, 2). If we put

2
(11.41) 710) = 0 222 2=,
and consider all the linear functions p(z) with
1 i
(11.4.2) o ﬁ@ﬂﬂ@lw z =",

it is clear that max | p(a) |* is attained for p(z) = const. (z — 2). It therefore
suffices to discuss the case n = 1. From (11.1.9)

si(a, 2) = ¢o(a) do(z) + ¢1(a) ¢1(2)

11.4.3
( ) = D-()—1 + DQ_IDII(Cod —_ Cl) (Coz — él),

with the zero

(11.4.4) 2 = -1
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This establishes the statement concerning s,(a, 2) since || < o (see (11.1.2)).
The statement concerning ¢.(z) follows from (11.3.5).

(2) TurorEM 11.4.2. We have the identity

(11.4.5) su(a, 2) = }n_: (@), (2) = Pr1(@)pnii(2) — Brr1 (@) Pn1(2)

1 —az
and the “‘recurrence formulas’

(11.4.6) kn2Pn(2) = Kn10n31(2) — Pnp1(0)pri(2),
(11.4.7) Kn®n11(2) = Kny126n(2) + pn12(0)bn (2).

The first identity corresponds, in some respects, to the Christoffel-Darboux
formula (3.2.3). The proof can be given along the same line as the proof in
§3.2 (3). Asin the case of a real interval, we can characterize s,(a, z) by the
equation

1 +

(11.4.8) 3 _:f(&)sn(a, 2)p(z) d6 = p(a), ' z=c¢"

l
[

which holds if p(2) is an arbitrary =,. But
L™ jg) $20(@81112) — dun(@)nnn(2)

2 —7 1 —az

" ) F@I ) — Gan@en(d)

r 1 —az

p(z) df

1
(11.4.9) =el@ag, |

+x S ) -
+ %}_ /_” JO) {pr11(a)pn1() — dppr(@)pnia(2)} ’i?____é’_;?) ds,

The last integral vanishes, for if we write p(z) — p(a) = (¢ — a)r(z), we have

+r +r
(11.4.10) JO)¢rn@2r @ db = | fO)$nii@irG) do = 0,  z=c".
Therefore,
¢:4»1(a)¢:+1(3) — ¢n+1(a)¢n+1(z) p
(11.4.11) - = c¢s.(a, 2),

1 —az

where ¢ is independent of z. Intecrchanging a and z and taking the conjugate
complex values of both sides, we see that ¢ is also independent of a. Writing
z = a = 0, we obtain

(11.4.12) Kt — | dan(0) 2 = ¢ Z_‘a | 6,(0) %,

so that ¢ = 1, by (11.3.6).
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Comparison of the coefficients of @" in (11.4.5) leads to (11.4.6). By taking

the reciprocal polynomials of both sides of (11.4.6), and eliminating ¢,,.(2),
we find (11.4.7).

11.5. Relation to polynomials orthogonal on a real interval

(1) THeorEM 11.5. Let w(x) be a wetght function on the interval —1 < z < +1,
and let

(11.5.1) f(6) = w(cos 6) | sin 6 |.
Further let {p.(x)} and {q.(x)} be the orthonormal sets of polynomaals which
belong respectively to w(z) and (1 — Hw() in -1 < ¢ < +1, and {pa(2)} the

orthonormal set associated with f(8) on z = e®, Then, on writingx = 1(z + z7),
we have forn = 1

~}
Pa(z) = (27r)"*{1 + %@} {27 d2n(2) + 2"¢pon(z™)}

-}
= (2n)7? {1 - ¢2n(0)} (27" o a(2) + 2 o iz

Kon

(11.5.2)

Qn(x) — (2/71_)%{1 _ ¢2n+2(0)}_} z“n-l¢2n+2(z) _ zn+1¢2n+2(z—1)

K2n 42 z—z!

z2— 21!

= (2/71')%{1 + 4)_%(_())}—} 2 " ¢onpa(2) — zn¢2n+l(z—l).

Kont2

See Szegd 6, pp. 204-206. The second equation follows from the first one,
and similarly, the fourth follows from the third, by means of (11.4.7). The
function f(6) is even; so the polynomials ¢,(z) have real coefficients.

The constant factors in these equations are different from zero (see (11.3.6)).

These formulas, except the second one, hold also for n = 0.

(2) The right member of the first equation represents a =, in z; the property
of orthogonality can be expressed in the form

+r
/ pa(cos ) cos vf-w(cos 6) | sin 8 | do = 0;

*

1
or, for z = %,

+r
./ {z_n¢2"(z) + znd)?"(z_l)} {zl' + z_"}f(a)df) = 0: Vo= 0! 1; 2: e, — L.

s

This is the case because
+r

b2n(2) " + 2)f(0)do = 0,

-

and ¢on(2) = ¢2.(2). Moreover,
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ﬁ 1 6am() + o) 1(0) 8

T

+=
=7+ 7+ QR{/: 27" an(2) “2" paa(271)f(60) dﬁ}

ROt do} — or + 2 220

K2n

= 2r + ER{

-

For the third formula the proof is similar, except that it is convenient now to
express the orthogonality in the form

+x ‘;-
/ gn(cos 6) in—gni{;i)a sin® 6-w(cos 6) |sin 8 |d6 = 0,

»y=10,1,2 - ,n— L

A new proof for the formulas (2.6.2) and (2.6.3) can be derived from the first
and third formulas in (11.5.2) by use of (11.2.2).

If in the last two equations of (11.5.2) we replace n by n — 1, we can express
2 "$2,(2) and 27" ¢y, _,(z) aslinear combinationsof p.(x)and (1 —z?)"%q._ (),
where z = 3(z + 27). (See Szego 18, pp. 9-11.) These relations enable us to
calculate the polynomials ¢,(2) associated with

(11.5.3) f(8) = | 1 — 2)"(A + 2)°)F = 2771 — cos 6)"(1 + cos 6)°, z = €”,
in terms of Jacobi polynomials. We find
2 an(2) = AP P (3 + 7)) + Bz — 2P (3G + 27D,
(11.5.4) 27 ¢ona(z) = CPI V(4 + 271
+ D@z — 2P (4 — 7)),

where A, B, C, D are proper real constants.




CHAPTER XII

ASYMPTOTIC PROPERTIES OF GENERAL ORTHOGONAL
POLYNOMIALS

The following sections deal with the asymptotic properties of polynomials
orthogonal on the unit circle, or on a real, finite interval, when the degree
n of these polynomials becomes infinite. In both cases the weight function
will be restricted merely by certain conditions of continuity and boundedness.

Two important problems appear in connection with polynomials orthogonal
on the unit circle. These are (a) the asymptotic behavior exterior to the unit
circle, (b) the behavior on the unit circle itself. For a weight function iden-
tically unity, the system in question is {z"}. This latter instance is typical to a
certain extent.

The corresponding problems for polynomials orthogonal on a finite segment.

are (a’) the asymptotic behavior in the complex plane cut along the given seg-
ment, (b’) the corresponding question on the segment itself. (See Chapter
VIII.) We give the following illustration as characteristic:

To(@) = 3" + 277, z =3+ 27).

Problems (a) and (a’) are simpler, and relative to them comparatively general
results will be obtained. It is only recently that problems (b) and (b"), which
are much more difficult than (a) and (a’), have been treated by S. Bernstein
and G. Szegd. We remark that the weight function conditions in case (b) are
more restrictive than those in case (a). A similar comment may be made
concerning (a’) and (b’).

The results of Chapter X are applied 1n discussing the above problems. Our
investigation is first concerned with questions (a) and (a’). As regards (b’)
we may state that S. Bernstein’s main result is obtained in a new way which
is shorter than his original argument. Then there follows Szegd’s older method
as applied to (b’).

12.1. Results

(1) Let @ denote the class of functions f(6) = 0, defined and measurable in
[— &, +7], for which the integrals

+r +r
(12.1.1) / f(6) as, / | log f(6) | 48
exist with the first integral supposed positive. With such a function f(§) we
associated in §10.2 a uniquely determined analytic function D(f; 2z) = D(2),
regular and nonzero for | z | < 1 with D(0) > 0. The conditions for the class G
imply the existence of the “geometric mean” ®&(f) = {D(0)}* of f(9).
296
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THEOREM 12.1.1 (Asymptotic formula for the polynomials orthogonal on the
unit circle, considered for z exterior to the unit circle).. Let f(8), belonging to the
class G, be a weight function on the unit circle z = e”. If {$a(2)} denotes the

corresponding orthonormal set of polynomials, then in the exterior of the unit circle
(12.1.2) $a(2) = 2" {D(EH} 7, |z > 1.
This holds uniformly for |z| = B > 1.

TrEOREM 12.1.2 (Asymptotic formula for the polynomials orthogonal on the
segment [—1, +1], considered for = exterior to this segment). Let w(z) be a
wetght function on the interval —1 £ x < 41 such that w(cos 6) | sin 6 | = f(6)
belongs to the class G.  If D(f;z) = D(z) denotes the analytic function corresponding
to f(6) in the sense mentioned, the orthonormal polynomials {p.(x)}, associated with
w(z), possess the asymptotic formula

(12.1.3) pa(z) = (2n) 2" (DT

Here x 1s tn the complex plane cut along the real segment [—1, +1], and z =
Lz + 27", where | z| > 1. Formula (12.1.3) holds uniformly for |z| = R > 1.

(2) In order to obtain the deeper asymptotic formulas valid on | /| = 1 and
on —1 < z £ +1, respectively, we must impose certain further restrictions on

f(8) and w(z).

TueoreM 12.1.3 (Asymptotic formula for the polynomials orthogonal on the
unit circle, considered for z on the unit circle). Let f(8) be a positive weight
function on the unit circle, which satisfies the Lipschitz-Dint condition

(12.1.4) | 7(6 + 8) — 7(6) | < L |loga| ™7,

where L and X are fized positive numbers. Then we have, for |z | = 1,
(12.1.5) $u(2) = 2" (D)7 + ) = 2 {DE)} T + eala),
where M , . €,(2) = 0, uniformly for | z| = 1. More precisely,
(12.1.6) | e.(2) | < Cllog n)™;

the positive constant C depends on L, \, and the minimum and mazimum of f(8).

TueoreM 12.1.4 (Asymptotic formula for the polynomials orthogonal on the
segment [—1, +1], considered for z on this segment). Let w(z) be a weight
function on the interval -1 = z < +1, z = cos 8, such that the function
w(cos §) | sin 6 | = f(8) satisfies the conditions of Theorem 12.1.3. Putting

(12.1.7) sgn D(e®) = lD(e") "D = 7O
we have uniformly on the segment —1 < 2 = +1or0 =0 = 7, 2 = cos ¥,

(12.1.8) (1 — 2w @) palz) = (2/7) cos {n6 + v(6)} + O{(log n)™}.
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The constant factor in the O-term depends only on L, N\, and the minimum and
mazximum of f(6).

(3) Finally, we prove two theorems similar to Theorems 12.1.3 and 12.1.4
under conditions possessing a kind of ““local”’ character.

TrEOREM 12.1.5 (Asymptotic formula for the polynomials orthogonal on the
unit circle for | z | = 1, and with weight function subject to a “local” condition).
Let f(8) satisfy the conditions of Theorem 10.4.1. Then (12.1.5) holds for z = a =

x

e'®, wn the less informative form
(12.1.9) ¢a(a) = a"{D(@)} " + e, €n — 0.

From this we obtain the following theorem of “local’’ character, which cor-
responds to Theorem 12.1.4:

THEOREM 12.1.6 (Asymptotic formula for the polynomials orthogonal on the
segment [—1, +1] for z on this segment, and with weight function restricted
by a “local” condition). Let w(z) be integrable in Riemann’s sense, and let it
have the form

(12.1.10)  w(x) =t@) |z — 2 ||z — 2| - |z — x|,
where ) < A = i(z) S Bjand -1 2z << - <,y =1,7,>0,v=1

= 3

2,
oo, 1% Further let w(x) be differentiable at the fized potnt x = £, where —1 < ¢

<+l andt=z,,v=12 ... 1 and let
12.1.11 w(z) — wE) — (z — Hw'¢)
( ) (x — §)?

be bounded if x ©s near to &.
Then (12.1.8) holds in the less informative form

1 — 'w®) pa®) = 2/7) cos {na + y(@)} + e,

E=cose, 0 <a<mlime =0,

n == 00

(12.1.12)

where y(a) has the same meaning as in (12.1.7).

12.2. Remarks

(1) Theorems 12.1.2) 12.1.4, and 12.1.6 follow readily from 12.1.1, 12.1.3,
and 12.1.5, respectively. We observe that D(z) = D(z) in (12.1.3); that is,
D(?) is in this case a “real”’ function.

In Theorems 12.1.3-12.1.6 the function D(z) has boundary values at the point
considered (in Theorems 12.1.3 and 12.1.4 even continuous boundary values
on the whole unit circle |2| = 1). This follows from the considerations of
Chapter X.

The important function y(6), defined by (12.1.7), is completely determined

8 For z; = —1 it suffices to assume 7, = —1/2; similarly for z; = +1.
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save for an integral multiple of 2=. If we choose (see (10.3.9))

1 +x 0 — ¢t
(12.2.1) v(6) == | [log f(t) — log f(8)] cot 5 dt,

then () is continuous. In the cases occurring in Theorems 12.1.4 and 12.1.6,
v(6) can easily be expressed in terms of the weight function w(z). Let

(12.2.2) f(8) = w(cos §) | sin 8| = W(cos 6).
From (10.3.9) we obtain (see S. Bernstein 2, p. 132),

+x
v(0) = 4% f {log W(cos t) — log W(cos 8)} cot ‘?_g__t dt

_1 /7 _ 0 —t 0+t
= 4W£ {log W(cos t) — log W(cos 9)} {cot —5 + cot ——2——} dt

(12.2.3)

- L / {log W(cos t) — log W(cos 8)} __snfé di
27 Jo cosi — cosf

i — log N
= %r /_1 log W(E)g - iot, W(z) <11 - §2> i, o — cos .
In this case
(12.2.9) v(—8) = —v(6).
For the functions {(f(6))'¢.(2)}, 2 = ¢*, » = 0, 1, 2, ..., which form an

orthonormal system in the usual sense (see the Definition in §11.1 (2)), we
obtain from (12.1.5) the simple asymptotic expression 2”@ = ¢'("+7®}

(2) Theorem 12.1.1 is a direct consequence of Theorem 12.1.3 provided con-
dition (12.1.4) is satisfied. Infact, the function z "¢.(2) — {D(z™")} " is regular
for | z| > 1 and continuous for | 2| = 1. In this special case, (12.1.2) follows
in the more informative form

(12.2.5) 2 "¢a(2) = (D)} + Of(log n) ™},

uniformly for [z | = 1.
(3) Concerning Theorems 12.1.1 and 12.1.2, see Szeg6 6. Under more re-
strictive conditions than those in Theorem 12.1.2, Faber (4) proved

(12.2.6) lim | pa(z) V" = | 2], 2| > 1.

This less informative statement suffices for various applications, for instance,
for the purposes of §12.7 (2) and (3). Theorem 12.1.3 is new, while 12.1.4 is
due to S. Bernstein (2). The proofs of Theorems 12.1.3 and 12.1.4, given in
§12.4 and 12.5 (2), respectively, are based essentially on an idea of S. Bernstein,
used in his original proof, and on another idea similar to that used in connection
with the method of Liouville-Stekloff (§8.61). As mentioned, this arrange-
ment seems to be simpler than S. Bernstein’s original line of argument. The-
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orem 12.1.5, and Theorem 12.1.6 which is its consequence, are due to Szego (8).
The conditions required in the present treatment are slightly more general than
those in the paper just cited.

S. Bernstein assumes (2, p. 132, (18))

| W(z+6) — W) | <L|logs| ™ —-1Szs+1, -15z+06s +1,
instead of (12.1.4). These conditions are, however, equivalent since

log {|cos 6; — cos 6, |}
log {61 — 62}

is bounded from 0 and o« if 8, and 6, are arbitrary in [0, z], | 6, — 8 | < 3.%

12.3. Proof of Theorem 12.1.1; applications

(1) Before we proceed to this proof, let us consider the special case f(8) =
{g(6)} ™", where g(8) is a positive trigonometric polynomial of degree m. Let
h(z) have the same meaning as in §10.2 (1). According to the second formula
in (10.2.12) we have D(f;z) = {h(2)}™". On the other hand, by (11.2.2)

(12.3.1) ¢a(2) = 2"h(z) = 2" {D(™H}7, n = m.

The limit relation (12.1.2) can therefore be replaced by one of equality in this case
provided n Z m.

(2) Now let f(6) again be an arbitrary function satisfying the conditions of
Theorem 12.1.1. Let p(2) = 2" 4+ 2" 4 ... + a. be an arbitrary =, with
the highest term 2". According to Theorem 11.1.2, the minimum g, (f) of

1 [ 2 i
(12.3.2) 5 | f0) | p(2)]|" do, z=¢e",
is k. %, attained for p(2) = &, 'pn(2).

LeEmMMA. Let f(8) satisfy the conditions of Theorem 12.1.1, and let u.(f) have
the previous meaning. Then

(12.3.3) m u.(f) = &),

where ®(f) is the “geometric mean’ of £(6).%

If p(2) 1s any one of the polynomials considered, then zp(2) is a wn;1 Wwith the
highest term 2™, and |2p(2) |* = | p() |*if 2 = ¢*. Thus pan(f) £ w(f).
(This follows also from (11.3.6).) Conscquently, lim, . u.(f) = u(f) exists,
and u(f) = 0. We must show that u(f) = &(). '

(3) Using the inequality for the arithmetic and geometric means, we have

(]
forz = €%,

60 If ] 6 — 02] = §, § £ v/2,is given, the maximum and minimum of ]cos 6, — cos Gzl
are 2 sin (6/2) and 2 sin? (5/2), respectively.
61 Cf. §10.2.
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+

+r r
5 [ 10 100 Pas 2 60 exp L [ rog oo a0}

-—r

(12.3.4) e
= B exp {Zr [Teslrer da} 2 6() [0 [ = 6,

according to Jensen’s theorem (see, for example, Titchmarsh 1, p. 125). There-
fore, l‘n(f) = ®(f): and /‘(f). = ®(f)

On the other hand, let T(6) be a non-negative trigonometric polynomial of
degree k, not vanishing identically, and let T(6) = | P(e) | * be the correspond-
ing normalized representation in the sense of Theorem 1.2.2. Then &(T) =
{P(0)}>. The highest coefficient of {P(0)} "P*(z) is 1, so that

+
G) < ) S ) < o | 0| (PO)P*) de
(12.3.5) o
- {@(T)r‘%r | 1016 ds, —_—
By Weierstrass’ theorem, the inequality
. +
(12.3.6) O < uh S (BMDI7" 5 | [OTEO)ds

holds for an.arbitrary positive and continuous function 7'(4) which has the period
27. For the special case in which f(6) is positive and continuous, the lemma
follows from this by writing T(8) = {f(6)} ™"

(4) Now in the general case assume first f(§) = u > 0, and let ¢ be an arbi-
trary positive number. By Theorem 1.5.3; we can find a trigonometric poly-
nomial ¢(8) such that ¢(8) = p and

+
(12.3.7) —2—1;-'_ /; | f(6) — ¢(8) |do < e.

s

We then have

(12.3.8) log ¢(6) — log f(8) < w™' [(6) — f(6) [;
hence G(¢) < G(f)e" . In (12.3.6) we write T(6) = {¢(8)}". Then

- 1 +r

-r

+r
(12.3.9) |2i7r | 1076 a0 - 1‘ < u 116) — 60) | do < u”%,

so that

(12.3.10) () = () = G A + v le);

whence, since ¢ is arbitrary, u(f) = &(f).
In the general case we use the obvious inequality u(f) £ u(f + ¢ =

& + ¢, e > 0, from which u(f) = &(f) follows again. This establishes the
proof of the lemma.
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(5) For the proof of Theorem 12.1.1 let us now consider the functjon
(123.11)  D@¢n(z) — 1 = [DO)ks — 1] + duz + dgt® + ...
which is regular for [2| < 1. If r < 1, we have
1 [ NP » 1 [ TRV
5 / | D(re¢™)pn(re”) — 1°dg = 7 / | D(re”) |* | én(re”) |*db
(12.3.12) o .
+1— 2% {51; D(re”)pn(re’) df)}.

—

The third term is evidently —2R[D(0)¢n(0)] = —2D(0)kn. Asr — 1 — 0,
we obtain, by use of (10.2.9),

r—»1-.0 27!' —r

+" . . +” .
lim & [ | DGe®ek(re™ — 17ds — % / £6) 1%(™) [Pd8 + 1 — 2D(O)x,

1 [* ”
=5 /_r fO) | ¢a(e”) °d8 + 1 — 2D(O0)kn = 2 — 2D(0)xs
2 — 2{8(N (N

or in another form,
| DO)n = 1P 4 [dua [ + [ du [P + [ dog [P+ - -
=2 — 2{6(N)} ()}

In consequence of Cauchy’s inequality this yields, for |z| < 1,

(12.3.13)

2
,dﬂlz+dn232+dn3z3+ |2§ (Idnl]2+ldn2|2+ Idn3|2+ )1 l—z[lZ[z

(12.3.14)
|2 [*

1 — 1212[2 - 2{®<f>}§{#n<f)}_é],

<

The same is true for | D(O)k, — 1|°. Theorem 12.1.1 now follows at once
from (12.3.11).

(6) As an application we calculate the limits occurring in Theorem 11.3.3.
The second limit in (11.3.12) is given by (12.1.2); the special case z = o yields

and as n — «, the last expression tends to 0 uniformly in z for lz| = r < 1.

(12.3.15)  lim x = lim lim {7 ¢.(2)} = (D(0)} * = (&)},

n—>0 Nn—>00 20

The same formula (12.1.2) furnishes, for |z | < 1,

(12.3.16) im ¢rii(e) = lim 2" Gz = (D))

n-—>0 n—>o0

and a similar formula holds for ¢n.,(a), la| < 1. Since ¢npi(a) — 0 and
¢n1(2) — 0 (see (11.3.13)), we have from (11.4.5)
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. S 1 1 1
(12.3.17) lim s.(a,2) = 2_ $.(@)¢(2) = — ,
n—sw ( v=0 ) 1 — az D(a) D(2)
For instance,
o 1 1
2' . ’ v 2 =
(12.3.18) ;hﬂdl =2} (DO l2] < 1,
and in particular (see (11.3.6))
Dn_l 1 1

(12319 Z16OF = lim & = lim =" = iy = s

From the last equation (12.3.15) follows again.
12.4. Proof of Theorem 12.1.3

(1) Let g(6) be a positive trigonometric polynomial of degree m, determined
as in §10.3 (3), and let D(g; z2) = h(2), as there, so that D(g™"; 2) = {h(z)} "
Let {yn(2)} be the orthonormal set of polynom1als associated with the weight
function {g(6)} ' on the unit circle. We have, by Theorem 11. 2,

(12.4.1) ¥al2) = 2"h(z ), n = m.

In close relationship with an idea of S. Bernstein (2, p. 158, (75)), we shall
now express the polynomial ¢.(z), associated with f(8), in terms of the poly-
nomials ¥,(z), corresponding to {g(6)} ™

i@ = 2 et = andinl®) + o +"{g<z>r‘¢m<c>{:"§ m¢,<z>}dz

+x -
(242 = antal® + 5 [ 1001 = 1010 S 5OW b
+o ] f<‘>¢m<f>{2¢ (I)%(t)}dt _

The last term vanlshes because of the orthogonality of ¢,.(2).
Let «,, and «,, = h(O) be the hlghest coefficients of ¢..(2) and ¥..(2), respec-
tively; then a,, = k&' = K, [h(0)}™". Furthermore, by §12.3 (2), we have

(DO = 60) 5 mlD) = 67 £ o= [ 10) | 1HO} 1) o

+x
= {h(())}_22i7r' /_, | D(2)h(z) |* d8, z =¢";

and because of (10.3.12) this equals
{R(0)}*{1 + Ol(log m)™)} = {D(0)}* + O[(log m)™],
so that

(12.4.3) &k = {DO)}™ + Ollog m)™),  am = 1 + O[(log m)™].




304 ASYMPTOTIC PROPERTIES OF GENERAL POLYNOMIALS [ XI1)

(2) We shall next try to find a bound for
(12.4.4) max |¢.(2) | = M = M(m).
Jz|=1

Using (10.3.11), we find from (12.4.2) that

m—1

20 (2)

y=0

(12.4.5) M =< 0(1) + O[(log m)™"]- M -max /‘H

|z]=1 J—=x

dt, ¢ = e,

Because of (11.4.5), the sum under the integral sign can be represented in
the form

(12.4.6) ; W) = h(s“)h(z)l—_ h;z(f)h*(z)

We now show that
(12.4.7) / +" h(f)h(z)l—_ i;*(()h*(z)

uniformly in z for | 2| = 1. Indeed, the numerator is a ., in z, which vanishes
forz = ¢.  Therefore, the theorem of S. Bernstein (see M. Riesz 1, especially p.
357) furmshes O(m) for the integrand. Thus the contrlbutlon of the arc|¢ — z|
< m " is O(1), while the complementary arc | { — z| > m~ ! supplies

dt
lt—zi>m—1 |1 — Fz]

Returning to (12.4.5), we obtain
M = 0(1) + O[(log m)™"|M,

so that M = O(1). Hence, in view of (12.4.3), (12.4.1), (10.3.11), and (12.4.7),
equation (12.4.2) yields

(12.4.8) ¢n(z) = {1 + Ol(log m)™1}2"k(z™") + O[(log m)™""JO(1)0(log m).

The assertion of Theorem 12.1.3 now follows because of (10.3.12). The con-
stants of all O-terms of this section depend only on L, \, and the minimum
and maximum of f(6).

= O(log m), c=é"

0(1) = O(log m).

12.5. Asymptotic formulas for the polynomials on a finite segment; proof
of Theorems 12.1.2 and 12.1.4

Theorems 12.1.2 and 12.1.4 follow from Theorems 12.1.1 and 12.1.3, respec-
tively, almost immediately by using (11.5.2). It suffices to use the first formula.
(1) If z and 2z have the same meaning as in Theorem 12.1.2, we have
lim 2% ¢oa(2) = {D(z7)} 7" lim ¢g.(z7") = 0;

n—> 0 N—» 00

lim ¢2,(0) = 0; lim xg, = « > 0.

n—+o0 n-—»0

(12.5.1)
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Here we took into account (12.1.2), (11.3.13), and (11.3.12). If (11.5.2) is
taken into consideration, this establishes Theorem 12.1.2.

(2) For the proof of Theorem 12.1.4, let n be an arbitrary integer, m = n — 1,
and let g(8), as well as h(z), be determined as in §10.3 (3). Then by (12.1.5)
and (12.1.6),

1 +r 1 +r n N ~
$a(0) = o= | du(2)do = — | 2"[{D()}™ — h(z)]d8
27 J—» 21 |
(12.5.2)

+x

+ 1 Z"h(2) d6 + Ol(log n)™], 2z = ¢”.
27

The first integral on the right is O[(log n)™], while the second vanishes, since
h(2) is a m,_1. Therefore,
(12.5.3) ¢.(0) = O[(log n)™"].
The sequence {xz,} is bounded from 0 (k2 = | $o(0) |* = {max f(6)} 7", accord-
ing to (11.3.6)), so that
Pa(2) = (2m)7{1 + Ollog )™} 2R {"(DE]™ + Ol(log n)™])
(12.5.4) = 2/m' | D(") | cos {nd + v(6)} + Ol(log m)™,

0
r = cos b,z =¢",

which is identical with (12.1.8). The assertion concerning the constant of the
O-term 1s immediate.
The same result is obtained from the second formula in (11.5.2).

12.6. The asymptotic problem under “local” conditions ; proof
of Theorems 12.1.5 and 12.1.6

In this section essential use is made of the approximations given in Theorems
10.4.4 and 10.4.5.
(1) First the following problem will be considered:

ProBuEM. Let N, u, and a be arbitrary complex numbers, and let f(8) be an
arbitrary weight function on the unit circle. We intend to determine the mazi-
mum of

(12.6.1) | Ao(0) + wp(a) I,

when p(2) ranges over the set of all =, which satisfy the condition

+r )
(12.6.2) 51; £0) |o() Pdo = 1, )

Concerning the special case A = 0, ¢ = 1, see §11.3.
We write

p(2) = uspo(2) + w1 (2) + - -« + uspn(2),
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where {¢.(2)} is the orthonormal set associated with f(6). Then D", | u, |*
= 1, and with the notation of (11.3.3), according to Cauchy’s inequality,

(12.63) [ 2O + wola) [ = Z:;u»{x¢y<0>+u¢y<a>} §§|X¢u(0)+#¢y(a) §

= | A 500, 0) + 2R {Aus.(0, @)} + |u Ps.(a, a).

The cxpression in the right-hand member is the desired maximum.

(2) For clarity we now write s.(f; @, 2) instead of s,(a, z) and use an analogous
notation for the orthonormal polynomials ¢,(z) = ¢.(f; ), associated with f(8),
and their highest coefficients k. = x.(f). Then the preceding solution of the

maximum problem shows immediately that for the functions f1(0), f(6), f2(6) of
Theorem 10.4.4,

[N sa(fi0,0) 4+ 2R {Nusa(fi 50, @)} + |1 Psalfy; @, @)
(12.6.4) 2 [N [*sa(f;0,0) + 2R {Musa(f; 0, @)} + | u [sa(f; a, a)
2 [\ [F8a(f2;0,0) + 2R{Xusa(f2; 0, @)} + | u [Psa(f2 ; g, a).

In particular, we have for arbitrary a
(12.6.5) $a(f158,a) = s.(f; 0, a) = s.(f2; a, a).
Furthermore, we find
[ 8n(f;0, @) = sa(2;0,0) [
(12.6.6) = (8.(£50,0) — 8(f2; 0, 0)}Hsa(f; @, @) — 8a(f2 ; @, @)}

= {'Sﬂ<fl 707 0) - Sﬂ<f2 70; 0>}{Sﬂ<fl ) @, a) - Sﬂ<f2 y @, a’>}
Then, by virtue of (11.3.5) and (11.3.6),

| ka(f)ébn (f; @) — kalf)dn (fa ; @) [
= [l = kel (30(f1 5 @, @) — 80(f2 ; @, @)}

Here ¢. denotes the polynomial reciprocal to ¢,. 1f | a | = 1, the same
inequality holds for ¢, , that is

I k()P (f; @) — ka(f2)on(f2 ; @) |2
(12.6.7) . .
= k(] — (D} sa(f1 5 @, @) — sa(fe ;s a, @)}
Now, if n is sufficiently large,
(12.6.8) $n(f2; @) = a"{D(fz;a)} "
(see Theorem 11.2). Next, according to (12.3.15),

(12.6.9) lim k.(f) = (&)} = exp{—zl;r/_‘ " log f(6) dO};

n—0 x
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and similar relations hold for f1, fo. By Theorem 10.4.4,
(O — (®(f))

= exp {—51; /_ ”” log £2(6) dO}{exp <%r /_ :”'[Ingz(O) - 10gf1(0)]d0> - 1}

< {OWN} ™ - D.

Thus
3 2
Iiril_’s;xp éa(f; a) — {(%(%))} " {D(fz;a)} ™

< (" — 1) lim sup {s.(f: @, @) — s.(fa; q, @)},

n-—>00

or (see Theorem 10.4.4)

lim sup | n(f; @) — a"{D(f; @)} "
(12.6.100
<€ 4 (¢ — 1) lim sup {s.(f1; @, a) — s.(fa; a, @)},

n—rQ
where ¢’ is arbitrarily small with . This reduces the proof of the statement to
the discussion of the difference
Sﬂ(fl ) @, a) - Sﬂ<f2 ) @, a)'

(3) Let us use the abbreviation D(f3'; z) = h(z). We find from (11.4.5)
and Theorem 11.2 that

R(a)h(z) — (az)" " R(a@)h(z")

(12.6.11) sn(f2;a,2) =
1 — az

provided n exceeds the degree of {f(6) 7' = g2(6); consequently using I'Hospi-
tal’s rule, a = €', we obtain

sa(fa;0,0) = (n + 1) |k(a) |* — 2R{ak(a)}'(a)}

(12.6.11") e
{fz(a)}_l{n + 1 + 2% [“ %%‘3}}

(4) The discussion of s.(fi; a, a) is slightly more complicated. From
(10.4.24) 1t follows that '

(12.6.12)  D(fi;2) = D(gi; 2){(1 — 52)(1 — 22) --- (1 = Z2)}%
Now let p(2) range over the set of the =, satisfying the condition

+r )
(12.6.13) %r £160) | 0(2) Pdo = 1, 2= e

which can be written in the form
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1 +x

(126 14) 57; . {g1<0>}_ll {(1 - 212><1 - Z2Z) cee (1 _212)}v/2p<z) I2d0 _ 1’

z=¢".
Therefore, by Theorem 11.3.1, if ' = 41/2,
swrn(gi' 0, 0) Z max | (1 — 20)(1 — 5a) -~ (1 — 2a) |" | p(a) |
=|(1 - 2a)1 - za) --- (1 — za) |s.(f1 ; a, a).
Making use of the previous result, we find that

sao(fi;a,0) £ (1 —2a)Q — 2a) -+ (1 — Za) ™

(12.6.15)

: ' g1 ;@)

ot 1+ D)

provided n + I’ exceeds the degree of ¢,(6). Now from (12.6.12) we have
LW _ DiGa) oy —a

D(git;a) D(fiza) 25 1-=3za’

2m[a%H] _ 2*[“%7“))] e

Consequently, the important inequality

(12.6.17)

. -1 D'(f:; a)
(12.6.18) sn(f1;0,0) £ {fi(e)} {n + 1+ 2R [a m]}

holds provided n is sufficiently large. Since fi(a) = fa(a) = f(a), we have

lim sup {s.(f1; @, a) — s.(f2; a, a)}

o (s DU _ Do)
s {o Gl - o B

D'(fi;a) _ D'(fy; a)
D(fi;a)  D(fs;a)

But this expression is arbitrarily small with e, which establishes the proof of
Theorem 12.1.5.
(6) Under the assumptions of Theorem 12.1.6, the function

(12.6.20) f(8) = w(cos ) |sin 8 |

satisfies the conditions of Theorem 12.1.5 or of Theorem 10.4.1. Indeed, we
have, if 2, = c0s 8,,0 < §, < =, ¢ = ¢,

lIA

(12.6.19)

< 2{f()}™

l
fO = 277 T  eos 0) | — 1) I 2 — e = B0,
(12.6.21) v=1
g = e“o;




[12.7] APPLICATIONS 309

whence
(12.6.22) $(6) = 27T T Y (eos 6).

We also observe that f(6) is differentiable at 6 = « and that the ratio (10.4.2)
is bounded near 6 =

As in §12.5, we use Theorem 11.5, particularly the first formula in (11.5.2),
and find that ke, = x2,.(f) tends to a positive limit and lim,_,« ¢:.(0) = 0. Thus

Pa(t) = palcos @) = /M1 + &} R {D(F;a)} Y], lime, = 0.

n—0

By use of the function y(«) discussed in §12.2 (1) we obtain

Ria"{(D(F:a)} '] = | D(f; @) |7 R{ae "} = {f(@)}7! cos {na + v(a)}.

This establishes Theorem 12.1.6.
The validity of the asymptotic formula (12.1.9) has been extended lately

by G. Freud (3).
12.7. Applications

(1) By means of Theorem 12.1.2 we can readily derive certain asymptotic
formulas for the highest coefficients of the orthonormal polynomials {p.(z)}.

TuroreM 12.7.1. Let w(x) be a werght function on the interval —1 <z < 41,
satisfying the conditions of Theorem 12.1.2, and let

(12.7.1) (@) = knox” + k2" + k2" P+ .-, =012 ...,
be the associated orthonormal system. Then asn — o,
" 1 [ dz
(12.7.2) kno= 72" exp {—:‘2—7; /—‘1 log w(x) 2)}}
and

by o — 7 12" /+l z log w(x) _dz
- -1 (1 — z®)t

-exp {—517-; _/—1 log w(x)( E 2)*}

Concerning these formulas, see Shohat 2, p. 577. If the right-hand member
of (12.7.3) vanishes, we read (12.7.3) as follows: lim,— 0 2™ "k, = 0. There is no
difficulty in deriving corresponding formulas for the later coefficients k,, , » fixed.
(See Problems 54, 55, 56.) From (12.7.2) we readily derive an asymptotic

(12.7.3)

formula for D,/D,_,, where D,-is the determinant of Hankel’s type defined |

by (2.2.7) (see (2.2.15)). The first asymptotic investigation of these deter-
minants is due to Szegé (1, p. 517). The coefficient k., was denoted by k. in
Chapter II (see (2.2.15)).

The proof follows immediately from (12.1.3). If

D(Z) =do+d12+d222+---,

we have
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L=+ CO

Y AN
lim 2"" <1 + (12 - ) > (knO + knlx_l + k,,gx_2 + . -)
= e Mo+ dit + )7 = (207 (do‘l - %r + - >
0

Now we use Titchmarsh 1, p. 95 and (10.2.10). We note that on account of
the mean-value theorem of Gauss,
)

+r ¥ -+ 2

exp{—‘f—~7r /ﬂ log IsinOIdO} = exp {—Zl;-r /_" log{!__éf,
= _1 1 _ of 18

_exp< 210g§>_2, z=c .

Combining Theorem 12.7.1 with the formulas (3.2.2), we obtain for the
coefficients 4, , C, of the recurrence formula (3.2.1),

(12.7.4) lim A, = 2,  lim C, = 1,

n— 0 n—o0

provided the conditions of Theorem 12.7.1 are satisfied. If we compare the
terms with " in (3.2.1), we obtain

knO <knl kn—-l l>
12.7.5 B, = — | — /).
( ) . kn—-l.O knO kn-~l,0
Thus, under the same conditions,
(12.7.6) lim B, = 0.

The formulas (12.7.4) and (12.7.6) are noteworthy from the point of view
of a classical theorem of Poincaré on recurrence formulas (see Blumenthal 1,
p. 16).

(2) For the further applications we need only the lessinformative form (12.2.6)
of our asymptotic formula.

TuaeoreMm 12.7.2 (Distribution of the zeros). Let the weight function w(x)
satisfy the conditions of Theorem 12.1.2, and let

(1277) Tin , Ton , -+ Tnn

.
)

denote the zeros of the orthogonal polynomzal p.(x). Letz,, = cosb,,,0 < 8,, < 7.
If F(8) is an arbitrary Riemann-integrable function, we have

(1278) lim F<01n) + F<02n) + Tt + F<0nn) _ 7T_l AV”F(O) de.

n—o0 n

Using the terminology of Weyl, we say that the values {6,,} are equally
distributed in the interval [0, =] (see Poélya-Szego 1, vol. 1, p. 70). This
result is proved under slightly more restrictive conditions by Szego (1, p. 531).
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It is rather remarkable that the asymptotic nature of the distribution is inde-
pendent of the weight function. As a consequence of (12.7.8) we obtain the
following result: Let [a, b] be a subinterval of [—1, 4+1], and let a = cos a,
b=cosB,r=a>p=20 IfN = N(n,a,b) denotes the number of the zeros
of pa(x) in the interval [a, b), we have

(12.7.9) lim V(8,0 _2—8

n—o0 n T

Thus the ‘“density” of the zeros z,, towards the end-points of the interval
[—1, 41] becomes large.

For the proof of Theorem 12.7.2 we write (12.2.6) in the following form (see
(12.7.2)):

Tyn

lim n" {log | pa(z) | — log | kmz"|} = lim n™* 2. log’l -

n—» 00 n—0 y=]
(12.7.10) z ‘ o / i l cos 8
95| =7 ) o8|l ——-

Here |z | > 1. The last formula follows from Gauss’s mean-value theorem,
since

= log

‘1__§+§‘”’=ig—z)<§—2}

10
= ln
2 + 2 %z | £ =]zl >

Thus,

(127.11) lim 27" 25 R<log (1 — cos O )4 _ 7! Jt{log{ 1 — cos 6 ds,
z x
n—»00 y=1 0

so that (see Titchmarsh 1, p. 95)

(12.7.12) lim n™" Y (cos 8,,)* = 7—1/‘ (cos 6)" d8, k=0,1,2,---.
n— 0 y=] 0
This establishes the statement (see Pélya-Szego 1, loc. cit.).

(3) Further applications are the following theorems:

Tueorem 12.7.3 (Expansion of an analytic function in terms of orthogonal
polynomials). Let the weight function w(x) satisfy the conditions of Theorem
12.1.2, and let {p.(z)} be the associated orthonormal system of polynomials. Let
f(x) be an analytic function regular on the segment [—1, +1], and let

f@) ~ fopo(z) + fim(x) + -+ + fapalz) + -+,

(12.7.13) +1
" /;1 f(x)p,,(x)w(x) dx: n =0, 1) 2) Yy

be its Fourier expansion. Let R be the sum of the semi-axes of the largest ellipse
with foct at =1 in the interior of which f(z) is regular. Then the Fourier expan-
ston (12.7.13) s convergent (with the sum f(x)) in the interior and divergent in
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the exterior of this ellipse. The convergence is uniform on every tlosed set lying
in the interior of the ellipse. Moreover
(12.7.14) lim inf |f. 7" = R.

TrEOREM 12.7.4.  Let the weight function w(x) satisfy the conditions of Theorem
12.1.2, and let

(12.7.15) Jfopo(x) + fipi(x) + fope(x) + -+ + fapa(@) + - -

be an infinite serves proceeding in terms of the orthonormal polynomials pn(x)
associated with w(x). Let

(12.7.16) lim inf |f.|™" = R.

Then the series (12.7.15) vs convergent in the interior of the ellipse with foci at +1,
whose semi-axes have the sum R; it s divergent in the exterior of this ellipse. The
series represents an analytic function which ts regular in the interior of the ellipse

and has at least one singular point on the ellipse itself. The expansion assoctated
with this function ts identical with (12.7.15).

Thus the “‘ellipse of regularity’’ coincides with the “ellipse of convergence”;
(12.7.14) and (12.7.16) are the analogues of the Cauchy-Hadamard formula (see
(9.1.4)). Concerning these theorems, see Szegé 1, p. 538; 6, p. 193. Theorem
12.7.4 must be modified in an obvious way if R £ 1,orif R = .

As a consequence of (12.2.6), we see that the domain of convergence of series
of type (12.7.15) is always an ellipse | z| = const. To prove Theorem 12.7.3,
we use Theorem 1.3.5. We can find a m,_;, say p(z), such that

(12.7.17) /@) — p(2) | < MR + o™
Here ¢ > 0 is arbitrarily small, and M = M(e) is independent of n. Thus,

+1 +1
fn = /_1 f@)pn(@)w(z) dov = /_ (@) — p(x)}pr(z)w(z) dz,

1

so that
+1 +1

nF S @+ 0" [ ) ute) do [ wte)
whence lim sUp_w |fo|"* £ R™'. This furnishes the statement of Theorem
12.7.3 concerning the convergence. Now the last relation must be an equality,
for otherwise, the expansion would be uniformly convergent in the interior of
an ellipse larger than that of the ellipse of regularity, and f(z) would be regu-
lar therein. This argument also furnishes the divergence in the exterior of the
ellipse of regularity.

Theorem 12.7.4 can also be established without difficulty. It is quite re-
markable that the domain of convergence of expansions of type (12.7.13) and
(12.7.15) is independent of the weight function w(z) (compare Theorem 9.1.1).




CHAPTER XIII

EXPANSION PROBLEMS ASSOCIATED WITH GENERAL
ORTHOGONAL POLYNOMIALS

We shall now prove four theorems of the equiconvergent type in the sense
of Chapter IX (see the introduction). Two of them, Theorems 13.1.2 and
13.1.4, deal with expansions of a preassigned function on a finite segment in
terms of polynomials orthogonal on this segment. The other two Theorems,
13.1.1 and 13.1.3, are concerned with the expansion of the boundary values of
an analytic function, regular in the interior of the unit circle, |z2| < 1, in
terms of polynomials orthogonal on the unit circle. In all cases the expangions
in question are compared with trigonometric and power series expansions, and
the weight functions are subject to conditions similar to those in the asymptotic
theorems of Chapter XII. The function developed is very general and merely
satisfies certain integrability conditions.

The basic idea of the method used in the proof of Theorems 13.1.1 and
13.1.2 1s due to Szegod (see 9 where ‘only the case of a segment is considered).
Our present treatment of these theorems is slightly different from and more
general than in Szeg6 9. The two other theorems are new. It is noteworthy
that no direct use is made of the asymptotic results of the previous chapter.
The methods, however, are very closely related.

After having finished the manuscript, I came into possession of three im-
portant papers of Korous (3, 4, 5).

In 3, Korous deals with the expansion problem of Theorem 13.1.2. His con-
ditions are of “local” character but less restrictive than those of Theorem
13.1.2. Also, his method is entirely different from that used by Szeg¢ in 9 or
from that of the present treatment.

In 4 and 5, Korous proves two other equiconvergence theorems generalizing
the Laguerre series of Theorem 9.1.5.

13.1. Results and remarks

(1) TueorEM 13.1.1 (quiconvergence theorem on the unit circle |z | = 1
if the weight function is subject to “local”’ conditions). Let f(8) be a weight
function on the wunit circle which satisfies the conditions of Theorem 12.1.5
(= 10.4.1). Let F(z) be an analytic function regular in |z| < 1 and of the
class Hp (§10.1).

If sa(2) denotes the nth partial sum of the expansion of the boundary values
F(2), | 2| = 1, in terms of the orthonormal polynomials {¢.(2)} associated with
1(6), and of s.(2) ts the nth partial sum of the ordinary power series expansion of
F(z), we have

313
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(13.1.1) © lim {s.(a) — s.{a)} = 0.
Here a = ¢'® has the same meaning as tn Theorem 12.1.5.

THeorEM 13.1.2 (Equiconvergence theorem on a finite real segment if the
weight function is subject to “local’”’ conditions). Let w(z) be a weight functio’en
on the segment [—1, +1] subject to the conditions of Theorem 12.1.6. Let &(2)
be an arbitrary real-valued function, measurable in Lebesgue’s sense, for which
the tntegrals

(13.1.2) /_:rl {o(2))? w(z) da, /_:1 | o(@) | (1 — 2D dz

extst.

If s.(x) and s,(x) denote the nth partial sums of the expansions of ®(z) in terms
of the orthonormal polynomials {p.(x)} associated with w(zx) and of the Tchcbzchef
polynomials {cos no}, cos 6 = z, respcctwely, we have

(13.1.3) lim {s.(8) ~ s.(6)} =

n—oo

Here —1 < & < +1, and ¢ has the same meaning as tn Theorem 12.1.6.

It is remarkable that in both cases a wide class of expansions display the
same convergence behavior. The expansion into a series of cos n6 occurring
in Theorem 13.1.2, is, of course, the ordinary cosine expansion of ®(cos 6). A
comparison of s,(¢) with other special expansions can also be readily made.
In making such comparisons, existence of certain other integrals must be re-
quired. By the use of theorems thus obtained, the customary convergence
and summability theorems of the classical Fourier expansions can be easily
extended to the general expansions in question. Theorem 13:1.2 can be easily
extended to an arbitrary finite segment instead of the segment [—1, 41].

‘These theorems hold under the conditions of “local” character of Theorems
12.1.5 and 12.1.6.

(2) The following theorems correspond to the conditions of ‘‘S. Bernstein’s
type”’ occurring in Theorems 12.1.3 and 12.1.4.

Tueorem 13.1.3 (Equiconvergence theorem of S. Bernstein’s type on the
unit circle). Let £(6) be a weight function on the unit circle z = ¢* which satisfies
the conditions of Theorem 12.1.3 with X > 1. Let F(2) be an analytic function,
reqular and bounded for |z | < 1. Employing the same notation as tn Theorem
13.1.1, we have

(13.1.4) lim {s,(z) — s.(2)} = 0, lz] =1

uniformly in the whole closed unit circle |z | = 1

The function F(z) has integrable boundary values F(e™) (for almost all 8).
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TreoreM 13.1.4 (Equiconvergence theorem of S. Bernstein’s type on a finite
real segment). Let w(z) be a weight function on the interval —1 < z < +1,
x = cos 0, which satisfies the conditions of Theorem 12.1.4 with N\ > 1. Let
®(x) be an arbitrary bounded function, which is measugable in Lebesgue’s sense.
Employing the same notation as in Theorem 13.1.2, we have
(13.1.5) lim {s.(z) — s.(z)} = 0, ~1 <z <41,

uneformly in the interval [—1 + ¢, 1 — €, 0 < e < 1.
In the proofs of Theorems 13.1.3 and 13.1.4 essential use is made of Theorems
12.1.3 and 12.1.4, respectively.
13.2. A maximum problem on the unit circle

(1) Let f(6) and F(z) have the same meaning as in Theorem 13.1.1. We
write G(0) = (2r) "'f(8)F(e™), so that

(13.2.1) ﬁ 160 |do

L

1s convergent. In what follows we may vary f(6), but G(6) is supposed to'be a
fixed function for which (13.2.1) exists.

ProBLEM. Let N and p be arbitrary complex numbers, and let |a| = 1. We
intend to determine the mazximum of

+x 2 : R
(13.2.2) I)\p(a) + u f G0)p(z) do |, z = e“’,
for p(z) ranging over the set of all =, which satisfy the condition
1 i 2 10
(13.2.3) ‘—?;[_ FO) | p(2) |°do = 1, z=e".

Concerning the special case A = 1, u = 0, see §11.3. Compare also with §12.6
(1). We write again

(1324) p(Z) = u0¢0(z) + uld’l(z) + .- + un¢n(z))

where {$.(z)} has the usual meaning. Then 2 7~ |u |* = 1, and
‘ +x e 12 ’ n +r . ."2

o+ [ = 5w +u [ GWe w0

(13.2.5) | ‘

+ 2

n

<2

y=0

’ G—(ge)d’l'(z) dé

A, (a) + #/

bt 8

+0

= [N [Fsala, @) 4+ 2R {Nasa(a)) + |u " Ha, z =e"

Here, as in Theorem 13.1.1, s.(a) is the nth partial sum of the expansion of
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2rG(6) {f(6)} " in terms of the polynomials {¢.(z)}, and

n

+x
(13.2.6) H,=2, G0)s,(2) do

2
)
p=0 —x

The right-hand member of (13.2.5) is the maximum in question.

(2) For clearness, as in §12.6 (2), we now write s.(f; a, 2), s.(f; @), ¢.(f; a),
H.,(f) for the expressions involved in the previous considerations, which are
associated with the weight function f(8). We note that s,(f; a) is the nth
partial sum of the expansion of 2xG(8){f(6)}™" in terms of the polynomials
é-(f; 2) associated with f(6). We add that in all subsequent considerations,

even if f(6) is replaced by some other weight function, we shall keep the func-
tion G(6) used before.

Applying Theorem 10.4.4 again, we obtain
[\ Psalfi ;s a, @) + 2R (Masa(f 5 @)} + | o [*HA(f)

(13.2.7) 2 [N Psa(f; 0, @) + 20 Nas.(f; @)} + | w PHA)
2 [ [salfa s 0, @) + 2ROz 5 @)} + | PHA().

In particular, we have

(13.2.8) $a(fi5a, @) 2 s.(f; a,a) 2 s.(f25 @, ),

(13.2.9) H.(f)) =2 H(f) = Ho(f),

[$a(f;0) = salfo; @) [} S {HAf) — Hu(f)} 50([3 0, a) — su(f2 5 0, @)}

Hu(N{sa(f1 50, 0) = su(f2 5 0, @)}

13.3. Proof of Theorem 13.1.1

(1) Bessel’s inequality enables us to obtain

v

IIA

(13.2.10)

IIA

v +r o
1330  Hu) <2 /_ OOV o ds = & [ 1R f0) o
Whence (12.6.19) shows that
lim sup | s.(f; @) — s.(fo; @) |*
+r
1332 = :21; R P10 do-lim sup {s,(fi5 0, 0) = 5. @, @)}
1 tr 2,30y 12 . -1 Dl(fl}a) _ Dl(f23a)

The right-hand member is arbitrarily small with the positive number ¢ occurring
in Theorem 10.4.4. ‘

(2) Next we discuss the behavior of the partial sum s.(f; ; a) as n + .
As in §12.6 (3), we use the abbreviation D(f7'; 2) = h(z). We find that if n
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is sufficiently large (see (12.6.11)),
+x n+l 77y
sulfa; @) =/ G(O)sa(f; 2, @) d0=/ G(o)h(a)h(z> l(azzl ZOLION"
r - — az
(13.3.3) - Q)T — "
= 5 | 10rEMOE = @ TN gy e
mT j—7 1 — a2z
Comparing this latter expression with
_ n+l '
(13.3.4) sn(a) = — / Py L= 4 z = e
27 J_» 1 — az !
we obtain

sa(f2; @) — s.(@) = 517; /

(13.3.5)

*’ Pz )f(ﬂ)h(a)h(z) —1

— 1 — az

27

_Lﬁﬂmmwm?

The second integral approaches zero as n — o, since

(13.3.6)

has a limit at § = a.

JOr(a)h(z) — 1

1 —az !

do

( "y, z ="

The first integral can be written as follows:

) = 1ip 4 r@ﬂ”
1 — a2

[,

(13.3.7)

(13.3.8)

By virtue of Schwarz’s

47" lim sup | $.(fs; @)

n— o

fz(") h(a)Rz) do

= /_: I’(z)f(e) fz((?) h(a)h(z) do, z =%ei9.

since (see the remark at the end of §10.1)

/I I‘()l_h(a)/h(iz)d
|2 =1

inequality,

— s.(a) [

=[Tirara [T

" 4sin? b —c

+r +r _
= ™ [ 1r@ e [TEOSO

T

< {4 f(2) }7 max f3(6)

. -
sin? ——

2

J—T

= 0.

LEO SOV )00y o

— log f(6) 2o

o ]F(z)]2 46 /J”r log f,(6)

sin? ——

2
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Combining this result with (13.3.2), we find lim sup._. | $.(f; @) —— sa(a) |
to be arbitrarily small with the positive number € occurring in Theorem 10.4.4.
This establishes the statement.

13.4. A special case of Theorem 13.1.2

(1) In this section we consider the special case
(13.4.1) wiz) = (1 — ) Hp(2)} 7,

where p(z) is a m; which is positive in the interval [—1, 4+1]. The corresﬁ)onding
orthogonal polynomials (for 2n > I) have been calculated in §2.6. We shall
verify the validity of Theorem 13.1.2 in this special case. To this end it
suffices to assume the existence of the integral ‘

+1
(13.4.2) / | ®(z) | (1 — o) de,
-1
a condition which is more general than that required in Theorem 13.1‘}.2. As
in that theorem we have ¢ = cos o, —1 < § < +1,0 < a < 7.
By virtue of the Christoffel-Darboux formula (3.2.3)

Sn(é) _ kk:] [:1 (15(13) pn+1($)pn(£:)r : ?n(x)pn—fl(é) w(x) dil),
or

kn+1
. sn(cos a)

(13.43) _ /r 5(cos d) Dnr1(cos 8)pa(cos o) — pn(cos 6)pn+11(cos a)
o b cos f — cos «

+{p(cos 6)} " de. 3

Assume now 2n > . Use formulas (2.6.2) and write (2/x)}e™™ h(e®) = u.(6)
+ w,(6). Then ‘
pn(cos ) = u,(6), ‘
(13.4.4) , o
Dns1 (€S 0) = R{e“[ua(0) + w.(0)]} = u.(6) cos 6§ — v,(8) sin 6,
so that ‘

Pns1(C0s 0)p,(cos @) — Pa(cos 6)paii(cos &)
cosf — cos «

{1(0) COS 0 — ,(8) sin 8} un(a) — un(0) {Un(a) COS & — vn(a} sin a}
(13.4.5) cOS § — Cos a 3
o sinf — sin «
cosf — cos a
Un(0)va(e) — v,(0)un(c)

+ £ sin a.
CoOsSf — cos o :

= un(e)un(a) - Un(e)un(a)




(13.4] A SPECIAL CASE OF THEOREM 13.1.2 319

In view of Riemann’s lemma, this leads to

]%‘nil sa.(Cos a)
(B4Y  _dna A ®(cos ) UoO0nle) = Ounle) | oo g)11gp 1 o),
Now .
{p(cos 0)}~1{un(:0)vn(a) — Va(0)un(e)}
= —{p(cos )} 7 F{un(6) + wa(0)} {un(@) — tva(c)}
(13.4.7)

= —72-r {p(cos 0)} I {em h(e®)h (™)}

_ _g ino~a) R (€")

Repeated application of Riemann’s lemma shows that h(e™){A(e®)}™ can be
replaced by 1, and

1n

2 2

by {2sin (@« — 6)/2}”". Thus the right-hand member of (13.4.6) assumes the
form

. -1 . .
sin & (Cos @ — cos &) = sin « {2 sin

a+08. a—O}kl

1 / (cos 6) RO — ) 4o o o(1)
/e sin0 - ¢

2

+7 :
! / ®(cos 6) sin (n + 3)(6 — o) do + o(1).
T J—x .0 —
sin —3

Finally k./kn1 = § when n is sufficiently large (see (2.6.5)). This establishes
the statement.

(2) In the same special case we intend to calculate K,(¢, £), where K, is the
kernel polynomial defined by (3.1.9). We have, by (3.2.4),

kx

kn—H

(13.4.8) K.(t 8 = (Prt1(OPa®) — Pr®pasa(®)}.

Now, by (13.4.4), for a sufficiently large n,
sin a p,(cos a) = —u;(a),
(13.4.9) sin @ p, i(cos a)

= —u,(a) cos a + v, () sin a + un(a) sin @ + v,(a) cos «,
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and k,/k.s1 = 3. Thus,
2 sin & K,(cos a, cos @) = {—u, () cos a + v, (@) sin «
+ ua(e@) sin a + va(e) cos a}u,(a)
+ un () {un(a) cos a — va(@) sin a)
= sin @ J{[ua(e) — wa(@)[uw(e) + v, ()]}
* un(@) S [un(@) + wa(@))e™};

hence

2 sin « — sina un(a) + RE)
PROETACL: K, (cos a, cos a) = sin oS {un(a) T z'v.,,(a)}

1 q' 1 [un(a) + ivn(a>]2 ‘o
Tasnedt 43 {[u,,@ Fiva(a) }

Observing that
g {u;(a) + z‘u;(a)} _ _g {u;(a) - iv;(a)}

Un(et) + tva(c2) Un(a) — v, ()
o e MED 1 (a)
= n -8 jiomy | = 7w e it )

we get the important formula

-1 1 hl(a)
p®) KW, 8 =n+ 1 - R [a 73"('6)’}

(13.4.10)

+ (2sin o)7'S [az"“ ZE%]’ E=cosa,a=¢e%0< a<m.

This holds for sufficiently large values of n.
13.5. Preliminaries for the proof of Theorem 13.1.2

(1) Let w(x) and ®(x) have the same meaning as in Theorem 13.1.2. Write
G(r) = w(x)®(z), so that the integral

(13.5.1) /:1 | G(z) | dx

is convergent. In subsequent considerations we may vary w(z), but G(z) is
supposed to be a fixed function for which the integral (13.5.1) exists.

(2) In what follows we apply Theorem 10.4.5 with f(6) = w(cos 6) | sin 6 |.
This function satisfies the conditions of the theorem mentioned (see §12.6 (5)).
We define the functions w;(z) and w,(z) by
(13.5.2) J.(6) = w,(cos 6) |sin 0|, v =1, 2,
Obviously, £ = cosa, 0 < a < =,

(13.53) 0 = w(z) £ wx) < wa(x), wi(§) = w(E) = wy(f).
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Moreover, wy(z) is of the form (13.4.1), while wi(z) = k(@)u(z) = {r(z)}u(z).
Here u(z) is of the form (13.4.1), and r(z) is a polynomial of degree ol/4. (See
the remark to Theorem 10.4.4.)

(3) ProBLeM. Let N\ and u be arbitrary complex numbers, and assume that
—1 < & < +1. Wentend to determine the maximum of

+

(13.5.4) ’M(E) + u [_1

2

1 G(x)p(z) dx

when p(x) ranges over the set of all w, which satisfy the condition
+1

(13.5.5) / | o(2) Pw(x) dz = 1.
—1

This is the problem corresponding to that of §13.2. We substitute again

(13.5.6) p(z) = Uopo(2) + wpi(x) + - + unpa(z),

where {p.(r)] is the orthonormal set of polynomials associated with w(z).
Then 2 7o | u. | = 1, and according to Cauchy’s inequality

2 7

2

+1 +1
]m@+m[;amx@m Om&ma+#[1mwmwm}

| v=

2

(13.5.7) < 2 I + u /_jl G(z)p,(z) dx

n
y=0

= INPKL®) + 2R [Rusa®)] + || Ha.
Here K,(¢§) = K.(w; £) has been written for the “kernel” K,(¢, £), and

+

G KA, o) da,

n +1
(13.5.8) s.(8) = s.(w; &) = p;o p.(£) g G(2)p,(z) dz = /

(13.5.9) H, = H,(w; §{) = io {/_ILI G(z)p.(x) dx}z.

==

We notice that s,(£) is the nth partial sum of the expansion of ®(z) =
{w(z)} 'G(x) in terms of the polynomials Pa(z) associated with w(z).
The right-hand member of (13.5.7) is the maximum in question. Hence

NP Ka(wr 5 8) + 2R [Ausa(wr ; )] + | u|* Ha(wy)
(13.5.10) 2 | M Ka(w; §) + 2R [Rusa(w; §)] + | [ Ha(w)

2 [ M Ka(ws 5 £) + 2R Nusa(ws ; O] 4 | 6 " Hawa),
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In particular

(13.5.11) Ka(wy; §) 2 Ka(w; §) 2 Ka(wp ; §),
(13.5.12) Ho(w) 2 Ha(w) = Ha(w).
Furthermore,
| sa(w; £) — salwn; 8 [P S (Ha(w) — Ha(wn)} {Ka(w; &) — Ko(ws ; £)}
(13.5.13) = Ha(w) {Ka(wi ; §) — Ka(ws ; £)}

41
= [ @) e delKon 9 — Kutwn 9

if we observe Bessel’s inequality. We next show that the last difference is
arbitrarily small with ¢, uniformly in n.

13.6. Proof of Theorem 13.1.2

The main tool of this proof is the special equiconvergence theorem of
§13.4 (1) and the representation (13.4.10) of the kernel. The latter yields
immediately the representation

D/(fz‘ a)
Tf(@En(wn;8) = n+ 3+ R | a5r2o
(13.6.1) l: (fz,a)il

+ (2sin )7y [a”‘“ Dlfaza) }

D(fs; a)

since {ga(a)} ™" = fale) = fla). We derive, on the other hand, an inequality
for K.(w; ; £) analogous to that in (12.6.18). Using the notation introduced
in §13.5 (2) and writing 36l = I/, we obtain as in §12.6 (4), i

(13.6.2) Kunpip(u; §) 2 {19} Ka(ws 5 £) = k(O Ka(w ; £).
Also, u(z) = u(cos 6) = {g:(6)} ™" |sin 6 |, so that from (13.4.10)

i)} Knop(u; 8) =n +1/24+ 4 — R l:a D'(gs; a)}

D(g:;a)
+ (2sin o)™y [a”‘*"“ gég 3 Z;]
(13.6.3) LG )
, L g1 ;a
:=n+l/2+2+m[am}

D(gr*; @) 1’
where, as before, £ = cos o, @ = ¢**. Now we can use (12.6.17). Moreover
from (12.6.12)

D(fi;a) _ D{i';a) ¢ (1 —z,a>”’2_ g Rlitia)
D(f1; a) D(gi';a) =i\l — 2,6/ D(g7%a) ’

+ (2 sin o) 7' l:a

(13.6.4)
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also {gi(a)}7k(£) = fila) = f(a), so that from (13.6.2)

: 1 D'(f1; a)
mf(@)Kn(wi;¢) S n4+ 34+ Rla At e
(13.6.5) [ D(f; a) }

4 (2 sin a)—_ls( l:a2"+1 D(fl’ a) ]

. D(f1; a)
On comparing this with (13.6.1), we have

Ka(wy; §) — Ka(ws; )

f(@)) ™ D'(ji;a) _  D'(fr;0)
{mf(e)} {m[“' D(fya) D(fz;a)]

lIA

(13.6.6) + (2sin )Y l:a2"+1 D{f1;0) _ awnr D(2j0) }}

D(fy; a) D(fs; a)
D'(fi; @) _ D'(f:; a)
D(fi;0)  D(fp;0a)

lIA

{rf(e)} ™"

D(fi;a) _ D(ji;a)
D(fia) ~ D(wa) |

+ {27f() sin a}*l

The left-hand side is non-negative, while the right-hand side is arbitrarily small
with e.

Returning to (13.5.13), we notice that s.(w, ; £) is the nth partial sum of the
expansion of {wy(z)} 'G(x) = {wy(x)} w(z)d(x) in terms of the polynomials
associated with wy(z). Since {wy(zr)} w(z) = 1, and since the second integral
in (13.1.2) exists, the result of §13.4 (1) can be applied. Thus s.(w; ; £§) =
$a(we ; cos ) can be replaced by the nth partial sum of the corresponding
Fourier expansion with an error o(1), n — =. Also {ws(z)} w(z) = 1 for
z = £, so that the partial sum can be replaced by that of ®(x), which is s.(£).
This completes the proof of Theorem 13.1.2.

ReEMark. It is easy to show that the difference

(13.6.7) H.(w) — H,(w),

occurring in (13.5.13), is also arbitrarily small with e. If this fact were used,
it would suffice to obtain an upper bound for the first difference in (13.6.6).
This remark furnishes a slight variation of the preceding argument.

13.7. Proof of Theorem 13.1.3

(1) It is sufficient to discuss the statement for | z| = 1. The partial sums
in question are
1 +r 1 _ "Z n+1
rp L= 897,

1 +r o
(13.7.1) Zr/_, F()sa(¢,2)f(x) dxz and 5= | T r, {=¢€",
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where s,(¢, z) has the usual meaning. We introduce the difference of the
“kernels”

z \ntl
(13.7.2) La(S, 2) = sa(8, 2)f(x) — l—g(—@“ )
1 —¢z
and show that
+r
(13.7.3) lim F(©)A(,2)dz = 0, ¢ =e",
uniformly on the unit circle |z | = 1.

(2) First, as a consequence of the Lipschitz-Dini condition (10.3.10) assumed
for f(6), we prove that a similar condition (with the exponent —\ instead of
—1 — ) holds for D(f; 2) = D(z); that is,

(13.7.4) | D) — D™ | < L' |log s ™,

where L’ is a positive constant. Let m be an arbitrary integer. By use of
(10.3.12) we obtain

lD(Gi(a+6)) _ D(eia) [ < ZQ(IOg m)-—)\ + [ {h(ei(a+6))}_1 _ {h(eia)}-l [
The last term, according to Theorem 1.22.2 is equal to é0(m); whence the
bound O[(log m)™] + 80(m) follows. Putting m ~ 67 |log 6|, we have
(log m)™ ~ |log & I, and ém ~ | log & |, which establishes the statement.

This furnishes, for the function v(6) = J{log D(¢®)} defined by (12.1.7), also
the relation

(13.7.5) |76 4+ 8) — v(6) | < L |log 6|7,

where L is a positive constant. These results hold for an arbitrary A > 0.
By the same argument the following more general inequality follows:

(13.7.6) | D(@) ~ D) | < L' |log | 21 ~ 2 ||,
where z, and 2 are arbitrary in the unit circle |z | < 1.
@) Let|z]| =[¢]| =125 ¢ From (11.4.5) and Theorem 12.1.3 it is seen
that
N7 ~1 _ rz \ntl YR !
e, ) = DOPOI = G DOD@
_ (7 \ntl
- 11— e olog Y
(13.7.7) e
— D(g‘){D(z)}ﬁl -1 _ (g'.z)nﬂD(g‘){D(Z)}‘1 =1
B 1 —¢2 1 — ¢z

+ |1 = fz[" Ol(log )™,

Now, according to Cauchy’s theorem,
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(13.7.8) 2Lm F(e) PO DE) 17— 1

It)=1 {— 2

dg':o,

since the integrand is a function of { which is of the class H, (see the remark

at the end of §10.1). Here we used the condition A > 1. And by Riemann'’s
lemma,

YN YA

(13.7.9) lim | ()R 2OUPR =1, ¢ = o,
n—oo J|{|=1 1 — g‘Z

(Concerning the uniformity cf. below.) Therefore we obtain, if € is an arbi-

trary positive number, E = E(z, n, ¢) is theset on | ¢| = 1 with [¢ — 2| =

en” ', and E’ the complementary set, the relations

/EF(f)An@, 2) dz = —/EIF((){D(O {1D<_2>§;‘ —1_ B@{ID'?S;:;I - 1}dz

+ o(1) + O0{(log n)™} Lll — Fz| M dx
= o [ 11~ lloglz — £ P

+ o(1) + O{(log )™} /Ell — fz| 'tz

= O{(log n)' ™} + o(1) + O{(log n) ™} 0(log n)

= o(1), ¢ =¢% n— o,

On the other hand, the numerator of (11.4.5) is bounded in the present case
so that Theorem 1.22.2 yields (see §12.4 (2)) s.(¢, 2) = O(n), and hence also,
An(f, 2) = O(n). This holds uniformly for |z| = |¢| = 1. Therefore, we
have

| 6845, 9.0z = oen = 0, —_—

where O(1) 1s independent of ¢ and n. This establishes the statement.
(4) The uniform validity of (13.7.9) needs some explanation. According to
(13.7.4) (sce the remark at the end of (2)),

DD} -1
' 1 — ¢z

= K(©)

is a function of ¢ which is of the class H;. If p.(¢) denotes the nth Cesaro
mean of the partial sums of the power series expansion of F(¢), we have

Zntl o = _ gntlg - Hdr =
/”=1,¢ FOKE dz /mzls“ (P = oK ds /Eﬁ‘ /
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where Eyis theset on | ¢ | = 1 with [ — 2| 2 ¢, and E1 the complementary
sct. The integral over E; as n — « is

o) / [P = m(©) |dz = 0(1) / TIEE) = o) | de

The integral over E; (since F(¢) — pa(¢) is uniformly bounded) is equal to

o [, 1K@ |
1
that is, it is arbitrarily small with e.
13.8. Proof of Theorem 13.1.4
(1) We show that

+1
(13.8.1) lim /_ 1 (OAE 1)1 — g = 0,

n—o

uniformly in —1 + ¢ < 2 £ 1 — ¢; here A, (¢, ) 1s the difference of the
‘“kernels”’; that is, according to Christoffel’s formula

Anlg,2) = 1 — DHw ® = bn Do (@)pa®) — pal@)paia(®)

n+] X — E
(13.8.2) 1 [sin @ + 1) ° + T sin@n+1) "__‘5_4’}
- + ]
2 .0+ . 60— 9
[ Sin —5— Sin 2 )

£ =cos¢, x = cosé.
The symbol k, is used for the highest cocfficient of p,(x).
(2) We first notice that from (11.5.2) for n = 1

—
= 2r )“*{1 + ¢2"(0)} 2" {kan + ¢24(0)}

K2n

_ (2 )—5{1 + ¢2n(0)} on Kan

K2n

(13.8.3)

follows so that on account of formulas (12.4.3) and (12.5.3) (see also Theorem
12.7.1)

ka = (2m)7 {1 4 Ol(log m) 112" {IDO)]™ + Ol(log n) ™}

3.8.4
U89 o DO 21 + 0ltogm ™, B 3+ OlogmL.

kn+1
From (12.1.8) we conclude, using the notation (12.2.2), that
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An(t, 1) = A;(éos é, cos 8)
=7z — O THW@IHW© P {cos [(n + 18 + v(6)] cos [ng + v(¢)]
— cos [nf + v(6)] cos [(n + D¢ + v(#)]}

sin (2n 4+ 1) ?;2{_—6 sin 2n + 1)
- 5= +

27r[ sin¢—2{—6 . ¢ — 40

sin
2

+ |z — £ Ol(log n) ™
= A.($,0) — Ba(o,0) + |z — £]7 Ol(log n) 7.

The first term can be written in the form

¢—8
13.8.5 ¢!
(13.8.5) 5

fM%®=@ﬂ{%m?iwmﬂgﬂﬂwmwmemww

-feos [ng + (n 4+ 1)6 + v(¢) + v(6)] 4 cos [np — (n + 1)6 + v(¢) — v(6)]
—cos [(n+ Do + nb + v(¢) + v©0)] — cos [(n 4+ 1)¢ — nb + v(¢) — v©O) ]}

= {27r sin @ _2{_ O sin® ; 6}-1 {W (cos 6)} H{W (cos ¢)}*

-{sin [<2n + 004 ) + 7(0)] sin #

13.8.6
( ) + sin [(277, 0?20 e - 7(6)] sin &1 6}
. L % sin [(271 + 1) ¢t + 6 + v(¢) + ’Y(@)]
= 5 (W(cos 6)} ™" {W(cos ¢)| $n¢+

sm[@n+1) +7@)—7@]
4ot ¢ ~ .

2

sin

(3) The integrals

/” {W(cos )} {W(cos ¢)}* cos [v(¢) = v(6)] — 1
- . ¢ 0

sSin
+r
Lr

de,

2

sin [y(¢) %= v(0)]

¢ =0
2

(13.8.7)

dé

sin
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exist (see (12.2.4), (12.1.4), and (13.7.5)), so that by Riemann’s lemma,
+

(13.8.8) lim [ ®(cos ¢) {A.(¢, ) — B.(¢, 0} dé = 0

?
N0 —T

uniformly in 6. let nbhe an arbitrary positive number, £ = E6, n, n) the
set | cos ¢ — cos 0| = yn™' and E’ the complementary set. We have

+r
/ d(cos ¢)A, (cos o, cos ) do
= /¢(OOS¢){An(¢,0) — Ba(0,0) }do + OI(logn)“*]/lcow — cos 6| 'dg
E E
(13.8.9) +/ ®(cos ¢)A,(cos ¢, cos 6) d¢
El

= —Lgb(cos ¢){Anle, 6) — Ba(g, 0)} do + o(1)

+ Ol(log n)_;\]/ |cos ¢ — cos8| ' do +/ d(cos p) A, (cos ¢, cos 0)d¢.
. E El

Now
- fmax W) |! sin [v(8) + +6)} !
2 sin 5
(13.8.10) | +

2 sin ?%—6

sin{y() — v()} l}

=0n) +01) [¢ — 6" |log|o — 8|,
| Ba(o,0) | < o7 (2n + 1),

so that the first term in the right-hand member of (13.8.9) is

o) /,d¢ +0(1) /F,l¢ =617 [log[¢ — 017 do = 20(1) + (log m) ™ 0(1),

n — oo,

where the bound of O(1) in the term 70(1) is independent of 5. The third
term is O[(log n)™0(log n). Finally, in the last term we apply Theorem
1.22.3.  Since the polynomial p. 1 (2)p.(¢) — Pa(@)Pnsa1(g) is uniformly hounded,
—l =2 +1, -1 =t = +1, we have An(g, z) = O(n), uniformly in z and
§, confined to an interval of the form [—1 + ¢ 1 — . Thus, for the term
in question, the bound 7n~'0(n) = 10(1) can be obtained. Here O(1) is again
independent of 5. This completes the proof of Theorem 13.1.4.




CHAPTER XIV

INTERPOLATION

In this chapter we shall consider certain problems of interpolation related to
the theory of orthogonal polynomials. In particular, we are interested in inter-
polations whose abscissas are the zeros of the orthogonal polynomials p.(x)
associated with a given distribution of the type da(x) or w(z)dz. We deal with
the ordinary Lagrange polynomials and with the “step polynomials” (Treppen-
polynome) introduced by Fejér. This topic is naturally very closely related
to that of the next chapter on mechanical quadrature.

Concerning the subject matter of this and of the next chapter, see the
recent monograph of Feldheim (4).

14.1. Definitions; problems
(1) Let [a, b] be a finite or infinite interval, and let

(14.1.1) ‘S’n: xln < x2n < tre < xnn, Tin g a; xnn é b

denote a set of n distinct points of this interval. Let I(z) be a ., not iden-
tically zero, vanishing at = x,,, v = 1, 2, ... | n; it is determined save for a
constant nonzero factor. When there is no ambiguity, we shall write z, instead
of z,, . The polynomials

(14.1.2) L(z) = l_(E)_l(%:E—) yo1,2,

are called the fundamental polynomzals of the Lagrange interpolation cor-
responding to the set S,. They have the property

(14.1.3) IL(z,) = b, vyu=12 ... n
Let fi, f2, -+, f be arbitrary values. Then the expression
(14.1.4) Lu(z) = 2 fl.(2)

y=1

represents the uniquely determined 7, which assumes the value f, at z = z,.
This is the nth Lagrange polynomial corresponding to the absecissas S,. It is
readily seen that

(14.1.5) L) + Lz) + -+ + lu(z) = 1.

(2) Nowlet S.,n = 1,2 3, ..., be a sequence of sets of abscissas. If f(x)
is a given function defined in [a, b], we can consider the sequence of the cor-
responding Lagrange polynomials L.(z), n = 1, 2, 3, - .-, defined by (14.1.4)
with f, = f(z,,). Various convergence and divergence properties of this sequence
have been studied under proper conditions of continuity concerning f(z). In

329
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what follows we shall be interested exclusively in the case in which the abscissas
S, are the zeros of the orthogonal polynomials associated with a preassigned
distribution. Different types of ‘‘convergence’” can then be considered; for
instance:

(a) ordinary convergence: lim,_ . L,(z) = f(z);

(b) convergence in mean: lim,.., [& | L.(z) — f(z) |"dz = 0;

(c) generalized convergence in mean, arising from (b) by replacing the ex-
ponent 2 by p, where p is positive;

(d) quadrature convergence: lim,_. [o{L.(z) — f(z)}dz = 0.

The last type is particularly important from the point of view of Chapter XV.
Of course, a certain fixed weight function can be introduced into the integral
conditions.

(3) Let a and b be finite. If only the continuity of f(z) is assumed, the
behavior of the Lagrange polynomials is rather irregular. Faber (2; see also
Fejér 11, pp. 450-453, and Marcinkiewicz 1) proved that for a given arbitrary
sequence {S.} there exists a continuous function f(z) such that the sequence
{L,(z)} is not uniformly convergent. S. Bernstein (4) has even proved the
existence of a continuous function for which L,(z) is unbounded at a preassigned
point z,. According to Helly’s theorem (§1.6), this is equivalent to the un-
boundedness of the sequence of “Lebesgue constants’’

(14.1.6) Do o) |, asm — o,
y=1
In the case of the special sequence
.lfun':(‘OS(2V— l)i";‘%, VvV = 172, -..’n’

a = —1,b = +1, that is, for the zeros of T',(z), much more is known. Griin-
wald (1) and Mareinkiewicz (2) proved the existence of a continuous function
f(z) for which the sequence of Lagrange polynomials corresponding to these
z,, 1s everywhere divergent, even everywhere unbounded.

(4) In order to obtain convergent sequences of interpolation polynomials,
it is necessary to introduce additional restrictions concerning either: (a) the
function f(z), particularly, restrictions concerning its modulus of continuity
(see Theorem 1.3.2), or (b) the interpolation polynomial, such as conditions
concerning its derivative, and the like.

We introduce the polynomials

h(z) = {1 _ lf(%) (x — :u)}uy(:c)}z
= Z)‘,(III){ZV(III)}Z,
h(z) = (& — 2) (L@}

called the fundamental polynomials of the first and second kind of the “Hermite

(14.1.7)
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interpolation” corresponding to the set S,. These m,_; are completely deter-
mined by the conditions

h(zy) = Ouu h:(xu) = 0; b"(xu) =0, b:(xu) = b,

(14.1.8)
y’# = 1,2, R ,n‘
and for any given set of values f, , f, ,
(14.1.9) Wa@) = 22 f,h(@) + 2 f10.(3)
y==] yem]

represents the uniquely determined m3,.; for which
(14.1.10) Waz) =71, Wilz) =/, y=1,2-..,n

(5) Again, let S,, n = 1, 2,3, ---, be a sequence of scts of abscissas. If

f(z) is a given function having a derivative in [a, b], we can take f, = f(z,,),
f: = f'(z,») and consider the corresponding ‘“Hermite polynomials”62 W.(z),
n=1,23, .., defined by (14.1.9). If only the continuity of f(x) is known,
we may choose f, arbitrarily; for instance, we may take f: =0. Iff, =0, we
call W,(x) the step polynomials corresponding to {S,}. In the more general
case | f, | < A, where A is a constant independent of » and n, they are called
generalized step polynomials.

The simple and generalized step polynomials W,(x) display a more regular
behavior as n — o« than do the ordinary Lagrange polynomials L.(zx). They
coincide with the given function f(z) at the same points as do the corresponding
Lagrange polynomials, but they satisfy certain additional restrictions concerning
their first derivatives. Their degree is 2n — 1 instead of n — 1. We shall
show that for certain sequences {S,} the step polynomials (even the generalized
step polynomials) are uniformly convergent if f(z) is an arbitrary continuous
function.

The step polynomials and their generalizations have been introduced and
investigated by Fejér (10, 11, 13, 16). The trigonometric analogue for f, = 0
had been previously considered in the simplest case of equidistant abscissas by
Jackson (4, p. 145, Theorem VI).

For the fundamental polynomials (14.1.7) the following important relations
hold:

hi(z) + ha(z) + -+ + ha(z) = 1,
(14.1.11) n n
2_1, z, h(z) + ; h(z) = z.

An important consequence of the first identity may be pointed out for the step
polynomials, that is, when f, = 0. Let the set {S.} be such that

(14.1.12) h.(x) = 0, a<z=<brv=12 --,n.
62 We write “Hermite polynomials” in quotation marks in order to avoid confusion

with the Hermite polynomials of Chapter V.
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Then (14.1.9) implies
(14.1.13) min f, £ W,(z) £ maxf,, a=z=bn=123 -...

We observe further that (14.1.12) is equivalent to the fact that the linear
functions

lll(xy)
U(x,)
do not vanish in the open interval ¢ < z < b, or, what amounts to the same
thing, that the “conjugate points”

(14.1.14) (@) =1 — (z — z,)

(14.115) - r 4+ L@ b= 1,2, m,
I (z)

lie outside of this interval. (See Fejér 13, 16.)

14.2. Fundamental polynomials of the Lagrange interpolation

(1) Tueorem 14.2.1.% Let da(z) be an arbitrary distribution on the interval
la, b], {pa(2)} the associated orthonormal polynomials, and I(x), l(z), -+, L(x)
the fundamental polynomials (14.1.2) of the Lagrange interpolation corresponding
to the set of zeros of pn(x). Then we have

b
(14.2.1) [ L@h@ie@ = ni,,  u= 120,

where N, are the Christoffel numbers defined by (3.4.1).

This follows immediately from (3.4.1), since I,(z)l,(z) vanishes at the zeros of
Pa(z) if v 5% p. Forv == u the zero z, is the only exception, and we have {1,(z,)}
= 1.

Also, by (14.1.8),

/b h(z)da(z) = N, , /bh:(x)da(x) = /bxh:(x)da(x) = 0;

a
b

(14.2.2) ) )
h(z)da(z) = 0, / by (z)da(z) = N, / zh,(z)dz = N,

v=12,...,n,
(2) We obtain as an important conscquence the following result:

TuroreM 14.2.2.  Let K.(x0, ) have the same meaning as in (3.1.9). Then
the following identity holds:

n—1

(14.2.3) Kni(zo, 1) = Z; p(20) P, (z) = Z‘: N (ol (2).

8 Krdos-Turdn 1,
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Indeed, let p(z) be an arbitrary m7,_; . The polynomial K, _,(z,, z) is uniquely
determined by the condition (3.1.12). But by (14.1.4) and (14.2.1),

[ {2 " zmux)} {; p<x,‘>z,‘<x>}da<x>

n n

= 2 p@)(z0) = 2 (@)L (F) = (o),

y=]1 y=1

and this establishes the statement.
On setting zo = z = 1z, in (14.2.3), we obtain a new proof of (3.4.8).
(3) In view of (14.2.1), (14.1.4) shows that

(14.2.4) / L@ Pdat@) = S AL

Furthermore, let f(z) be an arbitrary complex-valued function for which the
integrals fof(z)z"da(z), v = 0,1, ... ,n — 1, exist. Then (14.2.3) yields the
identity

(14.2.5) "5;‘:

[ 7@)p () da(@)

2 n
-1
= Z A
y=1

Thus, according to Bessel’s inequality (see (3.1.5)),

[ ' () dal@) i

(14.2.6) 2ot
y=]1

/ F@LE) da(@) | < [ 1@ Pda@),

provided the last integral exists.

14.3. Convergence in mean of Lagrange polynomials

(1) TaeoreM 14.3.1.%  Let da(z) be an arbitrary distribution on the finite inter-
val [a, b], and let {pn(x)} be the corresponding set of orthonormal polynomials. For
the complex-valued function f(x) let the Riemann-Stieltjes integrals

12 12
(14.3.1) / f(2)z" da(x), / | f(z) | *da(z), n=20,12, ...,
exist. Then if L.(x) denotes the Lagrange polynomial of degree n — 1 which
cotncides with f(x) at the zeros of p.(x), we have
b
(14.3.2) lim / | f(x) — L.(z) | *da(z) = 0.

The convergence in mean in the usual sense follows from (14.3.2) for any f(z)
integrable in Riemann’s sense in the case where da(z) = w(z)dz, w(z) =z » > 0.

For the proof we use (14.2.4), (14.2.6), and the later Theorem 15.2.3 on
quadrature convergence. Now

84 Cf. Erdos-Turdn 1 and Shohat 8.
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1@ ~ L@ P = [ 150 Paata) + 30 110
~ 2 X @) [ LG dat
< [ @) Fdate) + 3501162

n 4 n
+ 2{§x, flz,) |"’} {Zj A

(14.3.3)

Z S (@)l (2) da(z)

2}}
< | 176 Fdat) + 2w, Ifte)

n 3 b 3
+ 2{2 M 112 |2} { INE |2da<x)}.

Hence, using Theorem 15.2.3, we obtain

(14.3.4) lim supl | f(z) — L.(2) |*da(z) < 4 /b | f(z) | da(z).

n—roo

Next let € be an arbitrary positive number, and p(z) a polynomial for which
(Theorem 1.5.2)

(14.3.5) / | f(x) — p(z) P da(z) < e

If L.(f;z) denotes the Lagrange polynomial of degree n — 1 corresponding to
f(z), we have

(14.3.6) J(@) — La(f;2) = f(2) — p(x) — La(f — p; ),

provided n exceeds the degree of p(x). This establishes the statement.

(2) Incaseda(z) = (1 — )7 ¥z, a = — 1,b = +1 (thatis, for the Tchebichef
abscissas of the first kind) Erdés and Feldheim showed that we may even assert
the validity of the following theorem:

TrEOREM 14.3.2.% Let p be an arbitrary positive number, and let f(z) be a

continuous function. Then for the Lagrange polynomials corresponding to the
T'chebichef abscissas of the first kind,

+

(14.3.7) lim ]1 | /(@) — L.(z) P (1 — 25 7tdz = 0.

n—o J—1

It suffices to show this for even integral values of p. In the proof which is
based on induction with respect to the even integer p essential use is made of the
property of the Tchebichef abscissas formulated in Problem 57 (see below).

6 Erdos-Feldheim 1; cf. also Feldheim 2 and 8, pp. 33-36.
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Feldheim points out (2, p. 330) that (14.3.2) is not true in general if da(z) =
(1 — zHidz,a = — 1,b = +1 (that is, for the Tchebichef abscissas of the second
kind), and if the exponent 2 is replaced by p = 4. For the same abscissas it is
also not true that

+1

(14.3.8) lim, / | f(x) — Lalz) |"dz = 0.
n=—ro) Jeel

In both cases the superior limit of the integrals in question may be + « if f(z)

is a properly chosen continuous function,

(3) From Theorem 14.3.1 the mean convergence in the sense of (14.3.8) fol-
lows immediately for the Jacobi abscissas, that is, for the zeros of the Jacobi
polynomial P\ (z), provided max (a, 8) < 0 (cf. Erdés-Turan 1); here f(z)
is an arbitrary continuous (or even Riemann-integrable) function.

Recently, A. Holl6 (1) proved this mean convergence for the Jacobi ab-
scissas with max (a,8) < 3 provided f(z) is continuous. The bound % is
the precise one, on account of the last result of Feldheim mentioned in (2).
Holl6 also investigated the validity of

+1
(14.3.9) lim f | (=) — La(f) | dz = 0,
n—ow v—1

where f(z) is continuous, and showed that (14.3.9) holds for max (o, 8) < .
The latter bound is again the precise one, at least in the sense that for
max (a, 8) > % and for a proper continuous f(z), the statement (14.3.9) does
not hold. (This follows from the second part of Theorem 15.4.)

14.4. Lagrange polynomials for Jacobi abscissas

For the following discussion Theorem 8.9.1 will be found invaluable, while
the bounds of P{**(cos 6) obtained in §7.32 will also be used.

(1) Assume o > —1,8 > —1,and let z; > 2, > ... > z. denote the zeros
of the Jacobi polynomial P{*®(z) in decreasing order. Here z, = cos 6,,
0 < 6, < m. Then we may assert the following theorem:

TororEM 14.4. Let f(x) be continuous in [—1, 4+ 1] with the modulus of con-
tinuity «(6)." Then the Lagrange polynomials coinciding with f(x) at the zeros
of P\ () converge uniformly to f(z) in every interval [—1 4 ¢, 1 — €], where
0 < e < }, provided that w(8) = o(|log 8| ™"). The same holds in the interval
[—1 4 ¢ 114f cither « = —% and w(®) = o(|logs| Noru—3 £ a <p+ 3"
and f(x) has a continuous dertvative of order p with modulus of conttnuity w,(8)
salisfying the condition w,(8) = o(3°*™), u =10,1,2, -+ - .

In case o < —1% the Lagrange polynomials are conver ent at the point x = +1
if f(x) 18 an arbitrary continuous function.

There exist functions continuous in [—1, +1] whose Lagrange polynomials are

¢ Cf, Theorem 1.3.2,
07 For u = 0 the equality sign, that is, the cuse « = —1/2, is excluded.
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divergent (unbounded) ot a preassigned point o, —1 < zo < + 1; the same is true
at the point g = 41 provided that « = — 1.

Similar statements hold in the interval [—1, 1 — ¢ and at the pointz = —1
if we replace a by 8. The convergence is uniform in the whole interval (=1, +1]
provided max (o, 8) = —} and w(8) = o( |log | ™), oru — 3 < max (a, 8) <
s + 3 and f(z) has a continuous derivative of order w with modulus of con-
tinuity wu(8) = o(8™* P\ = 0,1,2 .... Again the equality sign in
case u = 0, that is, the case max (@, 8) = —1, is excluded.

Compare Fejér 13, pp. 22, 24, 27; Shohat 5, p. 146. The present results are
more precise than those obtained in these papers.

(2) We shall start with a discussion of the “Lebesgue constants”

n

(14.4.1) 2 L) |,

y=1

where —1 < zp < +1. Let & be a fixed positive number, 5 < 1 — |z, |.
Then PP (zy) = O(n™Y, so that

2 )| =0a™ X P

|zy—z0| > |zy~—zq|>8

(14.4.2) )
= 0™ 22 | Py (x,) |7
y=1
According to (8.9.2)
(14.4.3) 22 |P®(z) | = 0(1) 22 ™2 + 0(1) 3. 02 = o).
y=1 y=]1 ye=1

Consequently,

(14.4.4) 2. 5 |L(z) | = OQ1).

lzy—z0| >
On the other hand, assume |z, — x| < 6. Fora fixed » we have (see (8.8.2))

PE(@) — PE(ay
ry, — Iy

(14.4.5) L(zo) = O(n™) = 0(1),

so that if 2o = cos 6,0 < 6, < ,
2 L@ = 2 |L(zo) | + O(1)

|zy—zol S nTl|8,~00] S8

(1446 =0@™HoW™) X o, — 6| + 0,
nTle6,~00] 58’
where &' is a fixed positive number. According to (8.9.1) the last expression is
O(log n). The same bound holds for (14.4.1), and does so uniformly if the con-
dition —1 4 ¢ = 70 < 1 — ¢ is satisfied.
We can also show that
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(14.4.7) 2> Lz |~ logn,

|zy—20| 53

if n tends to + = over a proper sequence of integers. 1t suffices to choose n so
that | cos(N6 + v) | = cos ¢, where N and v have the same meaning as in Dar-
boux’s formula (Chapter VIII), and ¢ = 4 min (6, , ® — 6). This is obviously
possible since from

(m+%)7r—e<N90+‘Y<(m+%)7"+f;

m integral, the inequalities
m+Dr+ e< N+ Db +7v < (m+ Pr — ¢

follow. Now the formula of Darboux coupled with the previous argument
and (8.9.1) gives us the desired proof.

(3) Asa consequence of the last result, we may conclude by means of Theorem
1.6 (Helly’s theorem) the existence of a continuous function f(z) whose Lagrange
polynomials are unbounded at the interior point z = z,. On the other hand,
let f(z) have the modulus of continuity w(8) = o( |log 5| ™), and let L.(f; z)
be the Lagrange polynomial of degree n — 1 corresponding to f(z). Approxi-
mate f(z) by a m,_; = p(z) such that

(14.4.8) f@) — p(z) = o[(log n)™Y], —1 =<z < 41
(Theorem 1.3.2). Then (see (14.3.6))
L.(f; —_ = | L.(f — p; —_ -
(14.4.9) | La(f;2) — f(@) | = | La(f _pl z) — {f(z) — p(x)} |
= o{(log n)""} O(log n) = o(1).

(4) Assumel — 6 < 2o < 1. Onputtingu =n + 1 — v, g = O(n), we
have, by Theorem 7.32.2 and (8.9.2),

2 L@ =0 |PCP@)| X | PPz [

|zy—zo|>d |zy—29|>8
(14.4.10) =0 T Wit = 0,

a = max (o, =%).

1l

We now pass to the determination of an upper bound for

(a,8)
S (b | = X | B (008 8) [ pasingos gy
8

|2p—2z0| < cos By —~ cos b,
(14.4.11)

at+i —a—2

- 0(1) | PP (o3 8) | 3 l”?—ﬁ—ez—l
0 v

(since (85 — 6%)/(cos 6 — cos 6) is boundéd). In what follows we use both
bounds (14.4.11). We have by (4.21.7),
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' PL (cos 6) — PSP (cos 6,) |

(e ,8)r —1
(14.4.12) cos 6y — cos b, | Pn*%""(cos 6,)]

= 0Q1) | PSH* (cos 1) | »oH n~¢

where 7 is between 6, and 6, . :

Let 6 = n7'¢, and consider first the case £ = O(1). Let » = O(1); then
(14.4.12) becomes O(1)n*"»**n™*"" = O(1). On the other hand, if » is larger
than a sufficiently large fixed positive number, the second expression in the right-
hand member of (14.4.11) becomes (see the second bound in (7.32.5))

(14.4.13) O(Mn* 325 »™Hn™"7%0,7 = 0(1) T v = 0(n"™), 0 (log n), O(1),

accordingas a« > ~4, a0 = —~%, ora < —3. '
Now let ¢ be “large” and £ — v= = O(1), so that the number of these values of
v 1s bounded. Then we obtain for (14.4.12) (see the first bound in (7.32.5))

C (14414 O T T = () (o/my T e e = o),

Finally, assume that both £ and ¢ — vr are “large”. Then the second ex-
pression in the right-hand member of (14.4.11) becomes (see the first bound in

(7.32.5))
yott
(14.4.15) oE*H X T = 2+ 2+ 2,

where the summation is extended over vr < £/2,£/2 < vrr < 3£/2, v > 3£/2,

respectively. Here we have to take into account the fact that the ratio

£ — [ 4+ 01))

82 —_ V27I'2

has a positive lower bound. 1In the second sum |¢ — vr | is larger than a fixed
positive constant. We find now

T = 06HoE T v = o,

(144.16) 22 =O0CE " HOE™ 2 |t —wr|" =0(ogt) =0(og ),

t/2<rrs3t/e
Zs =0E™*hH > o O(n“ﬂ), O(log n), O(1),
vu>3¢/2
according as o« > ~4, 0 = — 5, ora < —1.

Recapitulating, we obtain for the Lebesgue constant (14.4.1), the bounds
O(n* and O(log n), uniformly in —~1 4 ¢ £ 2, < 1, according as « > —1 or
« £ —3%. A similar result is found for the interval —1 < 2, < 1 — « by re-
placing o by 8. In the whole interval —1 £ 2z, £ 41 we obtain the bounds
O™ and O(log n) for y > ~zand ¥y £ —1 respectively, where we have
v = max («, B).

Now an argument similar to that in (3) must be used. Assume first that
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-1+ €= 20 =1, and let f(z) satisfy the conditions of Theorem 14.4.
According to Theorem 1.3.3 a 7,y = p(z) exists such that

n_“o(n'*ﬁ“—‘) = o(n*“—g),

(14.4.17) f(z) — plz) = .
v o[(log n)™], -1 =z =< +1,

according as @ > —% or o < —1. This establishes the statement concerning
the convergence in the interval [—1 + ¢ 1]. ~ The proof is obviously the same
" for [—-1,1 — €] and for [—1, 41].

(5) There remain to be discussed the “Lebesgue constants’ for z, = +1,
that is, the expressions

(14.4.18) 2L ~nt X (1 — 2 | PP ()
ye=1 v=1

The positive zeros z, furnish a contribution ~n® 3 (v/n) % ip=*2 = 3 o}
which is O(n“*), O(log n), 0(1), according asa > —1,a = —3, « < —%. The
contribution of the negative zeros is '

ne Z l Pff‘"ﬁ)’(x,,) l—l ~ n Z VBHn—B—-? ~ na+}.

And now, one more step, namely, the application of Helly’s theorem, yields the
desired proof of Theorem 14.4.

14.5. Preliminary discussion of the step polynomials in the classical cases

We calculate the linear functions »,(z) occurring in (14.1.7) for the Jacobi,
Laguerre, and Hermite abscissas, respectively. We assume o > —1, 8 > —1
in the first and @« > —1 in the second case.

(1) From (4.2.1) we obtain in the Jacobi case, since I(z,) = 0,

I'"(z,) _a—B+(a+8+ 2)1:,,.

(14.5.1) T = —

Whence
—zle B+ @+ B8+ Dl + (@ =Pz + @+ 5+ 1z

1 — 222

(14.5.2) 1,(z) = 1

In particular,

5(—1) = 14+ a0 +z,) — 80 — z,)

1 — 2z, ’

(14.5.3)

v,(+1) = 1+ “1 i)x,— a(1 + z)

The zeros z, are everywhere dense in [—1, 4-1] (Theorem 6.1.1) if n is large.
Thus »,(—1) is non-negative for each » and n if and only if 8 < 0. Similarly,
v(+1) =2 0if and only if @ £ 0. Since »,(z) is linear, we obtain the following
result:
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THEOREM 14.5.  The fundamental polynomials h,(z) of the first kind associated
with the Jacobr abscissas, are non-negative in —1 < z < 41 Sor all values of v and
n, if and only if

(14.5.4) —1<a=<0, —1<B8=0.

(2) In the Laguerre case (cf. (5.1.2), first equation)

(14.5.5) w(z) = P& = @) ‘*‘;’.("‘ t1l-%) - —a

Here v,(z) changes its sign for all values of « if » and n are properly chosen.
In the Hermite case (cf. (5.5.2), first equation) we obtain

(14.5.6) 0,(2) = 1 — 2z,z + 222,

14.6. Step polynomials and ‘“Hermite polynomials” for Jacobi abscissas
We again assume « > —1, 8 > —1 and use the same notation as in §14.4.

THEOREM 14.6. Let f(z) be continuous in [—1, +1]. The generalized step
polynomials (14.1.9) [f, = f(z.), | f, | < A] converge uniformly to f(z) over every
interval [—1 + ¢, 1 — €|. The same holds over the interval [—1 + «, 1] provided
a < 0. The step polynomials are in general divergent at x = +1 if f(z) is merely
continuous and a = 0.

The “Hermite polynomials” (14.1.9) [f, = f(z.), f» = f'(z,)] converge uniformly
to f(z) in [=1 + ¢ 1] of @ < § and f(z) has a continuous second derivative, or if
p/2 £ a < (u+ 1)/2 and f(z) has a continuous (u + 1)st derivative with modulus
of continuily w.11(8) satisfying the condition w,41(8) = o(8°°™*), u =1,2,3, -+ - .

Similar statements hold in [—1, 1 — €] and at z = —1 if we replace a by 8,
and in the whole interval [—1, +1] if we replace « by max (a, 8). (Cf. Shohat 5,
pp. 138-139; Szegd 14.)

(1) We start with the discussion of the convergence for —1 < zy < 1.
Here again Theorem 8.9.1 is virtually indispensable.

If z = z, , the numerator of v,(z) in (14.5.2) is

1 —gfa — B+ (a4 B8+ 2)z] + (a — Bz, + (a + 8 + Dzt
(14.6.1) 2
= 1 b xy > O.

Therefore, v,(zo) is positive if | z, — =z, | is sufficiently small, that is, | z, — x|
=< é. The same is of course true for h,(z;). Furthermore, v,(z) has for these
v a positive lower bound which is independent of 5. We therefore obtain, on
account of the first identity in (14.1.11),

(14.6.2) Zéalh,(xo)l= 2. () =1 - > h(z),

|Zy—zo | |zy—2zo| S |Zy—zq|>8

and from (14.1.7) we see that




[14.6] STEP AND HERMITE POLYNOMIALS FOR JACOBI ABSCISSAS 341

(14.6.3) X (x| =6 [P (o) | =0M)s >, h(z).

2, 70| 58 lzv=zg1z8 V(o) 2,701 <8

Here the bound O(1) is independent of 5.
We shall now find a bound for the corresponding sums if |z, — 2o | > 6. From
(14.5.2) and (8.9.2) we have

2 k@ =00 ¥ (- )7Lk

|z,—xg|> |z,—zo| >

= O({PEP ()} > (A — )P (z))

|xv_10|>5

(14.6.4)
— O(n—l) Z (V/n) —2 2a+3 —2a—4 + 0( ~1) E (V/n)—z 2843 —2ﬁ —4

pe=]
-1
= 0(n).
Moreover, we notice

2 Ib@) =00 X (L)

|zy—2ol |Zy—z0|>d

-0 Pia.ﬁ) . 2 Ela,ﬁ)/ , -2
(146.5) (4 (z0) } Iz”_%zm (P2 (2) )

_ O(n—l) Z V2a+3n——2a—4 + O(n——l) Z V2B+3n—2ﬂ—4

pye=] ye=]1
= 0(n™).

This yields the convergence of the generalized step polynomials of a continuous
function if —1 <z < +1. Indeed, according to (14.1.9) and (14.1.11),

[ Waleo) — fa) | S 215 — 1) | | hu(eo) | + 4 pOITRERY
< max lf(xv) —f(xo)l > h (z0) + O(1) 2 [B(a) |

(14.6.6) lzv=zol s lzy=a0l< lz,=0 | S8
+ 2max | f(z) | ; ;p | ho(z0) | 4+ O1) " _‘x\:> |9, (z0) |
= max | f(m) — f(zo) | O(1) + 80(1) + O(n™) + O(n™Y).

The factors O(1) in the last expression are independent of é.

(2) Nowassumea < 0and1 — § £ zo < 1. Thesecond formula in (14.5.3)
shows that v,(x0) and k,(z0) are again positive and v,(z) is bounded from zero
if |z, — x| = 8, provided 4 is sufficiently small. (We have v,(z0) = v,(+1)
fa— 8+ (a+ 8+ 2)z >0.) Then the analogues of (14.6.2) and (14.6.3)
follow immediately. 1In (14.6.4) and (14.6.5) a slight modification is necessary
due to the fact that in this case P{*"® (zg) = O(n%), @ = max (o, — 1). (The
formulas corresponding to (14.6.4), (14.6.5) hold for arbltrary a > —1; this
remark 1s used in (3).) Since a < 0, the conclusions of (1) remain valid; this
establishes the convergence of the generalized step polynomials if « < 0 and f(z)
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is continuous. (Of course, the same is true for the “Hermite polynomials” if
f'(z) is bounded.)

(3) We postpone the discussion of the step polynomials at z = +1 if f(z) is
continuous and « = 0, and we pass on to a discussion of the “Hermite poly-
nomials’ for1 — § g xo £ 1 with a arbitrary but greater than — 1. First we ob-
serve that the numerator of (14.5.2) vanishes for z = z, = +1; thus we have
for |2, — | < 3,

(14.6.7) Lo (zo) | < (1 — 2)7e(5),
where €(6) - 0if § > 0. Now,

> @) | = €(0) > A= 2H ML ()}

|zy—2g | < |#y—z0 | <0

8
@ | 3 - T pe

[2y—2g| S5 4

(14.6.8)

By use of the notation and argument of §14.4 (4), we obtain for the sum above:

(a) O(nD)ifE = 0(1), v = 0(1)

b o) > vz"_l(v/n) O(nz") 0(n* log n), O(nY), accordmg as a > 1,
a=1a<]l,ift= 011) and v 1s “large’’;

(c) 0(1)(v/n)'2 = 0(n}) 1f$15 “large” and § — v = 0O(1);

d) OE** 2057 E — o) /)™ = 2oa + D.s + D if both £ and
¢ — vr are large. The summations in the last three sums are extended over
the same values of » as in (14.4.16). We have

200 = 0E=") 20 /" *0/n)T = 0E*n?) = 0@,

vrSE/2
aa69) e =00 3 ¢ —m70/m = 06 = 06,
D= 0E™ ) ;38/21'2“‘1(1'/ n) 7 = 0(n*), O(n® log n), 0o(n?,

accordingas a > 1, @ = 1, ora < 1. To these cases the bounds

(14.6.10) > k(@) | = e(8)0(n*), €(3)0(n* log n), €(8)0(n’)
|Zy—2o | S
correspond.
In order to obtain the analogous bounds for h,(z), we cancel in (14.6.8) the
factor (1 — 22)™ ~ (v/n)~>. Thus, we readily obtain

(14.6.11) > lb(xo) | = 60(n*%), 80(logn), §0(1),

Zy—2Zg _

accordingasa > 0, = 0, or a < 0.
The corresponding bounds for | z, — z,| > 6 are O(n**) (cf. the remark made
in (2)). Thus, (14.1.9) and the first formula in (14.1.11) give the result
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0(n®)
| Walzo) — f(zo) | élxvrilﬁijlf(xu) — f(@) | €(8) < O(n* log n)
(14.6.12) 0tn)
0(n*)
+ ,zyrili)lcéé | f'(z,) | 840(log n) p4 max |f(z) | O(n™)
0(1)

+ max |f'(z) | 0(n*);a = max (o, — 1).

In the first term we have the alternative « > 1, « = 1, or @ < 1, in the second
term « > 0,a = 0, ora < 0. The O-expressions are independent of f(z) and é.

We now apply the usual argument. Let W,.(f; z) be the “Hermite poly-
nomial”’ corresponding to f(z), and p(z) an arbitrary m,; . Then

(14.6.13) Wa(f; m0) — f(z0) = Walf — p; 1) — {f(m0) — p(z0)}.

Under the condition mentioned in Theorem 14.6 we can determine p(z) (cf.
Theorem 1.3.3) such that

f@) — p(x) = o(n7?), f'@) — p(x) = o(n™) ifa <,
(14.6.14) f@) — p(z) = o(n™**7),  f(z) — p'(z) = o(n*),
if%ﬂ§a<%(ﬂ+1)yﬂ=1,2,3,“'-

This establishes the statement concerning the “Hermite polynomials.”’
(4) Finally, we discuss (cf. 14.5.3))

(14.6.15) S = 31 LH0 —2) — o +2) (L)}
yel v=1 | 1+ 7
The part of this sum defined by z, 2 1 — i, for « # 0,

(146.16)  ~n™ 2 (1= @) PP @)~ 3 (fn) T
zy=21—38

ZyZ1—b

which is of the order n** or 1, according as @ > 0 or @« < 0. This shows
that the step polynomials (and also the generalized step polynomials) of a
continuous function are in general divergent at z = +1 if « > 0. (The con-
vergence for o < 0 has been proved in (2).) The possibility of divergence in
case « = 0 follows by choosing f(z) = 1 — z. The corresponding step poly-
nomial is in fact

> hf@) = a4+ 5 S22 gy

(14.6.17) — (1 +8) DU+ z) (PO ()

p==]

~ Z v/ n)_2 RS 1,
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so that it cannot tend to f(1) = 0. Still simpler is the proof of the divergence
of the step polynomials of f(z) = (1 + 8)(1 — z) — «(l + z) if « > 0, since
f1) = —2a < 0.

14.7. Step polynomials for Laguerre abscissas

Assume o > —1,and let 2, <z, < -.- < z, denote the zeros of the Laguerre
polynomial L,'”(z). We prove the following theorem:

Tueorem 14.7.%° Let f(z) be continuous for z = 0 and f(z) = O@GE™) if
x — o ; here m 1s an arbitrary but fixed positive number. The generalized step
polynomials (14.1.9) (f, = f(z.), | f | < A) converge uniformly tof(z) over every posi-
tive interval ¢ £ x < w. The same holds 1n the interval 0 < z < w provided a < 0.

The step polynomials are in general divergent at x = 0 f f(x) vs continuous and
a = 0.

For the proof we shall need considerations similar to those in the Jacobi case
(§14.6). In particular, we shall use Theorem 8.9.2. Some modifications in the
argument are necessary due to the fact that the zeros are unbounded. The
mechanical quadrature appears as an important new tool (cf. (15.3.5)).

(1) Assume 0 < € = 20 £ w. If v,(z) has the same meaning as in (14.5.5),
the values v,(z,) and A,(zo) are positive, and »,(z) is bounded from zero and
infinity provided | z, — z, | is sufficiently small. Thus for small g,

(14.7.1) 2 k@)= 2 olw) =1 = 2 h(zo),

|#y—z0| <8 fzy—z0l S [zy—2q]|>$

(14.7.2) 2 b | = 80() > h(zo).

lxy—zols |zy—20| <8

Here O(1) is independent of 4.

If z, is small, v,(z0) = O(z;); if z, is large, v,(z0) = O(x,). Therefore (cf.
(7.6.8))

> k| =00) X x;l{ L{™ (zo) }

|zy—a0 | >8 sy<mo—s  \LE (z) (0 — 2)
L(a)(xo) }2
1 y n
+0( )zy>§+ax{Lﬁ.a>’(zy)(zo =)

=0 2 S @) TP+ 00 2 ML @)

zy<zg—0 zy>x0+0

(14.7.3)

— 00 3 ML (3))

v=1
But combining (15.3.5) with (3.4.5), we find
17 (e ~ _I(n+ DT(a+ 1)
(14:7°43) ; Xy {Ln (.’E,,)} - I‘(n + a + 1) T
which yields the bound O(n* H0O(n™%) = O(n"*) for (14.7.3).
88 Cf, Shohat b, p. 139; Szegs 14, p. 597.
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More generally, we find from (15.3.5) and (3.4.1), if m is a positive integer,
m £ 2n — 1, that

75 n w1 I'(n+ 1)I'(m + « + 1)_
(1475 > &L @) ot 1)
Hence the same argument as before leads to
(14.7.6) > o) | = o™,

|zy—z0|>
m fixed. We have also
(14.7.7) | _ZM 1, (20) | = O ™).

Equations (14.7.1), (14.7.2), (14.7.6), and (14.7.7) establish the uniform con-
vergence of the step polynomials in the interval e £ zp < w (cf. (14.6.6)).

(2) Now assume a« < 0 and 0 < z, < 8. If § is sufficiently small, and
|2, — x| = 6, both v,(z) and h,(zo) are positive, and v,(zo) is bounded from
zero. Hence (14.7.1) and (14.7.2) are again valid. In (14.7.3) only the bound
of {L:¥(x0)}* must be changed. According to (7.6.11) this will be O(n™)
where ¢ = max (Ja — i, «). Therefore,

(14.7.8) | ZM | h(z0) | = O™,

and the same bound holds for the sums in (14.7.6) and (14.7.7). Since the ex-
ponent 2a — a« = max (—3%, a) < 0, these sums tend to zero. From this the
uniform convergence in 0 r < w follows.

(3) The case ©p = 0, « = 0, can be readily disposed of by choosing f(z) =
r — a. We have

IV IA

Zlf(xV)hV(O) = :Z; (.’L‘,, - a)z{lv(o)}z
(14.7.9) . \
= (T + 1} 2 <x,, 3 q) (L™ (@)}
y==] v
Since this expression is positive, it cannot tend to f(0) = —e« if « is positive.

If o = 0, the last expression in (14.7.9) is 1 (cf. (14.7.5), m = 1), and f(0) = 0.

14.8. Lagrange polynomials for certain general classes of abscissas

(1) Let z1n > %3n > - -+ > Za. denote the zeros of the nth orthogonal poly-
nomial p.(x) associated with the weight function w(z) in the interval —1 =<
r < +1. We consider two classes A, B of weight functions characterized by
the following conditions:

A. There exists a positive number g such that

1A
S

1A
+
—

(14.8.1) w(z) = u, ~1

B. There cxists a positive number u such that
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(14.8.2) w(x) = u(l — zH)7 —1<z< +1.
By using this notation we prove the following statement:

THEOREM 14.8. Let f(z) be defined in —1 < z < +1. Let {L,(f; )} denote
the sequence of the Lagrange polynomials coinciding with f(z) at the zeros
of the orthogonal polynomials p.(z) associated with the weight function w(z),
—1=z=+41. Thenlima... L.(f; 2) = f(z), uniformly in the interval [—1, +1],
provided that w(z) belongs to A and f(z) has a continuous derivative in [—1, +1].
The same conclusion holds +f w(z) belongs to B and w(8) = 0(6*). Moreover
limnw L.(f; 2) = f(z), uniformly in the interval [—1 + ¢ 1 — ¢, where
0 < e < 1, provided that w(zx) belongs to A and w(8) = 0(6*).

Compare Shohat 7, Griinwald-Turdn 1. Here, as before, (5) is the modu-

lus of continuity of f(z) in [—1, +1].
(2) We show that for the fundamental polynomials of Lagrange interpolation
| o), —1 <z < +1,
(14.8.3) 2 L@ =40@), -1 =z < +1,
y=1

OmY), —1+e<z=1—¢

where w(z) belongs to A in the first and third case, and to B in the second case.
From (14.8.3) the statement follows by reference to Theorems 1.3.2 and 1.3.3.
Let z be fixed, ¢, = sgn l,(x). We write in the case A

n n—1 ,
(14:84) P(t) = Z Grlv(t) = Z CvPv(t)’
ve=1 y==(
where P,(¢) is the »th Legendre polynomial. Then

@ = 51001 = Sorw = {5 NS o+ pewr]

y==( y=(

{[ voraf{% o+ virr}
<o { / ‘w@[p(wdt}{z o + DIP, <x>1} .

1

(14.8.5)

Now, according to (14.2.4),
+1 n +1
(14.8.6) /_1 w®) )] dt Zx lo(z)] ;xe, _Z;x, = /_1 w() dt.

Statement (14.8.3) is readily derived by using (7.21.1) and (7.3.8).
The only essential modification of the proof in the case B is that we write

(14.8.7) o@) = 3 ell) — ;d 70,

ye=]

where T,(t) is Tchebichef’s polynomial of the first kind.
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14.9. Further results on interpolation

We indicate briefly a few more recent results on interpolation.
(1) We employ the notation of §14.8. Let the weight function w(z) be con-
tinuous with a positive minimum in {—1, +1] and let ¢ > (. Then

max |[,(z)] > 1 as n—

where the maximum is taken in the interval [—1 4+ ¢ 1 — ¢ and the limit
relation holds for any sequence v = »(n) for which the corresponding zero
T, =2x,isin{—1+¢1 —¢. (Erdos-Lengyel 1.)

(2) The result of Grinwald (1) and Marcinkiewicz (2) mentioned in §14.1 (3)
has been deepened by Erdos-Griinwald and Erdés. We consider the zeros of
T.(z) as the set of abscissas.

Erdos-Griinwald (1)); have shown the existence of a continuous function
f(z) = f(cos @) the Fourier series of which is uniformly convergent and at the
same time the sequence of the corresponding Lagrange polynomials L.(z) is
everywhere divergent, even everywhere unbounded.

Erdos (2) has shown that if z, = cos (p7r/q), p and ¢ odd, there exist continuous
functions f(z) for which L,(zq) — . Erdés-Turan (1) have shown previously
that this cannot hold for any other points xo; see also Erdés 2, p. 313.

(3) Important results have been obtained by Erdos for the “normal’ sets of
abscissas introduced and investigated by Fejér. They are characterized by the
property that the ‘“‘conjugate points” (14.1.15) lie outside of the interval [a, b]
of interpolation.

Fejér showed that for a normal set z, — z,_; tends to zero asn — «. Erdos-
Turan (2) have sharpened this result and Erdgs (1) proved that

Ty = Tyoy = g (1 — 22)~ + O(n )

provided that z, = z,, is restricted to a fixed interval [—1 + ¢, 1 — €.

Erdés (1) solves the following remarkable extremum problem. We consider
all normal sets {z,.}, » and n fixed. (We follow the notation (14.1.1).) What
is the minimum and maximum of z,,? They are given by z, and —z._, where
z, = 2,, are the zeros of P,(z) + P._1(z).

(4) Griunwald (2) and Webster (1) have studied a certain type of ‘“sum-
mability”’ for Lagrange polynomials similar to a procedure of W. Rogosinski for
the partial sums of Fourier series. The abscissas used are the zeros of the
Tchebichef polynomials of the first and second kind, respectively.

Griinwald (3) gives a survey of divergence properties of the Lagrange poly-
nomials. This paper contains also a discussion of the convergence of the
Lagrange and Hermite interpolation polynomials under the condition that the
abscissas form a normal set.

(5) Balazs-Turan (1, 2) and Suranyi-Turan (1) have investigated various
properties of certain polynomials of interpolation connected with ultra-
spherical abscissas. The novel feature of this investigation is the study of inter-
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polation polynomials for which f(z) and f”’(z) are prescribed.
(6) Erdos (3) has investigated the ‘‘Lebesgue function”

2 @),
v=1

see (14.1.6). Denoting the maximum of this function in the interval — 1
<z =1, by M,, he proved the following inequality

M, > (2/7) logn — c.

This is a rather deep result. It is known that for the zeros of Tchebichef
polynomials

M, <(2/x)logn +c.
Here ¢ is a positive absolute constant.
(7) The more difficult analogous problem concerning the fundamental

polynomials §,(x) of Hermite interpolation has been solved by Erdés-Turan
(4), who prove that

2
max Z |6,(x)] =2 = (— logn —czloglogn> .
-lgxs+1 ,1 T
This is “asymptotically best possible” as the case of Tchebichef abscissae
shows.
The paper Erdos-Turan 4 also contains a proof that

_ Inax - Z (2] > - logn —csloglogn,

<x<+

which is weaker than the result cited in (6) above, but preceded it in time.
(8) If L,(x) is the Lagrange interpolation polynomial of a continuous

function f(x) with interpolation at the zeros of P?(x), a,8= — %, then

1
(14.9.1) lim 1 | Ln(x) —f(x) |7 (1 +x)%dx =
when p <min(4(a +1)/(2a+1),4(86+1)/(28+1)) =A(a,8) and for p >
A(a,p) there is a continuous function f(x) for which (14.9.1) fails. See Askey 6.

(9) By simple methods of interpolation Egervary-Turan 1 have proved the
following beautiful identity

S o P e

v=1 1 —X, Prlz(xy)(x —xy)

where the x, are the zeros of the Legendre polynomial P,(x). From this they
derive a new proof of the inequality (7.21.1). By similar reasoning one can
obtain a new proof of the inequality (7.21.3). See Egervary-Turan 2.




CHAPTER XV
MECHANICAL QUADRATURE

The reader will recall that the Gauss-Jacobi mechanical quadrature was
studied in §3.4. In the present chapter we turn to other mechanical quadra-
ture problems which are also connected with the theory of orthogonal poly-
nomials.

15.1. Definitions
(1) Let [a, b] be a finite or infinite interval, and let
(15.1.1) Snt Zin < Tow < - v < T, @ = Tyn, Tun £ b,
denote a set of n distinct points in [a, b]. Furthermore, let
(15.1.2) An i Mny Aany ooy Ann

be a set of real numbers. If f(z) is an arbitrary function defined in [a, b], we
write

(15.1.3) Q.(f) = mef(xm)-

We call the numbers z,, the abscissas and the numbers ),, the Cotes numbers
of the “mechanical quadrature” Q.(f). Having been given the sequences of

corresponding sets {S,} and {A.}, n = 1, 2, 3, --., we are interested in the
convergence properties of the sequence
(15.1.4) (), Q(f), -, @ulf), - -

associated with a given function f(z).

As in Chapter XIV we write z, and A, instead of z,, and \,» when there is
no ambiguity.

(2) An important specizil case is the following. Let the set {S,} be an
arbitrary set of distinct numbers in [a, b], and let u(z) be a given non-decreasing
function. We shall define the Cotes numbers A\, by requiring that

(15.1.5) Q.(f) = / fz) du(z)

shall hold if f(z) is an arbitrary =,_; . Obviously, ufider such a condition,

b
(1516> A= / ly(.’L') du(x), Vv = 1’ 2) R (2

a

where [,(z) denote the fundamental polynoiials (14.1.2) of the Lagrange inter-
349
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polation corresponding to the abscissas {S,}. In this case Q,(f) is called a
quadrature of the interpolatory type.

The Gauss-Jacobi quadrature is seen to be a special case of the interpolatory
type when the abscissas {S.} are the zeros of the orthogonal polynomials
associated with the distribution du(z). Another remarkable case of the inter-
polatory type is u(z) = z with {S,} arbitrary. The integral (15.1.5) is then
the ordinary integral of f(z) over the interval [a, b], which is assumed to be
finite in this case.

We shall use the previous notation throughout the whole chapter.

15.2. A general convergence theorem on mechanical quadrature;
theorem of Stekloff-Fejér

(1) TueorEM 15.2.1.%° Let [a, b] be a finite interval, and let the system {S.}
(in [a, b)) and {A.} be arbitrary; let Q.(f) be defined by (15.1.3). Denote by u(z) a
non-decreasing function, and assume the ‘“‘quadrature convergence’

b
(15.2.1) lim Q.(f) = / f(z) du(z)
for an arbitrary polynomial f(xz). Then a necessary and sufficient condition for
the validity of (15.2.1) for an arbitrary continuous function f(z) is the bounded-
ness of the sequence of the ‘‘Lebesque constants”’

(15.2.2) [ Mat |+ [ Xn2 ] + - 4 [ Xan ], n— .

This theorem is an immediate consequence of Theorem 1.6 (Helly’s theorem).
It is to be noted that condition (15.2.1) holds for an arbitrary polynomial f(z)
if the quadrature is of the interpolatory type (cf. §15.1 (2)).

(2) As an application we shall prove the following important theorem of
Stekloff and Fejér:

TueoreM 15.2.2."° Let [a, b] be a finite interval, and let the Cotes numbers
{A,} be non-negative. If the quadrature convergence (15.2.1) for an arbitrary
polynomial f(z) s assumed, the same convergence can be stated for an arbitrary func-
tion for which the Riemann-Stieltjes integral in the right-hand member of (15.2.1)
ex1sts.

The expression (15.2.2) remains bounded in the present case, since

has a limit as n — . Therefore, (15.2.1) holds for a continuous f(z). The

8 Cf. Po6lya 4, p. 267, Theorem I.
70 Cf. Stekloff 2, pp. 176-179; Fejér 15, p. 291; Pélya 4, p. 282, d); Shohat 7, pp. 474-476.
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extension to Riemann-integrable functions is made by means of Theorem 1.5.4.

Theorem 15.2.2 holds without change if the Cotes numbers {A,} are non-
negative only for sufficiently large values of =.

(3) A remarkable special case of Theorem 15.2.1 1s obtained by considering
an arbitrary quadrature of the interpolatory type (defined by a monotonic
non-decreasing function u(z)), and by choosing for the set {S.} the zeros of the
orthogonal polynomials {p.(z)} associated with a preassigned distribution
da(z). Here a(z) is in general different from u(z). Then (15.2.1) holds for an
arbitrary polynomial f(z).

The Gauss-Jacobi quadrature is derived as a special case by taking a(z) =
u(z). The Cotes numbers are then identical with the Christoffel numbers of
§3.4 and are all positive. Applying Theorem 15.2.2, we obtain the following:

THEOREM 15.2.3. Let da(z) be an arbitrary distribution on the finile interval
[a, bl, and let Q.(f) be the corresponding Gauss-Jacobi mechanical quadrature
(that s, Z.» are the zeros of the orthogonal polynomials p.(z) associated with do(x)
and M\ the corresponding Christoffel numbers). Then the ‘‘quadrature con-
vergence”’

b
(15.2.4) lim Qu(f) = / §(@) da(@)
holds for an arbitrary function f(z) for which the Riemann-Stieltjes integral in the
right-hand member exists.

(4) Another remarkable special case arises upon choosing u(z) = z with
a(z) arbitrary. Such a choice permits us to assert the following theorem:

THEOREM 15.2.4.7"  Let x, be the zeros of the orthogonal polynomial p.(z) asso-
ctated with the arbitrary distribution da(z) on the finite or infinite interval [a, b].
If we define the mechanical quadrature Q.(f) of the interpolatory type by the re-
quirement in §15.1 (2) with u(x) = =z, the corresponding Cotes numbers can be
represented as follows:
kn+1 Kn(xv)
(1529 M= TR @) 2
with

b b n n b
1526 K@) = [ K0 = [ {Sp@mofa = 5@ [ po

Here we use the symbols k, and K, (zo, t) in the sense explained in (2.2.15) and
(3.1.9); z, and \, stand for z,, and N, , respectively.
For the proof we write (15.1.6) as follows:

(1527) }\, = {p;(xy)pn+1(xv)}'—l /b p"(t)pn+1(xv) - pn+1(t)pn(xv) dt.

a t_"xv

71 Szegb 17, p. 94.
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Comparison of this formula with equation (3.2.3) establishes the statement.
According to (3.3.6) we have

(15.2.8) sgn A\, = sgn K,.(z,).

In particular, if K,(x) = 01in [a, b], the Cotes numbers are non-negative. Then
the Stekloff-Fejér theorem can be applied.

The polynomial K,(z) may be characterized by the following condition:
b b
(15.2.9) / K. (2)p(z) da(z) = / o(z) dz,

where p(z) is an arbitrary =, . In case da(z) = w(z) dz, we see that K,(z) is
the nth partial sum of the expansion of {w(z)}™ in terms of the poly-
nomials p.(z).

(5) In the next sections we consider the special cases previously mentioned,
namely:

(a) u(z) = a(z) (cf. (3)),
(b) u(z) = z (cf. (4));
here the abscissas {S,} are the zeros of the orthonormal polynomials associated

with the distribution da(z) with the additional specialization that phese poly-
nomials are.the classical ones.

156.3. Cotes-Christoffel numbers in the case u(z) = a(z) (Gauss-Jacobi
quadrature) for the classical abscissas

(1) We use the representation (3.4.7) of the Christoffel numbers A, and
arrange the zeros z, in decreasing order in the Jacobi and Hermite case and in
increasing order in the Laguerre case. Concerning the following results see
Winston 1. The representation (15.3.5) has already been used in §14.7.

By use of (4.3.4) and (4.21.6), the second formula (4.5.7) furnishes for the
Jacobi abscrssas

s _ e T+ a4+ Dl + 6 + 1)
153.1) T(n + DI'(n + a + 8 + 1)

y=1,2 - ,na>—1,8> —1,

(1 — )PP @),

and, in particular, for the ultraspherical abscissas (cf. (4.7.1) and (1.7.3))

)\v — 22—2)\7r{r(>\)}—2 P(n + 2>\)

e YL PN Y2
(15.3.2) T D) @ B @)

y=1,2 -+, m;A> —3 A =0.
For A = 0, that is, in the “Mehler case” w(z) = (1 — 2™ we find

(15.3.3) A= - y=1,2 --- ,n,




[15.3] COTES-CHRISTOFFEL NUMBERS IN THE CASE u(z) = a(z) 353

that is, Ay = As = ... = \,. For A = 1, that is, in case w(z) = (1 — 29}
we obtain

15.34 M= (1 —2h) = T sin® 2T - .
( ) n+1( z,) e e PR 1,2, ,n

For the Laguerre abscissas we have from (5.1.10) and (5.1.14)

_ T(n+oa+1) i/, —2 _ ;
(15.3.5) A= —W Z, {Ln (x,,)} , Vv = 1, 2, N, o > 1,
whereas for the Hermite abscissas, from the second identity of (5.5.10),
(15.3.6) A= w2 H L (2) 7 y=12--.,n.

(2) In the Jacobi case the argument of §7.32 (2) shows that, for « > —3% and
B > —13, that part of the sequence Ay, X2, - -, \, corresponding to the zeros
z, > xo (cf. (7.32.1)) is increasing, and that part corresponding to z, < ¢ is
decreasing. The opposite is true if « < —%,8 < —3. Ifa> —3% 8 < -4,
ora < —3%,8 > —3, the whole sequence in question is increasing or decreasing
according as the first or second pair of relations holds.

In the ultraspherical case this argument furnishes

(15.3.7) M <A< o < Mzl if A >0,
and
(15.3.8) M > A > e D> N/ if A <O

The symmetry relation (Problem 11) yields the analogous statement for the
other A, . The values (15.3.3) correspond to the case A\ = 0. In the Legendre
case we have (15.3.7).

In the Laguerre and Hermite cases we use the argument of §7.6 (1). In the

Laguerre case the sequence Ay, Az, - -+, A\, is increasing for z, < a + %, and
decreasing for z, > « + 3. In the Hermite case we have (z; > 22 > --- )
(15.3.9) A< A< oe < Memtnya

(3) In the Jacobi case, if 2, = cos 6, , and 6, belongs to a fixed interval in the
interior of [0, 7], Darboux’s asymptotic formula (cf. (8.21.10) and (8.8.1)) yields

2a+ﬂ+l7r 9 2a+1 6 28+1
(15.3.10) M= Aon - (sm 5) (cos 5)
Here, for « = 8 = —% the symbol = can be replaced by =, according to

(15.3.3). The same is true for o = g = +1} (see (15.3.4)) if we replace n by
n + 1. On the other hand, if » is fixed and n — «, we obtain, by use of equa-
tion (8.1.1),

(15.3.11) M = A 2 274G, /2)2 (T4 () ) P
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where j, is the vth positive zero of J,(z). (Here the symbol 2 can be replaced

by = if « = 8 = —3.) Therefore, on account of the monotonic property
proved in (2), we have uniformly in »,
(15.3.12) AN =00) or O™ ifO0 <6 <r— ¢

according as « = —3, or « £ —3%. Here ¢is a fixed positive number.
By use of the argument and notation in §7.32 (3), we readily see that for
increasing v, v = »,

g, \ 21 0,\ %1
(15.3.13) ¢,) <sin 5") <cos 5") N

is increasing or decreasing according as «® = 2 oro® < %, and 0 < 6, < §,
where ¢ is a sufficiently small positive number. (If n is sufficiently large,
#(6,) > 0,v = .) Thus (15.3.13) has uniformly the “order” nif 0 < 6, < 6.

In view of (15.3.10) and (15.3.11) for 0 < 6, < 7 — e this yields (see (8.9.1))
(15.3.14) A~ G2~ ety 0<6,=rm—c¢

)

that is to say, the ratio of these expressions is uniformly bounded from zero and
infinity if » and n are arbitrary, 0 < 6, < v — e. The expression in the right-
hand member of (15.3.14) attains its greatest value for v ~ n or » ~ 1 according
as @ = —3% or a = —3. This again furnishes (15.3.12).
Similar results can be obtained if 6, is confined to the interval ¢ < 6, < .
(4) In the Laguerre case, if ¢ £ 2, £ w, we obtain (cf. (8.22.1) and (8.8.4))

(15.3.15) A o= N ome Pzt n— «,

where e and w are fixed positive numbers. On the other hand, if » is fixed and

n — o, we find from (8.1.8)
(15.3.16) M = M 2 (/2 T2} P,

where j, has the previous meaning.
Applying an argument similar to that in the Jacobi case to the fourth equa-

tion in (5.1.2), and taking into consideration the argument of §7.6 (2), we find
that the sequences

1 — 4°
4z,

-1
<4n L 2% 42—z + ) e i ML (2,)),

(15.3.17)

1 — 4o _
4n 4+ 2a + 2 — 2, + P W
4z,
. . . 2 )
are monotonic as » increases provided «° < +and 0 < z, £ w. Incasea” > %
the same sequences consist of two monotonic parts (v = »). On account of

(15.3.15) and (15.3.16) we obtain for the second sequence (15.3.17) the uniform
“order”’ n*, so that
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(15.3.18) A ~ gt 0<gz <
Because of (8.9.10) we may write

(15.3.19) T 0<1z = o

)

The condition z, = O(1) is equivalent to v = O(n*).

156.4. Quadrature of interpolatory type with u(x) = z for Jacobi abscissas

(1) In this section we prove the following theorem:

THEOREM 15.4. Assume o > —1,8 > —1, and let the mechanical quadrature
Q(f) be defined by the following conditions:

(34) P;"‘.ﬂ)(xy) = 0, y = 1’2’ <o, n,

(15.4.1) n +1
b Q") = nyx’:=f de, k=012 --,n—1.
: y=1 —1
Assume max (e, B) < 3/2. Then for an arbitrary function f(z) which is con-
tinuous in [—1, +1],

+1
(15.4.2) lim Q.(f) = / f(z) dz

n—+o —1
holds. If the numbers a, 8 are such that max (o, 8) > 3/2, there exist continuous
functions f(z) for which (15.4.2) is not true.

Notice the difference between this statement and that of Theorem 15.2.3.
Apart from the special case max (a, 8) = 3/2, @ ¥ 8, this theorem has been
proved by Szegd (17, pp. 102-108). The present proof is simpler; it is based
on the bounds (7.32.5) of P*®(z), and on Theorem 8.9.1 concerning the zeros
of P** )(x). The notation of §14.4 is used.

(2) First assume o < 3/2, 8 < 3/2. We must show the boundedness of the
sum (15.2.2) if A\, = \,, is defined by (15.4.1). We discuss A, only in case
0 <z <10r0 < 6 = x/2. For the remaining values, (4.1.3) can be
used. According to (8.9.2)

3 (a,B)
P,*%(cos 6) s

0do.
cos 8§ — cos 6, n

(15.4.3) A ~ g Te? f
0

We decompose the last integral into five parts I, II, III, IV, V, corresponding

to the intervals
0<6=<6/2 6/2<6=<6/2 6/2=<0c36/2
(15.4.4)
36,/2 = 6 < 37w/4, 3r/4 <0 =S

and we note that (6° — 67)/(cos § — cos 6,) is bounded in all these integrals.
Since 6, = O(n™),
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0172

(15.4.5) I = 0(n% / ,260d0 = O(n* D) (p/n)7t = 0(: *n).
0

Further, applying (8.21.18), we obtain

8,/2 —}
k() .
II = _nkO)

L/z cos § — cos 6, cos (N + ) sin 6 df

(15.4.6) P

n
+ 0(1) b2 —m d0

The first integrand can be written as follows:

_* 0—a+§

(15.4.7) —— (0, , 8) cos (N6 + ),

0 — 6

where ¢(6,, 6) and its partial derivative with respect to 6 remain bounded in
the interval considered (uniformly in »). Therefore, integration by parts gives

(15.4.8) O(n_g)[ff; ]m+0 n?) fj g ao{ o ¢(0,,0)}’d0

Here the symbol [f(6)le means f(b) + f(a). A simple discussion gives for the
first term of (15.4.8) (cf. (8.9.1))

(15.4.9) 076, + 0737°60%) = 07 W) + 007,

and for the second term

( ) 0( 3) / v/2{ —a+§ 0—0:—5 0—a+; }
15.4.10 n” do
02 60 — 6 03—02+(03—02)2

We readily see that (15.4.10) can be combined with the second integral of II.
On putting § = 6,z in this integral, we obtain

8,/12 p—a—t 4 —a—4
(15.4.11) o} / A / T iz
Jur 65 — ¢ 1 — a?

The lower limit of integration is 6;/(26,) ~ 1/v, so that the last integral is
O(v"_*), O(log v), or O(1) according as @ > 3, @ = %, ora < 3. Consequently,

(15.4.12) II = 0 %), O( ntlog»), or OG “ %),

accordingas a > 3, a = §,ora < §.
Now by (8.8.2),

30,/2 () ° (N6 + ~) — cos (NG, + )

III = sin 8 df
(15.4.13) 8,/2 cos § — cos 6,

+ 016, Ine} .
Here n*k(8,) = O(n7t6;* ™ = 0 **n®), and the same bound holds for the
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second term. Furthermore,

.-,
0,280 N — 6 — 0 sin
[,/2 ————————Sin0 — sin (N —5 + N6, + 7) ) db
5 sin —5—
(15.4.14) wpsin N (L; 6,
“ for g < ) + 0w
sSin h‘z——

36,/2
1 sin (N6, + )/ smzv(—*i————)dO—{—O(l)

06— 6,
sin ——

since |sin § — sin (6 + 6,)/2| < | (8 — 6,)/2|, and 6,{sin (6§ + 6,)/2}7" is
bounded. The term with cos (N6, + v) vanishes, since the integrand is an odd
function of & — 6,. The denominator in the last integral can be replaced by
(6 — 6,)/2. Hence (15.4.14) is bounded, and

(15.4.15) III = O *'n").

Now, as in II,

3m/4 4 6‘—0‘_” 31r/40—a—§ -3
(15.4.16) IV = / no g 2¢(0,,0) cos (N6 + ) do + O(1) - db,
0,02 6 — 30,12 6¢ — 0.
and the first integral is
0 . 0—-a+§ 3r/4 - 3r/4 9 0—01—{-5
(n ) [02 _ 03]30,/2 + O(TL ) 10,2 a—b{g— ‘_ 2¢(0~, 0)}(d0
_ 3x/4 0—a+% 0—01—5
= 0™ + 0 ™H6,° 7 + 0(n7H) {2 s T 2
(15.4.17) e\ =6, 6 =6,
. 0——a+3
* @)
3r/d —-a—}
= 0(™ %) + 0(n™Y 53 df.
30,/2 0 — 0

On putting § = 6,z, we have

3r/4 0—01—5 3w/ (46,) x—a—i
(15.4.18) a7} s—3d0 = n g, dr = O™ n"%),
sa,2 00 — 0, 3 22 — 1

so that
(15.4.19) IV = 0(™"'n®).

Finally, the second mean-value theorem gives (compare (4.21.7) and also
§7.32 (2))
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8’

V = —(cos 6, — cos [3r/4])" / / PL*® (cos 6)sin 8 df
4

3r

54200 _ 060 | P50 (0os ) — PLAT (cos 3r/4) |

= O[n™* 2P _ o(n¥), 3r/4 <0 < T
Here we used the assumption 8 < 3/2. Hence
o= O G i 4 i o nY)
= O ™™ 4 n7h = 0™ + yeHigmeh,
In all cases we obtain

(15.4.22) > In] =0,

052,<1

(15.4.21)

and this establishes the boundedness of (15.2.2) and the first part of the
statement.

(3) Now assume a = 8, « > 3/2. We assume that 6, lies in a fixed interval
[a, 8], 0 < a < b < 7; then » ~ n, and the number of zeros 6, satisfying this
conditionis also ~n. Let ¢ and w be fixed positive numbers, ¢ < min (a, = — b).
Decompose the integral in question into the parts I, II, III, IV, V, corresponding
to the intervals

0<0=w/n, w/n =0 <6, — ¢ 6 — e =0 =<0, + ¢
(15.4.23)
6+ e <0 =7 — w/n, T —w/n £ 0= T
Then,
w/n
I=( - cos()y)”l/ PP (cos)sin 0 do
0
(15.4.24)

w/n
+0(1)/ | P{*P (cos 6) | 66 df.
0

The first integral can be calculated according to (4.21.7), and we obtain (cf:

(7.32.5))
T alB 2 iy {Pfﬁfl'ﬂ_l)(l) — P30 <cos 2)}
44
(15.4.25) + 0(n"™)

2 na—Z —a+4 a—2 a—3
- P(a)l—cos0,+w 0(™) + 0(™).

= (1 —cosb,)”"

The bound of the term O(n“™*) is independent of . In the same way we find

wln B,a)
n—t Py %(cos 9) .
- (— ML et 6de
v (=1 ﬁ cos @ -+ cos b, st

(15.4.26) o

56 T ooss, T W oM + 0,

— (_ l)n—l
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where O(n*™*) has a bound independent of w. (For 8 = 0 the first term
vanishes.)

Furthermore,

r~w/n

0,~—e
I+ 1V = 0@ f / 6~ do + O(nh) (r — 0) g

8,1+e

=0 M0m* ™) 4+ * O + o(n™).

Here the same remark applies to the O-terms as above.
Finally, according to (8.8.2),

III = n_}k(G.,) /o,+. cos (N6 + 'Y) — cos (N6, + v)
—~e cos § — cos b,

(15.4.27)

sin9do + O(n™)

6,

e blnN—————
= 0(n™ f N 0 d6 + O(n™).

(15.4.28)

The last integral is O(log n) (cf. Zygmund 2, p. 172); whence
(15.4.29) III = O(n! log n).

Now assume a > 8, « > 3/2; then the previous results give

I+II4+ I +IVHV = n"‘”{ 2 1 + w”"“O(l)}

(15.4.30) I'(a) 1 — cosé,
+ o(n*™%),
where (1) is independent of w. Hence, by (15.4.3)
(15.4.31) In ]~ neh
ag8,<h

In the more complicated casec « = 8 > 3/2 we find

I+II+III4IV+YV
(15432) a——z{ 2 1 2 (_1)n~l
=N

SN T Ty U il AN —a+i a—2
I'(a) 1 —cosd, T(a)l -+ coss, + o 0(1)} + o(n*7),

where again O(1) is independent of w.  This furnishes the same result (15.4.31).

15.56. An alternative method in the ultraspherical case

In the ultraspherical case @ = B the convergence theorem (15.4.2) follows
from the following theorem:

Tarorvem 15.5. Let —1 < a = B £ 4. Then the Cotes numbers \, , defined _
by (15.4.1), are positive provided that n is chosen sufficiently large. In the cases
—1<a=BZ=20und } £ a= B = 1 the statement is true for all values of n.
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In view of the Stekloff-Fejér theorem (Theorem 15.2.2; cf. the last remark
11 §15.2 (2)) this leads indeed to another proof of the convergence theorem of
§15.4, even for Riemann-integrable functions. It is very probable that A, > 0
for all values of n provided —1 < a = 8 < 3.

Concerning this section, refer to Szego 17, pp. 95-99, 109-110, where the
positiveness of A, is proved for —3 £ « = 8 =< 0 and for certain other special
cases.

(1) We prove A, > 0 by showing that the function K, (z) = K (z) of §15.2
is positive for —1 < z < +1; here da(z) = (1 — z")**dz with A\ = a -+ 3
(cf. (15.2.8)). We can assume that n is even, since the last integral in (15.2.6)
vanishes if n is odd, and this assumption will be made throughout this section.

According to (4.7.15), (4.7.14), and (4.7.3), we have (cf. (1.7.3))

Ny o3-2A T'(2)) N+ m N
w50 @ =T R E IO S D S @ Fn - DmED T @

= den”Pf,?)(x), m=0,24,--,n.

Let N\ < 2. From a remark made in connection with (15.2.9), we have by
Theorem 9.1.2, for —1 < 2z < +1,

(15.5.2) lim KM @) = Q4 — 257,

n—+x0

uniformlyin —1 + ez =1 — e
(2) First assume 0 < N < 3. Then

(15.5.3) di¥ >0, dw’ <0, m=2,4,6, .

ey A . . . .
In addition, P (cos 6), as a cosine polynomial, has non-negative coefficients
A . . ..
(cf. (4.9.19)). Therefore KM (cos 6) attains its minimum for 6§ = 0, and
this minimum decreases as n increases. Now

. P(Z)\)
AV PV() = 28R
Y M o F DT = 5

1 1 2A+m—1

g TR —1)
T(A+ 2T\ — 2)

2)\+m—2>+<2)\+m— 1)}
m=0,2,4,"* m m+1

g T@-1D ¢ (2)\+m—2>_
=2 I‘(>\+%)I‘(>\—%)mz=:o m =0

(15.5.4)

and this establishes the statement for 0 < A\ < 3. If A = %, we have d,’ = 0,
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m =246 ..., and KP(z) = 1. In the limiting case A — 0, we find (cf.
(4.7.8))

; 2 2 1 1

1 KS) 3 = - — - < — ) 4
1555 K (s =2 =2 =1 ) s,

m=2,4,--,n.

Therefore, this case can be discussed as before. (See Szegé 17, p. 96.)

(3) Next, assume that —% < A < 0. In this case d’ > 0. According to
(4.9.19), the coeflicients of the trigonometric polynomial P! (cos 6) are non-
negative except for the highest coefficient, that is, that of cos mé, which is
negative, m > 0. Therefore, the coefficient of an arbitrary term cos mé,
m > 0 even, in K("”(cos 6) appears as a sum of the form —wo + u; + u2 +

««. + w with non-negative uo, u;, ---,u; where I = (n — m)/2. If m is
fixed, n — o, [ — oo, this expression tends to the coefficient of cos mf in
(1 — 2™ = |sin 6"®. But this is negative (cf., for example, Pélya-

Szegd 2, pp. 31-32), so that the same is true for the partial sums

—up + u + U + --- + u;. Consequently, K\’ (cos 6) is again of the same

type as in the previous case, and it attains its minimum for § = 0. The terms

dV P (1) are negative, except for m = 0. This establishes the statement.
(4) Incase 1 < N £ 3, we start with the following identity:

(15.5.6) (1 — 2KV (@) = K&V @) + on PR (2), n even,

where o, is a proper constant. We readily show (we can write z = 1, or com-
pare the highest terms, cf. (4.7.9)) that o < 0. For later purposes we give
the value of o :

2 r(2)) n 4+ 2
15.5.7) PTIATO+ T — P2 Fn—1

To prove (15.5.6), let p(z) be an arbitrary =, . Then, by (15.2.9),

+1
(15.5.8) f_ Ca- KV (@) + PR @)] — 1}p@) dz = 0,

where o\ must be determined so that the right-hand member of (15.5.6) vanishes
for z = 1.

According to the result in (2), the coefficient of cos m8, m > 0, in the right-
hand member of (15.5.6) is again non-positive, and the minimum is attained
for = 0, orz = 1; whence (1 — DKV () >0, -1 <z < +1.

This argument needs only a slight modification for A = 1. (See Szegd 17,
pp. 96-97.)

(5) We now prove KM(@x) >0, —1 < z < +1, for sufficiently large values
of n, provided 3 < A < 1l,or§ <X = 2.

We may assume n even, 0 < z < 1. First let A <1. By (7.33.6), we have
for = cn™*

(15.5.9) P (cos 6) = 67 0(x").
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Now from (15.5.2), n even, we obtain

(15.5.10) KP(cos 6) = (sin 6)" — > [d | | P (cos 6) |.

m=n+2,n+4,. -

The last sum is (cf. (15.5.1)) equal to
(15.5.11) 01) 22 m™'67m™! = 670
since n”' > m ™ and A < 1; this furnishes

Ki}\)(cos 6) > i(sin 6)'> > 0

)

provided n is sufficiently large and 6 > en™!) wlhere ¢ is a proper positive con-
stant.

This argument also holds for A = | with the following modification. We
have (cf. (4.7.2))

K (cos 6) — 4 ) 1 sin (m + 1)? _ 14 ) 1 sin (m + 1)0.

T m4+1  sin6 T sinb r~m4i1  sng

Here m is even; in the first sum m < 7, in the second sum m > n. By (1.11.6)
we find

(15.5.12) K. (cos 8) = (sin )™ + 67°0(n™") > 0,

provided § > cn™", ¢ > 0.
In the case § < A < 2 we use (15.5.6) and (15.5.7); taking the previous

results into account, we find
(15.5.13) K27"(cos 6) > 3(sin 0)' Y, 0PN (cos 8) = 60,
15.5.1

o > cn,

which again shows that K% (cos 6) is positive provided 8 > ¢'n”", where ¢’
is a proper positive constant. For A = 2 we use (15.5.12). Since o, =
—2/% + O(n™"), we obtain for 4 > c¢n,

sin’ § K32 (cos 6) > (1 — 2/x)(sin 9)

(15.5.14) I e
+ 67°0(n™) + O(n™) (sin )~ > 0.

(6) Finally, we assume 6 > 0, 6 = O(n™"), n even. According to (4.7.1),
we have, A = « + 1,

2—2a .

w ) QE = 2 - e - A;_J__ ._7_'?7 [ - ¥‘(7Qj ‘2A) P(a,a) < . Q_?)

Kn <COb ’n) - F(a) Z (2}\ +m — 1)(m + 1) f‘(m + )Y + %) m COoS /)
where m = 0,2, 4, ... ,n. By (8.1.1) we obtain for & > 0:

Ry z\ 27 e 2z <7_r_ziv>“_l <rﬁ:£>}
(15.5.15) K <C%ﬁ> YOS R Z{ 7)) T\

+ > m (1) + 0Q), m=24,---,n.
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If n — oo, the first term of the right-hand member is
= 27 (e)) "2 (),

uniformly in z, 0 < z < z, where

(15.5.16) 2 (2) = g7 [ zt"‘_lJa(t) dt = / 1tz"“{(tx)“'J,,(t:c)} dt.

The second term is equal to o(n*%), & > 0.

Obviously, lim._ 4o 27%f.(z) exists and is positive. We shall show that the
integral function fo(z) > 0 for x > 0 provided 0 < « < 3

The representation (Watson 3, p. 170, (3))

(15.5.17) e = 2o [T Clsinte t>0
J. a - P(%—-a) ; (uz _ 1)a+§ ) J
holds for —3 < & < +3. Assuming 0 < a < %, we can integrate by parts.
We thus obtain the following representation, valid for 0 < a < §:
- 2% /w (tu)
15.5.18 7 () =
(15.5.19 0= )

“lsin tu — cos tu
u(u? — 1)

This reduces the statement to the discussion of the special case

du, t> 0.

(15.5.19) (r/2¥fi(z) = / (t'sint — cos b) dt = / {'sin tdt — sin z.
0 0

This function increases for 0 < z < ¢ and decreases for t;, < z < t,, where
ty and ¢; are the least positive roots of sin¢ — ¢ cost = 0; 4 < 2r < t,. Thus
we need only prove fij(z) > 0if z = 2r. We have, however, for z = 2r

(15.5.20) / tlsintdt = /2 — / ™! sin t dt.
0 z

According to the second mean-value theorem the modulus of the last integral
is less than 227" < 2(2x)™". The left-hand member of (15.5.20) is therefore
greater than »/2 — 2(2r)™" > 1.

(7) The positivity of all the Cotes numbers A, for 0 Sa =8=<3/2 has
been proven in Askey-Fitch 1, and for «,620, a4+8=<1 in Askey 5. Two
inequalities of Vietoris 1 for trigonometric polynomials give the positivity
of another sum which is related to a more general quadrature problem (inter-
polate at the zeros of P\*#(x) but integrate with respect to (1 — x)(1 + x)’dx).
For this and a summary of other positive sums related to quadrature problems
see Askey-Steinig 1.

(8) A new proof of the divergence half of Theorem 15.4 was given by Locher 1.




CHAPTER XVI
POLYNOMIALS ORTHOGONAL ON AN ARBITRARY CURVE

In Chapter XI there were introduced certain systems of polynomials which
play a role with respect to the unit circle similar to that which the orthogonal
polynomials previously discussed do for a real interval. We shall now give a
short survey of a further generalization which uses a rectifiable Jordan curve
in place of either the unit circle, or a real interval.

16.1. Preliminaries; definitions

(1) Let T be a simply connected region in the complex z-plane, containing
x = o ag an interior point; let the boundary C of T be a continuum consisting
of a finite number of rectifiable Jordan arcs. When integrating along C, the
parts of C are described in an arbitrarily fixed order; along the parts which
have the character of cuts, we must integrate twice. The integrals considered
will have the form

(16.1.1) /Cf(x) |dz].

Here f(z) is a Lebesgue-integrable function defined on C, and | dz | is the arc
element on C. We denote the total length of the boundary C by L, counting
the cuts twice.

A particularly important case is that of a rectifiable Jordan curve. Another
remarkable instance is that of a Jordan arc. The case of a finite interval is of
this type.

(2) Let

(16.1.2) t=¢() =c+eaot+ar Fez+ -, ¢ >0,

be the analytic function, regular and univalent for | z | > 1, which maps |z | > 1
conformally onto the region 7', preserving the point at infinity and the direc-
tion therein. According to a theorem of Osgood and Carathéodory (Cara-
théodory 1, p. 86), the function ¢(2) is continuous in | z| = 1 and furnishes a
one-to-one and continuous correspondence between the unit circle |z| = 1
and the boundary C of T (described in the way indicated above). The function
$(z) is uniquely determined, and the number ¢ is called the transfinite diameter
(Robin’s constant, capacity) of C (ef. §16.2 (5)).

Let C be a Jordan curve, and let o be a preassigned point in the interior of C.
In this case we may consider also the function

(16.1.3) t=y@) =20+ diz + d” + -+, “dy > 0,

which is regular and univalent for | z | < 1, and which furnishes the conformal
364
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mapping of |z |< 1 onto the interior U of C; it carries the origin z = 0 into
r = %, and preserves the direction at the origin; ¢(z2) is also uniquely deter-
mined and continuousin |z | = 1.

For the interval —1 < z = +1 we have ¢(2) = 3(z + 2z7") (cf. §1.9), while
¥(2) has no sense in this case. For the circle |z | = 1, 2, = 0, we have ¢(z) =
¥(z) = 2

We shall denote the inverse functions of (16.1.2) and (16.1.3) by z = ®(z)
and z = ¥(z), respectively.

A particularly simple case oceurs when the boundary C of T (or of U) con-
sists of a finite number of analytic arcs. Then ¢(z2) is analytic on |z] = 1,
apart from a finite number of points corresponding to the corners of C. The
length of any subarc of C corresponding to z = ¢”, 6, < 6 < 6., can be repre-
sented in the form

by

(16.1.4) A | ' (e") | db
1

(similarly for the mapping (16.1.3)).

(3) Let C be a Jordan curve and w(z) a positive and eontinuous weight
function defined on C. Then the considerations of §10.2 can be applied to
the functions wizb(c‘w)} and w{y(¢”)} which are both positive and continuous
on the unit circlez = ¢*, —7x < 0 < +. Substituting into the corresponding
analytic functions D,(z) and D;(z) the functions z = {®(z)} " and z = ¥(2),
we obtain certain analytic functions A.(z) and Ai(x) which have the following
properties:

(a) A.(z) is regular in T’ including ¢ = o, A,(z) is regular in /;

(b) A.z) = 0, Ai(x) = 0;

(¢) A.() and Ai(zo) are real and positive.

Furthermore, we have
(16.1.5) ‘ lim |Al(z.) |* = lim | Aiz) | = w(z),
where z, — z indicates an exterior approach to the point x of C and 2, — =z
stands for an interior approach to x of C. The convergence is in hoth cases
uniform with respect to .

These considerations can he generalized by replacing the continuity of w(z)
by more general conditions, and also the eurve C by more gencral point sets.
If C is an arc (for instance if C is a finite segment), A,(x) is meaningless.

(4) We define the scalar product of two functions f(z) and ¢g(z), z on C, by
the integral

(16.1.6 G0 =} [ r@sten | iz,

We can then orthogonalize the system

(16.1.7) 1, z, xz, N AR
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and this procedure will lead to a set of polynomials uniquely determined by
the following requirements (cf. §§2.2, 11.1):

(a) pa(x) is a polynomial of precise degree n in which the coefficient of z"
is real and positive;

(b) the system {p.(z)} is orthonormal, that is,

(16.1.8) L / @) pn@)w(z) |d2 | = 6nm, n,m=0,1,2, ---.

L

If C is a finite real segment, or the unit circle, we obtain the polynomials
previously considered. In the next section we take up certain fundamental
properties of the polynomials p,(xz) which can be classified as follows: formal
properties (minimum-maximum properties, zeros), asymptotic behavior of
pa(x) if n — o and z is in the interior of C, asymptotic behavior of p,(z) if
n — o and z is in the exterior of C, asymptotic behavior of p,(z) if n — «
and z is on C.

In what follows we give only short indications of the proofs, particularly
when no essential change is necessary in the arguments used for the previous
special cases.

Concerning the definition and principal properties of orthogonal polynomials,
see Szegd b and Walsh 1, Chapter VI. Most of these properties have analogues
for the polynomials orthogonal on the interior U of C; they are associated with
the following definition of scalar product:

(16.1.9) f,9 = z%//f(ac)g_(—w) do,

where A is the area and do the element of area of U. These polynomials have
been investigated by Carleman (1, pp. 20-30). Here a weight function can
also be introduced.

16.2. Formal properties

(1) Let D, > 0 be the determinant of the positive definite quadratic form
(cf. (2.2.8) and (11.1.4))

%] luo + waz + w2’ + -+« + uaz" [F w(x) d
c

(16.2.1)
= Z kw& Uy Uy,
rop=0,12,4**,n
1 v
(16.2.2) k., = I / r #w(r) |dz |
c

(cf. (2.2.1) and (11.1.2)). The orthogonal polynomials p,(z) can be represented
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as follows (cf. (2.2.6), (2.2.10), and (11.1.9)):

po(x) = D5},
koo k1o Ko
kOl kn > kﬂl
pﬂ(x) = (1)',1_11):,1)“i ----------------------
kO n—1 kl,ﬂ—l kﬂ n—1
(16.2-3) 1 Xz e xﬂ
D..,D,)"
= (_“I—,l?;ﬁ)__ /C/C(x —z)(x —2) +++ (T — Tn_y)
my R * w@ow(@) -+ w@Eno) |dzo||dzs| -+ | dza].
B, ;<"““,ﬂ—

We have (cf. (2.2.7), (2.2.11) and (11.1.5))
Dn = [kvu]v.u=0,1,2,-~-,ﬂ
1 2
24) = | oo , =
(16.2.4) Lﬂ+1(n+1)!/c Laoglx z, |

r<p
- w@)w @) - w(Ea) | dao| | da| -+ | da].

(2)"” Let f(z) be a continuous function defined on C. Then the partial sums
sn(z) of the Fourier expansion

f(x) Nfopo(x) +f1p1(27) +f2p2(27) + .- +fnpn(x) + -,

(16.2.5) 1 —
fo= Eﬁf(x)p)ﬂ(x)w(x)ldxl, n=2012-:--,

minimize the integral

({6-2-6) %/g |f@) — p(@) | w(z) | dz |

if p(x) ranges over the class of all »,. The minimum is

wan L[ 1@ Fe@laz = 16F = 15F = = AP
This also yields Bessel’s inequality

(16.28) Ll + [AF + A+ - = % ﬁ /@) [ w(@) | dz .

Let C be a rectifiable Jordan curve, and let f(z) be an analytic function regular
in the interior of C and continuous on C. Then the equality sign in (16.2.8)

72 Concerning the considerations of (2), (3), (4), cf. §3.1, §11.1, §11.3.
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is to be taken: that is, Parseval’s formula holds. This follows from Theorem
1.3.4.

Smirnoff (1) investigated the validity of this formula for the more general
class of functions f(z) for which

(16.2.9) FH@ID() (' ()}

is of class Hyin | 2| < 1 (cf. §10.1); here we have used the symbols previously
introduced. Parseval’s formula holds for this class if and only if the map
function ¥(z) satisfies the hypothesis

1 — 7

’ 16 _ _:_1__ + 17 1t )
(6210 |losl¥0e)|=5 /_ g V() | e =y £ 2 @
0=r<l1.

(See Smirnoff 1, pp. 164-168.) According to Keldysch and Lavrentieff (1),
there exist rectifiable curves for which the hypothesis (16.2.10) is not satisfied.

(3) Let p(z) be an arbitrary », in which the coefficient of " equals unity.
Then

(16.2.11) min % /C | o(@) [* w(z) | dz |

is attained if and only if p(x) = (D,./D,._l)%p,.(x), and this minimum is D,/D,_,.

(4) Let zo be an arbitrary but fixed point in the complex plane, and let p(z)
be an arbitrary =, with p(xz¢) = 1. Then the minimum of (16.2.11) is attained
for p(z) = {Kn(zo, 7o)} 'Kn(xo, x), where

(16.2.12) K.(xo, ) = po(z0)po(x) + Pri(o)pr(z) + - -+ + Pal@0)pa(2).

. . . -1 .
The minimum is {Kn(zo, zo)} . (The same result can be expressed in terms

of a maximum property; see §3.1 (3) and §11.3.) The ‘“kernel polynomials’
K.(xy, x) can be characterized by the condition

(16.2.13) I%/CK"(%’ z)p@)wz) |dz | = p(x0),

where p(x) is an arbitrary =, (cf. (3.1.12)).
Using K,(xo, ), we can express the nth partial sum s,(z) of the development
(16.2.5) in the following form (cf. (3.1.11)):

(16.2.14) @) = 1 / FOKE, 2w | ).

(5) The extremum problem of (3) can be generalized as in the case of an
interval (§3.11). For instance, the problem of the “Tchebichef deviation”
corresponding to (16.2.11) consists of the determination of the minimum of
"max | p(x) |, z on C, when p(z) is an arbitrary =, in which the coefficient of

z" is 1. The polynomials which solve this problem have been investigated
by Faber (3).
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Let u, be the minimum in question. Then (cf. Faber, loc. cit.)
(16.2.15) lim '™ = ¢

n )

where ¢ is the transfinite diameter defined in §16.1 (2). We shall see that a
similar formula holds for the minimum of the problem in (3) (cf. (16.4.3)).

Fekete (1) extended the definition of the transfinite diameter to an arbitrary
closed set in the complex plane by showing that for the corresponding minimum
values u, (which have meaning if we replace the curve C by an arbitrary closed
set), the limit (16.2.15) still exists.

The general transfinite diameter is a remarkable set-function which can be
calculated in various cases (cf. for instance Szeg6 5, p. 254).

Concerning the extension of §3.11 (5) to an arbitrary curve, see Julia 1.

(6) The zeros of pn(x) lie in the least convex region containing the curve C.
See Szegd b, pp. 236-241; Fejér 7. The proof can be based on an argument
similar to that of §3.3 (2) (cf. also §16.4 (1), (a)).

Concerning the location of the zeros of K,(xo, ), see Szegd b, pp. 241-244.
See also Theorem 11.4.1 and Problems 5 and 49.

16.3. Asymptotic behavior of K,(zy, z) in the interior of the curve C

(1) In this section we assume that C is an analytic Jordan curve and the
weight function w(z) defined on C is positive and continuous there. Let z,
be an arbitrary point interior to C'; denote by 2 = ¥(x) = ¥(xzo, x) the inverse
function of the map function ¥(z) defined by (16.1.3). In the present case
¥(2) is regular and univalent in a certain circle | 2| < P where P > 1. Let
Ai(z) have the same meaning as in §16.1 (3). We shall prove the following
theorem:

TrEOREM 16.3. Let {p.(x)} denote the set of orthogonal polynomials defined
by the conditions (16.1.8). Then the series

(16.3.1) Kz, 2) = po@)po(z) + pE)pa(@) + - -+ + Pal@o)palz) + -

is convergent provided xo and x are arbitrary points in the interior of C. The
convergence is untform both in xy and z if xo and x are limated to a closed set in
the interior of C. Furthermore, we have

(16.3.2) K(zo, 2) = é‘;—r {Ai(x0) Ai(z) ) I (20) T (2) ).

In case w(z) = 1, see Szegd 5, pp. 244-251. The assumptions of this theorem
concerning w(z) and C can be generalized (cf. Smirnoff 2, pp. 3563-356). For a
Jordan arc (especially for a finite segment) these considerations have no sense.
For the special case where C ig the unit circle, see (12.3.17).

As a consequence of the convergence of (16.3.1) we notice that

(16.3.3) lim pa(z) = 0,

n—+w0
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if z is in the interior of C' (uniformly on every closed set in the interior of C).
(2) Let p(z) be an arbitrary =, , and let zo be in the interior of C. Then
according to Cauchy’s theorem,

(16.3.4) @}’ = 5 z/ip(f)a}oo
Consequently,
163 1n(@ 5 5 [ 2DL 1) s L1 [0 put e,

where w(xr) = u and é denotes the least distance of z, from the points x on the
curve C. Taking into account §16.2 (4), we have

_11

(1636) K (xo, xo) 27I“6 .

Hence the series K(2, 2o), and therefore (16.3.1), are convergent, as is readily
shown by Cauchy’s inequality.
(3) Now we show that

I
(16.3.7) K(zo, 20) = lim Kn(x, 20) = {A (20) } W' (o).
To this end we consider the function

]
(16.3.8) (21‘7) (a@)) V@) = FE),

which is regular in the interior of C, that is, for |z | < 1;2 = ¥(2), 2 = ¥(z).
(The last factor is regular even for | z| = 1.) Let rbe fixed,0 < r < 1, and ¢
an arbitrary positive number. According to Theorem 1.3.4 we can find a
polynomial Q(z) such that

(16.3.9) | F(rz) — Q) | < e, zon C.

Writing po(z) = {Q(z)} 'Q(z), we obtain from §16.2 (4), for a sufficiently
large n,

-2
(16.3.10)  {K(z, 20)} £ {Kau(zo, 20)} lQ(xO) | / | Q@) " w(z) | dx |;
whence, on allowing e to approach zero, we obtain

16310 (K, 2™ £ QL [ 1562 Fu ae).

Now if r — 1 — 0, we have

< |F( F<0> ™"

(16.3.12)  {K(xo, 20)} /I\If’()lldxl IF(O)I~2

which is equivalent to (16.3.7).
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(4) Finally, we consider

JIn = rggr_lo%lflzlzr IKn(xo, ) As(z) {¥'(2)} 7 — % {As(zo) ) W (20} 2Id:zl

- %, l | Kn(20, 2) [*w(z) | dz |

(16.3.13)
— lim 7 'r{Adze) } TH{ ¥ (20) } / Ko(zo, 2)Ai(z) {¥'(z) ) %2
|z|=r 12

r—1-0 z

+ 2£7r {Ai(zs) }-—2‘1’,(370) .

The first term equals K.(xy , 2o); for the second term we obtain

(16.3.14) —W—I{Ai(xo)}—1{'11’(230)}&'2%’]{,;(230, 20)Ai(2o) { W' (20) ) = —2K.(%0, o) ;

SO
(16.3.15) Jn = —Ku(2o, 2) + % {As(20) } N (m0).

Therefore, limy~w J» = 0 by (16.3.7). From this it follows, if [ 2| < 1, or if
z is in the interior of C, that (cf. (7.1.4))

(16.3.16) m K (2o, 2)A:(2) {¥'(2)}) 7 = é {Ai(20) } T () 1,

n—+x0 2

which is the same as (16.3.2).

16.4. Asymptotic behavior of p,(z) in the exterior of the curve C

(1) We shall introduce the assumptions concerning the curve C and the
weight function w(r) used in §16.3. We denote by z = &(x) the inverse func-
tion of the map function z = ¢(z), defined by (16.1.2); in the present case ¢(z)
is regular and univalent in the closed exterior of a certain circle | z| = r where
r < 1. Let A.(x) have the same meaning as in §16.1 (3). We may then make
the following assertion?

TuEOREM 16.4. Let {p.(z)} denote the set of orthogonal polynomials defined
by the conditions (16.1.8). If x ¢s in the exterior of the curve C, we have

1
(16.4.1) P = (L) 161 @ PR}

The ratio of these expressions as n — o« tends to unity uniformly in every finite
or tnfinite closed region exterior to the curve C.

In case w(z) = 1, see Szegd b, pp. 260-263.

We mention the following noteworthy consequences of (16.4.1):

(a) The zeros of p.(z) approach the closed interior of C uniformly asn — «
(apply Theorem 1.91.3 (Hurwitz’s theorem)).
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(b) If z is in the exterior of C,

(16.4.2) lim p;:gf;) = lim (p.(@)}" = ().

Cf. (12.2.6).

(¢) The convergence domain of the expansion (16.2.5) of an analytic func-
tion, regular in the closed interior of C, is the interior of a level curve Cr of the
conformal mapping z = ¢(z) (cf. §1.3 (2)). The determination of R from the
coefficients f, is analogous to that in the case of a power series (cf. Theorems
~ 1.3.5 and 12.7.3).

(d) Let k. be the coeficient of 2" in p.(z). Then

(16.4.3) kn = <£>} {Al(0)} e

27
where c is the transfinite diameter of C' (cf. §16.1 (2); §16.2 (5)). This result
can easily be expressed in terms of the determinants D, introduced in (16.2.4).
(2) The proof of (16.4.1) is based on an argument similar to that in §16.3;
here the minimum property of §16.2 (3) is used. We first show that

(16.4.4) lim sup ¢ 2*k;? < %” (A ()}

To this end we introduce the polynomials of Faber’s type f.(z) (Faber 1),

defined as the polynomial part in the Laurent development of the function
L\}

(164.5) (%) (s@FE @@ = 06

around z = . The function g.(z) is regular for |z | = r, and f.(z) is clearly
a 7, . Let C, be the curve corresponding to |z | = r. On applying Cauchy’s

theorem to the ring-shaped region bounded by C, and a large circle, we obtain,
if z ison C,

T 2m t—z 27 Je, E—x

where the integration is extended in the negative sense. Hence
(16.4.7) | gu(z) — fulz) | < MP" for z on C,

where M depends only on C and . The functions g.(x) are uniformly bounded
if z1s on C.
Now let v1, vz, - -+, vm be arbitrary constants, n > m. The polynomial

Y
(16.4.8) p(z) = <%)l @) + 1faa@) + vafae@) F 0+ VYmfaom(@) )
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is of degree n, and its highest coefficient is unity. Then, accordmg to §16.2 (3)
and (16.4.7),

k;2 = <2£;‘r>~ Czn+1 %{ ‘l |fn(x) + 'Ylfn-—-l(x) + -
+ 'men—m(x) |2w(x) |d.’1)|

(16.4.9) o
S
= <Zr> ¢ HZ l | g2(x) + vign(x) + - --
+ 'Ymgn—fm(x) lz'U)(x) ldx l + C2n0(rn)’
so that
lim sup ¢ " 7'k
(16.4.10) 1 |
=z /1— 114 71z + 722+ o+ vz ™ Pwle) |dz |
or
(16.4.11) lirilfllp T < %[lzl | v (@) fwiz) | dz|,

where y(z) is an arbitrary analytic function, regular for | z | = 1, with y(e) = 1.
On putting

(16.4.12) v(z) = {AA"S((R’;)}} , R>1,

and allowing E to approach 1 4 0, we obtain the inequality (16.4.4).
(3) Now we consider

' . 1
J. = lim ‘—/
R—~1+0 L Jizj=x

32
Pa(@)A @) {#'(2)} H &)} — <£>

|

2
(16419 -1 / | 9a(2) P @) | dz |
e
- im 2 (%) /. L P@AREEI @) E 41

The second term is

-1 (£) 2 im p. @A@Y @I o) - 2(%) a(w)e

Therefore,

(16.4.14) Jn=2—2 <2£'> A(0)c" .

In view of (16.4.4), this implies lim,~. J, = 0, which establishes the statement
(16.4.1).
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16.5. Asymptotic behavior of p,(z) on the curve ¢

Finally we have the following result:

TuEOREM 16.5.  The asymptotic formula (16.4.1) holds uniformly outside and on
the curve C provided the function A,(x) is regular in the closed exterior of C'; more
precisely we have

LY '
1650 5@ = (L) (80 @@ 2@)" + 00,

where 0 < h < 1; this constant h depends on C and w(z).
The same formula holds in a sufliciently small neighborhood of C in the interior

of C.
(1) For the proof we use the polynomials F, (z) of Faber’s type associated with

1
(1652 (&) 18617 @@ @) = 6.

(which is the “principal part” of the right-hand side of (16.5.1)) in the same way
as the polynomials f.(z) defined in §16.4 (2) are associated with (16.4.5). If
0 < r < 1and rissufficiently near to 1, the function G,(z) isregular for | z | = r.
We have again

(16.5.3) | Gu(z) — Fo(z) | < Mr" for z on C,

where M depends only on C, r and w(z). The functions G.(z) are uni-
formly bounded on C.
We write (cf. §16.4 (2))

-4
(16.5.4) olz) = <%> A(0)c" P FL ().

This is a 7, with the highest coefficient unity. Hence

w2 () et L[ R@E e o)

(1655 = <§> (a0 e L / 6@ w(@) |da | + 00"

- 2£r {A( )}2 2n+1 C2n0(rn).

(The simpler nature of this argument is due to the fact that A,(z) is regular on C.)
On the other hand,

A @t el - L [ [P0
(16.5.6) !
> lim anx; 2 {A( )}2 2n+1k2
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so that

(16.5.7) N
consequently

(16.5.8) Bt = O (ade) 12 4 0.

(2) Now let

(16.5.9) Pa(2) = NoFo(z) + MFi(2) + NFa(x) + -+ + MF.(2),
where Mo, A, Az, - -+, A, are proper constants, \, = A(v, n); we have

. 27!' n+4
(16.5.10) A = A A(0)c" Pk,

so that X\, is real and, by (16.5.8),
(16.5.11) A=14 00").

From the definition of F,(z) we conclude that

(%) 8@ @@ @ - 2ra@)

375

= <2L7r> A(@) (&' ()} (NoFole) + MFi(z) + - “ A Fra(2)}

(16.5.12) = X+ MB(2) + Mf®@)} + -+ + A (3@} 4+ yiz

+ yaz” -

=N+ M2+ M2" + o ™ i oy

! .
where v, , v, are certain constants. Therefore,

Nl 4+ NP+ oo+ A

= 2% 2i | A:2) {®' (@)} Hpa(@) — AaFol@)} [P dz|
T Jisl=1

= % / | pa () [Pw(z) | dz |

_ 2\

’

I pn(x)F @wz) |dz| + F /IFn(x) Pw(z) |dz|.
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In the second term F,(z) can be replaced by A, 'p,(z); in the third term we use
(16.5.11) and (16.5.3) and obtain

(16.5.14) N>+ M+ -+ + [ Ma|* = —1 +%£|Gn(x) Pw(z) |dz | + O¢™),

or
(16.5.15) Ml 24 M2+ oo F [ M |2 = OFD).

Now F.(z) = O(1), uniformly if z is on C. Whence, according to Schwarz’s
inequality,

(16.5.16) MFo(z) + MFi(z) + -+ + MaaFasi(z) = O@b™?);
and from (16.5.9), (16.5.11), and (16.5.3),
Pu(2) = MaFu(@) + O(nr™") = Fu(z) + O(n'r™")
= G.(z) + O(nr™™).

This establishes the statement. The extension of (16.5.1) to the interior of C
also follows immediately, since (16.5.3) holds if z is in the interior of C and
sufficiently near to C.

(16.5.17)




PROBLEMS AND EXERCISES

1. We denote by 71 < ¢ < ... the positive zeros of Airy’s function A4 (z)
(Use (1.81.4), (1.81.1), and (1.71.7).)

(§1.81); then 7, ~ »*if » — o,
2. Let A(z) denote Airy’s function (§1.81). We have, for real values of z,

oo

8<{62m'/3 j exp (—p° — pe*z) dp} = A(z).
0

(Develop both sides in a power series in z; see (1.81.4), (1.81.1), and (1.7.3).)
3. Let p.(x) denote the Poisson-Charlier polynomial (2.81.2); then

(—=1)"a™™*(n})’pa(z) = pa(a)
satisfies, forz = 0, 1, 2, ... , the relation
Px(z) = p:(n).
4, By use of the notation (2.2.1), (2.2.7), the “kernel” polynomials K,(zo , x)

(cf. (3.1.9)) can be represented as follows:

Co C1 (3 Cn 1
G C C3 Cnt1  To
-1
Kn(xo’ x) = ._Dn .........................
Cn Cnt1 Cnyz *°+  Cam  Ip
1 =z z’ " 0
(Use (3.1.12) with p(z) = 2", v = 0,1, -.- ,n.)

5. Location of the zeros of the “kernel” polynomials K.(zo, x) (cf. (3.1.9)).
Let a and b be finite, and let xo be an arbitrary non-real number. Every zero
£ of K,(zo, x) lies in the area bounded by the interval [a, b] and by the circular
arc through a and b whose continuation passes through o . (Cf. Szeg6 5, p. 244.

By (3.1.12)
b 2
/ (6 -z @ D228, 0 o,
a — £ T — X
In the conformal mapping (x — §)/(z — z;) = 2/, theimageof a = 2z S bisa
circular arc; the segment bounded by this arc and its chord contains ' = 0.)
6. Derive from (3.2.1) the representation, n = 1, 2, 3, -+,
Az + By Cé 0 e 0
Ci Az + By Ci = 0
pn(x) = pO(x) 0 § A3.’1: + B3 L 0
0 0 0 C} A.z+ B.
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7. Prove the reality of the zeros of p.(z) using (2.2.9), or using Problem 6.
8. Letz,, 2, -- -, 2, be distinct values in [a, b], and let f(x) have a derivative
of order 2n in [a, b]. If H(z) is the m,; satisfying the conditions
H(:E,) = f(x”)r H’(:C,) = f,(xl‘)y Vv = 11 21 e,

)
there exists a value ¢ = §(z) in [a, b] such that

2n)
1@ - H@ =158 @ — 2l — )" - o = 2

(See A. Markoff 6, pp. 6-8. Let = be a fixed value, z > z, ; and to the function
of z given by

f(x) — H(z) 2 2 2
J&) — He) — (x — 2)* @ — 222 -+ (& — ) =) —2)" - G =z
apply Rolle’s theorem.)

9. Let f(z) have a continuous derivative of order 2n in [a, b]. By using the
notation of Theorem 3.4.1 obtain

(2n)
[ 01 date) = nasted + 2t + - +fte) + I Dk
Here ¢ is a proper value in [a, b], and k., is the highest coefficient of the ortho-
normal polynomial p.(x) associated with the distribution de(z) (cf. (2.2.15)).
(See A. Markoff 6, p. 81; use the preceding problem.)

10. Let 21, x5, - - - , T be the zeros of the arthogonal polynomial p.(z) asso-
ciated with a given distribution da(z) on the interval [a, b], and let Ay, Az, + -+,
A» denote the Christoffel numbers (3.4.3). Define the scalar product of two
functions f(z), g(z) by

(f} g) = yz:, )\vf(xv)g(xv)-
The functions 1, z, z*, - -- , 2" are linearly independent; by orthogonalization
we obtain the polynomials po(z), pi(z), - - -, Pas(z) which are the same as
those associated with da(z).
11. If da(z) = w(z)dz, w(—2z) = w(z) and a + b = 0, we have for the Chris-
toffel numbers (3.4.3)

Ay=k,,+1_,, 1/=1,2,--~,n.
12. For the Jacobi polynomial P (z) the Christoffel numbers are

2r

A= In +1(1+.’Cy) V=1,2,"‘,n.

(Cf. (4.1.8) and (15.3.1).)
13. In the special case P —+ ”(:c), the numbers y, = cos ¢, , 0 < ¢, < m, of
the separation theorem of §3.41 are
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¢ = (n — v)x/n, v=12 ..., n—1.
Verify the separation theorem for P\ ¥ (2), PP (z), P& (5).

n

14. Let 21, 22, - - - , z, be the zeros of P{**”(z). Then

n

Tit Tt o+ Za = (B—a)z————n+a+ﬂ.
(Cf. (4.21.2).) »
15. New proof of (4.7.31). Combining the second part of (4.1.5) (polynomials

in 1 — 2z%) with the first formula in (4.22.1), we find
PP @) = 27 (n +2 - 1) " F(=n/2, (1 — n)/2, —n — X + 1;279).

16. The generating functions (4.7.16) and (4.7.23) of the ultraspherical poly-
nomials PM(z) are identical if and only if A = }, that is, in the Legendre case.
17. The functional equation

(1 — 2)f'(2) = M(-2),
where \ is a parameter, has a polynomial solution f(z) s 0 if and only if X =
(=1)*(n + 1) and f(z) = const. {Pu(x) + Pan(@)},n = —1,0,1, --. ; P_y(2)
= 0. (Write

N

f@) = El e {Py(z) + P,u(2)},

where c_;, ¢, - -+, ¢y are constants, and use
(1 = 2){Po(@) + Pra(@)} = (0 + 1D{Paz) — Pan(z)},

which follows from (4.7.27).)
18. Show that

’ n/2 2.4 cee
0) = (—
Q.(0) = (-1) 13 =1 n  even,
_(_pymtn22:4 - (n—1)
Qn(O)— ( 1) 35 ... n y n odd.
Here Qo(0) = 1, Q;(0) = —1. (Use the recurrence formula (4.62.13), (4.62.14),

(4.62.3).)
19. The “Laplace transform”

(e = fo ) e "F(t) dt,

of Laguerre’s function F(£) = t*L{ () is

r(n + a + 1) —n—a—1 n
f(s)=—1‘(7f—?—1-)_—s (S—l).

(Cf. Sonin 1, p. 42; use the method of the “generating function”.)
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20. Writing
LY@ T + a + 1)) = f(n, o 2),
we have, fora > g8 > —1,

Jn, a;2) = fza%-ﬁ-) ﬁ (z — W f(n, B; u) du.

(Kogbetliantz 22, p. 156. Take the generating function of both sides and use
(5.1.16); the resulting formula for Bessel functions can be verified by means of
(1.71.1) and (1.7.5).)

21. Writing ¢ **2*2L{*(z) = f.(z), we have

1@ = [ e no .

(Hardy 1, p. 139; use (5.1.9) and (1.71.1).)
22. Assumez 20,y = 0, max (z,y) > 0. Then

—T =y 3 Ln(x)Ln(y) _ Lw —1 —t
e 1?-"3 s u(m)t e dt.

(E. R. Neumann 1, Watson 6. Apply Theorem 9.1.5 and use the formula

(n-+1) ﬁz La(t) dt = 2{La(z) — L.(2)}

(cf. (5.1.2)).)
23. From (5.1.15) derive Mehler’s formula

5: H,.(x;flfn(y) W/2)" = (1 — v exp {2:l:yw _1 E,;? u;z{_ yz)wz}.

n=0

(See Watson 5, Erdélyi 2.)
24. From (5.1.9) and (5.6.1) derive the following generating function for
Hermite polynomials:

“H,() . L , (uw
”}__; W= (1 + 47} + 22w + 4w’ exp T aw)
where m = [n/2]. (Cf. Doetsch 1, p. 590, (7).)

25. Assume k > —1 and let H¥(z) denote the orthogonal polynomials cor-
responding to the weight function ¢ | z [* in [— e, 4 ©]. Then the follow-
ing differential equations are satisfied:

0, neven,

"+ 20k — 2y + 2nz — ey = 0, =
zy"” + 2( Ny ( ex )y € {2,0’ nodd;y = HP(2);

n _ 1.2 2
2" 4 {2n +2+1 -2+ S:-—l—)—gk——k-}z = 0; z=e" lz:ckH,(.k)(:c)~

(Generalizations of (5.5.2).)
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26. For fixed 8, n, and = we have

lim o PP (z) = 1 <'Ej———1>”

a—»o n! 2

(Use (4.21.2).)
27. Let {z,} be the zeros of P{**?(z) in decreasing order, « > —1,8 > —1.
Thenforv =1,2, ... ,n

m z, = —1, lim z, = +1.
a—>+w B-r+w

In the first case 8 and », and in the second case « and n, are fixed. (Use Prob-
lem 26 and (4.1.3).)

28. Let {z,} be the zeros of P{"(z), A > 0. We have for fixed n
m z, = 0.
A4
(From (4.7.6) limy—. (2}\)_"Pf.7"(x) = z"/n!; see also (5.6.3).)
29. Assume @ > —1,8 > —1;if {z,} and {z,} denote the zeros of P3*"*(x)

and L{¥(z) in decreasing and increasing order, respectively, we have (a, n, and
v fixed) '

lim 8(1 — z,) = 2z,.
B+t

(Use (5.3.4).)
30. For fixed n and z we have

lim oL (o) = L= %)

a—rw nl |

(Use (5.1.6).)

3l. Let jo = 0 < 71 < j» < --- be the positive zeros of J.(z). Then {j,}
is a convex sequence if —3 < a < +1%, thatis, j,;u — j, is increasing. Further-
more »~j, is increasing. (Apply Theorem 1.82.2 to (1.8.9).) ‘

32. With the same notation and assumptions as in Problem 31, we have

> @+ a/2 - 1/4)m, v=123,.--.

(Putn = 2v — 11in (6.3.13).)
33. We have for the factor C,., defined by (6.31.13),

(W/9* < Cm < 4.

Here 7, is the least positive root of Jo(z). These bounds are the best possible.
(Use the increasing property of »~'5, ; see Problem 31.)

34. Assume a > —1; denote by z; < 22 < -+ < zn the zeros of L\ (z). If
of < 1 the sequence z} — z;_y, v = 2, 3, --- , n, is increasing; if «® > 1, thisis
true for z,_, > (& — ). (Apply Theorem 1.82.2 to the fourth equation in
(5.1.2).)




382 PROBLEMS AND EXERCISES

35. With the notation of the previous problem,

min (@} — z3-) ~ 77, max (@} — 2d) = 2t — 2 271374, — i)n,

n — oo,

where 7; and 4, are the least positive zeros of Airy’s function A (z). (Use (8.1.8),
(8.22.1), and (8.9.15).)

36. Let 21 > z2 > .-+ > Z(wtn/z be the non-negative zeros of the Hermite
polynomial H,(x). Write

Ty = Tyy = hp — (6ha) b, he = (2n + D

Then for fixed » and increasing n, the numbers ¢,, are decreasing. Further,
show that for1 < » £ (n + 1)/2,

n = ha _Vn*pvn,

where P < p,n < Q here P and Q are two absolute positive constants. (On
writing £ = (6h.) " in (6.32.10), we have

d*z
dt2

The monotonic character of ¢,, follows by means of Theorem 1.82.1. Further-
more, see (6.32.3),

+ {t/3 — (6Rh.) "}z = 0.

iv < tvn § tv,2v—1 = 6i hgv—l-
Now apply Problem 1.)
37. Consider n unit “masses’”, n = 2, at the variable points z;, 22, - - - , Za
in the interval [—1, 4+1]. For what position of these points does the expression

H |.’l2y—$,,|

l‘,}l-l.2,' e n
r<u

become a maximum? (Stieltjes 4, p. 441; the maximum position is the same
as in Theorem 6.7.1, obtained by replacmg n by n — 2 and writing p = q = 1.
We have (1 — z )Pf,l_lz)(:c) = const. {P.(z) — Pn._s(z)} = const. (1 — z*)Pr_i(z);
see (4.7.27).)

38. Consider n unit “masses’”, n = 2, at the variable points z;, z2, - - - , Za
in the interval [0, + =], such that

"l 2t +2) S K

where K is a fixed positive number. For what position of these points does the

expression
H |$,. - Ty |
viu=1,2,2+,n
y<p

become a maximum? (Cf. Problem 37 and Theorem 6.7.2. We have zL{",(z)
= const. {L.(x) — L._4(2)} = const. zL,(z); see (5.1.14).)
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39. Assume @ > —1, 8 > —1. With the notation of (7.32.2) we have, for
n — oo,
(T(g+ D} 7'n ifgz -4,
max |Pf.“"5)(:c) | ~ w"*n_* | a+ %|—a/2—} |f3 + % |—ﬁ/2—-} |a +8+1 |(a+ﬁ+1)/2
—1gz5+1
if -1 <¢= -1
(Cf. (7.32.2).)
40. From (7.33.10) derive
P.(cos ) — P.ii(cos 8) = lo(n™), 0 <8 = x/2
(Use
(1 — 2){Pa(@) + Pan(@)} = (n + 1){Pua(z) — Pun(2)}
(see Problem 17) and (7.33.9).)
41. We havefor0 < § < =
(sin 6)} | Q. (cos ) | < {n/(2n)}%.

The constant (x/2)! cannot be replaced by a smaller one. (See Hobson 1,
p. 309, where the bound (x/n)! is obtained; compare Theorem 7.3.3, and Prob-
lem 18.)

42. Let f(z) be an arbitrary =, , non-negative for all real values of z, and let

+o0
/ e_’zf(:c) dz = 1.

o0

Then

35 C@m+1) o,
24---2m — "

(Use Theorem 1.21.2, (7.71.2), (5.5.9), and (5.5.5).)
43. A mean-value theorem for polynomials. Let f(z) be a s . Then

J) — fla) = (b — a)f'(®),
where £ is a proper point in the interval
Ha+b) - b -am=t=<3ia+d)+ 30— o).

Here z; denotes the greatest zero of the Legendre polynomial P.(z). (Tchaka-
loff 1; use (3.4.1).)
44, Derive the formula of Lipschitz

max f(0) = =} m = [n/4],n — «.

/ e Jobt) dt = (a® + b)), a>00b>0,
0

from the generating function of the Legendre polynomials, that is, from (4.7.23)
for A = 3. (Write w = ¢*", z = cos (b/N), a and b fixed, N — «, separate
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2 mmo Pr(z)w™ into m < N and m > wN (w a fixed positive number), and
use (8.1.1) and (7.3.8).)

45. Derive (5.4.2) from (5.1.9) by writing z = a/N, w = e™'", a and b fixed,
5> 0,N— +o. (See Problem 44; use (8.1.8) and (7.6.8).)

46. New proof of the asymptotic formula (8.22.4) of Hilb’s type for Laguerre
polynomials. From the generating function (5.1.9) we obtain

1-)
L) = / exp{—’f i——+ w} 1 - w™ " w™"  dw
+

217 o 21 ~w
) —
= 2—}-—1” exp {—-g i—m——t Z_} (1 — e e™dz
1 o+)

= 57 | e g (x, 2) de,

where ®(z, z) is regular in |z | < 2x. If we develop ®(z, z) in a power series
in 2, the resulting integrals can be reduced to Bessel functions (Watson 3, p. 176,
(1)). (This argument furnishes not only (8.22.4) for an arbitrary real «, but
also an asymptotic expansion of Hilb’s type whose terms are Bessel functions;
see Wright 1. This is the analogue of Szegé’s argument used in 16 for Legendre
polynomials.)

47. Let a be real, but different from zero. The infinite series

o0

E n—)\ eianl/2

nm=]

is convergent if A > }, and divergent if A £ 1. (For A > 0 the convergence of
the series is equivalent to that of the integral [T z*¢™*'’* dz.)

48. The polynomial sa(a, 2) (see (11.3.3)) admits the following representation,
in which the notation of §11.1 is used:-

€ C1 "' Copp1 C_q 1
(] Co ctr Cong2 Copp1 @
—1
s”(a’ z) — _D” ........................... .
=7
Cn Cp-a 51 Co
—1
1 =z 2" 20

(Cf. Problem 4.)

49. Second proof of Theorem 11.4.1 on the zeros of s.(a, z). Use the argument
of Problem 5.  (If 2 is the zero in question, and (z — 2)/(z — a) = #, the image
of | 2| = 1 contains 2’ = 0.)

50. Theorem 11.3.3 on the convergence of D ey |$.(2) |% | 2| < 1, isnot true
if the weight function f(6) is such that log f(6) is not integrable in Lebesgue’s
sense. (Letf(6) = Ofor —e < § < +¢,and f(6) = 1fore < 6 < 2r — ¢ and
apply (16.4.2). In this case | 4,(0) /" —> R, R > 1.)
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51. Let f(6) be a weight function on the unit circle, —x < § £ +, for which
§i7 log f(6) 9 exists. Assume p > 0, and let u, = ,u,.(f ; ?) be the minimum of
1

+n
~ [0 100 o, —

where p(z) = 2" + ... is an arbitrary =, with the highest term z”. Then

1 [+
lim (3 7) = exp {2 / " log 1) do} — 6.

(This is a generalization of (12.3.3); see the argument used there.)
52. Let kno be the highest coefficient of the orthonormal polynomial p.(z)
associated with the distribution de(z) on the finite interval [a, b]. Then

ko > 2770 — @)™ { / b da(z)}_}.

(Cf. Theorem 12.7.1; Shohat 2, p. 575, (24). Use the extremum property of
Theorem 3.1.2, choosing p(z) = 2'7"(b — a)"T.{2(z — a)/(b — a) — 1}.)

53. Use the notation of Problem 52. Let [a’, b'] be a subinterval of [a, b]
such that a(z) is constant in [a’, b’]. Then two positive constants 4, B exist,
B > 4/(b — a), such that k., > AB". (Cf.Shohat 2, p. 577. Use the extremum
property of Theorem 3.1.2, and choose for p(z) the “Tchebichef polynomial”
corresponding to two disjoint segments in the sense of §16.2 (5).)

54. By use of the notation of §12.7 (1) we have, under the assumption of
Theorem 12.7.1,

2m)? (=™ PR AP e even
w27 007
kny =~
4 (=D b s
(2 ) ‘(—“:—W'é— 2 n do dl, v Odd

Here v is fixed, n — ». If d; =0, the second formula is to be read as follows:
lim,—w 272%™k, = 0. (See the special cases in Shohat 2, p. 577. Use
Theorem 12.1.2 and observe that on putting

Ml 4+ 1 — 2 =1 oy v

we have v, =~ (2*!)7(=n)’, v fixed, n — =.)
55. In case of the Jacobi polynomials

PP = 157 2" + 1572 + -
we have, v fixed, n — «,

_1y2 —1/2
lny ~ 1r-} (( /12)), n—v+a+ﬁn(v—1)/2’ (Ot _ B) —% [(( 1)1)/2 2n—v+a+ﬁnvl2—- ,
14 :

according as v is even or odd. In the second case we assume a # B. (See
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Geronimus 1, p. 380; usc the result of Problem 54; in this case we have dp =
2~(a+ﬁ+1)/2’ dl — (B _ Ot) 2—(a+5+1)/2.)

56. With the notation and assumption of Problem 54 we have

kn2

= —n/4 + ¢+ e, lim e, = 0,

kn() n—+w

where ¢ is a constant. (Cf. Shohat 2, p. 577. Use the same argument as in
Problem 54.)

57. Let L(z), » = 1, 2, --. ,n, be the fundamental polynomials of the La-
grange interpolation with the zeros of T'.(z) as abscissas. Then if k is even,

/_:1 L@, (x) - 1,@0 - 2Htde = 0.

Here v, v, -+, » are distinct integers between 1 and n. (E. Feldheim 1;
{T.(x)}*", z = cos 6, is a cosine polynomial not containing terms with cos »8,
v < n.)

58. In the ultraspherical case « = 8, —1 < @ = 8 < 0, we havefor —1 < z
< +1 (notation as in Problem 57)

@ + LY+ -+ L@ = ]

(For « = —1 see Fejér 13, p. 5. Use Problem 59 and the first identity in
(14.1.11).)
59. In the ultraspherical case « = 8 > —1 we have (cf. (14.5.2))

1—2(a+ D2z, + (2o + Day

L) =
(z) 1 — 22

I
I
—
IA
8
IA
+
—

60. In the Legendre case we have

3r
> 2 __ " -1 < .
v,(z) 2 tan e T ) 1=z +1

(Cf. Fejér 13, p. 23. Use (6.6.5).)
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61. Prove the following identities:
Py (z) = 2n + 1)aPg4 (222 — 1),
zP,(2) = nP,(z) + (2n — 3)P,_s(x) + @n = Puy(z) + -,
(I = 2P/ (x) = —n(n — 1)Pa(x) + 2(2n — 3)P,—2(x)

+2@2n — 7)Pou(z) + - .
62. Prove:

P (z) = Un(z);

-z if n

Il
p—
-

/P,._l(t)dt if oo

63. Prove the formula:

+1 ) 1 (n+2)! T@E+1)
/.1 Do dn = o T T ¥y = 0L2

64. Prove the identity

+1
/ Pa(x)e=?=dx = (2 /M .y (V).

-1

(Use Problem 63 and (1.71.1).)
65. Prove that
+t= 2m)HPa(z) if —1<z <1,
/ ey = |ETEE) i
— l 0 if z>1lorz < —1.

(Use Problem 64 applying Fourier’s inversion formula.)
66. Prove the identity

S (n\PP() w2 P+ 20y + 42z + y))
2:6 (V) PO (1) y = (1 + 2zy + y2)~2 PO )

in particular the identity

n

2. (7:) P,@)y~ = (1 + 2zy + y®)"*P,{ (1 + 2zy + y2)~}(z + y)].

v =0

(Use (4.7.23).)
67. Prove the identity

n Lga) Lgx) + 1)t
2 () ot = o BUGER

387
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(Use (5.1.9).)
68. Prove the identity

?::o (:f) H.(@2)@y) = Ho(@ +v).

(Use (5.5.7).)
69. Let z be a parameter, —1 <z < +1. The zeros of the polynomial in z:

Po(z) + (7;) Pi(x)z + (g) Py(x)z* + -+ + P.(z)z"

are all real.
(Use Problem 66.)
70. Prove Turan’s inequality

{Pa(x)}? — Ppoy(x)Pryr(z) 2 0, —-1=z= +1.

(Turan 1, see also Szego 22, Karlin-Szego 1 and Csordas-Williamson 1.) If
a, and a, denote the first and second elementary-symmetric function of n

real numbers, we have:
(al//n)2 = az/(Z) .
(Use Problem 69.)

71. Derive from Problem 66 the generating series (4.10.6) and, in particular,
(4.10.7). (Puty = n/z, n — «;use (8.1.1).)

72. Derive from Problem 67 the generating series (5.1.16). (Put y = n/z,
n — o ; use (8.1.8).)

73. Prove the following formula of the “Rodrigues type’’:

1) a\"

—zpaf (@) = (_______ nt+l | 2 —1/tf—a—1 —
e~z L (x) o ¢ (dt) (e~ ), xt = 1.
(Use Taylor’s formula and (5.1.9).—In the special case o = 0 this is due to

G. Pélya, 1941.)

74. Let {u,} and {v.} be two sequences;n = 0,1,2, --- . One of the relations
o (n + « v _~(nta Y
u"—;,<n——u)( 1),; v,.—Z%(n__y)( 1)u,

implies the other.
75. Using Problem 74 and (5.1.6) prove

Z_ 5 (" + "‘) (— 1)L ().

nl = \n —v
76. Let u, and v, be two sequences; n = 0, 1,2, --- . One of the relations
In/2l (— 1) m/2) |
U, = ] Un—gy, Up = —f Up—2v
v=0 v. v =0

implies the other.
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77. Prove the identity:

@o)r W1 Ho,(z)
n! v (= 2!

(Use Problem 76 and (5.5.4).)
78. Prove the following identities:
v+ 2y + 20+ Dy =0,  y = e?H, ()

* — 2 —_ - Hv (x)
t/2dt= by 1\ 2v4+1
/Oe 67 25 (=) @ + Dyl

lim (-’4) H, (—“—) = 1,
now \N 2y

(Use (5.5.4). Cf. P. Turan, Matematikai Lapok, vol. 5 (1954), pp. 134-137.)
80. Prove that

Iim o™ 2LP (edx + @) = (= 1)"2-"2(n)~\H ,(27}x).

o~ ©

79. Prove that

81. Let {pm(z)] be the orthonormal polynomials associated with the distribu-
tion da(z) In 0 = x < +o. Denoting by &, &, -+, & any zeros of pn(z) we
have

f@) = / e (& —x) - (Br — )] Hpm(x) ) 2dalx) > 0, t> 0.
0
(See Karlin-McGregor 1, pp. 507-509. Since f(0) = 0, we have
et = [t 0 e 0 @] da(e) = o0
0

t
ft) = e‘fk‘/ e o (1) dr. Induction.)
0

82. Notation and assumption as in Problem 81, p,.(0) > 0 for all m. Prove
that

/w e D (2)pa(x) da(z) > 0. t > 0.
0

(See Karlin-McGregor 1, loc. cit. Let m > n. We represent p, () by Lagrange’s
interpolation formula corresponding to the abscissas &, -, &, chosen as
in 3.3 (6); use Problem 81.)

83. Let {p.(x)} be the Poisson-Charlicr polynomials (2.81, sgn p,(0) =
(—1)"). Wehave, A > 0, m = n, j(z) asin (2.81.1),
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ée‘“j(x)pn(x)pm(x)

= exp [a(e™ — 1)]at™m™ (m]/nl)} 5: (n) (e~ — 1 )ntm—2 (aer)~
14

b =0 (m —v)!~

84. Let X\ > —3, A # 0. Using the notation (4.9.21) we have

+1
/ (1 = 22APP () PR ()P (x) dar

1

+1
— [6 2[4 PRGN o PN / (1 . xz))\—-g {PQ\) (x) } 2 dx.

6.4 1

provided that [ + m + n = 2s is even and a triangle with sides I, m, n exists.
The integral on the left is zero in every other case. (Cf. (4.7.15): cf. Hsii 1.)

85. Let {,(x) have the same meaning as in (2.8.1); we have then
(z) = (= 1D"(N—1—uz).

Here n and z run over the range 0,1,---, N — 1. Prove also that

tn(N—l)=n!<N——l> :

n
86. Let p,(z) have the same meaning as in (2.81.2); we have then
pa(0) = (— D)™a"/n)* = (= 1)"e*/*(j(n)) "
Prove also that, writing p.(z)/p.(0) = c,(z,a), we have
cu(z3a) = c.(n;a).

87. Writing H,(z) = H, we have

° 2%alply!
“H,H;H, dx = x'*
j:me a 3 b T Ll (s——a)!(S‘ﬂ)!(s—v)!

provided that.« +8-++ =2s is an even integer and sZ«a, s=8, s=7.
In all other cases the integral is zero.

88. Prove that
n 2
lim n! ( - —y-2-> L (5‘—> =,
- n y

89. Prove the following identities:
LP(z) =y, (e2**'y")’ + ne *z°y = 0;

e 2L (z) =h, zh” +h + (n + 2 ; x) h=0.
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90. Prove the identity

LEttt(x 4y) =3 L4(x) LP(y).

k=0
91. Obtain the estimates
) neP= 2u <ap —2+p/2,
ﬁ (1 —x)*| P&*?(x)| Pdx ~{ nP2ogn, 2u=ap—2-+p/2,
n?? 2u>ap —2+p/2,

where «, B8, u > —1 and p >0 are fixed. (See (7.34.1).)
92. Prove that

_lssin(n+1)0 S\/é., Isosr——’—r,
3 (n+1siné — 9 n- n
_L_sinlntDo 17 _, T
3 (n+lsind 5 n~— T2

and show that all the bounds are obtained for some 8 and n. (Use (7.8.1) for
P’Sl/2,l/2)(x)/P’gl/2,l/2)(1).)
93. Prove that

>
E—x—%(l——x)""(l—l—x)'ﬂ>0, —1<x<l,a,820, |

and
2n

mx_"ex>0, x>0,a20.

(Use Theorems 6.72 and 6.73. These results were conjectured by 1. Joob.)
94. Prove that

(= Dkame f L (x) L (2) L& (x) x%e “dx 2 0, a> —1, k,m,n=0,1,---.
0

(Use (5.1.9).)
95. Prove that

n+m

Do) pm(x) = D a(k,m,n)py(x) |

k=|n—m| |
with a(k,m,n) =0 if p,(x) satisfies
pl(x)pn(x) =pn-+l(x) +anpn(x) +6npn—l(x), n= 17 2, tt

where @, 20, $.>0, apni1Z n Buy1Z B B =12, ., polx) =1, py(x) =
x +a. (Askey 4. Use induction. This contains Problem 94.)
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96. Prove that
Py(x) + Pu(x) S 1+ Py(x), 0=xs1,
when n(n+1) =k(k+1) +m(m +1). Also show that
Jo(x) +Jo(y) =14 Jy(2)

when x? +y%=2% Griinbaum 1, 2, Askey 7
97. Ifz;:’:oa,% is finite, « > —1, and if

- n'L“”(x)L“”(y)
g +a+1) =0? Oéx,y<°°,

prove that
.1
a, =] x"du(x),du(x) = 0. (Sarmonov 1.)
0

98. If aym are defined by

1 Z mtn
T DY S O Y s i R v e M L

show that

Apmn = ﬁ Ly(x) L,(x) L,(x)e 3dx.

to o~ Li¥(x) L (x) L (x) x%e 3"dx a2 — % (Szegd 26, Askey-Gasper 3.)
99. Prove that '

Then use Problem 84 for A = 1 and (4.5.4) to show that @pn, = 0. Generalize

f (%) = Ho(y)e ™ Ydxdy = 0, k=1,2, ---,

for all choices of plus and minus signs and any choice of integers n;. (Use
(5.5.11) and Problem 87. See Ginibre 1.)
100. Show that

n

2'n1 > (—D'Li2x +25) = > ( Z) [Hy(2) [ Hy (9]

k=0

and in particular that

23" (— DHLy(20) _‘"f”___L')._.. [Hooi(0) ]2
k=0 j= —0 J 1N 20! "

Extensions of this sum to P{*%(x) are given in Askey-Gasper 4.
101. Show that
rn+4a+1) & (2k) ! (2n — 2k)!

(2a)
2?‘"n! b= ok'[n—k)'] k+a+1) 2x)

[L(x)]* =

This formula of Howell is given in Bailey 2.




APPENDIX

ON A SINGULAR CASE OF ORTHOGONAL POLYNOMIALS

In recent publications F. Pollaczek (1-4) has introduced certain remarkable
generalizations of the Legendre and other classical polynomials which should be
treated in this Appendix in a brief way. The polynomials of F. Pollaczek show
in many respects a singular behavior. For a short treatment of this topic we
refer to Bateman Manuscript Project 1, vol. 2, pp. 218-221. Cf. also Szegé 24.

1. Definitions and formal properties
Let a and b be real parameters, a > |b|. We write

acosf +b

(1.1) hO) = —5sns

and define the polynomials P,(x; a, b) = k.x" + - -« by the generating function

[z, w) = f(cos 6, w) = > P.(z;a,b)uw
(]2) n=0
= (1 — wew')—Hih(o)(l — we—if)—i—ik(®)

or, in another form:
(1.3) flz,w) = (1 — 2zw + w?)~}exp {(ax +b) > %—n Um—1(x)}
m=1

where U, has the same meaning as in (1.12.3). The polynomials P.(z; a, b)
reduce to the Legendre polynomials in the limiting case a = b = 0.
The following identities are easy to establish:

(1.4) P.(z;a,b) = (=1)"P.(—=z;a, —b),
(]5) Pn(ly a, b) = Ln(_'a _b)) Pn(_ly a, b) = (_l)nLn(_a +b)
where L.(x) = LY (z) is Laguerre’s polynomial (Chapter V). The highest

coefficient k, of P,(x; a, b) can be obtained by replacing w by w/z in (1.3) and
taking x — «. We find

N S WP
(1.6) k,=2 < n )_:2 CICES)) as m— «,

The following recurrence formula holds (cf. Bateman Manuscript Project,
loe. cit.):
nP,(z;a,b) = [(2n — 1 + 2a)x + 2b)P,._i(x; a, b)
—(n — 1)P,_2fx;a,b), n=2234,---.
393

(1.7)
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Here Py =1, P, = (2a + 1)x + 2b.
We have the important relation of orthogonality (cf. Szego 24):

(1.8) /:1 P.(z;a,b)Pn(z;a,b)w(z;a,b)dxr = (n 4+ 3(a + 1)) um,
nm=012 -+,

where the weight function is defined by

(1.9) .w(cos 6;a,b) = e?—mr® [cosh (wh(6))] .

We note that

(1.10) w(cos 0;a,b) = 2exp {(a +b)(1 — n/6)} as 06— +0.

The behavior of w is similar as 6 — = — 0.

The following representation in terms of the hypergeometric function holds
(Bateman Manuscript Project, loc. cit.):

(L.11) P,(cos6;a,b) = e™F(—n} + 1h(6); 1;1 — %),

2. Generalization

Let A be real, A > —1. We define the polynomials P$’(z; a, b) by the gener-
ating function

(2.1) i P¥(x;a, b)w = (1 — 2zw + w?)~> exp {(a:c + b) i %; Um_1(:v)}.
n =0 m=1

For a = b = 0 we obtain the ultraspherical polynomials P{®(z). The case
dealt with in 1. corresponds to A = 3. The polynomials P’ (z; a, b) are orthog-
onal in —1 £ r £ 1, x = cos §, with the weight function

(2.2)  wM(z;a,b) = 7121 DRO) (sin 0)2-1T (A + h(6))[%

Concerning a recurrence formula and a representation in terms of the hyper-
geometric function, see Bateman Manuscript Project, loc. cit.

3. Integral representations

The following generalizations of the Laplace integral (4.8.11) and of the Mehler
integrals (4.8.6) and (4.8.7) hold (Novikoff 1):

P.(cos0;a,b) = x e~ 2*® cosh (wh(6)) / exp {2ih_(0) log ctg é}
0

3.1)
- (cos @ + tcostsinf) "1 dt
= ¢~ %%® cosh (wh(8))
6+t
9 [ sin —5—
(3.2) - - / cos{ (n + %)t — h(8) log =————
T Jo . 60—t
sin

- (2cost — 2cos 0)} dt
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= e(x=9h® cosh (rh(9))

. t+6
9 [r sin —
(3.3) '—/ sin< (n + $)t — h(9) log ———
T Jo sint — 0
2
- (2cos 8 — cost)tdt.

In these formulas 0 < 6 < 7.

4. Infinite interval

Pollaczek (3) defines another remarkable class of polynomials P (x; «) by the
following generating function:

(4.1) > PP (x;a)uwr = (1 — we'l*)~Miz(] — qeia)-r-iz,
n =0

Here 0 < @ < wand X > 0. These polynomials are orthogonal in the interval
— o <z < « with the weight function

(4.2) 7712 sin a)P—le=(r=2a)z| (X + 4z)|%

Laguerre polynomials appear as a limiting case. Indeed, replacing z by z/a
and assuming a« — 0 we obtain

lim (1 — we*)™(1 — we=i)~> exp {E log 1 = weir
¢4

a0 1 — we=i=f
- _ -2\ w
(1 — w)2exp <2x T w)
so that, cf. (5.1.9),
(4.3) lim PP (x/a;a) = LB (—22), B =2\ — 1.

a—0
[t is also clear that the polynomials in 2. arise from P (z; «) as follows:
(4.4) PP (R(6);0) = PP (cos 8;a,b).

5. Asymptotic properties

(a) By means of the generating function (1.1) it is not difficult to obtain an
asymptotic expression for P,(r;a,b) when n — . We may use Darboux’s
method (§8.4).

First let x be outside of the closed interval [— I, +1]. Writingz = 3(z + z™1),
z = e 30 > 0, we find :

P.(x;a,b) = {T(} 4+ ih(8))}~1(1 — e2i0)~t+ir®

(5.1) . p=inbpy=}+ih(d) <1 + 0(%)) .

It is not difficult to extend this to an asymptotic expansion. Now let
—1 <z < +1; forming the real part of the right-hand expression in (5.1),
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the asymptotic formula for 3P,(x; a, b) arises. Finally, in view of (1.5) we
find from (8.22.3)

(5.2) P.(l;a,b) = jrte it (g + b)~tn~t - exp {2(a + b)int}.

(b) Novikoff (1) investigated the asymptotic behavior of P,(cos (tn~t);a,b)

where ¢ > 0 is fixed. His principal results are as follows:
P.(cos (tn¥);a,b) = snt(a+ b — t2)texp (—i(a + b))

- n- exp {n* (’2’ atb, x(t))} (1 + 0(%))

(5.3)
Ait) = axt — atb arc tg a,,
a, = t7a + b — 2)}, 0<t< (a+bd)
P.(cos (tn*);a,b) = »4(t? —a — b)~texp (—3(a + b))
b 1
- n~texp {n* <72r ot )} . {cos C—; — n*u(t)> + O(;)} ,
(5.4) P
M(t)=alt_a2t 10g1i217

=Nt —a—b)Y, t> (a+ b

From (5.3) and (5.4) interesting conclusions can be drawn about the “‘extreme’
zeros of P,(x; a,b). Let us denote the zeros of these polynomials, as in Chap-
ter VI, by cos 8, where 0 < 8, <80, < --- <8, < =n; 0, =0,,. Then, for any
fixed value of »,

(5.5) lim n!0,, = (a + b) .

n-—

6. Associated orthogonal polynomials

(a) We consider the system {¢.(2)} of polynomials which are orthogonal
on the unit circle |z] = 1 relative to the weight function

(6.1) f(8) = w(cos 0)]sin 6];

here w(z) has the same meaning as in (1.9). These polynomials show also in
many respects a singular behavior.

The relation to the Pollaczek polynomials can be established by means of
the formulas (11.5.2):

o (z) | = <2> {1 n 4)2"2(0)} (@)

(6.2) | , o
2'"+1¢2n—1(z)J + 3(z — 271 (g) {1 + ?%} gn1(T).
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We have p.(z) = {n + §(a + 1)}!P.(z; a, b) [cf. (1.8)]; the system {g.(x)} is
orthonormal with the weight function (1 — z?)w(z). Moreover, k2, denotes
the (positive) highest coefficient of ¢1.(2). Between x and z the relation
z = 3(z + z7!) holds.

(b) Let |2| < 1. We investigate the asymptotic behavior of the polynomials
dn(z)asn— . Letzs0,z=e¢" 30 > 0. We rewrite (5.1) in the form

6.3) pa(x) = A(x)n+®zn <1 + 0(}1)),
A@) = {TG + h(0))] (1 — 1)+,

Now the polynomials {q,(x)} can be represented in terms of {p,(x)} by using
Christoffel’s formula 2.5, taking (1.5) into account. Thus

P, i(z;a,b) Pa(z;a,b) Pnpi(z;a,bd)
(1 — 2%)qu—1(x) = const. Loy L, Ly ,
Ly, —-L, Loy
L,=L,(—a —=b), L, = L.(—a +b).
Denoting the latter determinant by A,(xz) we find by an easy calculation:
(1 = 2)qn-1(x) = (LurL} + LuLn 1) (LaLyyy + Loy Ly)™

kao_1\?
.<w>gn-1+%w+wﬁmwl

kn+1

Using (1.5), (8.22.3), and (1.6) we obtain

(1 — 22)qn_s(x) = LA (x)nir®zn=1

(6.4) . {(1 4 *2‘ f') 224 (e — €)z — (1 - ¢ ; ‘)}(1 + 0(%»,

e = (a4 b)in € = (a — b)in.

(¢) From (6.3) and (6.4) we conclude, since 1 — z2 = — (1 — 22)%(2z)7%,
be— e g®) _ 1 f{ L et ),
(6.5) Px() “r—a Ut )?

om0l

Denoting by ki, = {n + 4(a + 1)}, the coefficient of z* in p.(z) and by
l.—. the coefficient of z*~! in ¢,_,(x), we find from (6.5) for z — 0:

(- 5)(o)
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Now the first formula in (6.2) yields:
k) [ ¢2,,(o)} ( )% f 4)2"(0)} 1
1 1 —
4)2"(0” < ){ + K2n 2~ 1 K2n 2"
so that

can = 7 (k)2 + B} - 270 = rindk, - 2 (1 et )(1 + 0(%))

(6.6) .
N 2.0 LI _ e+ € 1
“TE@r™ (1 1 ><1+0<ﬁ>>’
IO G el - T P P : 1
¢ (0) = =t CACES AT - 270 = pintk, - 2 *(e—{—e —{—0(;))
(6.7)

_ (2 ) €+ ¢ 1
“TGa@r " ( 2 +O<ﬁ>>'

In particular,

(6.8) Pl0) et ey 0<1>.

Kan n

() We obtain from (6.2), [sf < 1, in view of (6.3), (6.5), (68),
b2 (2) = < ) A(x)nlh(o){l +e +e +<1 e _Z e')

©9) A3+ )+ (=)= (1 e+ e'))}(l +0<%>>

" 4 —_ 2Ya(z) /
- (5) Lo e + 01 +2) + @ = b1 = ) (1 +0<%)),
e+ ¢

i ’
i = (3 s (459

(6.10) ARt o e)e (- det e’))}(l - 0(1))
— 2 n

_ (g) %')‘_”nw ((@+ b} +2) — (a—bP( —2)] (1 + 0(%))

where we set for abbreviation:

b(a = 3) + bz + 3(a + 3)27

a(e) = bet ,
La+1)+bz+ @ — 1)z
(6.11) B(z) = 2@+ 1) liz/(a 2

1(2) = 2(a_1)+1bi_; (a+1)z
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The argument of the I'-function can be written as follows:

al+ 2* 2 1
+b——7+§

(6.12) B(z) = 51— 5 =

and the real part of this expression is >4 for |z| < 1. Hence the function 1/T
is never zero in |2| < 1. The only point of accumulation of the zeros of the poly-
nomials {¢n(z)} in |2| < 1 is the point

_(a+b)} —(@a—b)} _ (a* =0 —a
@+ b} + (a—b) b

appearing only for m = 2n — 1.
The exponent y(z) of n has a real part > —}. Hence the series ) _|¢(2)|?
is divergent for all lz| < 1. In particular,

b2n (0)1
¢2n-1(0)j

= (3) v+ D)+ 2 @ - o (140(2)).

(6.13)

Taking (11.3.6) into account, this yields again the main term of (6.6).

(e) Recapitulating, we may point out certain properties of the Pollaczek
polynomials which indicate a rather singular behavior compared with the clas-
sical polynomials.

The weight functions w(z) or f(8) in Theorems 12.1.1 and 12.1.2, respectively,
are such that log w(cos ) and log f(6) are integrable. The weight function w(x)
of the Pollaczek polynomials vanishes at the endpoints x = 1 so strongly
that log w(cos 8) is not integrable [cf. (1.10)].

The normalized Jacobi polynomials are at £ = 1 of the order ne+! and
nf+t respectively. The orthonormal Pollaczek polynomials at r = 21 are of
order nt exp {2(a + b)int} [cf. (5.2)].

The Toeplitz minima u,(f) (12.3) associated with the weight function f(6) tend
to a positive limit under the assumption of Theorem 12.1.1. In case of the poly-
nomials discussed in 6. this limit is zero; the weight function defines a ‘‘determin-
istic” process. We have in this case: u.(f) = k72 ~n-°. Let f(6) =0 in a
certain interval, say —e < 0 < 4+¢, 0 < e < 7 and f(6) = 1 otherwise. We
have then again u.(f) — 0, and, more precisely, u,(f) ~r", r < 1; cf. (16.4.3)
and Problem 50.

The orthonormal polynomials defined in Theorem 12.1.2 are asymptotically
of the order (x + (x? — 1)})"if x is not on the cut [—1, +1]). The Pollaczek
polynomials are under the same condition of the order n®(z + (z* — 1)H"
where K is a function of z. A similar discrepancy arises if z is on the segment
[—1, +1].

For the “largest’’ zeros cosf,, 0 < 8, < =, 6, = 6,(n), v fixed, n — =, of the
Jacobi polynomials we have 6,(n) =~ n~Yj, where 7, is the corresponding zero of
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an appropriate Bessel function; see (6.3.15). The similar zeros of the Pollaczek
polynomials satisfy the relation 6,(n) = n~t(a + b)}, see (5.5); the order of
magnitude is different and the constant does not depend on ».
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