LINEAR ALGEBRA METHOD IN COMBINATORICS

1. Warming-up examples

Theorem 1.1 (Oddtown theorem). In a town of n citizens, no more than n clubs can be formed under the rules

- each club have an odd number of members
- each pair of clubs share an even number of members.

Proof. It is enough to show that the incidence vectors v_i are linearly independent over \mathbf{F}_2 . To prove this, one just observes that $\langle v_i, v_j \rangle = \delta_{ij}$ over \mathbf{F}_2 .

Theorem 1.2. The same conclusion holds if we reverse the rules:

- each club have an even number of members
- each pair of clubs share an odd number of members.

Let a_1, \ldots, a_m be points in \mathbf{R}^n , it is clear that if all the pairwise distances $d(a_i, a_j)$ are equal, then $m \leq n+1$. Now assume that $d(a_i, a_j)$ can take two values, then how big m can be?

Theorem 1.3 (Two distance). Let m(n) be the largest number m can take, then one has

$$n(n+1)/2 \le m(n) \le (n+1)(n+4)/2$$
.

Proof. The lower bound can be obtained by considering $(0,0,\ldots,0,1,0,\ldots,0,1,0,\ldots,0)$. For the upper bound, assume that the distances take values δ_1 and δ_2 . For each $1 \leq i \leq m$, we define the polynomials $f_i : \mathbf{R}^n \to \mathbf{R}$:

$$f_i(x) := (\|x - a_i\|_2^2 - \delta_1^2)(\|x - a_i\|_2^2 - \delta_2^2).$$

Notice that $f_i(a_i) \neq 0$ and $f_i(a_j) = 0$ for all $j \neq i$. Because of this, $f_i(x)$ are linearly independent over the linear space generated by $\{(\sum_{k=1}^n x_k^2)^2, (\sum_{k=1}^n x_k^2)x_j, x_ix_j, x_i, 1.\}$

Similarly, one also has

Theorem 1.4 (s-distance).

$$\binom{n+1}{s} \le m(n,s) \le \binom{n+s+1}{s}.$$

Our next example is on the decomposition of K_n into complete bipartite graphs.

Theorem 1.5. If the edge set of the complete graph on n vertices is the disjoint union of the edge sets of m complete bipartite graph, then $m \geq n-1$.

Proof. For each complete bipartite graph (X_k, Y_k) , we assign an $n \times n$ matrix A_k in which $a_{ij}=1$ if and only if $i\in X_k$ and $j\in Y_k$. It is clear that $S=\sum A_k$ has the property that $S + S^T = J - I$. We next claim that $r(S) \ge n - 1$. Indeed, otherwise there exists $x = (x_1, \dots, x_n)$ with $x_1 + \dots + x_n = 0$ and Sx = 0. Thus $S^T x = -x$, and so $0 = x^T S^T x = -x$

Here is another example using more spectral properties.

Theorem 1.6. Assume that G is r regular graph with $r^2 + 1$ vertices and with girth 5, then $r \in \{1, 3, 5, 7, 57\}.$

Proof. One first observe that for any vertex-pair $(v_1, v_2), |N(v_1) \cap N(v_2)| = 1$. This motivates us to consider the adjacency matrix A. It has the following properties:

- $\bullet \ A^2 = rI + \bar{A}$ $\bullet \ I + A + \bar{A} = J.$

From here, it is not hard to show that either r=2 or $s^4-2s^2-16(m_1-m_2)s=15$ with $r = (s^2 + 3)/4$. Thus $r \in \{1, 3, 7, 57\}$.

2. Set systems with restricted intersections

Theorem 2.1 (Non-uniform Fisher inequality, Majumdar 1953). Let C_1, \ldots, C_m be distinct subsets of [n] such that for every $i \neq j$, $|C_i \cap C_j| = \lambda$ for some $1 \leq \lambda \leq n$. Then $m \leq n$.

Proof. If suffices to assume that $|C_i| > \lambda$ for all i. Let M of size $m \times n$ be the incidence matrix of our system, then

$$MM^T = \lambda J + C,$$

where C is a diagonal matrix of positive entries. It is easy to check that MM^T is positive definite, and thus M must have full rank.

Remark 2.2. Fisher's original result (1940) was for $\lambda = 1$ together with uniformity assuming on the size of C_i 's. This uniformity condition was then relaxed by Erdos and de Bruijn (1948), and generalized by Bose a year later by a linear algebraic method argument.

It is perhaps useful to summarize the algebraic techniques we have used so far:

Proposition 2.3 (Matrices). • If M is positive-definite, then it has full rank.

- If A, B has size $a \times b$ and $b \times a$ respectively, and if $\operatorname{rank}(AB) = a$, then $a \leq b$.
- If A, B are matrices of the same size, then $rank(A + B) \le rank(A) + rank(B)$.
- Spectral decomposition for normal matrices (symmetric matrices).

Proposition 2.4 (Criteria for linear independence). Let $f_i : \Omega \to \mathbf{F}, 1 \leq i \leq m$ be functions. Then they are linearly independent over \mathbf{F} if one of the following holds for some $a_i \in \Omega, 1 \leq i \leq m$.

- (diagonal) $f_i(a_i) = 0$ if $i \neq j$ and $\neq 0$ if i = j,
- (triangular) $f_i(a_j) = 0$ if i < j and $\neq 0$ if i = j.

Theorem 2.5 (Frankl-Wilson 1981). Let L be a set of s integers and \mathcal{F} an L-intersecting family of subsets of [n]. Then

$$|\mathcal{F}| \le \binom{n}{s} + \binom{n}{s-1} + \dots + \binom{n}{0}.$$

Proof. Arrange the set size in increasing order $|A_1| \leq |A_2| \leq \cdots \leq |A_m|$. Let v_i be the indicator function of A_i , define $f_i : \mathbf{R}^n \to \mathbf{R}$ as follows:

$$f_i(x) = \prod_{|l_k| < |A_i|} (x \cdot v_i - l_k).$$

Notice that f_i has degree at most s, and $f_i(v_i) \neq 0$ while $f_i(v_j) = 0$ for $j \leq i$. Deform f_i to multilinear \tilde{f}_i such that $f_i = \tilde{f}_i$ over all v_i . As \tilde{f}_i are linearly independent by the triangular criterion, $m \leq \sum_{i \leq s} \binom{n}{s}$.

By the same method, one can obtain the following modulo version.

Theorem 2.6. Let p be a prime number, and L be a set of s integers. Assume that $\mathcal{F} = \{A_1, \ldots, A_m\}$ such that

- $|A_i| \notin L(\mod p)$;
- $|A_i \cap A_j| \in L \pmod{p}$.

Then

$$|\mathcal{F}| \le \binom{n}{s} + \binom{n}{s-1} + \dots + \binom{n}{0}.$$

As a corollary, one deduces that

Corollary 2.7. Let p be a prime and \mathcal{F} a (2p-1)-uniform family of subsets of a set of 4p-1 elements. If no two of \mathcal{F} intersect in precisely p-1 elements, then

$$|\mathcal{F}| \le 2 \binom{4p-1}{p-1}$$

Proof. Let $L := \{0, \ldots, p-2\}$ and use $\binom{n}{s} + \cdots + \binom{n}{0} \leq 2\binom{n}{s}$.

Corollary 2.8. Let L be a set of s integers and \mathcal{F} an L-intersecting k-uniform family of subsets of a set of n elements, where $s \leq k$. Then

$$|\mathcal{F}| \le \binom{n}{s} + \binom{n}{s-1} + \dots + \binom{n}{0}.$$

The following celebrated result of Ray-Chaudhuri and Wilson shows that the bound can be improved to $\binom{n}{s}$.

Theorem 2.9 (Ray-Chaudhuri -Wilson 1975). Let L be a set of s integers and \mathcal{F} an L-intersecting k-uniform family of subsets of a set of n elements, where $s \leq k$. Then

$$|\mathcal{F}| \le \binom{n}{s}$$
.

Proof. (of Theorem 2.9) One shows that the f_i (from the proof of Theorem 2.5) together with $x_I(x_1+\cdots+x_n-k), |I| \leq s-1$ are independent. Indeed, a vanishing linear combination $\sum_{i=1}^m \lambda_i f_i + \sum_{|I| \leq s-1} \mu_I x_I(x_1+\cdots+x_n-k)$ would imply $\lambda_i = 0$ (by replacing v_i into the indentity). For $\sum_{|I| \leq s-1} \mu_I x_I(x_1+\cdots+x_n-k)$, one has $x_I(x_1+\cdots+x_n-k)(v_J) = 0$ if $|J| \leq |I|, J \neq I$, and $\neq 0$ if J = I.

We now present an application of Corollary 2.7.

Theorem 2.10. [Chromatic number of unit distance graph] For large n, the chromatic number of the unit distance graph on \mathbb{R}^n is greater than 1.13^n .

Notice that the upper bound is at most $n^{n/2}$.

Proof. (of Theorem 2.10) Without loss of generality, assume that n=4p-1 and define a graph G on $\binom{[n]}{2p-1}$ by connecting A to B if $|A\cap B|=p-1$. Notice that $d(A,B)=\sqrt{2p}$ in this case. As any independent set of G has size at most $2\binom{4p-1}{p-1}$ according to Corollary 2.7. The chromatic number of G is at least $\binom{4p-1}{2p-1}/\binom{4p-1}{p-1} \geq 1.13^{4p-1}$.

Theorem 2.11 (Kahn-Kalai's disproving of Borsuk's conjecture). Let f(n) denote the minimum number such that every set of diameter 1 in \mathbf{R}^d can be partitioned into f(d) pieces of smaller diameter. Then $f(d) \geq 1.2^{\sqrt{d}}$.

Proof. For each $A \in V(G)$ from the proof of Theorem 2.10, we define $\Phi(A) \subset 2^X$ with $X = \binom{[n]}{2}$ as follows:

$$\phi(A) = \{ \{x, y\} : x \in A, y \in \bar{A} \}.$$

One checks that

- (1) $\mathcal{F} = {\phi(A) : A \in V(G)}$ is k(n-k) uniform, with k = 2p 1.
- (2) Assume that $|A \cap B| = r$, then $|\phi(A) \cap \phi(B)| = r(n-2k+r) + (k-r)^2$, which is minimized when r is as close to k n/4 = p 3/4 as possible, i.e. when r = p 1.

It follows from (2) that G and $\phi(G)$ is isomorphic, where $\phi(G)$ is the graph over $\phi(A), A \in V(G)$, and $\phi(A)$ is connected to $\phi(B)$ if their distance is the diameter $\mu(\mathcal{F})$ of \mathcal{F} .

By the proof of Theorem 2.10, with $d = \binom{n}{2}$,

$$\chi(\phi(G)) \ge 1.13^n = 1.13^{\sqrt{2d}}$$

References

[1] L. Babai and P. Frankl, Linear Algebra method in Combinatorics