Q1. Consider the surface $z = f(x,y) = 4 - x^2 - 2y^2$ and the point P(1,1,1).

(a) (2pts) Verify that P belongs to the surface.

Short answer: $4 - 1^2 - 2 * 1^2 = 1$.

+

(b) (8 pts) Find the gradient of f at any point (x, y).

Short answer: $\nabla f = <-2x, -4y>$.

(c) (5 pts) Let C' be the path of the steepest descent on the surface beginning at P; and let C be the projection of C' on the xy-plane.

At a point (x, y) of C, what is the slope of the tangent line?

Short answer: The tangent line has the same direction as of the gradient vector, thus the slope is

$$\frac{-4y}{-2x} = \frac{2y}{x}.$$

(d) (5 pts) (No need to review) What is the equation for C? (Hint: if y'(x) = 2y/x, then $y = ax^2$ for some a to be determined.)

Short answer: As the slope is $y'(x) = \frac{2y}{x}$, we have $y = ax^2$ for some constant a. As this line passes through P(1,1), we have

$$1 = a * 1^2$$
 which yields $a = 1$.

Thus

$$y = x^2.$$

Fall 2014, The Ohio State U	Calculus 2173		
September 29th, 2014	. First Midterm Exam, version A	55 minutes	
Name:	Student ID:		

Instructions.

- 1. This is a closed book exam, no calculator, NO CHEATING.
- 2. Detailed work is required for full credit.

Question	Points	Your Score
1	20	
2	20	
3	20	
4	20	
5	20	
bonus	5	
TOTAL	100	

$$f(x,y) = \sqrt{x^2 + y^2 - 6y + 9}; \quad R = \{(x,y) : x^2 + y^2 \le 16\}.$$

Short answer: First we look in the interior of R: $x^2 + y^2 < 16$. To find critical points, set

$$f_x = 0, 2x = 0$$
 yielding $x = 0$

$$f_y = 0, 2y - 6 = 0$$
 yielding $y = 3$.

The point (0,3) is clearly inside R, and the value of f at this point is

$$f^2(0,3) = 0.$$

Now we look on the boundary of R: $x^2 + y^2 = 16$. One can use either Lagrange multipliers of trigonometric substitution. But the fastest way is as follows: as $x^2 + y^2 = 1$, the range for y is

$$-1 \le y \le 1.$$

On the other hand,

$$f^{2}(x,y) = x^{2} + y^{2} - 6y + 9 = 1 - 6y + 9 = 10^{-3} 6y$$
.

 $f^2(x,y)=x^2+y^2-6y+9=1-6y+9=10$ 6y. This is a linear function in y, thus it achieves the absolute max at y=1, corresponding to $f^2(0,-1)=16$, and absolute minimum at y=1, corresponding to $f^2(0,1)=4$. Compare the extreme values on the boundary, and in the interior of R, one concludes

(a) (10 pts) What is the absolute maximum of f on R: f = 16 at (0, -1).

(b) (10 pts) What is the absolute minimum of f on R: f = 4 at (0,1)

- Q3. Find the volume of the solid body determined by the following surfaces and regions.
- (a) (10 pts) Below the surface $z = 2e^{-y}$ and above the region $R = \{(x, y) : 0 \le x \le 1, 0 \le y \le 2\}$.

$$I = \int_{0}^{1} \int_{0}^{2} 2e^{-y} dy dx = \int_{0}^{1} 2(t) dx$$

$$= \int_{0}^{2} 2e^{-y} dy = 2(-e^{-y}) \Big|_{0}^{2} = 2(-e^{-y}) \Big|_{$$

(b) (10 pts) Below the surface $z = 24x^5e^{x^3y}$ and above the region $R = \{(x,y) : 0 \le x \le 1, 0 \le y \le 2\}$.

$$\int_{0}^{2} \int_{0}^{4} 24 x^{5} e^{x^{3} y} dy = \int_{0}^{2} \int_{0}^{4} dy dx$$

$$\int_{0}^{2} 24 x^{5} e^{x^{3} y} dy = \int_{0}^{2} \int_{0}^{2} dy dx$$

$$\int_{0}^{4} 24 x^{2} e^{2x^{3} - 1} dy = \int_{0}^{2} 24 x^{2} e^{2x^{3} - 1} dx$$

$$\int_{0}^{4} 24 x^{2} e^{2x^{3} - 1} dx = \int_{0}^{2} 24 x^{2} e^{2x^{3} - 1} dx$$

$$\int_{0}^{4} 24 x^{2} e^{2x^{3} - 1} dx = \int_{0}^{2} 24 x^{2} e^{2x^{3} - 1} dx$$

$$\int_{0}^{4} 24 x^{2} e^{2x^{3} - 1} dx = \int_{0}^{2} 24 x^{2} e^{2x^{3} - 1} dx$$

$$\int_{0}^{4} 24 x^{2} e^{2x^{3} - 1} dx = \int_{0}^{4} 24 x^{2} e^{2x^{3} - 1} dx$$

$$\int_{0}^{4} 24 x^{2} e^{2x^{3} - 1} dx = \int_{0}^{4} 24 x^{2} e^{2x^{3} - 1} dx$$

$$\int_{0}^{4} 24 x^{2} e^{2x^{3} - 1} dx = \int_{0}^{4} 24 x^{2} e^{2x^{3} - 1} dx$$

$$\int_{0}^{4} 24 x^{2} e^{2x^{3} - 1} dx = \int_{0}^{4} 24 x^{2} e^{2x^{3} - 1} dx$$

$$\int_{0}^{4} 24 x^{2} e^{2x^{3} - 1} dx = \int_{0}^{4} 24 x^{2} e^{2x^{3} - 1} dx$$

$$\int_{0}^{4} 24 x^{2} e^{2x^{3} - 1} dx = \int_{0}^{4} 24 x^{2} e^{2x^{3} - 1} dx$$

$$\int_{0}^{4} 24 x^{2} e^{2x^{3} - 1} dx = \int_{0}^{4} 24 x^{2} e^{2x^{3} - 1} dx$$

$$\int_{0}^{4} 24 x^{2} e^{2x^{3} - 1} dx = \int_{0}^{4} 24 x^{2} e^{2x^{3} - 1} dx$$

$$\int_{0}^{4} 24 x^{2} e^{2x^{3} - 1} dx = \int_{0}^{4} 24 x^{2} e^{2x^{3} - 1} dx$$

$$\int_{0}^{4} 24 x^{2} e^{2x^{3} - 1} dx = \int_{0}^{4} 24 x^{2} e^{2x^{3} - 1} dx$$

$$\int_{0}^{4} 24 x^{2} e^{2x^{3} - 1} dx = \int_{0}^{4} 24 x^{2} e^{2x^{3} - 1} dx$$

$$\int_{0}^{4} 24 x^{2} e^{2x^{3} - 1} dx = \int_{0}^{4} 24 x^{2} e^{2x^{3} - 1} dx$$

$$\int_{0}^{4} 24 x^{2} e^{2x^{3} - 1} dx = \int_{0}^{4} 24 x^{2} e^{2x^{3} - 1} dx$$

$$\int_{0}^{4} 24 x^{2} e^{2x^{3} - 1} dx = \int_{0}^{4} 24 x^{2} e^{2x^{3} - 1} dx$$

$$\int_{0}^{4} 24 x^{2} e^{2x^{3} - 1} dx = \int_{0}^{4} 24 x^{2} e^{2x^{3} - 1} dx$$

$$\int_{0}^{4} 24 x^{2} e^{2x^{3} - 1} dx = \int_{0}^{4} 24 x^{2} e^{2x^{3} - 1} dx$$

$$\int_{0}^{4} 24 x^{2} e^{2x^{3} - 1} dx = \int_{0}^{4} 24 x^{2} e^{2x^{3} - 1} dx$$

$$\int_{0}^{4} 24 x^{2} e^{2x^{3} - 1} dx = \int_{0}^{4} 24 x^{2} e^{2x^{3} - 1} dx$$

$$\int_{0}^{4} 24 x^{2} e^{2x^{3} - 1} dx = \int_{0}^{4} 24 x^{2} e^{2x^{3} - 1} dx$$

$$\int_{0}^{4} 24 x^{2} e^{2x^{3} - 1} dx = \int_{0}^{4} 24 x^{2} e^{2x^{3} - 1} dx$$

$$\int_{0}^{4} 24 x^{2} e^{2x^{3} - 1}$$

Q4. Consider the following integral

$$I = \int_0^4 \int_y^4 x^2 e^{xy} dx dy. \quad \cdot$$

(a) (6 pts) Sketch the region R of integration.

(b) (4pts) Rewrite the integral by changing the order of integration.

(c) (10 pts) Evaluate the (new) integral.

$$\int_{0}^{x} x^{2} e^{xy} dy = x^{2} \cdot \frac{e^{xy}}{x} \int_{0}^{x} = x \cdot (e^{x^{2}} - 1)$$

$$\int_{0}^{4} x \cdot e^{x^{2}} \times dx = \int_{0}^{4} x \cdot e^{x^{2}} - \int_{0}^{4} x dx$$

$$\int_{0}^{4} x \cdot e^{x^{2}} \times dx = \int_{0}^{4} x \cdot e^{x^{2}} dx - \int_{0}^{4} x dx$$

$$\int_{0}^{4} x \cdot e^{x^{2}} \times dx = \int_{0}^{4} x \cdot e^{x^{2}} dx - \int_{0}^{4} x dx$$

$$\int_{0}^{4} e^{x} du = \int_{0}^{4} (e^{46} - 1).$$

(+6)

$$A = u = x^{2}$$

$$du = 2xd$$

$$A - B = \frac{1}{2} (e^{ib} - 1) - \delta$$

(Possible continuation of Q3)

(Possible continuation of Q4)

Q5. Complete the following steps in the procedure of Lagrange multipliers method for the following f (if they exist) subject to the given constraint

$$f(x,y) = xy + 5x + 5y$$
, subject to $x^2y^2 = 9$.

(a) (10 pts) Set up the equation system involving x, y and λ .

Set up the equation system involving
$$x, y$$
 and λ .

$$f_{x} = \lambda g_{x}$$

$$f_{y} = \lambda$$

$$y+5 = 2 \times x^2$$

$$y+b = \lambda \wedge x^{2}y \qquad (1)$$

(b) (8 pts) Solve for x, y.

(1) -(2)
$$y-x = 2\lambda \times y (y-x)$$

$$= (y-x)(1-2\lambda \times y) = 0$$

Thus Case 1 is the only case,
$$(x_{1}y) = (\sqrt{3}, \sqrt{3})$$
 or $(-\sqrt{3}, -\sqrt{3})$

$$f(x_{1}y) = 3 + 10 \cdot \sqrt{3}$$

$$abs. max$$

$$abs. min$$

Bonus. (5pts) Consider the following integral

$$I = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-x^2 - y^2} dx dy.$$

Evaluate I using polar coordinate.

(c) (4pts) Find the maximum and minimum of f.