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Q1. Consider the surface z = f(z,y) = 4 — 2% — 2y and the point P(1,1,1).
(a) (2pts) Verify that P belongs to the surface.

Short answer: 4 — 12 =212 = 1. tgfﬂ

(b) (8 pts) Find the gradient of f at any point (z,y).

Short answer: Vf =< =2z, —4y >.

(c) (5 pts) Let C’ be the path of the steepest descent on the surface beginning at P; and let C be the
projection of C’ on the zy-plane.

At a point (z,y) of C, what is the slope of the tangent line?

Short answer: The tangent line has the same direction as of the gradient vector, thus the slope is

4y _ %
-2,

(d) (5 pts) (No need to review) What is the equation for C? (Hint: if 3/(z) = 2y/z, then y = az? for
some a to be determined.)

Short answer: As the slope is ¥/'(z) = %, we have y = az? for some constant a. As this line passes
through P(1,1), we have

1 = a % 1% which yields a = 1.
Thus
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Q2. Consider the following function on the given set R.

flz,y) = \/.’L’z +12—6y+9; R={(z,y):2%+y* <16}
Short answer: First we look in the interior of R: 2?2 + 3% < 16. To find critical points, set
fo = 0,2z = 0 yieldingz = 0 Gj
fy =0,2y — 6 =0 yielding y = 3. Q/’)
The point (0, 3) is clearly inside R, and the value of f at this point is

1%(0,3) = 0.

Now we look on the boundary of R: z? + y* = 16. One can use either Lagrange multipliers of
trigonometric substitution. But the fastest way is as follows: as z? + y? = 1, the range for y is

-1<y<l 6‘?“

fz(m’y)=f02+y2—69+9=1—6y+9=&;\6y‘
-

On the other hand,

This is a linear function in y, th @Echieves the absolute max at y =<1, corresponding to f2(0,—1) =
16, and absolute minimum at y = bresponding to f2(0,1) = 4.

Compare the extreme values on the boundary, and in the interior of R, one concludes

P

(a) (10 pts) What is the absolute maximum of f on R: f =16 at (0,-1). Q[U/

(b) (10 pts) What is the absolute minimum of f on R: f =4 at (0,1) / 10 ;



Q3. Find the volume of the solid body determined by the following surfaces and regions.

(a) (10 pts) Below the surface z = 2e7¥ and above the region R = {(z,y): 0 <2 < 1,0 <y < 2}.

I= /0'1 /02 2e Vdydx = /()i%@ﬂx
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Q4. Consider the following integral

4 rd
I= / / x2e™dxdy.
0 Jy

(a) (6 pts) Sketch the region R of integration.
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(Possible continuation of Q3)



(Possible continuation of Q4)



Q5. Complete the following steps in the procedure of Lagrange multipliers method for the following f (if
they exist) subject to the given constraint

f(z,y) = oy + 5z + 5y, subject to z*y* = 9.

C\;} (‘7;,\[) = X ki

(a) (10 pts) Set up the equation system involving z,y and A.

.
£ = A?jm Loy h = LAy (i)
G\Lﬁ) G gy Yol = 2ty ()
- Ll ' )
g=0 SR G vy

(b) (8 pts) Solve for z, y.
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Bonus. (5pts) Consider the following integral

I= / * / = e drdy.

Evaluate I using polar coordinate.
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(c) (4pts) Find the maximum and minimum of f.



