1. For given $\varepsilon > 0$, we say that a graph G on n vertices is ε-far from satisfying a property \mathcal{P} if one needs to add or to delete at least εn^2 edges to turn it into a graph satisfying \mathcal{P}.

For given $\varepsilon > 0$, using the triangle removal lemma to design a (simple) randomized algorithm to test if a graph G is ε-far from being triangle-free with confidence level 0.999 (i.e. we are 99.9% sure that the output is correct).

2. (a) Assume that X_1, X_2, X_3 are disjoint vertex sets in G with x_1, x_2, x_3 vertices respectively. Assume furthermore that the graphs $(X_i, X_j), 1 \leq i < j \leq 3$ are all $\frac{1}{2}\varepsilon^2$-regular with density $d_{ij} \geq 2\varepsilon$ respectively. Let N denote the number of copies of K^2_3 in G (the complete tripartite graph with two vertices on each part). Show that

$$N \geq c(x_1 x_2 x_3)^2,$$

where c is a constant depending on ε, and x_1, x_2, x_3 are sufficiently large.

(b) Deduce from here the Erdős-Stone theorem for $H = K^2_3$.

3. Let $(a_{ij})_{1 \leq i,j \leq n}$ be an $n \times n$ doubly stochastic matrix (i.e. $a_{ij} \geq 0$ and $\sum_{1 \leq k \leq n} a_{ik} = \sum_{1 \leq k \leq n} a_{kj} = 1$ for all i, j). Show that A is in the convex hull of the $n \times n$ permutation matrices (i.e. $\exists \lambda_1, \ldots, \lambda_m \geq 0, \lambda_1 + \cdots + \lambda_m = 1$ such that $A = \lambda_1 P_1 + \cdots + \lambda_m P_m$).

4. (a) Prove that if \mathcal{F} is a family of subsets of $[n]$ such that for any $A \neq B \in \mathcal{F}$ neither $A \subset B$ nor $B \subset A$, then

$$|\mathcal{F}| \leq \binom{n}{\lfloor n/2 \rfloor}.$$

(b) Use this to deduce the following: assume that $a_i \in \mathbb{R}, 1 \leq i \leq n$ with absolute value at least 1. Let $I \subset \mathbb{R}$ be any open interval of length 1. Then among the 2^n sums $\sum_{i=1}^{n} \epsilon_i a_i$, $\epsilon_i \in \{-1, 1\}$, there are at most $\binom{n}{\lfloor n/2 \rfloor}$ sums belong to the interval I.

5. Can you construct a directed graph $G = (V, E)$ together with a capacity function on its edge such that the augmenting path algorithm (for finding a maximum flow) might not terminate?