Our main reference is [1, Section 13]. Two kinds of numbers that come up in many combinatorial problems are the so-called Stirling numbers of the first and second kind.

1. Stirling number of the first kind

Let \(c(n, k) \) denote the number of permutations \(\pi \in S_n \) with exactly \(k \) cycles. (This number is called a signless Stirling number of the first kind.) Furthermore define \(c(0, 0) = 1 \) and \(c(n, 0) = 0 \). It is also clear that for all \(n \geq 1 \)

\[
c(n, n) = 1.
\]

The Stirling numbers of the first kind \(s(n, k) \) are defined by

\[
s(n, k) := (-1)^{n-k}c(n, k).
\]

Theorem 1.1. The numbers \(c(n, k) \) satisfy the recurrence relation

\[
c(n, k) = (n - 1)c(n - 1, k) + c(n - 1, k - 1).
\]

Proof. If \(\pi \) is a permutation in \(S_{n-1} \) with \(k \) cycles, then there are \(n - 1 \) positions where we can insert the integer \(n \) to produce a permutation \(\pi' \in S_n \) with \(k \) cycles. We can also adjoin \((n) \) as a cycle to any permutation in \(S_{n-1} \) with \(k - 1 \) cycles. This accounts for the two terms on the right-hand side of the formula. \(\square \)

Theorem 1.2. For \(n \geq 0 \) we have

\[
\sum_{k=0}^{n} c(n, k)x^k = x(x + 1) \ldots (x + n - 1) := (x)^n
\]

and

\[
\sum_{k=0}^{n} s(n, k)x^k = x(x - 1) \ldots (x - n + 1) := (x)_n.
\]

\((x)^n \) and \((x)_n \) are usually called rising and falling factorials respectively.
Proof. We establish the first identity. Write

\[F_n(x) = x(x+1) \ldots (x+n-1) = \sum_{k=0}^{n} b(n,k)x^k. \]

We define by convention that \(b(0,0) = 1 \).

Fact 1.3. For \(n \geq 1 \), we have

\[b(n,0) = 0 \quad \text{and} \quad b(n,n) = 1. \]

Proof. For the first identity, we just note that \(F_n(x) \) does not have free term (i.e. the coefficient of \(x^0 \) is 0). For the second identity, clearly the coefficient of \(x^n \) in the expansion of \(F_n(x) \) is 1. \(\square \)

By this fact, we have learned that

\[b(0,0) = c(0,0); \quad b(n,0) = c(n,0) \quad \text{and} \quad b(n,n) = c(n,n). \]

Next, since

\[F_n(x) = (x+n-1)F_{n-1}(x) \]
\[= \sum_{k=1}^{n} b(n-1,k-1)x^k + (n-1)\sum_{k=0}^{n-1} b(n-1,k)x^k, \]
we see that the numbers \(b(n,k) \) satisfy the same recurrence relation as the \(c(n,k) \), namely

\[b(n,k) = (n-1)b(n-1,k) + b(n-1,k-1). \]

Since the numbers are equal if \(k = 0 \) or \(n = k \), they are equal for all \(n \geq k \geq 0 \).

For the second identity of the theorem, we just need to replace \(x \) by \(-x \) into the first identity, and then use the definition of \(s(n,k) \). \(\square \)

We next deduce some nice consequences.

Corollary 1.4. The number of permutations that have an even number of cycles is equal to the number of permutations that have an odd number of cycles.

Proof. Plug \(x = -1 \) into the first equation of Theorem 1.2. \(\square \)

Corollary 1.5. The total number of cycles in all permutations in \(S_n \) is equal to

\[n!(1 + \frac{1}{2} + \cdots + \frac{1}{n}). \]
Proof. Recall that

\[F_n(x) = x(x + 1) \ldots (x + n - 1) = \sum_{k=0}^{n} c(n, k)x^k. \]

Taking derivative,

\[F'_n(x) = \sum_{k=1}^{n} kc(n, k)x^{k-1}. \]

Thus, when \(x = 1 \), \(F'_n(1) = \sum_{k=1}^{n} kc(n, k) \). This is the total number of cycles in all permutations.

On the other hand, as \(F_n(x) = x(x + 1) \ldots (x + n - 1) \), its derivative is

\[F'_n(x) = [x(x + 1) \ldots (x + n - 1)]' = x(x + 1) \ldots (x + n - 1)[\frac{1}{x + \ldots + 1}]. \]

So

\[F'_n(1) = n!(1 + \frac{1}{2} + \cdots + \frac{1}{n}), \]

completing the proof.

\[\square \]

2. Stirling number of the second kind

We now define the Stirling numbers of the second kind: denote by \(P(n, k) \) the set of all partitions of an \(n \)-set into \(k \) nonempty subsets (blocks). Then

\[S(n, k) := |P(n, k)|. \]

Define by convention that \(S(0, 0) = 1 \). Similarly to \(c(n, k) \), we have the following recurrence relation.

Theorem 2.1. The Stirling numbers of the second kind satisfy the relation

\[S(n, k) = kS(n - 1, k) + S(n - 1, k - 1). \]
Proof. The proof is nearly the same as for the first section. A partition of the set \{1, 2, \ldots, n-1\} can be made into a partition of \{1, 2, \ldots, n\} by adjoining \(n\) to one of the blocks or by increasing the number of blocks by one by making \(\{n\}\) a block. \(\square\)

We wonder if there is a ” formula ” for \(S(n, k)\).

Theorem 2.2. We have

\[S(n, k) = \frac{1}{k!} \sum_{i=0}^{k} (-1)^{k-i} \binom{k}{i} j^n. \]

Proof. We remark that the number of surjective mappings from an \(n\)-set to a \(k\)-set is \(k!S(n, k)\) (a block of the partition is the inverse image of an element of the \(k\)-set). Thus, by our last application in the lecture on the Inclusion-Exclusion principle (counting the number of surjections map from \([n]\) to \([k]\)),

\[S(n, k) = \frac{1}{k!} \sum_{i=0}^{k} (-1)^{k-i} \binom{k}{i} j^n. \]

\(\square\)

Now we state an analog of Theorem 1.2 for \(S(n, k)\).

Theorem 2.3. For \(n \geq 0\) we have

\[x^n = \sum_{k=0}^{n} S(n, k)(x)_k. \]

Proof. Now let \(x\) be an integer. There are \(x^n\) mappings from the \(n\)-set \(N = [n]\) to the \(x\)-set \([x]\). For any \(k\)-subset \(Y\) of \([x]\), there are \(k!S(n, k)\) surjections from \(N\) to \(Y\). So we find

\[x^n = \sum_{k=0}^{n} \binom{x}{k} k!S(n, k) = \sum_{k=0}^{n} S(n, k)(x)_k. \]

\(\square\)

Finally, using the recurrence formula for \(S(n, k)\), one can calculate its exponential generating function.

Theorem 2.4.

\[\sum_{n \geq k} S(n, k)x^n/n! = \frac{1}{k!}(e^x - 1)^k (k \geq 0) \]

Proof. Let \(F_k(x)\) denote the sum on the left-hand side. By the recurrence formula, we have

\[F'_k(x) = kF_k(x) + F_{k-1}(x). \]
The result now follows by induction. Since \(S(n,1) = 1 \), the assertion is true for \(k = 1 \) and the induction hypothesis yields a differential equation for \(F_k \), which with the condition \(S(k,k) = 1 \) has the right-hand side of the assertion as unique solution.

This point will be discussed in more detail later (on generating functions of various sequences.)

3. Conclusion: Relation between Stirling numbers

we conclude the note by showing the following inversion-type relation between \(S(n,k) \) and \(s(n,k) \).

Theorem 3.1. We have

\[
\sum_{k=m}^{n} S(n,k) s(k,m) = \delta_{mn}.
\]

Proof. This follows from the second equation of Theorem 1.2 and from Theorem 2.3, noting that \(\{1,x,\ldots,x^n\} \) and \(\{(x)_0,(x)_1,\ldots,(x)_n\} \) can be seen as two bases of the finite vector space (over \(R \)) of polynomials in \(x \) with degree at most \(n \). □

References