
LINEAR ALGEBRA METHOD IN COMBINATORICS

1. Warming-up examples

Theorem 1.1 (Oddtown theorem). In a town of n citizens, no more than n clubs can be
formed under the rules

• each club have an odd number of members
• each pair of clubs share an even number of members.

Proof. It is enough to show that the incidence vectors vi are linearly independent over F2.
To prove this, one just observes that 〈vi, vj〉 = δij over F2. �

Theorem 1.2. The same conclusion holds if we reverse the rules:

• each club have an even number of members
• each pair of clubs share an odd number of members.

Let a1, . . . , am be points in Rn, it is clear that if all the pairwise distances d(ai, aj) are
equal, then m ≤ n+ 1. Now assume that d(ai, aj) can take two values, then how big m can
be?

Theorem 1.3 (Two distance). Let m(n) be the largest number m can take, then one has

n(n+ 1)/2 ≤ m(n) ≤ (n+ 1)(n+ 4)/2.

Proof. The lower bound can be obtained by considering (0, 0, . . . , 0, 1, 0, . . . , 0, 1, 0, . . . , 0).
For the upper bound, assume that the distances take values δ1 and δ2. For each 1 ≤ i ≤ m,
we define the polynomials fi : Rn → R:

fi(x) := (‖x− ai‖22 − δ21)(‖x− ai‖22 − δ22).

Notice that fi(ai) 6= 0 and fi(aj) = 0 for all j 6= i. Because of this, fi(x) are linearly
independent over the linear space generated by {(

∑n
k=1 x

2
k)2, (

∑n
k=1 x

2
k)xj , xixj , xi, 1.}

�

Similarly, one also has
1
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Theorem 1.4 (s-distance).(
n+ 1

s

)
≤ m(n, s) ≤

(
n+ s+ 1

s

)
.

Our next example is on the decomposition of Kn into complete bipartite graphs.

Theorem 1.5. If the edge set of the complete graph on n vertices is the disjoint union of
the edge sets of m complete bipartite graph, then m ≥ n− 1.

Proof. For each complete bipartite graph (Xk, Yk), we assign an n× n matrix Ak in which
aij = 1 if and only if i ∈ Xk and j ∈ Yk. It is clear that S =

∑
Ak has the property

that S + ST = J − I. We next claim that r(S) ≥ n − 1. Indeed, otherwise there exists
x = (x1, . . . , xn) with x1 + · · ·+ xn = 0 and Sx = 0. Thus STx = −x, and so 0 = xTSTx =
−‖x‖2. �

Here is another example using more spectral properties.

Theorem 1.6. Assume that G is r regular graph with r2 + 1 vertices and with girth 5, then
r ∈ {1, 3, 5, 7, 57}.

Proof. One first observe that for any vertex-pair (v1, v2), |N(v1) ∩N(v2)| = 1. This moti-
vates us to consider the adjacency matrix A. It has the following properties:

• A2 = rI + Ā
• I +A+ Ā = J .

From here, it is not hard to show that either r = 2 or s4 − 2s2 − 16(m1 −m2)s = 15 with
r = (s2 + 3)/4. Thus r ∈ {1, 3, 7, 57}. �

2. Set systems with restricted intersections

Theorem 2.1 (Non-uniform Fisher inequality, Majumdar 1953). Let C1, . . . , Cm be distinct
subsets of [n] such that for every i 6= j, |Ci ∩ Cj | = λ for some 1 ≤ λ ≤ n. Then m ≤ n.

Proof. If suffices to assume that |Ci| > λ for all i. Let M of size m × n be the incidence
matrix of our system, then

MMT = λJ + C,

where C is a diagonal matrix of positive entries. It is easy to check that MMT is positive
definite, and thus M must have full rank. �

Remark 2.2. Fisher’s original result (1940) was for λ = 1 together with uniformity as-
suming on the size of Ci’s. This uniformity condition was then relaxed by Erdos and de
Bruijn (1948), and generalized by Bose a year later by a linear algebraic method argument.
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It is perhaps useful to summarize the algebraic techniques we have used so far:

Proposition 2.3 (Matrices). • If M is positive-definite, then it has full rank.

• If A,B has size a× b and b× a respectively, and if rank(AB) = a, then a ≤ b.

• If A,B are matrices of the same size, then rank(A+B) ≤ rank(A) + rank(B).

• Spectral decomposition for normal matrices (symmetric matrices).

Proposition 2.4 (Criteria for linear independence). Let fi : Ω → F, 1 ≤ i ≤ m be func-
tions. Then they are linearly independent over F if one of the following holds for some
ai ∈ Ω, 1 ≤ i ≤ m.

• (diagonal) fi(aj) = 0 if i 6= j and 6= 0 if i = j,

• (triangular) fi(aj) = 0 if i < j and 6= 0 if i = j.

Theorem 2.5 (Frankl-Wilson 1981). Let L be a set of s integers and F an L-intersecting
family of subsets of [n]. Then

|F| ≤
(
n

s

)
+

(
n

s− 1

)
+ · · ·+

(
n

0

)
.

Proof. Arrange the set size in increasing order |A1| ≤ |A2| ≤ · · · ≤ |Am|. Let vi be the
indicator function of Ai, define fi : Rn → R as follows:

fi(x) =
∏

|lk|<|Ai|

(x · vi − lk).

Notice that fi has degree at most s, and fi(vi) 6= 0 while fi(vj) = 0 for j ≤ i. Deform fi to

multilinear f̃i such that fi = f̃i over all vi. As f̃i are linearly independent by the triangular
criterion, m ≤

∑
i≤s
(
n
s

)
.

�

By the same method, one can obtain the following modulo version.

Theorem 2.6. Let p be a prime number, and L be a set of s integers. Assume that
F = {A1, . . . , Am} such that

• |Ai| /∈ L( mod p);
• |Ai ∩Aj | ∈ L( mod p).

Then

|F| ≤
(
n

s

)
+

(
n

s− 1

)
+ · · ·+

(
n

0

)
.

As a corollary, one deduces that
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Corollary 2.7. Let p be a prime and F a (2p − 1)-uniform family of subsets of a set of
4p− 1 elements. If no two of F intersect in precisely p− 1 elements, then

|F| ≤ 2

(
4p− 1

p− 1

)

Proof. Let L := {0, . . . , p− 2} and use
(
n
s

)
+ · · ·+

(
n
0

)
≤ 2
(
n
s

)
. �

Corollary 2.8. Let L be a set of s integers and F an L-intersecting k-uniform family of
subsets of a set of n elements, where s ≤ k. Then

|F| ≤
(
n

s

)
+

(
n

s− 1

)
+ · · ·+

(
n

0

)
.

The following celebrated result of Ray-Chaudhuri and Wilson shows that the bound can be
improved to

(
n
s

)
.

Theorem 2.9 (Ray-Chaudhuri -Wilson 1975). Let L be a set of s integers and F an L-
intersecting k-uniform family of subsets of a set of n elements, where s ≤ k. Then

|F| ≤
(
n

s

)
.

Proof. (of Theorem 2.9) One shows that the fi (from the proof of Theorem 2.5) together
with xI(x1+· · ·+xn−k), |I| ≤ s−1 are independent. Indeed, a vanishing linear combination∑m

i=1 λifi +
∑
|I|≤s−1 µIxI(x1 + · · ·+ xn − k) would imply λi = 0 (by replacing vi into the

indentity). For
∑
|I|≤s−1 µIxI(x1 + · · · + xn − k), one has xI(x1 + · · · + xn − k)(vJ) = 0 if

|J | ≤ |I|, J 6= I, and 6= 0 if J = I. �

We now present an application of Corollary 2.7.

Theorem 2.10. [Chromatic number of unit distance graph] For large n, the chromatic
number of the unit distance graph on Rn is greater than 1.13n.

Notice that the upper bound is at most nn/2.

Proof. (of Theorem 2.10) Without loss of generality, assume that n = 4p − 1 and define a

graph G on
(

[n]
2p−1

)
by connecting A to B if |A ∩B| = p− 1. Notice that d(A,B) =

√
2p in

this case. As any independent set of G has size at most 2
(
4p−1
p−1
)

according to Corollary 2.7.

The chromatic number of G is at least
(
4p−1
2p−1

)
/
(
4p−1
p−1
)
≥ 1.134p−1. �

Theorem 2.11 (Kahn-Kalai’s disproving of Borsuk’s conjecture). Let f(n) denote the
minimum number such that every set of diameter 1 in Rd can be partitioned into f(d)

pieces of smaller diameter. Then f(d) ≥ 1.2
√
d.
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Proof. For each A ∈ V (G) from the proof of Theorem 2.10, we define Φ(A) ⊂ 2X with

X =
(
[n]
2

)
as follows:

φ(A) = {{x, y} : x ∈ A, y ∈ Ā}.

One checks that

(1) F = {φ(A) : A ∈ V (G)} is k(n− k) uniform, with k = 2p− 1.
(2) Assume that |A ∩ B| = r, then |φ(A) ∩ φ(B)| = r(n − 2k + r) + (k − r)2, which is

minimized when r is as close to k − n/4 = p− 3/4 as possible, i.e. when r = p− 1.

It follows from (2) that G and φ(G) is isomorphic, where φ(G) is the graph over φ(A), A ∈
V (G), and φ(A) is connected to φ(B) if their distance is the diameter µ(F) of F .

By the proof of Theorem 2.10, with d =
(
n
2

)
,

χ(φ(G)) ≥ 1.13n = 1.13
√
2d

�
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