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Abstract. For a random matrix of entries sampled independently from a fairly general distribution in Z we

study the probability that the cokernel is isomorphic to a given finite abelian group, or when it is cyclic. This

includes the probability that the linear map between the integer lattices given by the matrix is surjective.
We show that these statistics are asymptotically universal (as the size of the matrix goes to infinity), given

by precise formulas involving zeta values, and agree with distributions defined by Cohen and Lenstra, even
when the distribution of matrix entries is very distorted. Our method is robust and works for Laplacians of

random digraphs and sparse matrices with the probability of an entry non-zero only n−1+ε.

1. Introduction

For square matrices Mn×n of random discrete entries, the problem to estimate the probability pn of Mn×n
being singular has attracted quite a lot of attention. In the 60’s Komlós [16] showed pn = O(n−1/2) for entries
{0, 1} with probability each 1/2. This bound was significantly improved by Kahn, Komlós, and Szemerédi
in the 90’s to pn ≤ 0.999n for ±1 entries. About ten years ago, Tao and Vu [30] improved the bound for ±1
entries to pn ≤ (3/4 + o(1))n. The most recent record is due to and Bourgain, Vu and Wood [3] who showed
pn ≤ ( 1√

2
+o(1))n for ±1 entries and gave exponential bounds for more general entries as well. We also refer

the reader to [27] by Rudelson and Vershynin for implicit exponential bounds. For sparse matrices having
entries 0 with probability 1 − αn, Basak and Rudelson [1] proved pn ≤ e−cαnn for αn ≥ C log n/n and for
rather general entries, including the adjacency matrices of sparse Erdős-Rényi random graphs.

When Mn×n has integral entries, these results imply that with very high probability the linear map
Mn×n : Zn → Zn is injective. Another important property of interest is surjectivity, it seems natural to
wonder if with high probability Mn×n : Zn → Zn is surjective (see [18, 21])? However, recent results of the
second author show that the surjectivity probability goes to 0 with n (e.g. that is implied by [34, Corollary
3.4]). The main result of this paper will imply that when the matrix has more columns than rows, e.g.
Mn×(n+1) : Zn+1 → Zn, we have surjectivity with positive probability strictly smaller than one.

We make the following definition to restrict the types of entries our random matrices will have. We say a
random integer ξn is αn-balanced if for every prime p we have

max
r∈Z/pZ

P(ξn ≡ r (mod p)) ≤ 1− αn. (1)

Our main result tells us not only whether Mn×(n+u) is surjective, but more specifically about the cokernel

Cok(Mn×(n+u)), which is the quotient group Zn/Mn×(n+u)(Z
n+u) and gives the failure of surjectivity.

Theorem 1.1. For integers n, u ≥ 0, let Mn×(n+u) be an integral n× (n+u) matrix with entries i.i.d copies

of an αn-balanced random integer ξn, with αn ≥ n−1+ε and |ξn| ≤ nT for any fixed parameters 0 < ε < 1
and T > 0 not depending on n. For any fixed finite abelian group B and u ≥ 0,

lim
n→∞

P
(
Cok(Mn×(n+u)) ' B

)
=

1

|B|u|Aut(B)|

∞∏
k=u+1

ζ(k)−1. (2)

Here ζ(s) is the Riemann zeta function. In particular, as n → ∞, the map Mn×(n+1) : Zn+1 → Zn is

surjective with probability approaching
∏∞
k=2 ζ(k)−1 ≈ 0.4358. The one extra dimension mapping to Zn

brought the surjectivity probability from 0 to ≈ 0.4358.

2010 Mathematics Subject Classification. 15B52, 60B20.

1



Note that the product
∏∞
k=u+1 ζ(k)−1 in (2) is non-zero for u ≥ 1, but ζ(1)−1 = 0. So Theorem 1.1

shows that every possible finite cokernel appears with positive probability when u ≥ 1. (Note that when the
matrix has full rank over R, the cokernel must be finite.) Theorem 1.1 is a universality result because these
precise positive probabilities do not depend on the distribution of ξn, the random entries of our matrices.
As a simple example, if we take an n × (n + 1) random matrix with entries all 0 or 1, whether we make
entries 0 with probability 1

100 , 1
2 , or 1− n−8/9, we obtain the exact same asymptotic probability of the map

Zn+1 → Zn being surjective. If we take entries from {−17, 0, 6, 7} with respective probabilities 2
3 ,

1
n ,

1
6−

1
n ,

1
6 ,

the asymptotic probability of surjectivity is unchanged. Our theorem allows even more general entries as
well.

Further, we prove the following.

Theorem 1.2. Let Mn×(n+u) be as in Theorem 1.1. We have

lim
n→∞

P
(
Cok(Mn×(n+u)) is cyclic

)
=

∏
p prime

(1 + p−(u+1)(p− 1)−1)

∞∏
k=u+2

ζ(k)−1.

Note that even when u = 0, the limiting probability here is positive. For u = 0, this probability has been
seen in several papers studying the probability that a random lattice in Zn is co-cyclic (gives cyclic quotient),
in cases when these lattices are drawn from the nicest, most uniform distributions, e.g. uniform on lattices
up to index X with X → ∞ [4, 23, 24], or with basis with uniform entries in [−X,X] with X → ∞ [29].
Stanley and Wang have asked whether the probability of having cyclic cokernel is universal (see [29, Remark
4.11 (2)] and [28, Section 4]). Theorem 1.2 proves this universality, showing that the same probability of
cocylicity occurs when the lattice is given by n random generators from a rather large class of distributions,
including ones that are rather distorted mod p for each prime p.

Moreover, we show the same results hold if we replace Cok(Mn×(n+1)) with the total sandpile group of an
Erdős-Rényi simple random digraph, proving a conjecture of Koplewitz [17, Conjecture 1] (see Theorem 1.6).
This allows some dependence in the entries of our random matrices, since the diagonal of the graph Lapla-
cian depends on the other entries in the matrix. In particular, this says that with asymptotic probability∏∞
k=2 ζ(k)−1 ≈ 0.4358 an Erdős-Rényi random digraph is co-Eulerian, which Farrell and Levine [8] define

to be any of several equivalent definitions including a simple condition for when chip-firing configurations
on the graph stabilize and the condition that recurrent states in the rotor-router model are in a single or-
bit. In contrast to the distribution of sandpile groups of Erdős-Rényi random graphs, where for each finite
abelian group B, the sandpile group is B with asymptotic probability 0 [33, Corollary 9.3], for Erdős-Rényi
random digraphs, we show that each finite abelian group appears with positive asymptotic probability as the
total sandpile group. Moreover, the universality in our theorems proves that all of these positive limiting
probabilities do not depend on the edge density of the random graph.

Previous work of the second author [34, Corollary 3.4] determined the probabilities of these Cok(Mn×(n+u))
having any given Sylow p-subgroup for a fixed prime p or finite set of primes p. The two significant ad-
vances of this work over previous work are (1) that we determine the distribution of the entire cokernel, not
just the part of it related to a finite set of primes, and (2) that we allow our random matrix entries to be
more distorted mod p as n increases, for example allowing sparse matrices where entries are non-zero with
probability n−1+ε.

Our proofs require considering primes in three size ranges separately, and in each range we use different
methods. Our works builds on methods from previous work, including that of Tao and Vu [30, 31, 32], the
first author and Vu [22], Maples [19], the second author [33, 34], and the first author and Paquette [21].
The key ideas original to this paper are in our treatment of large primes, where we prove a result that lifts
structured normal vectors from characteristic p to characteristic 0, crucially for p in a range much smaller
than nn/2.

1.3. Further results and connections to the literature. We also show asymptotic almost sure surjec-
tivity when u→∞ with n, proving a conjecture of Koplewitz [18, Conjecture 2].

Theorem 1.4. Let Mn×(n+u) be as in Theorem 1.1. Then

lim
min(u,n)→∞

P
(
Cok(Mn×(n+u)) ' {id}

)
= 1. (3)
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Theorem 1.1 has several nice corollaries, including the u ≥ 1 cases of Theorem 1.2 and the following (see
Lemma 2.4 for why these are corollaries).

Corollary 1.5. For any fixed u ≥ 0

lim
n→∞

P
(
Mn×(n+u) : Zn+u → Zn is surjective

)
=

∞∏
k=u+1

ζ(k)−1.

Also, for any fixed u ≥ 1

lim
n→∞

P
(

det(Mn×(n+u)) is square-free
)

=
∏

p prime

(1 + p−u(p− 1)−1)

∞∏
k=u+1

ζ(k)−1.

To give a heuristic for why inverse zeta values arise in these probabilities, note that Mn×(n+1) is surjective
if and only if its reduction to modulo p is surjective for all primes p. We then make two idealized heuristic
assumptions on Mn×(n+1). (i) (uniformity assumption) Assume that for each prime p the entries of Mn×(n+1)

are uniformly distributed modulo p. In this case, a simple calculation gives the probability for Mn×(n+1)

being surjective modulo p is
∏n
j=2(1 − p−j)(1 − p−n−1). (ii) (independence assumption) We next assume

that the statistics of Mn×(n+1) reduced to modulo p are asymptotically mutually independent for all primes
p. Under these assumptions, as n→∞, the probability that Mn×(n+1) is surjective would be asymptotically

the product of all of the surjectivity probability modulo p, which leads to the number
∏∞
k=2 ζ(k)−1 as seen.

The matrices in this paper do not have to satisfy either assumption, and indeed they can violate them
dramatically. For example, if the matrix entries only take values 0 and 1, then they cannot be uniformly
distributed mod any prime > 2, and the matrix entries mod 3 are not only not independent from the entries
mod 5, but they are in fact determined by the entries mod 5. The work of this paper is in showing that even
for rather general random matrices, universality holds and gives the same cokernel distributions as for the
simplest random matrices.

For our Theorem 1.1, we remark that for u ≥ 1, the limiting probabilities |B|−u|Aut(B)|−1
∏∞
k=u+1 ζ(k)−1

in Theorem 1.1 do sum to 1 (use [6, Corollary 3.7 (i)] with s = u and k = ∞). This gives, for each u ≥ 1,
a probability distribution on finite abelian groups. Cohen and Lenstra [6] introduced these distributions
to conjecture that the u = 1 distribution is the distribution of class groups of real quadratic number fields
(except for the Sylow 2-subgroup). Friedman and Washington [11] later proved that if Mn×n has independent
entries taken from Haar measure on the p-adics Zp, then for a finite abelian p-group B we have

lim
n→∞

P (Cok(Mn×n) ' B) = |Aut(B)|−1
∞∏

k=u+1

(1− p−k).

The limit is proven by giving an explicit formula for the probability for each n. A similar argument shows

that for Mn×(n+u) with independent entries taken from Haar measure on Ẑ, the profinite completion of Z
(these are exactly the matrices with entries that satisfy the two heuristic assumptions above), we have for
every finite abelian group B that

lim
n→∞

P
(
Cok(Mn×(n+u)) ' B

)
= |B|−u|Aut(B)|−1

∞∏
k=u+1

ζ(k)−1.

This is because as Ẑ =
∏
p Zp, this Haar measure is the product of the p-adic Haar measures. Building on

work of Ekedahl [7], Wang and Stanley [29] find that the cokernels (equivalently, the Smith normal form) of
random n ×m matrices for fixed n and m and independent, uniform random integer entries in [−X,X] as

X →∞ match those for entries from Haar measure on Ẑ. While this agreement is easy to see for the Sylow
subgroups at any finite set of primes (because X will eventually become larger than all of the primes), it
was a substantial problem to prove this agreement for all primes at once.

Our approach to proving Theorem 1.1 and the u = 0 case of Theorem 1.2 involves considering three classes
of primes (small, medium, and large) separately, and for each class the argument is rather different. For
small primes, we follow the general approach of [34]: finding the moments (which are an expected number of
surjections) by dividing the a priori possible surjections into classes and obtaining, for each class, a bound
on the number of possible surjections in it and a bound of the probability that any of those surjections are
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realized. Our advance over [34] is that we can allow sparser matrices, and to obtain this improvement we
have to both refine the classes into which we divide surjections and the bounds we have for the probabilities
for each class. For medium primes, our starting point is a theorem from [21], which carries out ideas of
Maples [19] to show that, modulo a prime, under likely conditions, each time we add a column to our matrix,
the probability that the new column is in the span of the previous columns (mod a prime) is near to the
probability for a uniform random column. Our contribution is to show the bounds on “likely conditions”
and “nearness of probability” can be turned into a bound on how the ranks of the final matrix compare to
the ranks of a uniform random matrix. We do this via a rather general approach using a coupling of Markov
chains. For large primes, our approach is new. We cannot control whether the rank of our matrix drops
by 1 modulo any particular large prime, but considering columns being added one at a time, once the rank
drops by 1 modulo a prime, we shows that it is not likely to drop again. We do this by showing that the
column spaces are unlikely to have a normal vector with many of its coefficients in a generalized arithmetic
progression mod p, and then proving a new inverse Erdős-Littlewood-Offord result over finite fields for sparse
random vectors based on the method from [22] by the first author and Vu. However, the probabilities of
structured normal vectors mod p are still too large to add up over all p, and a key innovation of the paper

is that for primes > en
1−ε/3

we show that having a non-zero structured normal vector mod p is equivalent
to having one in characteristic 0. Fortunately, the bounds for p up to which we can sum the probabilities of
structured normal vectors mod p, and the bounds for p where we can lift structured normal vectors overlap,
and this allows us to control the probability of structured normal vectors at all primes.

In contrast to the result of Corollary 1.5, in the u = 0 case we are unable to determine P (det(Mn×n) is square-free),
though from [34, Corollary 3.4] it follows that

lim sup
n→∞

P (det(Mn×n) is square-free) ≤ ζ(2)−1
∏
k≥2

ζ(k)−1,

and we would conjecture the limit is equal to this value. We can obtain the limiting probability that
Cok(Mn×n) is the product of a given finite abelian group B and a cyclic group (see Theorem 2.5), and these
are currently the most general classes of abelian groups for which we can obtain universality results for n×n
matrices. Even for nicely distributed matrix entries and fixed n, the question of how often det(Mn×n) is
square-free is very difficult (see [26, 2]).

Our main results work for αn ≥ n−1+ε, which is asymptotically best possible, in terms of the exponent of
n. If the matrix entries are 0 with probability at least 1− log n/(n+u), then the matrix Mn×(n+u) has a row
of all 0’s with non-negligible probability, and thus cannot possibly be surjective or even have finite cokernel.
We also refer the reader to [21] for some partial results where αn is allowed to be as small as O(log n/n) and
u is comparable to n. Much of the previous work that we build upon has required the matrix entries to be
non-zero with probability bounded away from 0 as n→∞. It is perhaps surprising that even as the matrices
have entries being 0 more and more frequently, the asymptotic probability that Mn×(n+1) is surjective does

not change from ≈ .4358 as long as αn ≥ n−1+ε.
Another advantage of our method (compared to existing results in the literature on classical random

matrix theory) is that the bound on the matrix entries can be as large as any polynomial nT of n. This can
be relaxed somewhat by letting T →∞ slowly, but it cannot be lifted entirely as the example of Koplewitz
shows [18, Section 4.4] (see also the discussion after Lemma 3.1).

We now explain in more detail the extension of our results to a natural family of random matrices
of dependent entries, namely to the Laplacian of random digraphs. More generally, let M = Mn×n =
(xij)1≤i,j≤n be a random matrix where xii = 0 and its off-diagonal entries are i.i.d. copies of an integral
random variable ξn satisfying (1). A special case here is when M is the adjacency matrix of an Erdős-Rényi

simple random digraph Γ ∈
−→
G(n, q) where each directed edge is chosen independently with probability q

satisfying αn ≤ q ≤ 1− αn. Let LM = (Lij) be the Laplacian of M , that is

Lij =

{
−xij if i 6= j∑n
k=1 xki if i = j.
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We then denote SM (or SΓ in the case of digraphs) to be the cokernel of L with respect to the group Zn0 of
integral vectors of zero entry-sum

SM = Zn0/LMZn.

When Γ is a graph, this group has been called the sandpile group without sink [8] and the total sandpile
group [17] of the graph. The size of this group was has been called the Pham Index [8], and was introduced
by Pham [25] in order to count orbits of the rotor-router operation. We will show that Theorems 1.1 and 1.2
extend to this interesting setting.

Theorem 1.6. Let 0 < ε < 1 and T > 0 be given. Let Mn×n be a integral n × n matrix with entries i.i.d
copies of an αn-balanced random integer ξn, with αn ≥ n−1+ε and |ξn| ≤ nT . Then for any finite abelian
group B,

lim
n→∞

P
(
SMn×n ' B

)
=

1

|B||Aut(B)|

∞∏
k=2

ζ(k)−1 (4)

and

lim
n→∞

P
(
SMn×n is cyclic

)
=

∏
p prime

(1 + (p2(p− 1))−1)

∞∏
k=3

ζ(k)−1. (5)

In particular, every finite abelian group B appears with frequency given in (4) as a total sandpile of

the random digraph
−→
G(n, q) with parameter n−1+ε ≤ q ≤ 1 − n−1+ε. In a paper about the sandpile (or

chip-firing) and rotor-router models, Holroyd, Levine, Mészáros, Peres, Propp, and Wilson asked if there
was an infinite family of non-Eulerian strongly connected digraphs such that the unicycles are in a single
orbit of the the rotor-router operation [13, Question 6.5]. Pham [25] then gave an infinite family with a
single orbit, and asked if the probability of a single orbit for an Erdős-Rényi digraph in fact goes to 1.
Koplewitz [17] gave an upper bound on this probability. We have now shown that the desired graphs with
a single rotor-router orbit occur with asymptotic probability

∏∞
k=2 ζ(k)−1 ≈ 43.58% (matching the upper

bound from [17]) among Erdős-Rényi digraphs. Moreover, for every k, our result gives an explicit positive
asymptotic probability for exactly k orbits.

Farrell and Levine show that this number of orbits is the size of the total sandpile group [8, Lemma 2.9,
Theorem 2.10], and coined the term co-Eulerian for digraphs where the total sandpile group is trivial. Farrell
and Levine also show that for a strongly connected digraph Γ the algebraic condition SΓ = {id} is equivalent
to a more combinatorial condition [8, Theorem 1.2], i.e. in this graph a chip configuration σ on Γ stabilizes
after a finite number of legal firings if and only if |σ| ≤ |E| − |V |. Further, they prove that minimal length
of a multi-Eulerian tour depends inversely on the size of the total sandpile group [9, Theorem 5], showing
that |SΓ| measures “Eulerianness” of the graph.

Corollary 1.7. Let 0 < ε < 1 be given and let q be a given parameter such that n−1+ε ≤ q ≤ 1 − n−1+ε.
Then

lim
n→∞

P
(−→
G(n, q) is co-Eulerian

)
=

lim
n→∞

P
(−→
G(n, q) is strongly connected, non-Eulerian, and co-Eulerian

)
=

∞∏
k=2

ζ(k)−1.

The corollary follows since
−→
G(n, q) is strongly connected and non-Eulerian asymptotically almost surely.

Although our general method to prove Theorem 1.6 follows the proof method of Theorems 1.1 and 1.2, here
the dependency of the entries in each column vector and the non-identical property of the columns pose new
challenges. Among other things, for the medium primes we will need to prove a non-i.i.d. analog of the result
of [21] that we used in the i.i.d. case. For small primes, when αn is constant, our results specialize to those
of Koplewitz [17], who determined the asymptotic probabilities of given Sylow p-subgroups of these total
sandpile groups for finitely many primes p. However, as in our main theorem, we require a further refined
method to deal with smaller αn.

Note that for Mn×n with general i.i.d. αn-balanced integer entries the results of [1] do not apply to
bound the singularity probability. However, a recent result by Paquette and the first author [21] (following
the preprint [19] of Maples) shows that the singularity probability pn can also be bounded in this case by
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e−cαnn with αn ≥ C log n/n (see also Theorem 5.1). We prove the same bound for the singularity of digraph
Laplacians in Corollary 8.16.

1.8. Outline of the paper. In Section 2, we state our results for each class of primes, and show that
Theorems 1.1, 1.2, 1.4, and 1.6 follow from these results. We will present our main arguments for the i.i.d.
case in Sections 3-7. The main arguments for the graph Laplacian case are in Section 8, building on the
treatments in the i.i.d. case.

1.9. Notation. We write P for probability and E for expected value. For an event E , we write Ē for its
complement. We write exp(x) for the exponential function ex. We use [n] to denote {1, . . . , n}. For a given
index set J ⊂ [n] and a vector X = (x1, . . . , xn), we write X|J to be the subvector of X of components
indexed from J . Similarly, if H is a subspace then H|J is the subspace spanned by X|J for X ∈ H. For a
vector w = (w1, . . . , wn) we let supp(w) = {i ∈ [n]|wi 6= 0}. We will also write X · w for the dot product∑n
i=1 xiwi. We say w is a normal vector for a subspace H if X · w = 0 for every X ∈ H.
For 0 ≤ u ≤ n, the matrix Mn×(n−u) is the submatrix of the first n− u columns of Mn×n. Sometimes we

will write the Laplacian LM as Ln×n, and so Ln×(n−u) is the submatrix of the first n − u columns of LM .
We also write Zn0/p to denote the set of vectors of zero-entry sum in (Z/pZ)n.

For a finite abelian group G and a prime p, we write Gp for the Sylow p-subgroup of G. For a set P of
primes, we write GP :=

∏
p∈P Gp.

Throughout this paper Ci,Ki, ci, δ, η, ε, λ, etc will denote positive constants. When it does not create
confusion, the same letter may denote different constants in different parts of the proof. The value of
the constants may depend on other constants we have chosen, but will never depend on the dimension n,
which is regarded as an asymptotic parameter going to infinity. We consider many functions of n and other
parameters, e.g. including u, {ξi}i, α, ε, T, d, p, q. We say “f(n, . . . ) ∈ OS(g(n, . . . )),” where S is a subset of
the parameters, to mean for any values v1, . . . , vm of the parameters in S, there is exists a constant K > 0
depending on v1, . . . , vm, such that for all n sufficiently large given v1, . . . , vm, and all allowed values of the
parameters not in S, that |f(n, v1, . . . , vm, . . . )| ≤ Kg(n, v1, . . . , vm, . . . ).

2. Organization of the proof of Theorems 1.1, 1.2, 1.4 and 1.6

We will be mainly focusing on the i.i.d. case to prove Theorems 1.1, 1.2, and 1.4. The results for the
Laplacian case will be shown in a similar fashion. We prove Theorems 1.1, 1.2, and 1.4 for Mn×(n+u) by
checking if the Sylow-p subgroup of Cok(Mn×(n+u)) is equal to Bp for each prime p (or is cyclic for each
prime p). The argument will then break up into considering primes in three size ranges with totally different
treatments.

For small primes, we prove the following generalization of [34, Corollary 3.4] to sparser matrices, which
requires a refinement of the method of [34].

Proposition 2.1 (Small Primes). Let Mn×(n+u) be as in Theorem 1.1. Let B be a finite abelian group. Let
P be a finite set of primes including all those dividing |B|. Then

lim
n→∞

P
(
Cok(Mn×(n+u))P ' B

)
=

1

|B|u|Aut(B)|
∏
p∈P

∞∏
k=1

(1− p−k−u).

Proposition 2.1 is a special case of Theorem 4.1, which allows the matrices to be even sparser and have
non-identical entries. This carries the main term of our estimates.

For medium primes, we combine a result of [21] with a comparison theorem on the evolving of the matrix
ranks to obtain the following.

Proposition 2.2 (Medium Primes). There are constants c0, η > 0 such that the following holds. Let
Mn×(n+u) be as in Theorem 1.1. Let p be a prime. Then,

P
(
Mn×(n+u) mod p is not full rank

)
≤ 2p−min(u+1,ηn) +O(e−c0αnn) (6)

and

P
(
Mn×(n+u) mod p has rank ≤ n− 2

)
≤ 2p−min(2u+4,ηn) +O(e−c0αnn). (7)
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Proposition 2.2 will follow from Theorem 5.1 where we allow the matrices to be sparser. (The big O allows
us to require that n is large enough that αn ≥ n−1+ε ≥ C0 log n/n.)

Even such a small error bound cannot be summed over all primes, and so for large primes we present a
new approach that considers all large primes together.

Proposition 2.3 (Large Primes). Let d > 0 and let Mn×(n+u) and ε be as in Theorem 1.1. Then,

P
(
∀ primes p ≥ edαnn : Mn×(n+1) mod p has rank at least n

)
≥ 1−Od,T,ε(n−ε), (8)

as well as

P
(
∀ primes p ≥ edαnn : Mn×n mod p has rank at least n− 1

)
≥ 1−Od,T,ε(n−ε). (9)

Proposition 2.3 in proven in Sections 6 and 7, and is the source of the lower bound on αn in our theorems.
The heart of the paper is proving the three propositions above, as the main theorems follow simply from

these, as we now show.

Proof of Theorems 1.1 and 1.4. We first prove Theorem 1.4, the case when u → ∞, where we need to
consider only medium and large primes. By Equation (6) of Proposition 2.2, there are c0, η > 0 such that

P
(
Mn×(n+u) mod p not full rank for some 2 ≤ p ≤ ec0αnn/2

)
≤

∑
2≤p≤ec0αnn/2

(2p−min(u+1,ηn) +O(e−c0αnn))

=O(
1

2min(u,ηn)
+ e−c0αnn/2).

Combined with Equation (8) of Proposition 2.3 (applied to d = c0/2) we obtain

P
(
Mn×(n+u) mod p is full rank for all p ≥ 2

)
≥ 1−OT,ε(

1

2min(u,ηn)
+ e−c0αnn/2 + n−ε),

completing the proof of Equation (3).
We next turn to Equation (2). Let k0 be fixed and u ≥ 1 be fixed. By applying Equation (6) of

Proposition 2.2, for n large enough given η and u we have

P
(
Mn×(n+u) mod p is not full rank for some k0 ≤ p ≤ ec0αnn/2

)
≤
ec0αnn/2∑
p=k0

(2p−(u+1) +O(e−c0αnn))

= O(
1

k0
+ e−c0αnn/2).

Combined with Equation (8) of Proposition 2.3 we obtain

P
(
Mn×(n+u) mod p is full rank for all p ≥ k0

)
≥ 1−OT,ε(

1

k0
+ e−c0αnn/2 + n−ε).

Now let k0 be at least as large as the largest prime divisor of |B|, and let P be the collection of primes up
to k0. By Proposition 2.1,

P
(
Cok(Mn×(n+u))P ' B

)
=

1

|B|u|Aut(B)|
∏
p≤k0

∞∏
k=1

(1− p−k−u) + o{ξi}i,B,u(1). (10)

Putting the two bounds together,

P
(
Cok(Mn×(n+u)) ' B

)
≥ 1

|B|u|Aut(B)|
∏
p≤k0

∞∏
k=1

(1−p−k−u)−OT,ε(
1

k0
+e−c0αnn/2 +n−ε)+o{ξi}i,B,u(1).

Taking the limit as n→∞, we obtain

lim inf
n→∞

P
(
Cok(Mn×(n+u)) ' B

)
≥ 1

|B|u|Aut(B)|
∏
p≤k0

∞∏
k=1

(1− p−k−u)−OT,ε(
1

k0
).

7



As this is true for any fixed k0, we can take k0 →∞ to obtain,

lim inf
n→∞

P
(
Cok(Mn×(n+u)) ' B

)
≥ 1

|B|u|Aut(B)|
∏
p

∞∏
k=1

(1− p−k−u).

Since P(Cok(Mn×(n+u)) ' B) ≤ P(Cok(Mn×(n+u))P ' BP ), Equation (10) gives

lim sup
n→∞

P
(
Cok(Mn×(n+u)) ' B

)
≤ 1

|B|u|Aut(B)|
∏
p≤k0

∞∏
k=1

(1− p−k−u),

completing the proof of (2). �

Finally, to obtain Corollary 1.5 and the u ≥ 1 cases of Theorem 1.2, we only need the following simple
observation.

Lemma 2.4. Let µ, and µn (for each positive integer n) be probability measures on a countable set S. If
for each B ∈ S,

lim
n→∞

µn(B) = µ(B),

then for any subset T ⊂ S, we have
lim
n→∞

µn(T ) = µ(T ).

Proof. Let T = {B1, . . . }. Then

lim inf
n→∞

µn(T ) = lim inf
n→∞

∞∑
k=1

µn(Bi) ≥
∞∑
k=1

µ(Bi) = µ(T ),

where the inequality is by Fatou’s Lemma. However, the same argument for the complement T̄ of T gives
lim infn→∞ µn(T ) ≤ µ(T ). �

The proof of Theorem 1.2 is identical to the proof of Theorem 1.1, using Equations (7) and (9) in place
of Equations (6) and (8), and the fact that Cok(Mn×n) is cyclic if and only if for every prime p, the matrix
Mn×n mod p has rank at least n− 1. In fact, the proof gives the following.

Theorem 2.5. Let Mn×n be as in Theorem 1.1. Let B be a finite abelian group and let k0 be larger than any
prime divisor of |B|, and define CB = {B × C |C cyclic, p - |C| for 1 < p < k0}, the set of groups differing
from B by a cyclic group with order only divisible by primes at least k0. Then, we have

lim
n→∞

P
(
Cok(Mn×n) ∈ CB

)
=

1

|Aut(B)|
∏
p<k0
p prime

(1− p−1)
∏
p≥k0
p prime

(1 + (p2 − p)−1)

∞∏
k=2

ζ(k)−1.

Now we turn to the Laplacian, where we will follow an almost identical outline (corresponding to the case
u = 1 of our i.i.d. model Mn×(n+u)). Indeed we will prove Theorem 1.6 by checking if the Sylow-p subgroup
of SM is equal to Bp for each prime p (or is cyclic for each prime p) in three size ranges. We prove the
following proposition in Section 8.

Proposition 2.6. Let Mn×n and ε be as in Theorem 1.6. There are constants c0, d > 0 such that the
following holds.

• (Small Primes) Let B be a finite abelian group. Let P be a finite set of primes including all those
dividing |B|. Then

lim
n→∞

P
(

(SMn×n)P ' B
)

=
1

|B||Aut(B)|
∏
p∈P

∞∏
k=1

(1− p−k−1). (11)

• (Medium primes) Let p be any prime. Then,

P
(
LMn×n mod p has rank ≤ n− 2

)
≤ 2p−2 +O(e−c0αnn) (12)

and

P
(
LMn×n mod p has rank ≤ n− 3

)
≤ 2p−6 +O(e−c0αnn). (13)
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• (Large primes) We also have

P
(
∀ primes p ≥ edαnn : LMn×n mod p has full rank in Zn0/p

)
≥ 1−Od,T,ε(n−ε), (14)

as well as

P
(
∀ primes p ≥ edαnn : LMn×(n−1)

mod p has rank at least n− 2
)
≥ 1−Od,T,ε(n−ε). (15)

The deduction of Theorem 1.6 from the above results is similar to the deduction of Theorem 1.1 and
Theorem 1.2 from Propositions 2.1, 2.2 and 2.3, and hence is omitted.

3. Odlyzko’s lemma

In this section we give an elementary but extremely useful tool which is a variant of Odlyzko’s lemma [15]
(also [19, Lemma 2.2]). This result will be used in the arguments for small, medium, and large primes. We
will focus on the i.i.d case and refer the reader to Lemma 8.3 for a similar result regarding the Laplacian.

Lemma 3.1. Let F be a field. For a deterministic subspace V of Fn of dimension d and a random vector
X ∈ Fn with i.i.d. entries taking any value with probability at most 1− αn,

P(X ∈ V ) ≤ (1− αn)n−d.

We give a short proof of this well-known result for completeness.

Proof. Assume that V = Span(H1, . . . ,Hd), where Hi = (hi1, . . . , hin), and without loss of generality we
assume the matrix (hij)1≤i,j≤d has rank d. Consider the event X = (x1, . . . , xd, xd+1, . . . , xn) ∈ V . Because
(hij)1≤i,j≤d has rank d, there exist unique coefficients c1, . . . , cd ∈ F such that

(x1, . . . , xd) =
∑
i

ci(hi1, . . . , hid).

Hence conditioning on (x1, . . . , xd), if X = (x1, . . . , xd, xd+1, . . . , xn) ∈ V then for all d+ 1 ≤ j ≤ n

xj =
∑
i

cihij .

However the probability of each of these events is at most 1 − αn, and so conditioning on (x1, . . . , xk), the
event X ∈ V holds with probability at most (1− αn)n−d. �

Corollary 3.2. Let X1, . . . , Xn−k be random vectors with i.i.d. entries taking any value with probability at
most 1−αn. Then the probability that X1, . . . , Xn−k are linearly independent in Fn is at least 1−α−1

n (1−αn)k.

Proof. Let 0 ≤ i ≤ n − k − 1 be minimal such that Xi+1 ∈ span(X1, . . . , Xi). By Lemma 3.1, this event is
bounded by (1− αn)n−i. Summing over 0 ≤ i ≤ n− k − 1, the probability under consideration is bounded

by
∑n−k−1
i=0 (1− αn)n−i < α−1

n (1− αn)k. �

In all three arguments, Lemma 3.1 (Odlyzko’s lemma) will only suffice for the easy part of the argument,
and a stronger, Littlewood-Offord style bound (Lemma 4.7, Theorem 5.2, Theorem 6.3, Theorem 7.3) will
be required for the harder part of the argument. The details of the Littlewood-Offord style bound required
are different in each argument, and thus are given in the corresponding sections. Note that Odlyzko’s lemma
is too weak to be used alone for our purposes, because it can produce a bound 1 − αn, where we require
bounds that go to 0 as n → ∞. In this paper, αn is possibly small. If, however, the matrix entries take
values modulo large primes with probability at most 1 − αn, and 1 − αn → 0 as n → ∞, then we expect
our arguments can all be considerably simplified and only Odlyzko’s lemma would be necessary (and no
Littlewood-Offord style bounds required). For example, such a simplification works to handle the case of
entries chosen uniformly in a interval centered at 0 with size growing at any rate with n.
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4. Small Primes

In this section, we prove the following theorem, which generalizes [34, Corollary 3.4] to smaller αn and
implies our Proposition 2.1. The method requires refinement from that of [34], and we discuss the differences
below.

Theorem 4.1. Let u be a non-negative integer and αn a function of integers n such that for any constant
∆ > 0, for n sufficiently large we have αn ≥ ∆ log n/n. For every positive integer n, let M(n) be a random
matrix valued in Mn×(n+u)(Z) with independent αn-balanced entries. Let B be a finite abelian group. Let P
be a finite set of primes including all those dividing |B|. Then

lim
n→∞

P(Cok(M(n))P ' B) =
1

|B|u|Aut(B)|
∏
p∈P

∞∏
k=1

(1− p−k−u).

Note that the entries of the matrix do not have to be identical.
Throughout the section we write Hom(A,B) and Sur(A,B) for the set of homomorphisms and surjective

homomorphisms, respectively, from A to B. We will always use a to denote a positive integer and R = Z/aZ.
We then study finite abelian groups G whose exponent divides a, i.e. aG = 0. We write G∗ for Hom(G,R).

4.2. Set-up. We will study integral matrices by reducing them mod each positive integer. We let a be a
positive integer. Let M be the random n× (n + u) matrix with entries in R that is the reduction of M(n)
from Theorem 4.1 modulo a. We let X1, . . . , Xn+u ∈ Rn be the columns of M , and xij the entries of M
(so that the entries of Xj are xij). For a positive integer n, we let V = Rn with basis vi and W = Rn+u

with basis wj (these will always implicitly depend on the integers we call a and n). Note for σ ⊂ [n], V
has distinguished submodules V\σ generated by the vi with i 6∈ σ. (So V\σ comes from not using the σ
coordinates.) We view M ∈ Hom(W,V ) and its columns Xj as elements of V so that Xj = Mwj =

∑
i xijvi.

Let G be a finite abelian group with exponent dividing a. We have Cok(M) = V/MW .
We know from [34] that to understand the distribution of Cok(M), it suffices to determine certain

moments. To investigate the moments E(# Sur(Cok(M), G)) (see [5, Section 3.3] for more on why these are
“moments”), we recognize that each such surjection lifts to a surjection V → G and so we have

E(# Sur(Cok(M), G)) =
∑

F∈Sur(V,G)

P(F (MW ) = 0). (16)

By the independence of columns, we have

P(F (MW ) = 0) =

m∏
j=1

P(F (Xj) = 0).

So we aim to estimate these probabilities P(F (Xj) = 0), which will give us our desired moments.

4.3. Finding the moments. We will first estimate P(F (Xj) = 0) for the vast majority of F , which satisfy
the following helpful property.

Definition 4.4. We say that F ∈ Hom(V,G) is a code of distance w, if for every σ ⊂ [n] with |σ| < w, we
have FV\σ = G. In other words, F is not only surjective, but would still be surjective if we throw out (any)
fewer than w of the standard basis vectors from V . (If a is prime so that R is a field, then this is equivalent
to whether the transpose map F : G∗ → V ∗ is injective and has image im(F ) ⊂ V ∗ a linear code of distance
w, in the usual sense.)

First we recall a lemma from [34] that lets us see how a code F acts on a single column from our matrix.
The following statement is slightly stronger than [34, Lemma 2.1], but one can see this statement follows
directly from the proof of [34, Lemma 2.1].

Lemma 4.5. Let a, n be positive integers, G a finite abelian group of exponent dividing a, and X the
reduction mod a of a random vector in Zn with independent, α-balanced entries. Let F ∈ Hom(V,G) be a
code of distance w and A ∈ G. We have∣∣P(FX = A)− |G|−1

∣∣ ≤ |G| − 1

|G|
exp(−αw/a2).
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We then will put these estimates for columns together using this simple inequality.

Lemma 4.6 ([34, Lemma 2.3]). If we have an integer m ≥ 2 and real numbers x ≥ 0 and y such that
|y|/x ≤ 21/(m−1) − 1 and x+ y ≥ 0, then

xm − 2mxm−1|y| ≤ (x+ y)m ≤ xm + 2mxm−1|y|.

The below is a refinement of [34, Lemma 2.4] that allows sparse matrices.

Lemma 4.7 (Bound for codes). Let a ≥ 1 and u ≥ 0 be integers, G be a finite abelian group of exponent
dividing a, the sequence {αn}n be as in Theorem 4.1, and δ > 0. Then there are c1,K1 > 0 such that the
following holds. Let M̄(n) be the reduction modulo a of random matrices M(n) as in Theorem 4.1. For every
positive integer n, and F ∈ Hom(V,G) a code of distance δn, and A ∈ Hom(W,G), we have∣∣P(FM̄(n) = A)− |G|−n−u

∣∣ ≤ K1n
−c1

|G|n+u
.

Proof. Choose ∆ > a2δ−1 and n large enough (depending on ∆ and {αi}i) so that αn ≥ ∆ log n/n. Then
for n large enough given δ,∆, u, a, |G|, we have

exp(−(∆ log n/n)δn/a2)|G| = exp(−∆δ log n/a2)|G| ≤ log 2

n+ u− 1
≤ 21/(n+u−1) − 1.

So for such n we can combine Lemma 4.5 and Lemma 4.6 to obtain∣∣P(FM = A)− |G|−n−u
∣∣ ≤ 2(n+ u) exp(−∆δ log n/a2)|G|−n−u+1.

We take c1 < ∆δ/a2 − 1 and then for n sufficiently large given u,∆, δ, a, c1, |G|, {αi}i, we have∣∣P(FM = A)− |G|−n−u
∣∣ ≤ 2(n+ u)

n1+(∆δ/a2−1)
|G|−n−u+1 ≤ n−c1 |G|−n−u.

We choose K1 large enough so that K1n
−c1

|G|n+u ≥ 2 for n that are not as large as needed above, and the lemma

follows. �

So far, we have a good estimate for P(FM = 0) when F is a code. Unfortunately, it is not sufficient
to divide F into codes and non-codes. We need a more delicate division of F based on the subgroups of
G. In [34], a notion of depth was used to divide the F into classes. Here we require a slightly finer notion
(that we call robustness) to deal with the sparser matrices. Both notions can be approximately understood
as separating the F based on what largest size subgroup they are a code for. For an integer D with prime
factorization

∏
i p
ei
i , let `(D) =

∑
i ei.

Definition 4.8. Given δ > 0, we say that F ∈ Hom(V,G) is robust (or, more precisely, δ-robust) for a
subgroup H of G if H is minimal such that

#{i ∈ [n]|Fvi 6∈ H} ≤ `([G : H])δn.

Note that H = G satisfies the above inequality, so every F ∈ Hom(V,G) is robust for some subgroup H of
G. An F might be robust for more than one subgroup.

Lemma 4.9. Let δ > 0, and a, n be positive integers, and G be a finite abelian group of exponent dividing
a. Let F ∈ Hom(V,G) be robust for H. Let π := {i ∈ [n]|Fvi 6∈ H}. Then F restricted to V\π is a code of
distance δn in Hom(V\π, H).

Proof. Suppose not. Then there exists a σ ⊂ [n] \ π such that |σ| < δn and FV\(π∪σ) lies in some proper
subgroup H ′ of H. In particular, the set of i such that Fvi 6∈ H ′ is contained in π ∪ σ. Since

|π ∪ σ| ≤ `([G : H])δn+ δn ≤ `([G : H ′])δn,

we then have a contradiction on the minimality of H. �

We then bound the number of F that are robust for a certain group H, and with certain given behavior
outside of H. The separation of F into classes based on their behavior outside of H did not appear in [34],
but is necessary here to deal with sparser matrices.
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Lemma 4.10 (Count of robust F for a subgroup H). Let δ > 0, and a, n ≥ 1 be integers, and G be finite
abelian group of exponent dividing a. Let H be a subgroup of G of index D > 1 and let H = G`(D) ⊂
. . . ⊂ G2 ⊂ G1 ⊂ G0 = G be a maximal chain of proper subgroups. Let pj = |Gj−1/Gj |. The number of
F ∈ Hom(V,G) such that F is robust for H and for 1 ≤ j ≤ `(D), there are wj elements i of [n] such that
Fvi ∈ Gj−1 \Gj, is at most

|H|n−
∑
j wj

`(D)∏
j=1

(
n

wj

)
|Gj−1|wj .

Note that by the definition of robustness we have that wj ≤ `([G : H])δn, or else there are no such F .

Proof. There are at most
(
n
wj

)
ways to choose the i such that Fvi ∈ Gj−1 \Gj and then at most |Gj |wj ways

to choose the Fvi. Then there are |H| choices for each remaining Fvi. �

Now for F robust for a subgroup H, we will get a bound on P(FM = 0), where the larger the H, the
better the bound. This is a more delicate bound than [34, Lemma 2.7] that it is replacing, and in particular
takes into account the behavior of F outside of H.

Lemma 4.11 (Probability bound for columns given robustness). Let δ > 0, and a, n ≥ 1 be integers, and
G be finite abelian group of exponent dividing a. Let F ∈ Hom(V,G) be robust for a proper subgroup H of G
and let D := [G : H]. Let H = G`(D) ⊂ . . . ⊂ G2 ⊂ G1 ⊂ G0 = G be a maximal chain of proper subgroups.
Let pj = |Gj−1/Gj |. For 1 ≤ j ≤ `(D), let wj be the number of i ∈ [n] such that Fvi ∈ Gj−1 \ Gj. Let
X ∈ Rn be a a random vector with independent entries that are the reduction mod a of α-balanced random
integers. Then for all n,

P(FX = 0) ≤
(
D|G|−1 + exp(−αδn/a2)

) `(D)∏
j=1

(
p−1
j +

pj − 1

pj
exp(−αwj/p2

j )
)
.

Proof. Assume that X = (x1, . . . , xn). Let σj be the collection of indices i ∈ [n] such that Fvi ∈ Gj−1 \Gj .
Let σ = ∪`(D)

j=1 σj . Then,

P(FX = 0) =P
(∑
i∈σ1

(Fvi)xi ∈ G1

)
P
( ∑
i∈σ1∪σ2

(Fvi)xi ∈ G2

∣∣∣ ∑
i∈σ1

(Fvi)xi ∈ G1

)
× · · ·

×P
( ∑
i∈σ1∪···∪σ`(D)

(Fvi)xi ∈ H
∣∣∣ ∑
i∈σ1∪···∪σ`(D)−1

(Fvi)xi ∈ G`(D)−1

)
×P

(∑
i6∈σ

(Fvi)xi = −
∑
i∈σ

(Fvi)xi

∣∣∣∑
i∈σ

(Fvi)xi ∈ H
)
.

For 1 ≤ j ≤ `(D), we will bound the jth factor above by conditioning on the xi with i ∈ σ1 ∪ · · · ∪ σj−1

and then looking at images in Gj−1/Gj . Note for i ∈ σj , we have that the reduction of Fvi is non-zero in
Gj−1/Gj . So F restricted to the σj coordinates in the reduction to Gj−1/Gj is a code of length wj . We
then apply Lemma 4.5 to this case to obtain

P
( ∑
i∈σ1∪···∪σj

(Fvi)xi ∈ Gj
∣∣∣ ∑
i∈σ1∪···∪σj−1

(Fvi)xi ∈ Gj−1

)
≤ p−1

j +
pj − 1

pj
exp(−αwj/p2

j ).

Note that σ is the set of i such that Fvi 6∈ H. By the definition of robust, |σ| < `(D)δn. By Lemma 4.9,
the restriction of F to V\σ is a code of distance δn in Hom(V\σ, H). So conditioning on the Xi with i ∈ σ,
we can estimate the conditional probability above using Lemma 4.5:

P
(∑
i6∈σ

(Fvi)xi = −
∑
i∈σ

(Fvi)xi

∣∣∣∑
i∈σ

(Fvi)xi ∈ H
)
≤ |H|−1 + exp(−αδn/a2).

The lemma follows. �

Now we can combine the estimates we have for P(FM = 0) for various types of F with the bounds we
have on the number of F of each type to obtain our main result on the moments of cokernels of random
matrices.
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Theorem 4.12. Let u ≥ 0 be an integer, G be a finite abelian group, and the sequence {αn}n be as in
Theorem 4.1. Then there are c2,K2 such that the following holds. For every positive integer n and random
matrix M(n) as in Theorem 4.1, we have∣∣E(# Sur(Cok(M(n)), G))− |G|−u

∣∣ ≤ K2n
−c2 .

Proof. Let a be the exponent of G. By Equation (16), we need to estimate
∑
F∈Sur(V,G) P(FM(n) = 0). Fix

a proper subgroup H of G. We will apply Lemma 4.11 and use the notation from that lemma, along with
Lemma 4.10. We then have∑

F∈Sur(V,G)
F is robust for H

P(FM(n) = 0)

≤
∑

0≤w1,...,w`(D)≤`(D)δn
w1 6=0

|H|n−
∑
j wj

`(D)∏
j=1

(
n

wj

)
|Gj−1|wj

`(D)∏
j=1

(
p−1
j +

pj − 1

pj
exp(−αnwj/p2

j )
)n+u

×
(
D|G|−1 + exp(−αnδn/a2)

)n+u

=|H|n
(
D|G|−1 + exp(−αnδn/a2)

)n+u
`(D)∏
j=1

`(D)δn∑
wj=0
w1 6=0

|H|−wj
(
n

wj

)
|Gj−1|wj

(
p−1
j +

pj − 1

pj
exp(−αnwj/p2

j )
)n+u

.

We have w1 6= 1 since F is a surjection. Now we apply Lemma A.3 from the Appendix to bound the sums.
The D1, d1 from Lemma A.3, will be |Gj−1|/|H| and p−1

j respectively. We choose the ∆′ of Lemma A.3 so

that ∆′ > 2/(1− p−1
j ) for all j. For n sufficiently large (in terms of {αi}i,∆′, G), we have αn ≥ p2

j∆
′ log n/n

for all j. Lemma A.3 then gives us that, for δ sufficiently small (given G), and n sufficiently large (given G,
∆′, δ, {αi}i,), we have

`(D)δn∑
wj=1

(
n

wj

)(
|Gj−1|
|H|

)wj (
p−1
j +

pj − 1

pj
exp(−αnwj/p2

j )
)n+u

≤ 3n−((1−p−1
j )∆′/2−1).

Let ∆ > a2δ−1 and ∆ > 2p3/(p − 1) for every prime p | a. For n also sufficiently large (given ∆ and
{αi}i) that αn ≥ ∆ log n/n, and we have

|H|n
(
D|G|−1 + exp(−αnδn/a2)

)n+u

≤|H|−u
(

1 + |H| exp(−∆δ log n/a2)
)n+u

.

For n+ u ≥ 2, and n sufficiently large (given δ,∆, u,G) such that

|H| exp(−∆δ log n/a2) = |H|n−∆δ/a2 ≤ log 2

n+ u− 1
≤ 21/(n+u−1) − 1.

By Lemma 4.6, (
1 + |H| exp(−∆δ log n/a2)

)n+u ≤ 1 + 2(n+ u)|H| exp(−∆δ log n/a2).

Putting it altogether we have∑
F∈Sur(V,G)

F is robust for H

P(FX = 0)

≤|H|n
(
D|G|−1 + exp(−αnδn/a2)

)n+u
`(D)∏
j=1

`(D)δn∑
wj=0
w1 6=0

|H|−wj
(
n

wj

)
|Gj−1|wj

(
p−1
j +

pj − 1

pj
exp(−αnwj/p2

j )
)n+u

≤|H|−u
(

1 + 2(n+ u)|H| exp(−∆δ log n/a2)
)

3n−((1−p−1
1 )∆′/2−1)

`(D)∏
j=2

(
1 + 3n−((1−p−1

j )∆′/2−1)
)
.
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We sum this over proper subgroups H of G to bound, for δ sufficiently small (given G), and ∆′ >
2/(1− p−1

j ) for all j, and ∆ > a2δ−1, and ∆ > 2p3/(p− 1) for every prime p | a, for n sufficiently large given

G, δ, ∆, ∆′, u, {αi}i, ∑
F∈Sur(V,G)

F not code of distance δn

P(FM(n) = 0) ≤ K3n
−c3 .

where K3 is a constant depending on G, δ, ∆, ∆′, u and c3 > 0 (depending on a, ∆′).
Also, from the proof of [34, Theorem 2.9], we can choose δ small enough (given G) so that we have for all

n ∑
F∈Sur(V,G)

F not code of distance δn

|G|−n−u ≤ K4e
−(log 1.5)n

for some K4 depending on u,G, δ. We also have (e.g. see the proof of [34, Theorem 2.9]) for all n,∑
F∈Hom(V,G)\Sur(V,G)

|G|−n−u ≤ K5e
− log(2)n

for some K5 depending on G. Using Lemma 4.7 we have that for all n,∑
F∈Sur(V,G)

F code of distance δn

∣∣P(FX = 0)− |G|−n−u
∣∣ ≤ K1n

−c1 .

We now make a choice of δ that is sufficiently small for the two requirements above (given G), and we choose
∆ and ∆′ as required above, so that for all n sufficiently large (given G, δ, ∆, ∆′, u, {αi}i,)∣∣∣ ∑
F∈Sur(V,G)

P(FX = 0)− |G|−u
∣∣∣ =

∣∣∣ ∑
F∈Sur(V,G)

P(FX = 0)−
∑

F∈Hom(V,G)

|G|−n−u
∣∣∣

≤
∑

F∈Sur(V,G)
F code of distance δn

∣∣∣P(FX = 0)− |G|−n−u
∣∣∣+

∑
F∈Sur(V,G)

F not code of distance δn

P(FX = 0) +
∑

F∈Hom(V,G)
F not code of distance δn

|G|−n−u

≤ K1n
−c1 +K3n

−c3 +K4e
−(log 1.5)n +K5e

− log(2)n.

We choose c2 ≤ min(c1, c3, log(1.5)) (which depends on G, u, {αi}i). We choose K2 so that K2 ≥ K1 +K3 +
K4 +K5, and also K2 ≥ |G|nnc2 for any n not sufficiently large for the requirements above (so K2 depends
on G, u, {αi}i). The theorem follows. �

We now conclude the proof of Theorem 4.1. For each fixed u ≥ 1, we construct a random abelian group
according to Cohen and Lenstra’s distribution mentioned in the introduction. Independently for each p, we
have a random finite abelian p-group Yp such that for each p-group B

P(Yp = B) =

∏∞
k=1(1− p−k−u)

|B|u|Aut(B)|
).

Let P be a set of primes dividing a given number a, we then define a random group Y by taking the group
product

∏
p∈P Yp.

Lemma 4.13 ([34, Lemma 3.2]). For every finite abelian group G with exponent dividing a we have

E(# Sur(Y,G)) = |G|−u.

From Theorem 4.12, we have seen that Y and Cok(M(n)) have asymptotic matching “moments” with
respect to all groups G of exponent dividing a. To pass this information back to distribution, we then use
the following.
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Theorem 4.14 ([34, Theorem 3.1]). Let Xn and Yn be sequences of random finitely generated abelian groups.
Let a be a positive integer and A be the set of isomorphism classes of abelian groups with exponent dividing
a. Suppose that for every G ∈ A we have a number MG ≤ | ∧2 G| such that limn→∞E(# Sur(Xn, G)) =
limn→∞(# Sur(Yn, G)) = MG. Then we have that for every H ∈ A

lim
n→∞

P
(
Xn ⊗ (Z/aZ) ' H

)
= lim
n→∞

P(Yn ⊗ (Z/aZ) ' H).

To prove Theorem 4.1, assume that the exponent of the group B under consideration has prime factoriza-
tion

∏
p∈P p

ep . Theorem 4.14, applied to the sequence Xn = Cok(M(n)) and Yn = Y with a =
∏
p∈P p

ep+1,
implies that

lim
n→∞

P
(
Cok(M(n))⊗ (Z/aZ) ' B

)
= P(Y ⊗ (Z/aZ) ' B) =

1

|B|u|Aut(B)|
∏
p∈P

∞∏
k=1

(1− p−k−u).

The proof is then complete because Cok(M(n))⊗ (Z/aZ) ' B if and only if Cok(M(n))P ' B.

5. Medium Primes

In this section we prove the following, which we apply to medium primes for the proof of our main results.

Theorem 5.1. There are constants c0, η, C0,K0 > 0 such that we have the following. Let n, u ≥ 0 be
integers, p be a prime, and let Mn×(n+u) be a random matrix n × (n + u) with independent i.i.d. entries
ξn ∈ Z/pZ. We further assume we have a real number αn such that

max
r∈Z/pZ

P(ξn = r) = 1− αn ≤ 1− C0 log n

n
.

Then we have

P
(

rank(Mn×(n+u)) ≤ n− 1
)
≤ 2p−min(u+1,ηn−1) +K0e

−c0αnn

and

P
(

rank(Mn×(n+u)) ≤ n− 2
)
≤ 2p−min(2u+4,ηn−1) +K0e

−c0αnn.

The proof of Theorem 5.1 has two main ingredients. First, we have a result from [21] that says that the
first n − k columns of Mn×(n+u) are likely to generate a subspace V such that the probability of the next
column being in V is near to the probability of a uniform random column mod p being in V . (This result
was originally stated in [19] by Maples, but [21] gives a corrected proof using the ideas of [19] and [30].)

Theorem 5.2 ([21, Theorems A.1 and A.4]). There are constants c, η, C0,K > 0 such that the following
holds. Let n, u ≥ 0 be integers with u ≤ ηn, p be a prime, and let Mn×(n+u) be a random matrix n× (n+ u)
with independent i.i.d. entries ξn ∈ Z/pZ. We further assume we have a real number αn such that

max
r∈Z/pZ

P(ξn = r) = 1− αn ≤ 1− C0 log n

n
.

For −u ≤ k ≤ ηn, let Xn−k+1 be the (n − k + 1)st column of Mn×(n+u), and Wn−k be the subspace by the
first n− k columns of Mn×(n+u). Then there is an event En−k on the σ-algebra generated by the first n− k
columns of Mn×(n+u), of probability at least 1− 3e−cαnn, such that for any k0 with max(0, k) ≤ k0 ≤ ηn∣∣∣P(Xn−k+1 ∈Wn−k|En−k ∧ codim(Wn−k) = k0

)
− p−k0

∣∣∣ ≤ Ke−cαnn.
We also refer the reader to Theorem 8.2 for a similar statement for the Laplacian with a complete proof.

Note that for a uniform random X ∈ (Z/pZ)n, we have P(X ∈ V ) = p− codim(V ). Thus, as long as we avoid
certain rare bad events, as we consider more and more columns of our random matrices, the probability
that the next column is in the span of the previous columns is close to what it would be if we were using
uniform random matrices. The following result, proven in Section B in the Appendix, allows us to use that
information to conclude that the rank distribution of our matrices is close to that of uniform random matrices.
This theorem says that if sequences of random variables xi and yi have similar transition probabilities going
from xi to xi+1 and yi to yi+1, at least under conditions that are likely to be true, then the distributions of
xn and yn must stay close.
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Theorem 5.3. Let x1, . . . , xn, g0, . . . , gn−1 be a sequence of random variables, and let x0 = 0. Let y1, . . . , yn
be a sequence of random variables, and let y0 = 0. We assume each xi, yi takes on at most countably many
values, and gi ∈ {0, 1}. Suppose that for 0 ≤ i ≤ n− 1,

P(yi+1 = s|yi = r) = P(xi+1 = s|xi = r and gi = 1) + δ(i, r, s)

for all r and s s.t. P(yi = r)P(xi = r and gi = 1) 6= 0.

Then for all n ≥ 0 and any set A of values taken by xn and yn, we have

|P(xn ∈ A)−P(yn ∈ A)|

≤ 1

2

n−1∑
i=0

∑
r

∑
s

|δ(i, r, s)|P(xi = r) +

n−1∑
i=0

P(gi 6= 1),

where r is summed over {r | P(xi = r) 6= 0 and P(yi = r) 6= 0)} and s is summed over {s | P(xi+1 = s) 6=
0 or P(yi+1 = s) 6= 0)}.

We remark that our error bounds come from the δ’s and the complement of gi = 1. The explicit form
here will be extremely useful because in the sparse case δ and P(gi 6= 0) are not small.

Proof of Theorem 5.1. We take η, C0 as in Theorem 5.2. Since

P(rank(Mn×(n+u+1)) ≤ m) ≤ P(rank(Mn×(n+u)) ≤ m),

it suffices to prove the theorem for u ≤ bηnc − 1. Let Xm be the m-th column of Mn×(n+u), and Wm the
subspace generated by X1, . . . , Xm. For 1 ≤ i ≤ bηnc+ u, define the random variable

xi =

{
k0 if rank(Wn−bηnc+i) = n− bηnc+ i− k0 and 0 ≤ k0 ≤ u+ 1

∗ if rank(Wn−bηnc+i) ≤ n− bηnc+ i− u− 2.

In other words, xi measures the deficiency (n − bηnc + i) − rank(Wn−bηnc+i) if this difference is not larger
than u+ 1.

Let yi be analogous function for a uniform random matrix mod p for for 1 ≤ i ≤ bηnc+ u. Let g0 the the
indicator function of the event that requires both rank(Wn−bηnc) = n−bηnc and En−bηnc from Theorem 5.2.
Let gi be the indicator function for the event En−bηnc+i from Theorem 5.2, so from that theorem we have

for i ≥ 1 that P(gi = 1) ≥ 1− 3e−cαnn.
We will apply Theorem 5.3 to the sequences xi, yi and gi defined above. For this, we will estimate the

error terms δ(i, b, a) for various values of i, a and b. First, note that if

rank(Wn−bηnc+i) ≤ n− bηnc+ i− u− 2,

then

rank(Wn−bηnc+i+1) ≤ n− bηnc+ i+ 1− u− 2.

So for i ≥ 1,

P(yi+1 = ∗|yi = ∗) = P(xi+1 = ∗|xi = ∗ ∧ gi = 1) = 1.

Therefore, for i ≥ 1 and all a we have

δ(i, ∗, a) = 0.

Next, Theorem 5.2 gives that for i ≥ 1 and 0 ≤ k0 ≤ u+ 1 (as u+ 1 ≤ ηn),

δ(i, k0, k0) =
∣∣P(yi+1 = k0|yi = k0)−P(xi+1 = k0|xi = k0 ∧ gi = 1)

∣∣ ≤ Ke−cαnn.
Furthermore, if xi = k0, the only possibility for xi+1 is either k0 or k0 + 1 (which should be interpreted as ∗
if k0 = u+ 1). It then follows that for i ≥ 1 and all k0, `, we have

δ(i, k0, `) =
∣∣P(yi+1 = `|yi = k0)−P(xi+1 = `|xi = k0 ∧ gi = 1)

∣∣ ≤ Ke−cαnn.
To this end, at the initial position i = 0 we have

P(y1 = 0|y0 = 0) =

n−bηnc∏
j=0

(1− p−(bηnc+j)))
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and Theorem 5.2 gives

P(x1 = 0|x0 = 0 and g0 = 1) ≥ 1− p−bηnc −Ke−cαnn.

Thus for any `,

δ(0, 0, `) ≤p−bηnc +Ke−cαnn + 1−
n−bηnc∏
j=0

(1− p−(bηnc+j)))

≤p−bηnc +Ke−cαnn + p−bηnc/(1− p−1).

We can apply Lemma 3.1 to find the P(Xm+1 6∈ Wm|rank(Wm) = m) for all 0 ≤ m ≤ n− bηnc − 1.
Taking union bound (see Corollary 3.2), we obtain

P(rank(Wn−bηnc) = n− bηnc) ≥ 1− α−1
n (1− αn)bηnc+1.

So

P(g0 = 0) ≤ α−1
n (1− αn)bηnc+1 + 3e−cαnn.

We now apply Theorem 5.3. The n from that theorem will be what we call bηnc+ u here. We conclude
that for k0 = u or u+ 1,∣∣∣P(xbηnc+u = k0)−P(ybηnc+u = 0)

∣∣∣
≤1

2
(bηnc+ u)Ke−cαnn · 2 + (bηnc+ u) · 3e−cαnn

+
(
p−bηnc +Ke−cαnn + p−bηnc/(1− p−1)

)
+
(
α−1
n (1− αn)bηnc+1 + 3e−cαnn

)
.

Here the first two terms are from the i ≥ 1 summands in each sum, the (bηnc + u) is from the sum over i,
the sum over b cancels with the P(Xi = b) terms, and the 2 is from the sum over c (for each b there are at
most 2 values of c with non-zero δ(i, b, c)). The second two terms are from the i = 0 summands.

Thus for k0 = u or u+ 1, using u ≤ ηn,∣∣P(xbηnc+u = k0)−P(ybηnc+u = k0)
∣∣ ≤ 2(K + 3)ηne−cαnn + 3e−cαnn + 3p−ηn+1 + α−1

n (1− αn)ηn.

Since (e.g. by [10])

P(ybηnc+u = u) =

n∏
j=1

(1− p−j−u) ≥ 1−
∑
j≥1

p−j−u = 1− p−1−u/(1− p−1),

and

P(ybηnc+u ≥ u− 1) =
(

1 + p−2−u(1− p−(n−1)

1− p−1

)) n∏
j=2

(1− p−j−u)

≥1− p−4−2u

1− p−1
− p−(n−1)−2−u

1− p−1
.

we have that

P(rank(Wn+u) ≤ n− 1) ≤ 2p−1−u + 2(K + 3)ηne−cαnn + 3e−cαnn + 3p−ηn+1 + α−1
n (1− αn)ηn

and

P(rank(Wn+u) ≤ n− 2) ≤ 2p−4−2u + 2p−n + 2(K + 3)ηne−cαnn + 3e−cαnn + 3p−ηn+1 + α−1
n (1− αn)ηn.

Since u ≤ ηn, for some K0 depending on K, c, η, C0, for all n we have

P
(
rank(Wn+u) ≤ n− 1

)
≤ 2p−1−u +K0e

−min(c/2,η log(2)/2)αnn

and

P
(
rank(Wn+u) ≤ n− 2

)
≤ 2p−4−2u +K0e

−min(c/2,η log(2)/2,log(2))αnn.

The result follows with c0 = min(c/2, η log(2)/2, log(2)). �
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6. Large primes

In this section and the next we prove Proposition 2.3.
Notation for Sections 6 and 7: Throughout this and the next section, we fix T > 0 and for each

positive integer n we let ξn be an αn-balanced random integer with |ξn| ≤ nT . We define Mn×(n+1) to be the
integral n× (n+ 1) matrix with entries i.i.d copies of ξn. We do not make a global assumption on the size
of αn, but we will need different assumptions on αn for the various results in these two sections. We further
fix d > 0. Let X1, . . . , Xn+1 be the columns of Mn×(n+1). We write Mn×k for the submatrix of Mn×(n+1)

composed of the first k columns. Let Wk be the submodule of Zn spanned by X1, . . . , Xk. We write Xk/p
and Wk/p for their reductions mod p (and more generally use this notation to denote the reduction of an

object from Z to Z/pZ). We let n0 := n− b 3 logn
αn
c.

Let

Pn :=
{
p prime, p ≥ edαnn

}
.

Let E 6=0 be the event that det(Mn×n) 6= 0. As mentioned in the introduction section, from [21] and also by
taking the limit as p→∞ in Theorem 5.1, we have

P(E6=0) ≥ 1−K0e
−c0αnn

for absolute constants c0,K0. Our strategy is as follows. We consider the columns of the matrix one at a
time, and check if they are the span of the previous columns modulo p for each prime in Pn. We cannot
control whether this happens, as Pn contains too many primes, but each p for which this happens is put
on a “watch list” (called Wk) and necessarily divides the determinant of Mn×n. If the watch list grows too
large, since all the primes in the watch list are large, then too a large number divides the determinant, and
Mn×n must be singular. However, we have already bounded the probability of that occurring. Otherwise, if
our watch list is not too large, for each prime in the watch list, we can bound the probability that the next
column is in the span of the previous columns mod that prime.

Let Wk be the set of primes p ∈ Pn such that rank(Wk/p) ≤ k − 1. Let Ck be the event that |Wk| ≤
(2T + 1) log n/(2dαn) (the watch list is under control). Note that any p ∈ Wk for k ≤ n must divide
det(Mn×n). By Hadamard’s bound, |det(Mn×n)| ≤ nn/2nTn, and so in particular, when C̄k occurs (“the
watch list is out of control”) then det(Mn×n) = 0. Let Dk be the event that there is a p ∈ Wk such that
rank(Wk/p) ≤ k − 2 (the rank drops), this is the event we want to avoid.

We will show P(C̄k+1∨D̄k+1|C̄k ∨D̄k) is large. The goal is to conclude that P(C̄n∨D̄n) is large, and since
we know that P(C̄n) is small, we can conclude that P(D̄n) is large, as desired. Note that since Wk ⊂Wk+1,
we have that C̄k ⊂ C̄k+1. Thus

P(C̄k+1 ∨ D̄k+1|C̄k) = 1.

It remains to estimate P(C̄k+1 ∨ D̄k+1|Ck ∧ D̄k). We condition on the exact values of X1, . . . , Xk where
Ck ∧ D̄k holds, and so there are at most (2T + 1) log n/(2dαn) primes p ∈ Pn such that rank(Wk/p) ≤ k− 1
and no prime p ∈ Pn such that rank(Wk/p) ≤ k − 2. In this case D̄k+1, as long as for each p ∈ Wk, we
have Xk+1/p 6∈ Wk/p. Consider one prime p ∈ Wk, and let V be the value of Wk/p that the conditioned
X1, . . . , Xk give. From Lemma 3.1, P(Xk+1/p ∈ V ) ≤ (1− αn)n−(k−1). Thus,

P(C̄k+1 ∨ D̄k+1|Ck ∧ D̄k) ≥ 1−
(

(2T + 1) log n

2dαn

)
(1− αn)n−(k−1).

In particular, we conclude that

P(C̄k+1 ∨ D̄k+1|C̄k ∨ D̄k) ≥ 1−
(

(2T + 1) log n

2dαn

)
(1− αn)n−(k−1).

Then inductively, we have

P(C̄k ∨ D̄k) ≥ 1−
k−1∑
i=1

(
(2T + 1) log n

2dαn

)
(1− αn)n−(i−1) = 1−

(
(2T + 1) log n

2dαn

)
(1− αn)n−k+2

αn
.

We defined n0 := n− b 3 logn
αn
c above and so if we let k = n0 then if we assume αn ≥ n−1, we have that

P
(
C̄n0 ∨ D̄n0

)
≥ 1−Od,T

(
n−1/2

)
.
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Certainly as k gets very close to n, Wk has very small codimension, and so Odlyzko’s bound will not continue
to be strong enough. Thus for the remaining k we will have to use a different bound.

6.1. Proof of Proposition 2.3 when αn ≥ n−1/6+ε. First, in this section, we will prove Proposition 2.3
for the denser case αn ≥ n−1/6+ε. For these larger αn we can present a simpler proof than in the case when
αn might be as small as n−1+ε. Odlyzko’s bound is sharp for some spaces, e.g. the hyperplane of vectors
with first coordinate 0, and so if we need to improve on Odlyzko’s bound we cannot expect to do it for
all spaces at once. The overall strategy is to see that apart from some bad subspaces, we can improve on
Odlyzko’s bound, and we can also prove that it is unlikely that Wk is one of those bad spaces. At this level
of generality, this description fits the small and medium primes sections. However, the specifics are very
different, because the small and medium primes sections treat one prime at a time, and now we are in a
regime where there are just too many possible primes to add the probability of Wk being bad over all the
primes (e.g. adding P(Ēn−k) from Theorem 5.2 over all primes up to nn/2+Tn gives too big a result). On
the other hand, we do not need the same strength of improvement over Odlyzko’s bound that Theorem 5.2
provides, because the bound on the probability of Xk+1/p ∈ Wk/p only has to be added over the small
number of primes in the watch list. The following lemma balances these requirements, and its proof will be
delayed till the end of this subsection.

Lemma 6.2. Suppose that αn ≥ 6 log n/n. Then there is a set of submodules S of Zn such that

P(Wn0 ∈ S) ≥ 1− e−αnn/8

and for any prime p ≥ edαnn, and any submodule H ∈ S, for any proper subspace H ′ of (Z/pZ)n containing
H/p,

P
(
X/p ∈ H ′

)
= Od,T

(√
log n

αn
√
n

)
,

where X is any column of Mn×n.

Now, we will also condition on G, which we define to be the event that Wn0
∈ S (i.e., Wn0

is Good). We
then have

P
(

(C̄n0 ∨ D̄n0) ∧ G
)
≥ 1− e−αnn/8 +Od,T (n−1/2),

Now let n0 ≤ k ≤ n. As before, since C̄k ⊂ C̄k+1, we have

P
(

(C̄k+1 ∨ D̄k+1) ∧ G|C̄k ∧ G
)

= 1.

It remains to estimate P
(

(C̄k+1∨D̄k+1)∧G|Ck ∧D̄k ∧G
)
. Again, we condition on exact values of X1, . . . , Xk

such that Ck, D̄k,G hold. Then D̄k+1 holds unless for some p ∈Wk we have Xk+1/p ∈Wk/p. Since Ck holds,
we have a bound on the size of Wk, and since G holds, we can use Lemma 6.2 to bound the probability
that Xk+1/p is in Wk/p. (Note that even if k = n, for p ∈Wk, we have that Wk/p is a proper subspace of
(Z/pZ)n, and that n−1/6 ≥ 2(log n)/n.) We conclude that

P
(

(C̄k+1 ∨ D̄k+1) ∧ G|Ck ∧ D̄k ∧ G
)
≥ 1−

(
(2T + 1) log n

2dαn

)
Od,T

(√
log n

αn
√
n

)
.

Inductively, starting from k = k0 we then have

P
(

(C̄n ∨ D̄n) ∧ G
)
≥ 1− b3 log n

αn
cOd,T

(
log1.5 n

α2
n

√
n

)
− e−αnn/8 +Od,T (n−1/2).

So then,

P(D̄n) ≥ 1−Od,T
(

log2.5 n

α3
n

√
n

)
−K0e

−c0αnn − e−αnn/8 +Od,T (n−1/2). (17)

To this end, since αn ≥ n−1/6+ε, we have that

P(D̄n) ≥ 1−Od,T,ε(n−ε),
which is exactly Equation (9). Equation (8) follows similarly, with b3 log n/αnc, the number of steps in the
induction, replaced by b3 log n/αnc+ 1.
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The key, of course, is to now verify Lemma 6.2, which is the heart of the proof of Proposition 2.3 for
αn ≥ n−1/6+ε. We need a way to bound the probability that Xk+1/p ∈ Wk/p that works for all p ∈ Wk

and is effective for large k. For this, we introduce a version of the classical Erdős-Littlewood-Offord result
in Z/pZ.

Theorem 6.3 (forward Erdős-Littlewood-Offord, for non-sparse vectors). Let X ∈ (Z/pZ)n be a random
vector whose entries are i.i.d. copies of a random variable νn satisfying maxr∈Z/pZ P(νn = r) ≤ 1 − αn.
Suppose that w ∈ (Z/pZ)n has at least n′ non-zero coefficients, and αn ≥ 4/n′. Then we have

|P(X · w = r)− 1

p
| ≤ 2√

αnn′
.

A proof of this result due to Maples (based on an argument by Halász) can be seen in [19, Theorem 2.4]
(see also [21, Theorem A.21].) To use Theorem 6.3, we need to know it is unlikely that Wk has normal
vectors with few non-zero entries. First, we will see this is true over R. The approach is standard: there are
few sparse vectors and by the Odlyzko’s bound each is not that likely to be normal to Wk.

Lemma 6.4 (Sparse normal vectors over R unlikely). Suppose αn ≥ log n/n and k ≥ n/2. For n sufficiently
large (in an absolute sense), with probability at least 1− e−αnn/8, the random subspace X1, . . . , Xk does not
have a non-trivial normal vector with less than αnn/(32 log n) non-zero entries.

Proof. (of Lemma 6.4) Let l = bαnn/(32 log n)c. With a loss of a multiplicative factor
(
n
l

)
in probability, we

assume that there exists a vector w = (w1, . . . , wl, 0, . . . , 0) which is normal to X1, . . . , Xk. Let Ml×k be the
matrix with columns given by the first l coordinates of each of X1, . . . , Xk, which has rank at most l − 1.
With a loss of a multiplicative factor l in probability, we assume that the first row of Ml×k belongs to the
subspace H generated by the other l − 1 rows. However, as H has codimension at least k − l, Lemma 3.1
implies a bound (1− αn)k−l for this event. Putting together, the event under consideration is bounded by(

n

l

)
× l × (1− αn)k−l ≤ e(log(32 logn/αn)+1)αnn/(32 logn) × elog(αnn/(32 logn)) × e−αn(k−l).

We then have that the exponent of e in the above bound is

≤
( log log n

log n
+

log(α−1
n )

log n
+

log(32)

log n
+

1

log n

)
αnn/32 + log(αnn)− αnn/4 ≤ −αnn/8

for n sufficiently large so that ( log log n

log n
+

log(32)

log n
+

1

log n

)
≤ 1

and so that log(αnn) ≤ αnn/16 (which happens for αnn ≥ 22, which is implied by log n ≥ 22). �

We could prove a similar lemma to Lemma 6.4 over Z/pZ for each p, but we could not sum the probabilities
e−αnn/8 of sparse normal vectors over any meaningful range of primes > edαn. However, now we will prove
a deterministic lemma, that lets us lift normal vectors with few non-zero entries from characteristic p, for
large p, to characteristic 0. Then there is only one bad event to avoid instead of one for each p. This aspect
of our argument is unlike previous approaches and uses critically a lower bound on p.

Lemma 6.5 (Lifting sparse normal vectors from Z/pZ to R). Let k, l, n be positive integers, and M a l× k
matrix with integer entries |Mij | ≤ nT . If p is a prime larger than e(k log k)/2+kT logn, then the rank of M
over Q is equal to the rank of M/p over Z/pZ. This has the following corollaries.

(1) If Z1, . . . , Zk ∈ Zl are vectors with entries |Zij | ≤ nT , and Z1/p, . . . , Zk/p are linearly dependent in
(Z/pZ)l, then Z1, . . . , Zk are also linearly dependent in Zl.

(2) Let Z1, . . . , Zi ∈ Zm be vectors with entries |Zij | ≤ nT . If there is a non-zero vector w ∈ (Z/pZ)m

with at most k non-zero entries that is normal to Z1/p, . . . , Zl/p, then there is a non-zero vector
w′ ∈ Zm with at most k non-zero entries and normal to Z1, . . . , Zl.

(3) The kernel of the map M : Zk → Zl surjects onto the kernel of the map M : (Z/pZ)k → (Z/pZ)l.

Proof. (of Lemma 6.5) The rank is the greater r such that an r × r minor has non-zero determinant.
Since by Hadamard’s bound, the determinant of a r × r minor is at most e(r log r)/2+rT logn, for primes
p > e(k log k)/2+kT logn and r ≤ k, a determinant of an r × r minor vanishes in Z if and only if it vanishes
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mod p. Thus we conclude the main statement of the lemma. For the first corollary, consider the `×k matrix
with Z1, . . . , Zk as columns. The vectors are linearly dependent if and only if the matrix has rank less than
k. For the second corollary, assume that σ = supp(w) ⊂ [m] and Z1|σ, . . . , Zl|σ are the restrictions of
Z1, . . . , Zl over the components in σ. By definition, the k row vectors of the matrix formed by Z1|σ, . . . , Zl|σ
are dependent when reduced mod p, and thus these vectors are dependent over Z. This gives a non-zero
w′ ∈ Zm with |supp(w′)| ≤ k that is normal to Z1, . . . , Zl. For the third corollary, we can express M
under the Smith normal form M = S1DS2, where S1 ∈ GLl(Z) and S2 ∈ GLk(Z) and D is an integral
diagonal matrix. Then since the ranks of M and D agree over Q and over Z/pZ, we conclude that D has
the same rank over Q or Z/pZ. This implies that the only diagonal entries of D that are divisible by p
are the ones that are 0. From this it follows that the kernel of D : Zk → Zl surjects onto the kernel of
D : (Z/pZ)k → (Z/pZ)l. Multiplication by S−1

2 on the left takes these kernels of D to the corresponding
kernels of M , and the statement follows. �

Putting this all together, we can now prove Lemma 6.2. The choices of parameters are rather delicate
here, e.g. we could obtain more non-zero coordinates of a normal vector than Lemma 6.4 provides, but then
we could not use Lemma 6.5 to lift those non-zero coordinates.

Proof of Lemma 6.2. We let k = cαnn/ log n, where c < 1/32 is a sufficiently small constant (in terms of
d, T ) such that

e(k log k)/2+kT logn < edαnn.

Since αn ≥ 6 log n/n, it follows that n0 ≥ n/2, and we can apply Lemma 6.4 and find that for sufficiently
large n, with probability at least 1−e−αnn/8, Wn0 does not have a normal vector with less than k entries. Let
S be the set of submodules of Zn that do not have a normal vector with less than k non-zero coordinates.
Then by Lemma 6.5, for each prime p ≥ edαnn, if Wn0

∈ S, then the space Wn0
/p (and thus any space

containing this space) does not have a non-trivial normal vector with less than k non-zero coordinates. Since
αn ≥ 6 log n/n, for n sufficiently large in terms of d, c, we have that edαnn ≥

√
αnk. Thus by Theorem 6.3,

for any prime p ≥ edαnn the following holds. Let H be a subspace of (Z/pZ)n that does not have a non-trivial
normal vector with less than k non-zero entries, and then for any proper subspace H ′ of (Z/pZ)n containing
H and with normal vector w,

P(X ∈ H ′) ≤ P(X · w = 0) ≤ 3√
αnk

=
3
√

log n

αn
√
cn

.

�

6.6. Proof of Proposition 2.3 in general. Equation (17) shows exactly why n−1/6+ε is the threshold
exponent for αn such that the above method can work, as the error bound has an α3

nn
1/2 in the denominator.

Thus, to obtain results that can work for smaller αn, we need a further improvement on Odlyzko’s bound,
which requires that we consider further bad subspaces besides those with sparse normal vectors. We have
the following upgrade to Lemma 6.2, whose proof is rather more involved than that of Lemma 6.2, will be
completed in the next section, and again, is the heart of the proof.

Lemma 6.7. There is an absolute constant c2 > 0 such that the following holds. Suppose that αn ≥ n−1+ε.
There is a set S ′ of submodules of Zn, such that

P(Wn0
∈ S ′) ≥ 1− e−c2αnn

and for n sufficiently large given d, ε, T , any prime p ≥ edαnn, any submodule H ∈ S ′ and any proper
subspace H ′ of (Z/pZ)n containing H/p,

P
(
X/p ∈ H ′

)
≤ n−3,

where X is any column of Mn×n.

The rest of the proof goes the same as after Lemma 6.2, replacing S with S ′ . We conclude that for
αn ≥ n−1+ε, we have that P(D̄k) ≥ 1 − Od,T,ε(n−1/2), for k = n, n + 1, which proves Proposition 2.3. We
have not attempted to optimize the error, or even record in Proposition 2.3 the error this argument proves
(as we wanted to give a weaker statement that could be proved by the simpler argument above when the αn
were not too small).
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7. Proof of Lemma 6.7: Enumeration of Structures

Instead of only avoiding sparse normal vectors, in Lemma 6.7 we will avoid normal vectors with more
general structure. We now need to make some definitions necessary to describe this structure.

7.1. Additive structures in abelian groups. Let G be an (additive) abelian group.

Definition 7.2. A set Q is a generalized arithmetic progression (GAP) of rank r if it can be expressed as
in the form

Q = {a0 + x1a1 + · · ·+ xrar|Mi ≤ xi ≤M ′i and xi ∈ Z for all 1 ≤ i ≤ r}
for some elements a0, . . . , ar of G, and for some integers M1, . . . ,Mr and M ′1, . . . ,M

′
r.

It is convenient to think of Q as the image of an integer box B := {(x1, . . . , xr) ∈ Zr|Mi ≤ xi ≤ M ′i}
under the linear map

Φ : (x1, . . . , xr) 7→ a0 + x1a1 + · · ·+ xrar.

Given Q with a representation as above

• the numbers ai are generators of Q, the numbers Mi and M ′i are dimensions of Q, and Vol(Q) := |B|
is the volume of Q associated to this presentation (i.e. this choice of ai,Mi,M

′
i);

• we say that Q is proper for this presentation if the above linear map is one to one, or equivalently if
|Q| = |B|;

• If −Mi = M ′i for all i ≥ 1 and a0 = 0, we say that Q is symmetric for this presentation.

The following inverse-type idea, which was first studied by Tao and Vu about ten years ago (see for
instance [32]), will allow us prove bounds much sharper than Theorem 6.3.

Theorem 7.3 (inverse Erdős-Littlewood-Offord). Let ε < 1 and C be positive constants. Let n be a positive
integer. Assume that p is a prime that is larger than C ′nC for a sufficiently large constant C ′ depending on
ε and C. Let ν be a random variable taking values in Z/pZ which is αn-balanced, that is maxr∈Z/pZ P(ν =

r) ≤ 1− αn where αn ≥ n−1+ε. Assume w = (w1, . . . , wn) ∈ (Z/pZ)n such that

ρ(w) := sup
a∈Z/pZ

P(ν1w1 + · · ·+ νnwn = a) ≥ n−C ,

where ν1, . . . , νn are iid copies of ν. Then for any nε/2α−1
n ≤ n′ ≤ n there exists a proper symmetric GAP

Q of rank r = OC,ε(1) which contains all but n′ elements of w (counting multiplicity), where

|Q| ≤ max
{

1, OC,ε(ρ
−1/(αnn

′)r/2)
}
.

When αn is a constant, we then recover a variant of [22, Theorem 2.5]. The new, but not too surprising,
aspects here are that the result works for small αn and for Z/pZ for large enough p. A proof of Theorem 7.3
will be presented in Appendix C by modifying the approach of [22]. We remark that it is in the proof of
Theorem 7.3 where the requirement αnn

′ ≥ nε/2 is crucial (which henceforth requires αn to be at least
nε/2−1) to guarantee polynomial growth of certain sumsets (see (44)). We see that Q = {0} includes the
special case of sparse w. Theorem 7.3 is much sharper than Theorem 6.3, and relates the volume of the GAP
involved to the bound for ρ(w).

We let
n′ := dnε/2α−1

n e
and m = n − n′ for the rest of this section, and we will apply Theorem 7.3 with this choice of n′ and
C = 3. Thus it will be convenient to let Cε be the maximum of C ′ and the constants from the OC,ε notation
bounding the rank of volume of |Q| in Theorem 7.3 applied with C = 3. We call a GAP Q well-bounded if it
is of rank ≤ Cε and |Q| ≤ Cεn3. We call a vector w structured if it is non-zero, and there exists a symmetric
well-bounded GAP Q such that all but n′ coordinates of w belong to Q. Note that it is not always true that
ρ(w) = n−O(1) if w is structured in this sense.

Our general approach is to see that it is not too likely for Wn0/p to have structured normal vectors.
We need to handle the case of r = 0 separately from the case of r ≥ 1, as in the latter case we will use
the (αnn

′)r/2 term crucially. Now, we will give a very different approach to proving Wn0
/p is unlikely to

have sparse vectors than we used in Lemma 6.4, as Lemma 6.4 is too weak for small αn. The method of
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Lemma 7.4 will actually give better results as αn gets smaller, while Lemma 6.4 gets worse. This method
will automatically control sparse vectors for all large primes at once, without any lifting from characteristic
p to characteristic 0. Notably, the bound we get from Lemma 7.4 will be the largest term in our error.

Lemma 7.4 (Extremely sparse normal vectors). There are absolute constants c1, C0 such that the following
holds. Let βn := 1 − maxx∈Z P(ξn = x), and assume βn ≥ C0 log n/n and αn ≥ 6 log n/n. For n ≥ 2,
the following happens with probability at most e−c1βnn/2: for some prime p > 2nT , the space Wn0

/p has a
non-zero normal vector with at most 144β−1

n non-zero coordinates.

Proof. (of Lemma 7.4) In fact, we will show that the following holds with probability at least 1− e−c1βnn/2.

For any 1 ≤ t ≤ 144β−1
n , and any σ ∈

(
[n]
t

)
, there are at least two columns Xi, Xj whose restriction

(Xj −Xi)|σ has exactly one non-zero entry. We first show that this will suffice to prove the lemma. Since
(Xj −Xi)|σ has a unique non-zero entry, and all its entries are at most 2nT in absolute value, for any prime
p > 2nT we have that (Xj/p − Xi/p)|σ has exactly one non-zero entry. Suppose we had a normal vector
w to Wn0

/p with 1 ≤ t ≤ 144β−1
n non-zero entries, and let σ be the indices of those entries. Since w|σ is

normal to (Xj/p−Xi/p)|σ, that would imply that one of the σ coordinates of w is zero, which contradicts
the choice of σ.

Now we prove the claim from the beginning of the proof. Our method is similar to that of [1, Lemma 3.2]
and [21, Claim A.9]. For k ∈ {1, 3, . . . , 2b(n0− 1)/2c+ 1}, consider the vectors Yi = Xk+1−Xk. The entries
of this vectors are iid copies of the symmetrized random variable ψ = ξ− ξ′, where ξ′, ξ are independent and
have distribution ξn. With 1− β′n := P(ψ = 0), then βn ≤ β′n ≤ 2βn as this can be seen by

(1− βn)2 ≤ max
x

P(ξ = x)2 ≤
∑
x

P(ξ = x)2 = P(ψ = 0) ≤ max
x

P(ξ = x) = 1− βn. (18)

Now let pσ be the probability that all Yi|σ, i ∈ {1, 3, . . . , 2b(n0−1)/2c+1} fail to have exactly one non-zero
entry (in Z), then by independence of the columns and of the entries

pσ = (1− tβ′n(1− β′n)t−1)b(n0+1)/2c ≤ (1− tβ′ne−(t−1)β′n)n0/2 ≤ e−ntβ
′
ne
−(t−1)β′n/4.

(Recall since αn ≥ 6 log n/n we have n0 ≥ n/2.) Notice that as 1 ≤ t ≤ 144β−1
n , we have e−(t−1)β′n/4 ≥ c1

for some positive constant c1, and hence

e−ntβ
′
ne
−(t−1)β′n/4 ≤ (e−c1nβ

′
n)t ≤ n−c1C0t/2e−c1nβn/2,

for any C0 > 0. Thus∑
1≤t≤144β−1

n

∑
σ∈([n]

t )

pσ ≤
∑

1≤t≤144β−1
n

(
n

t

)
n−c1C0t/2e−c1nβn/2 ≤

∑
1≤t≤144β−1

n

(ntn−c1C0t/2)e−c1nβn/2 < e−c1nβn/2,

provided that n ≥ 2 and C0 is sufficiently large in terms of c1. �

The downside of Lemma 7.4 is that is is rather weak for constant αn. So it needs be combined with
an improvement of Lemma 6.4. For the improvement, we use Littlewood-Offord (Theorem 6.3) in place of
Odlyzko’s bound. However, that substitution only makes sense once have have k non-zero coordinates in
our normal vector and αnk is at least a constant. Luckily, Lemma 7.4 provides us with exactly that. This
strategy is analogous to that used in the proof of [21, Proposition A.8].

Lemma 7.5 (Moderately sparse normal vectors). There exist absolute constants c0, C0 such that the following

holds. Let βn := 1 −maxx∈Z P(ξn = x). Assume αn ≥ C0 logn
n and let p be a prime > 2nT . The following

happens with probability at most (2/3)n/4: the space Wn0
/p has a non-zero normal vector w with 144β−1

n ≤
|supp(w)| ≤ c0n.

Note Lemma 7.5 only bounds the probability of sparse normal vectors modulo one p at a time, unlike
Lemma 7.4, which controls sparse normal vectors modulo all sufficiently big primes.

Proof. (of Lemma 7.5) For σ ⊂ [n] with 144β−1
n ≤ t = |σ| ≤ c0n, consider the event that Wn0

/p is normal
to a vector w with supp(w) = σ but not to any other vector of smaller support size. With a loss of a
multiplicative factor

(
n
t

)
in probability, we assume that σ = {1, . . . , t}. Consider the submatrix Mt×n0 of

Mn×n consisting of the first t rows and first n0 columns of Mn×n. Since the restriction w|σ of w to the first
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t coordinates is normal to all the columns of Mt×n0/p, the matrix Mt×n0/p has rank t−1 (if p = 0, we mean
rank over R). With a loss of a multiplicative factor

(
n0

t−1

)
in probability, we assume that the column space

of Mt×n0
/p is spanned by its first t− 1 columns.

Note that for p > 2nT , the value of ξn is determined by its value mod p, and so βn = 1−maxx∈Z/pZ P(ξn/p =
x). If we fix X1, . . . , Xt−1 such that Wt−1|σ/p has a normal vector with all t coordinates non-zero, then by
Theorem 6.3 , the probability that Xi|σ/p ∈Wt−1|σ/p for all t ≤ i ≤ n0 is at most

(
1

p
+

2√
βnt

)n0−t+1 ≤ (
1

p
+

2√
βnt

)(1−2c0)n ≤ (
2

3
)n/2.

The first inequality follows as long as C0 ≥ 3/c0 as then we have c0n ≥ 3 log n/αn and n0 ≥ n− c0n. Thus
the total probability of the event in the lemma is at most∑

144β−1
n ≤t≤c0n

(
n

t

)2

(
2

3
)n/2 ≤ (

2

3
)n/4.

provided that c0 is sufficiently small absolutely. �

Now we will show that the probability of having a structured normal vector for a GAP of rank r ≥ 1
(which was defined in the discussion following Theorem 7.3) is extremely small.

Lemma 7.6 (Structured, but not sparse, normal vectors). Let αn ≥ n−1+ε. Let p be a prime p ≥ Cεn3. The
following event happens with probability Oε(p

Cεn−εn/5): the space Wn0/p has a structured normal vector w,
and Wn0

/p does not have a non-zero normal vector w′ such that |supp(w′)| ≤ c0n with c0 from Lemma 7.5.

Very roughly speaking, aside from the choices of parameters for the GAPs that might contain the most
elements of w, and of the exceptional elements after applying Theorem 7.3, the key estimate leading to
Lemma 7.6 is that

(ρ−1/
√
αnn′)

nρn0 = O(n−εn/5)

as long as n−O(1) ≤ ρ ≤ O(n−ε/2). We now present the details.

Proof. (of Lemma 7.6) Throughout the proof, we assume n is sufficiently large given ε. Suppose we have such
a w. By Theorem 6.3 and |supp(w)| > c0n, as long as αn ≥ 4/(c0n), we have ρ(w) ≤ p−1 + 2/

√
αnc0n ≤

(1 + 2c
−1/2
0 )n−ε/2, since p ≥ nε/2 and αn ≥ n−1+ε.

Let Q be a symmetric GAP in Z/pZ of rank at most r and volume at most V , such that for some subset
τ ⊂ [n] of size n′ we have for j ∈ ([n] \ τ) that wj ∈ Q. Let R1, . . . , Rn denote the rows of the matrix M
formed by the columns X1/p, . . . ,Xn0/p. For n sufficiently large (in terms of ε) such that c0n ≥ n′, we see
that the Rj for j ∈ τ must be linearly independent (or else there would be a normal vector to Wn0/p with
at most c0n non-zero coefficients).

First, we will determine how many possible choices there are for the data of Q, τ , σ, and the wj for
j ∈ τ , without any attempt to be sharp. Then, given those data, we will determine the probability that
X1, . . . , Xn0

could produce the situation outlined above with those data.
So we have at most pr choices of generators for Q and at most V r choices of dimensions (to obtain a lower

rank GAP we just take some dimensions to be 0). There are at most 2n choices of τ , and at most 2n choices
of σ. There are at most V m choices of wj for j ∈ ([n] \ τ).

Given Q, τ , σ, and the wj for j ∈ τ , we condition on the Xi for i ∈ σ. Then the τ entries of w are
determined by the wj for j ∈ ([n] \ τ) and the Xi for i ∈ σ as follows. From w ·Xi/p = 0 for i ∈ σ, it follows
that ∑

j∈τ
wjRj |σ = −

∑
j∈([n]\τ)

wjRj |σ. (19)

Since the Rj |σ (meaning row Rj restricted to the σ entries) for j ∈ τ are linearly independent and |τ | = |σ|,
we conclude that the wj for j ∈ ([n] \ τ) and Xi for i ∈ σ determine at most one possible choice for the wj
for j ∈ τ .

For simplicity, we will proceed in two cases. First, we will determine how likely it is for Wn0/p to have
a normal vector w as in the lemma statement such that ρ(w) ≤ n−9. From the well-boundedness of Q, we
have that r ≤ Cε and V ≤ Cεn

3. Thus the total number of choices for Q, τ , σ, and the wj for j ∈ τ is at
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most pCε(Cεn
3)Cε+m4n. Once we condition on the Xi for i ∈ σ, the vector w is determined by our choices,

and the probability that w ·Xi/p = 0 for i ∈ ([n0] \σ) is at most n−9(n0−n′). Thus the total probability that
Wn0

/p has a normal vector w as in the lemma statement such that ρ(w) ≤ n−9 is at most

pCε(Cεn
3)Cε+m4nn−9(n0−n′) = Oε(p

Cεn−n).

Next we will determine how likely it is for Wn0
/p to have a normal vector w as in the lemma statement

such that ρ(w) > n−9. However, instead of counting the Q from the lemma statement, we are going to count

the Q provided by Theorem 7.3. More specifically, we divide [n−9, (1+2c
−1/2
0 )n−ε/2] into dyadic subintervals

I` = [ρ`, 2ρ`] and we suppose that ρ(w) ∈ I`. Let ρ = ρ(w). We can apply Theorem 7.3 with C = 3 for
p ≥ Cεn

3. Then there exists a symmetric GAP Q of rank r ≤ Cε with |Q| ≤ max((Cε(ρ
−1/(αnn

′)r/2, 1),
and a subset τ ⊂ [n] of n′ indices such that for j ∈ ([n] \ τ), we have wj ∈ Q. Note that r = 0 would

imply that |supp(w)| ≤ dnε/2α−1
n e, which contradicts the fact that |supp(w)| > c0n. Also, since ρ−1 ≥

(1 + 2c
−1/2
0 )−1nε/2, we have that C ′ερ

−1/(αnn
′)1/2 ≥ 1 for some constant C ′ε ≥ Cε only depending on ε. So

r ≥ 1, and

|Q| = Oε(ρ
−1/(αnn

′)1/2). (20)

Since ` was chosen so that ρ(w) ≤ 2ρ`, we have that the probability that w ·Xi/p = 0 for i ∈ ([n0] \ σ)
is at most (2ρ`)

n0−|σ|. Thus the total probability that there is a w as in the lemma statement such that
ρ(w) > n−9 is at most

O(logn)∑
`=1

pCεOε(ρ
−1
` /(αnn

′)1/2)Cε+m4n(2ρ`)
n0−n′ ≤

O(logn)∑
`=1

pCεeOε(n)Oε((αnn
′)−1/2)m(ρ−1

` )n−n0

≤ Oε(pCεn−εn/5). (21)

For these inequalities, we use facts including ρ−1
` ≤ n9 and n−n0 = b 3 logn

αn
c ≤ 3n1−ε log n, and (αnn

′)−1/2 ≤
n−ε/4, and m = n− dnε/2α−1

n e ≥ n− dn1−ε/2e.
�

As good as the bounds in Lemmas 7.5 and 7.6 are, they still cannot be summed over all primes p that
might divide the determinant of Mn×n. So at some point, we need to lift the structured normal vectors from
characteristic p to characteristic 0. Unlike in Section 6.1, when we could lift non-sparse normal vectors for
all large primes, our structured vectors here have more noise and we cannot lift until the primes are even
larger. The following lemma does this lifting and is the only place we use that the coefficients of the Xi

are bounded. Instead of counting structured vectors in characteristic 0 (or modulo a prime > nn/2), for
which we would need some bound on their coefficients (e.g., see the commensurability results [20, Lemma
9.1] and [30, Theorem 5.2(iii)]), we prove in the following lemma that we can also reduce structured vectors

in characteristic 0 to structured vectors modulo a prime around en
1−ε/3

. This allows us to transfer structured
vectors modulo p for our largest range of p to structured vectors for a single prime p0 that is of reasonably
controlled size.

We say a submodule of Zn is admissible if it is generated by vectors with coordinates at most nT in
absolute value. (In particular, Wk is always admissible.)

Lemma 7.7 (Lifting and reducing structured vectors). Let A be an admissible submodule of Zn, and p be

a prime ≥ en
1−ε/3

, and n be sufficiently large given ε and T . Then A has a structured normal vector (for a
GAP with integral generators) if and only if A/p has a structured normal vector.

Proof. (of Lemma 7.7) We will first prove the “if” direction. Assume that the first m = n−n′ entries of the
normal vector w = (w1, . . . , wn) belong to a symmetric well-bounded GAP Q with r generators a1, . . . , ar in
Z/pZ, and wj =

∑r
l=1 xjlal for 1 ≤ j ≤ m. Let M be the matrix with entries at most nT in absolute value

whose columns generate A. Let R1, . . . , Rn be the rows of M . We have the equality modulo p

0 =

m∑
j=1

wjRj +

n∑
j=m+1

wjRj =

r∑
l=1

al(

m∑
j=1

xjlRj) +

n∑
j=m+1

wjRj .
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Now for 1 ≤ l ≤ r, let Zl :=
∑m
j=1 xjlRj . We have |xjl| ≤ |Q| ≤ Cεn3. The entries of Zl are then bounded by

Cεn
T+4, which is ≤ nT+5 for n sufficiently large given ε, while the entries of Rm+1, . . . , Rn are bounded by

nT . Let M ′ be the matrix whose columns are Z1, . . . , Zr, Rm+1, . . . Rn. The above identity then implies that
(a1, . . . , ar, wm+1, . . . wn)t is in the kernel of M ′. Lemma 6.5 (3) applied to M ′, with k = r+n′ implies that

as long as p ≥ e(k log k)/2+k(T+5) logn (which is satisfied because p ≥ en1−ε/3
, and r ≤ Cε, and n′ ≤ n1−ε/2 +1,

and n is sufficiently large given ε and T ), then there exist integers a′l, w
′
j , reducing mod p to al, wj , for

1 ≤ l ≤ r and m+ 1 ≤ j ≤ n, such that

r∑
k=1

a′lZl +

n∑
j=m+1

w′jRj = 0.

Let w′ = (w′1, . . . , w
′
n) where w′j =

∑r
l=1 xjla

′
l for 1 ≤ j ≤ m. By definition the w′j for 1 ≤ j ≤ m belong to

the symmetric GAP with generators a′l and with the same rank and dimensions as Q, and w′ is normal to
A. Further w′ is non-zero since it reduces to w mod p.

The “only if” direction appears easier at first—if we start with a structured normal vector, we can reduce
the generators of the GAP and the normal vector mod p for any prime p. However, the difficulty is that for
general primes p it is possible for the generators al of the GAP to be not all 0 mod p, but yet the resulting
normal vector w to be 0 mod p. Given A, we choose w minimal (e.g. with

∑
i |wi| minimal) so that the

first m = n− n′ entries (without loss of generality) of the normal vector w = (w1, . . . , wn) to A belong to a
symmetric well-bounded GAP Q with r generators a1, . . . , ar in Z, and wj =

∑r
l=1 xjlal for 1 ≤ j ≤ m and

w is non-zero. Let Mx be the n×(r+n′) matrix with entries xjl in the first m rows and r columns, the n′×n′
identity matrix in the last n′ rows and columns, and zeroes elsewhere. So for a := (a1, . . . , ar, wm+1, . . . wn)t,
we have Mxa = wt.

Certainly by minimality of w at least some coordinate of w is not divisible by p (else we could divide
the al and wj all by p and produce a smaller structured normal w). Suppose, for the sake of contradiction
that all of the coordinates of w are divisible by p. The entries of Mx are bounded by Cεn

3, so, as above,

for p ≥ en1−ε/3
, by Lemma 6.5 (3) we have that kerMx|Zr+n′ surjects onto kerMx/p. So a/p is in the kernel

of Mx/p, and choose some lift a′ := (a′1, . . . , a
′
r, w

′
m+1, . . . w

′
n)t ∈ Zn of a/p in the kernel of Mx. Then

a − a′ ∈ pZn, and Mx( 1
p (a − a′)) = 1

pw. Note that 1
pw is non-zero integral normal vector to A, and the

equality Mx( 1
p (a − a′)) = 1

pw shows that all but n′ of the coordinates of 1
pw belong to a symmetric well-

bounded GAP with integral generators and the same rank and volume as Q, contradicting the minimality
of w. Thus we conclude that w/p is non-zero and thus a structured normal vector of A/p for GAP Q/p. �

We now conclude the main result of this section.

Proof of Lemma 6.7. We let S ′ be the set of submodules H of Zn such that for all primes p > edαnn, the
vector space H/p has no structured normal vector w. We assume throughout the proof that n is sufficiently

large given ε, T, d. First, we will bound P(Wn0 6∈ S ′). By Lemma 7.7, for p ≥ en
1−ε/4

, if Wn0/p has a
structured normal vector, then Wn0 has a structured normal vector, and then Wn0/p

′ has a structured

normal vector for every prime p′ with en
1−ε/3 ≤ p′ < en

1−ε/4
(of which there is at least 1).

So it suffices to bound the condition that Wn0/p has a structured normal vector for p is a prime Cεn
3 ≤

p < en
1−ε/4

.
We will include in our upper bound the probability that Wn0/p has a non-zero normal vector w with

|supp(w)| ≤ c0n for some prime p < en
1−ε/4

, which is at most e−c1αnn/2 + en
1−ε/4

(2/3)n/4 by Lemmas 7.4

and 7.5. Then, otherwise, by Lemma 7.6, it is probability at most en
1−ε/4

Oε,T (eCεn
1−ε/4

n−εn/5) that, for

some prime p < en
1−ε/4

, the space Wn0
/p has a structured normal vector w. We conclude that P(Wn0

∈
S ′) ≥ 1− e−c2αnn for some absolute constant c2.

If H ∈ S ′ and H ′ is a proper subspace of (Z/pZ)n containing H/p, then H ′ has some non-zero normal
vector w (also normal to H/p). Let p > edαnn be a prime. If ρ(w) ≤ n−3, then since P(X/p ∈ H ′) ≤
P(X/p · w = 0) we have P(X/p ∈ H ′) ≤ n−3. Otherwise, if ρ(w) > n−3, we apply Theorem 7.3 with
C = 3 and find a symmetric well-bounded GAP containing all but n′ coordinates of w, which contradicts
the definition of S ′. �
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8. Laplacian of random digraphs: proof of Theorem 1.6

As laid out in Section 2, it suffices to prove Proposition 2.6 and this task consists of three parts, in the
first part we modify the method of Section 4 to justify Equation (11) for the small primes, in the second
part we provide a complete proof for Equation (12) and (13) regarding the medium primes by improving the
method of [19, 21], and in the last part we modify the method of Sections 6 and 7 to prove Equation (14)
and (15) for the large primes.

For 1 ≤ i ≤ n, we say that a random vector X = (x1, . . . , xn) ∈ Zn0 , the set of vectors of zero entry
sum in Zn, has type Ti if xi = −(x1 + · · · + xi−1 + xi+1 + · · · + xn) and x1, . . . , xi−1, xi+1, . . . , xn are i.i.d.
copies of ξn from (1). Recall that LMn×n is a random matrix with independent columns Xi sampled from
Ti. Sometimes we will also denote this matrix by Ln×n for short.

I. Proof of Equation (11) of Proposition 2.6: treatment for small primes. In this subsection we
modify the approach of Section 4 toward the Laplacian setting. We first prove the analog of Theorem 4.12
for the Laplacian. We will use the same approach as in [33, Theorem 6.2] to consider an auxiliary matrix
that lets us carry the argument from the i.i.d. case to the Laplacian case. Let a be the exponent of G. Let
R = Z/aZ and V = (Z/aZ)n. We let M ′ be an n× n random matrix with coefficients in R with entries Xij

distributed as (Mn×n)ij for i 6= j and with Xii distributed uniformly in R, with all entries independent. Let
F0 ∈ Hom(V,R) be the map that sends each standard basis element to 1. Now, M ′ and LMn×n do not have
the same distribution, as the column sums of M ′ can be anything and the column sums of LMn×n are zero,
i.e. F0LMn×n = 0. However if we condition on F0M

′ = 0, then we find that this conditioned distribution
of M ′ is the same as the distribution of LMn×n . Given M ′ and conditioning on the off diagonal entries, we
see that the probability that F0M

′ = 0 is a−n (for any choice of off diagonal entries). So any choice of off
diagonal entries is equally likely in LMn×n as in M ′ conditioned on F0X = 0.

So for F ∈ Hom(V,G), we have

P(FLMn×n = 0) = P(FM ′ = 0|F0M
′ = 0) = P(FM ′ = 0 and F0M

′ = 0)an.

Let F̃ ∈ Hom(V,G⊕ R) be the sum of F and F0. Let Z ⊂ V denote the vectors whose coordinates sum to
0, i.e.

Z = {v ∈ V | F0v = 0}.
Let Sur∗(V,G) denote the maps from V to G that are a surjection when restricted to Z. We wish to estimate

E(# Sur(SMn×n , G)) = E(# Sur(Z/LMn×nR
n, G))

=
∑

F∈Sur(Z,G)

P(FLMn×n = 0)

=
1

|G|
∑

F∈Sur∗(V,G)

P(FLMn×n = 0)

= |G|−1an
∑

F∈Sur∗(V,G)

P(F̃M ′ = 0).

Note that if F : V → G is a surjection when restricted to Z, then F̃ is a surjection from V to G⊕R.
Now we need a slight variant on Lemma 4.10 to bound F ∈ Hom(V,G) such that F̃ is robust for a

subgroup H of G.

Lemma 8.1 (Count of robust F for a subgroup H). Let δ > 0, and a, n ≥ 1 be integers, and G be finite
abelian group of exponent dividing a. Let H be a subgroup of G⊕R of index D > 1 and let H = G`(D) ⊂ . . . ⊂
G2 ⊂ G1 ⊂ G0 = G ⊕ R be a maximal chain of proper subgroups. Let pj = |Gj−1/Gj |. For n sufficiently
large given G, the number of F ∈ Hom(V,G⊕R) such that F composed with the projection onto R is 1 for
each standard basis vector, and F is robust for H and for 1 ≤ j ≤ `(D), there are wj elements i of [n] such
that Fvi ∈ Gj−1 \Gj is at most

a−n|H|n−
∑
j wj

`(D)∏
j=1

(
n

wj

)
|Gj−1|wj .
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We note that for n sufficiently large in terms of G, the condition on the projection onto R implies that H
surjects in the projection to R, and otherwise the proof of Lemma 8.1 is analogous to that of Lemma 4.10.
(See also [33, Lemma 5.3].) We can then apply Lemma 4.11 as written to the maps F̃ with range G⊕R and
the matrix M ′. The proof now follows the proof of Theorem 4.12, except that we are estimating

|G|−1an
∑

F∈Sur∗(V,G)

P(F̃M ′ = 0).

The two sums of |G|−n over various F are replaced by sums of |G|−na−n, but proofs of the same bounds
can be found in the proof of [33, Theorem 6.2]. We deduce∣∣E(# Sur(SMn×n, G))− |G|−1

∣∣ ≤ K2n
−c2 ,

and then deduce Equation (11) of Proposition 2.6, just as we proved Theorem 4.1 from Theorem 4.12.

II. Proof of Equations (12) and (13) of Proposition 2.6: treatment for the medium primes.
In this subsection we fix a prime p and will work with Z/pZ. As such, if not specified otherwise, all of the

vectors and subspaces in this subsection are modulo p. For brevity, instead of Xi/p or Wi/p, we just write
Xi or Wi. The co-dimensions (coranks) of subspaces, if not otherwise specified, are with respect to Zn0/p.
Although our main result, Theorem 8.2, works for any subspace Wn−k generated by n− k columns of Ln×n,
for simplicity we assume Wn−k = 〈X1, . . . , Xn−k〉. We show the following variant of Theorem 5.2.

Theorem 8.2. There are sufficiently small constants c, η > 0 and sufficiently large constants C0,K > 0
such that the following holds. Let p be a prime, and let Ln×n be a random matrix with independent columns
Xi sampled from Ti respectively, where we assume that

max
r∈Z/pZ

P(ξn = r) = 1− αn ≤ 1− C0 log n

n
. (22)

Then for 1 ≤ k ≤ ηn there exists an event En−k on the σ-algebra generated by X1, . . . , Xn−k, all of probability
at least 1− e−cαnn, such that for any k0 with k − 1 ≤ k0 ≤ ηn∣∣∣PXn−k+1

(
Xn−k+1 ∈Wn−k

∣∣En−k ∧ codim(Wn−k) = k0

)
− p−k0

∣∣∣ ≤ Ke−cαnn.
Combining with Theorem 5.3 and with appropriate choices of c0 and K0 we then deduce the part of

Proposition 2.6 for medium primes, analogous to the proof of Theorem 5.1.
Now we give a proof of Theorem 8.2. Our overall approach is similar to the proof of [21, Theorems A.1

and A.4] (which is built on approaches in [19, 30]), but for the Laplacian we cannot apply these results
because the column vectors, as well as the entries in each column, are not identically distributed any more.

We would like to emphasize that in our argument below the positive constants c, β, δ, η, λ are sufficiently
small and allowed to depend only on the constant C0 in the bound (22) of αn. We first introduce a version
of Lemma 3.1 and Corollary 3.2 for αn-dense random variables in the Laplacian setting.

Lemma 8.3. For a deterministic subspace V of Zn0/p (or Zn0 ) of dimension d and for any i

PX∈Ti(X ∈ V ) ≤ (1− αn)n−d−1.

As a consequence, X1, . . . , Xn−k are linearly independent in Zn0/p with probability at least 1−n(1−αn)k−1.

Proof. If suffices to verify the first part. But for this we just project the vectors onto the coordinates of
indices different from i, and then use Lemma 3.1. �

We will also need the following variant of Theorem 6.3.

Theorem 8.4 (forward Erdős-Littlewood-Offord for the Laplacian). Suppose that w = (w1, . . . , wn) ∈
(Z/pZ)n does not have any component wj with multiplicity larger that n−m, then for any i

sup
r
|PX∈Ti(X · w = r)− 1

p
| ≤ 2
√
αnm

.
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We remark that the classical Erdős-Littlewood-Offord in characteristic zero implies that if w = (w1, . . . , wn) ∈
Zn does not have any component wj with multiplicity larger that n−m, then for any i

sup
r∈Z

PX∈Ti(X · w = r)| ≤ 2
√
αnm

.

Proof. (of Theorem 8.4) Assume that X = (x1, . . . , xn) ∈ Ti for some 1 ≤ i ≤ n. Then

x1w1 + · · ·+ xnwn = x1(w1 − wi) + · · ·+ xi−1(wi−1 − wi) + xi+1(wi+1 − wi) + · · ·+ xn(wn − wi).

By the assumption, at least m entries w1 −wi, . . . , wn −wi are non-zero. Because x1, . . . , xi−1, xi+1, . . . , xn
are i.i.d., we then can apply Theorem 6.3. �

8.5. Sparse subspace. Let 0 < δ, η be small constants (independently from αn). Given a vector space
H ≤ (Z/pZ)n, we call H δ-sparse if there is a non-zero vector w with |supp(w)| ≤ δn such that w ⊥ H.

Lemma 8.6 (random subspaces are not sparse, Laplacian case). There exist absolute constant c′ and C ′ such

that the following holds with αn ≥ C0 logn
n . Let ε, δ, η be constants such that 0 < ε < 1/12 and 0 ≤ δ, η ≤ ε.

• (characteristic p) For ξn satisfying Equation (22), and for 0 ≤ k < ηn

PX1,...,Xn−k (Wn−k/p is not δ-sparse) ≥ 1− e−c
′αnn.

• (characteristic zero) For ξn satisfying Equation (1), and for 0 ≤ k < ηn

PX1,...,Xn−k (Wn−k is not δ-sparse in Zn) ≥ 1− e−c
′αnn.

This result is actually a special case of Lemma 8.21 and 8.22, which will be discussed in due course. In
connection to Theorem 8.4, it is more useful to connect the sparseness property to the one of having an entry
of high multiplicity.

Claim 8.7. Assume that the random subspace Wn−k/p does not accept any normal vector in (Z/pZ)n of
support size at most δ, then it does not accept any normal vector with an entry of multiplicity between n−δn
and n− 1 either. The same holds in the the characteristic zero case Zn.

Proof. This is because of the invariance property that if w = (w1, . . . , wn) is normal to Wn−k then so is any
shifted vector (w1 − w0, . . . , wn − w0) to Wn−k. �

To conclude our treatment for the sparse case, given constants ε, η, δ and the parameter αn from (22),
let Ek,dense = Ek,dense(ε, η, δ) denote the event in the σ-algebra generated by X1, . . . , Xn−k considered in
Lemma 8.6, then

P(Ek,dense) ≥ 1− e−c
′αnn. (23)

As such we can simply condition on this event without any significant loss. In our next move, we will
choose λ > 0 to be a sufficiently small constant and show that it is highly unlikely that Wn−k/p is some non
δ-sparse subspace (module) V of co-dimension k0 with k − 1 ≤ k0 ≤ ηn such that

e−λαnn < max
i,X∈Ti

|P(X ∈ V )− 1

pk0
|.

Let us simply call V bad if this holds. For motivation, instead of bounding the probability that Wn−k/p
is bad, let us simplify it to bounding the probability that X1, . . . , Xn−k all belong to a bad subspace V .
For this we will use the “swapping method” from [15, 30], and this was also adapted by Maples in [19] for
the modulo p case. Roughly speaking, by letting the random variable ξn be lazier at zero, the associated
random vector Y with this lazy random variable will stick to V more often than X does (see Lemma 8.12),
say |P(X ∈ V ) − 1

pk0
| ≤ 0.51|P(Y ∈ V ) − 1

pk0
|. Hence if |P(X ∈ V ) − 1

pk0
| is large enough, say larger

than 16
pk0

, then we have that P(X ∈ V ) ≤ (2/3)P(Y ∈ V ), which in turn leads to a very useful bound

P(X1, . . . , Xn−k ∈ V ) ≤ (2/3)n−kP(Y1, . . . , Yn−k ∈ V ). In what follows we will try to exploit this crucial
exponential gain toward the Laplacian setting and toward the event that X1, . . . , Xn−k actually span a bad
subspace.
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8.8. Semi-saturated subspace. Given 0 < α, δ, λ < 1. We call a subspace V ≤ Zn0/p of co-dimension
k0 ≤ ηn (with respect to Zn0/p) semi-saturated (or semi-sat for short) with respect to these parameters if V
is not δ-sparse and

e−λαnn < max
i,X∈Ti

|P(X ∈ V )− 1

pk0
| ≤ 16

pk0
. (24)

Here we assume

e−λαnn <
16

pk0
.

If this condition is not satisfied (such as when p is sufficiently large), then the semi-saturated case can be
omitted. Our main result of this part can be viewed as a structural theorem which says that semi-saturated
subspaces can be “captured” by a set of significantly fewer than pn vectors.

Lemma 8.9. For all β > 0 and δ > 0 there exists 0 < λ = λ(β, δ) < 1 in the definition of semi-saturation
and a deterministic set R ⊂ (Z/pZ)n of non δ-sparse vectors and of size |R| ≤ (2βδ)npn such that every
semi-saturated V is normal to a vector R ∈ R. In fact the conclusion holds for any subspace V satisfying
the LHS of (24).

Proof. (of Lemma 8.9) Without loss of generality, assume that e−λαnn < |P(X ∈ V ) − 1
pk0
| where X ∈ T1.

Equivalently, with J = {2, . . . , n}

e−λαnn < |P(X|J ∈ V |J)− 1

pk0
|.

By [19, Proposition 2.5] (see also [21, Lemma A.12]), there exists a deterministic set R′ ⊂ (Z/pZ)n−1 of
non δ-sparse vectors and of size |R′| ≤ (2βδ)n−1pn−1 such that V |J is normal to a vector R ∈ R′. We then
define R by appending a first coordinate to the vectors of R′ to make them have zero entry-sum. �

Let Fn−k,k0,semi−sat be the event that codim(Wn−k) = k0 and Wn−k is semi-saturated.

Lemma 8.10 (random subspaces are not semi-saturated, Laplacian case). Let β, δ > 0 be parameters such
that βδ < 17−2/2. With λ = λ(β, δ) from Lemma 8.9 we have

P(Fn−k,k0,semi−sat) ≤ e−n.

In particularly, with En−k,semi−sat denotes the event complements ∧k−1≤k0≤ηnFn−k,k0,semi−sat in the
σ-algebra generated by X1, . . . , Xn−k, then

P(En−k,semi−sat) ≥ 1− e−n/2. (25)

Proof. (of Lemma 8.10) We have

P(Fn−k,k0,semi−sat) =
∑

V semi−sat, codim(V )=k0

P(Wn−k = V ) ≤
∑

V semi−sat, codim(V )=k0

P(X1, . . . , Xn−k ∈ V ).

Now for each fixed V ≤ Zn0/p that is semi-saturated of co-dimension k0, by definition

P(Xn+k+j ∈ V ) ≤ max
i,X∈Ti

|P(X ∈ V )− 1

pk0
|+ 1

pk0
≤ 17p−k0 .

So

P(X1, . . . , Xn−k ∈ V ) ≤ 17n−kp−k0(n−k).

We next use Lemma 8.9 to count the number Nsemi−sat of semi-saturated subspaces V . Each V is determined
by its annihilator V ⊥ in Zn0/p (of cardinality pk0). For V ⊥ we can choose a first vector v1 ∈ R, and then
v2, . . . , vk0 ∈ Zn0/p (linearly independently). By double counting, we obtain an upper bound

Nsemi−sat = O
(

(2βδ)npn
(pn−1)k0−1

|V ⊥|k0−1

)
= O

(
(2βδ)npnk0−k

2
0+k0

)
.
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Putting together,

P(Fn−k,k0,semi−sat) ≤
∑

V semi−sat, codim(V )=k0

P(X1, . . . , Xn−k ∈ V ) = O
(

(2βδ)npnk0−k
2
0+k017n−kp−k0(n−k)

)
= O

(
17n−k(2βδ)npk0pk0(k−k0)

)
= O

(
17n−k(2βδ)np2k0

)
,

where we noted that k0 ≥ k − 1. Now recall that e−λαnn ≤ 16p−k0 , and so

P(Fn−k,k0,semi−sat) = O(17n−k(2βδ)np2k0) = O(17n+1−k(2βδ)ne2λαnn).

We then choose β so that 2βδ < 17−2 and with λ < 1/2 we have

P(Fn−k,k0,semi−sat) ≤ e−n.
�

Having worked with subspaces V where maxi,X∈Ti |P(X ∈ V )− p−k0 | are still small, we now turn to the
remaining case to apply the swapping method.

8.11. Unsaturated subspace. Let V be a subspace of codimension k0 in Zn0/p for some k − 1 ≤ k0 ≤ ηn.
We say that V is unsaturated (or unsat. for short) if V is not δ-sparse and

max(e−dαn, 16p−k0) < max
i,X∈Ti

|P(X ∈ V )− p−k0 |.

In particularly this implies that

max
i,X∈Ti

P(X ∈ V ) ≥ max{17p−k0 ,
16

17
e−dαn}.

In this case, for each 1 ≤ i ≤ n we say that V has type i if

PX∈Ti(X ∈ V ) = max
1≤j≤n,X∈Tj

P(X ∈ V ).

By taking union bound, it suffices to work with unsaturated subspace of type 1. So in what follows X ∈ T1.
The following is from [19, Lemma 2.8] (see also [21, Lemma A.15]).

Lemma 8.12. There is a α′n-balanced probability distribution ν on Z/pZ with α′n = αn/64 such that if
Y = (y1, . . . , yn) ∈ (Z/pZ)n is a random vector with i.i.d. coefficients y2, . . . , yn distributed according to ν
and y1 = −(y2 + · · ·+ yn) then for any unsaturated proper subspace V in Zn0/p

|P(X ∈ V )− 1

pk0
| ≤ (

1

2
+ o(1))|P(Y ∈ V )− 1

pk0
|.

(To be more precise, [19, Lemma 2.8] and [21, Lemma A.15] stated for vectors of i.i.d. entries, but for
Lemma 8.12 we just need to truncate the first coordinate from all vectors.) For short, we will say that the
vector Y from Lemma 8.12 has type T ′1 . It follows from the definition of unsaturation and from Lemma 8.12
that

PX∈T1(X ∈ V ) ≤ 2

3
PY ∈T ′1 (Y ∈ V ).

Definition 8.13. Let V be a subspace in (Z/pZ)n. Let dcomb ∈ {1/n, . . . , n2/n}. We say that V of type 1
has combinatorial codimension dcomb if

(1− α)dcomb ≤ PX∈T1(X ∈ V ) ≤ (1− αn)dcomb−1/n. (26)

Now as we are in the unsaturated case, P(X ∈ V ) ≥ 16
17e
−λαnn, and so

dcomb ≤ 2λn. (27)

In what follows we will fix dcomb from the above range, noting that d is sufficiently small, and there are only
O(n2) choices of dcomb.

Let be fixed any 0 < δ1 < δ2 < 1/3 such that

16(δ2 − δ1)(1 + log
1

δ2 − δ1
) < δ1. (28)

31



Set

r = bδ1nc and s = n− k − bδ2nc.
Let Y1, . . . , Yr ∈ T ′1 be random vectors with entries distributed by ν obtained by Lemma 8.12, and

Z1, . . . , Zs ∈ T1 bee i.i.d. copies of a type 1 vector generated by µ. Note that in what follows the subspaces
V are of given combinatorial dimension dcomb as in Equation (26) and (27).

Lemma 8.14 (random subspaces are not unsaturated, Laplacian case).

P
(
X1, . . . , Xn−k span an unsat. V of type 1 of dim. between r + s and n− k

)
≤ (3/2)−δ1n/4.

Note that the event considered here is significantly harder to control than the event discussed in the
paragraph preceding Subsection 8.8. This is also the place where [19] treated incorrectly by relying on [19,
Proposition 2.3] (although our situation here is more technical with vectors of dependent and extremely
sparse entries.) To prove Lemma 8.14 we will actually show

Lemma 8.15. Assume that V is any subspace of type 1 and of dimension between r + s and n − k and
dcomb ≤ 2λn. Then we have

P
(
X1, . . . , Xn−k span V

)
≤ (3/2)−r/2

∑
(i1,...,in−k−r−s)

P
(
Y1, . . . , Yr, Z1, . . . , Zs, X

(i1), . . . , X(in−k−r−s) span V
)
,

where (i1, . . . , in−k−r−s) ranges over all subsets of size n− k − r − s of {1, . . . , n− k}.

To conclude Lemma 8.14 we just use (3/2)−r/2
(
n−k
r+s

)
≤ (3/2)−δ1n/4 (basing on Equation (28)) and the

fact that for each fixed (i1, . . . , in−k−r−s)∑
V≤(Z/pZ)n, type 1, codim(V )≥k

P(Y1, . . . , Yr, Z1, . . . , Zs, X
(i1), . . . , X(in−k−r−s) span V ) ≤ 1.

Proof. (of lemma 8.15) We use the swapping method from [19, 30]. First of all, by independence between
Xi, Yj , Zl,

P
(
X1, . . . , Xn−k span V

)
×P

(
Y1, . . . , Yr, Z1, . . . , Zs linearly independent in V

)
= P

(
X1, . . . , Xn−k span V ∧ Y1, . . . , Yr, Z1, . . . , Zs linearly independent in V

)
. (29)

Roughly speaking, the linear independence of Y1, . . . , Zs is to guarantee that we then can add a few other Xi

to form a new linear span of V , and by this way we can free the other Xi from the role of spanning (see for
instance Equation (31)). We next estimate P(Y1, . . . , Yr, Z1, . . . , Zs linearly independent in V ). By product
rule,

P
(
Z1, . . . , Zs, Y1, . . . , Yr linearly independent in V

)
= P

(
Yr ∈ V

)
×P

(
Yr−1 ∈ V, Yr−1 /∈ 〈Yr〉|Yr ∈ V

)
× · · · ×P

(
Y1 ∈ V, Y1 /∈ 〈Y2, . . . , Yr〉|Y2, . . . , Yr lin. in V

)
×

×P
(
Zs ∈ V,Zs /∈ 〈Y1, . . . , Yr〉|Y1, . . . , Yr lin. in V

)
× · · ·×

×P
(
Z1 ∈ V,Z1 /∈ 〈Z2, . . . , Zr, Y1, . . . , Yr〉|Z2, . . . , Zs, Y1, . . . , Yr lin. in V

)
.

We first estimate the terms on Yi. By Lemma 8.3

P
(
Yi ∈ V, Yi /∈ 〈Yi+1, . . . , Yr〉|Yi+1, . . . Yr lin. in V

)
≥ P(Yi ∈ V )− (1− α′n)n−(r−i)−1.

This then can be estimated from below by

P(Yi ∈ V )− (1− α′n)n−(r−i)−1 ≥3

2
P(Xi ∈ V )− (1− α′n)n−(r−i)−1 ≥ 3

2
(1− α)dcomb − (1− α′n)n−(r−i)−1

≥3

2
(1− αn)dcomb(1− (1− αn)n/256−dcomb),
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where we used that α′n = αn/64 and n− r ≥ (1− δ1)n ≥ n/2. Similarly,

P
(
Zi ∈ V,Zi /∈ 〈Zi+1, . . . , Zs, Y1, . . . , Yr〉|Zi+1, . . . , Zs, Y1, . . . , Yr

)
≥ P(Zi ∈ V )− (1− α′)n−(r+s−i)−1

≥ (1− αn)dcomb − (1− α′n)n−(r+s−i)−1 ≥ (1− αn)dcomb − (1− αn)n/256

where we used that r + s = n− k − (bδ2nc − bδ1nc) ≥ n/2. Putting together

P
(
Y1, . . . , Zs linearly independent in V

)
≥ (3/2)r(1− αn)(r+s)dcomb

(
1− (1− αn)n/256−dcomb

)r+s
≥ (3/2)r−1(1− αn)(r+s)dcomb , (30)

where we used dcomb ≤ 2λn and λ is sufficiently small.
Now we estimate the probability P(X1, . . . , Xn−k span V ∧Y1, . . . , Yr, Z1, . . . , Zs linearly independent in V ).

Since Y1, . . . , Yr, Z1, . . . , Zs are linearly independent in V and Xk+1, . . . , Xn span V , there exist n−k− r−s
vectors X(i1), . . . , X(in−k−r−s), which together with Y1, . . . , Yr, Z1, . . . , Zs, span V , and the remaining vectors
Xin−k−r−s+1 , . . . , Xin−k belong to V . Thus,

P
(
X1, . . . , Xn−k span V ∧ Y1, . . . , Yr, Z1, . . . , Zs linearly independent in V

)
≤

∑
(i1,...,in−k−r−s)

P
(
Y1, . . . , Zs, X

(i1), . . . , X(in−k−r−s) span V ∧Xin−k−r−s+1 , . . . , Xin−k ∈ V
)

≤
∑

(i1,...,in−k−r−s)

P
(
Y1, . . . , Zs, X

(i1), . . . , X(in−k−r−s) span V
)
P
(
Xin−k−r−s+1 , . . . , Xin−k ∈ V

)
≤

∑
(i1,...,in−k−r−s)

P
(
Y1, . . . , Zs, X

(i1), . . . , X(in−k−r−s) span V
)

(1− α)(r+s)(dcomb−1/n), (31)

where in the last step we used the upper bound (1− α)dcomb−1/n for each P(X(i) ∈ V ).
Putting (29), (30) and (31) together,

P
(
X1, . . . , Xn−k span V

)
=

P
(
X1, . . . , Xn−k span V ∧ Y1, . . . , Zs linearly independent in V

)
P
(
Y1, . . . , Zs linearly independent in V

)
≤ (3/2)−r+1(1− αn)−(r+s)dcomb×

×
∑

(i1,...,in−k−r−s)

P
(
Y1, . . . , Zs, X

(i1), . . . , X(in−k−r−s) span V
)

(1− αn)(r+s)(dcomb−1/n)

≤ (3/2)−r/2
∑

(i1,...,in−k−r−s)

P
(
Y1, . . . , Zs, X

(i1), . . . , X(in−k−r−s) span V
)
.

�

Remark that r+s = n−k− (bδ2nc−bδ1nc) < n−k−ηn if η is sufficiently small. As a consequence, if we
let Ek,unsat denote the complement of the event in Lemma 8.14 in the σ-algebra generated by X1, . . . , Xn−k
then

P(En−k,unsat) ≥ 1− (3/2)−δ1n/4. (32)

We now conclude the proof of Theorem 8.2. Let En−k,dense, En−k,semi−sat, En−k,unsat be the events intro-
duced in (23), (25), (32) and let En−k be their intersection. If we choose c ≤ min{c′, λ} then by definition,
on these events, if codim(Wn−k) = k0 then for a random vector X of any type Ti

|P(X ∈Wn−k)− 1

pk0
| ≤ e−cαnn,

completing the proof.
Finally, we conclude this section with an interesting consequence of Theorem 8.2 in light of singularity

bounds for random matrices from [1, 3, 15, 16, 27, 30].
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Corollary 8.16 (Non-singularity of the Laplacian). There exist absolute constants c0,K0 > 0 such that
the following holds. Assume that the i.i.d. entries are distributed according to a random variable ξn taking
integral values and such that for any prime p

max
x∈Z

P(ξn = x) = 1− αn ≤ 1− C0 log n

n
, for a sufficiently large constant C0.

Then with probability at least 1 −K0e
−c0αnn the matrix Ln×(n−1) of any n − 1 columns of Ln×n has rank

n− 1 in Rn.

Note that we do not require ξn to be bounded at all, and our sparseness is almost best possible.

Proof. (of Corollary 8.16) We assume Ln×(n−1) to be the matrix of the first n− 1 columns. Choose a prime

p sufficiently large and we will show that Ln×(n−1)/p has rank n − 1 with probability at least 1 − e−cαnn.
By Lemma 8.3, it suffices to bound the probability that Ln×(n−1)/p has rank between n− ηn and n− 2. For
this we can deduce from Theorem 8.2 that if 1 ≤ k ≤ ηn for some sufficiently small η, then

P
(

rank(Ln×(n−1)) = (n− 1)− k
)

= O
(
nk(p−k

2

+ e−cαnn)
)
. (33)

Indeed, the event rank(Ln×(n−1)) = (n− 1)−k implies that there exist k column vectors Xi1 , . . . , Xik which
belong to the subspace of Zn0/p of dimension (n− 1)− k generated by the remaining column vectors Xi, i 6=
i1, . . . , ik. With a loss of a factor of

(
n−1
k

)
in probability, we assume that {i1, . . . , ik} = {n − k, . . . , n − 1}.

We then use Theorem 8.2

P
(
Xn−k, . . . , Xn−1 ∈Wn−k−1 ∧ codim(Wn−k−1) = k

)
=P
(
Xn−k, . . . , Xn−1 ∈Wn−k−1 ∧ En−k−1 ∧ codim(Wn−k−1) = k

)
+O(e−cαnn)

≤P
(
Xn−k, . . . , Xn−1 ∈Wn−k−1|En−k−1 ∧ codim(Wn−k−1) = k

)
+O(e−cαnn)

≤
(
p−k +O(e−cαnn)

)k
+O(e−cαn) = O(p−k

2

+ e−cαn),

proving (33), and hence the corollary. �

III. Proof of Equations (14) and (15) of Proposition 2.6: treatment for large primes. Now we
modify the approach of Section 6 and 7 to the Laplacian setting. Let d > 0 be a constant and

Pn =
{
p prime, p ≥ edαnn

}
.

Let E(L)
6=0 be the event that Ln×(n−1) has rank n− 1 in Rn. It follows from Corollary 8.16 that

P(E(L)
6=0 ) ≥ 1−K0e

−c0αnn.

Our strategy is similar to the proof of Proposition 2.3. Recall that Wk is the submodule of Zn0 spanned by
X1, . . . , Xk. Let Wk be the set of primes p ∈ Pn such that rank(Wk/p) ≤ k − 1. Let Ck be the event that
|Wk| ≤ (2T + 1) log n/(2dαn) (the watch list is not too big). Note that any p ∈Wk for k ≤ n must divide
det(Ln×(n−1)). By Hadamard’s bound, |det(Ln×(n−1))| ≤ nn/2nTn, and so in particular, when C̄k occurs
then det(Ln×(n−1)) = 0. Let Dk be the event that there is a p ∈Wk such that rank(Wk/p) ≤ k − 2, this is
the event we want to avoid for all p.

We will show that P(C̄k+1 ∨ D̄k+1|Ck ∧ D̄k), and hence P(C̄k+1 ∨ D̄k+1|C̄k ∨ D̄k), are large. The goal is
to conclude that P(C̄n ∨ D̄n) is large, and since we know that P(C̄n) is small, we can conclude that P(D̄n)
is large, as desired. Now to estimate P(C̄k+1 ∨ D̄k+1|Ck ∧ D̄k) we will condition on the exact values of
X1, . . . , Xk where Ck ∧ D̄k holds, and so there are at most (2T + 1) log n/(2λαn) primes p ∈ Pn such that
rank(Wk/p) ≤ k − 1 and no prime p ∈ Pn such that rank(Wk/p) ≤ k − 2. In this case D̄k+1, as long as for
each p ∈ Wk, we have Xk+1/p 6∈ Wk/p. Consider one prime p ∈ Wk, and let V be the value of Wk/p that

34



the conditioned X1, . . . , Xk give. From Lemma 8.3, P(Xk+1/p ∈ V ) ≤ (1 − αn)(n−1)−(k−1) = (1 − α)n−k.
Thus,

P(C̄k+1 ∨ D̄k+1|Ck ∧ D̄k) ≥ 1−
(

(2T + 1) log n

2dαn

)
(1− αn)n−k.

In particular, we have the same lower bound for P(C̄k+1 ∨ D̄k+1|C̄k ∨ D̄k), and then inductively, we have

P(C̄k ∨ D̄k) ≥ 1−
k−1∑
i=1

(
(2T + 1) log n

2dαn

)
(1− αn)n−i = 1−

(
(2T + 1) log n

2dαn

)
(1− αn)n−k+1

αn
.

Set n0 := n− b3 log n/αnc. Then by using αn ≥ n−1+ε we have that

P
(
C̄n0
∨ D̄n0

)
≥ 1−Od,T

(
n−1/2

)
.

We then have the following analog of Lemma 6.2.

Lemma 8.17. Suppose that αn ≥ 6 log n/n. Then there is a set of submodules SL of Zn0 such that

P(Wn0 ∈ SL) ≥ 1− e−αnn/8

and for any prime p ≥ edαnn, and any submodule H ∈ SL, for any proper subspace H ′ of Zn0/p containing
H/p,

P
(
X/p ∈ H ′

)
= Od,T

(√
log n

αn
√
n

)
,

where X is any column of Ln×n.

Lemma 8.17 can be shown exactly the same way Lemma 6.2 was deduced. Indeed, we can use Lemma 6.5
to lift the existence of sparse normal vector on any modulo p with p ≥ eaαnn to the existence of sparse
normal vector on characteristic zero, for which we then can use Lemma 8.6 (or Lemmas 8.21 and 8.22) to
show that this event is unlikely. We then apply Theorem 8.4 (combined with Claim 8.7) to get the desired
probability bound when the normal vectors are non-sparse.

Now similarly to the iid case, Lemma 8.17 allows us to justify Equations (14) and (15) only for αn ≥
n−1/6+ε. To extend to αn ≥ n−1+ε, we will have to need the following analog of Lemma 6.7.

Lemma 8.18. There is an absolute constant c2 > 0 such that the following holds. Suppose that αn ≥ n−1+ε.
There is a set S ′L of submodules of Zn0 , such that

P(Wn0
∈ S ′L) ≥ 1− e−c2αnn

and for n sufficiently large given d, ε, T , any prime p ≥ edαnn, any submodule H ∈ S ′L, and any proper
subspace H ′ of (Z0/p)

n containing H/p,

max
i

PX∈Ti

(
X/p ∈ H ′

)
≤ n−3.

The deduction of Equations (14) and (15) from this lemma is similar to how Proposition 2.2 was deduced
from Lemma 6.7. It remains to verify Lemma 8.18. For this we will make use of Theorem 8.4 and the
following corollary of Theorem 7.3 for vectors from Ti.

Theorem 8.19 (inverse Erdős-Littlewood-Offord for the Laplacian). Let ε < 1 and C be positive constants.
Assume that p is a prime that is larger than C ′nC for a sufficiently large constant C ′ depending on ε and
C. Let ξ be a random variable taking values in Z/pZ which is αn-balanced with an ≥ n−1+ε. Assume
w = (w1, . . . , wn) ∈ (Z/pZ)n such that

ρ(w) = max
i,(ξ1,...,ξn)∈Ti

sup
a∈Z/pZ

P(ξ1w1 + · · ·+ ξnwn = a) ≥ n−C ,

Then for any nε/2α−1 ≤ n′ ≤ n, there exists 1 ≤ i ≤ n and there exists a proper symmetric GAP Q of rank
r = Oε,C(1) which contains all but n′ elements of {w1 − wi, . . . , wn − wi} (counting multiplicity), where

|Q| ≤ max
{

1, OC,ε(ρ
−1/(αn′)r/2)

}
.
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8.20. Proof of Lemma 8.18. Our method is similar to Section 7, so we will be brief. First we need an
analog of Lemma 7.4 to estimate the probability that for some large prime p the module Wn0/p of Zn0/p
accepts an extremely sparse normal vector.

Lemma 8.21. There are absolute constants c1, C0 such that the following holds. Let βn := 1−maxx∈Z P(ξn =
x), and assume βn ≥ C0 log n/n and αn ≥ 6 log n/n. For n ≥ 2, the following happens with probability at
most e−c1βnn/2: for some prime p > 2nT , the subspace Wn0

/p has a non-zero normal vector with at most
144β−1

n non-zero coordinates.

We also need an analog of Lemma 7.5, which will allow us to control the event that for some prime p of
order eo(n) or p = 0 the subspace Wn0

/p accepts a normal vector of o(n) non-zero entries.

Lemma 8.22. There exist absolute constants c0, C0 such that the following holds. Let βn := 1−maxx∈Z P(ξn =

x). Assume αn ≥ C0 logn
n and let p be a prime > 2nT . The following happens with probability at most

(2/3)n/4: the subspace Wn0
/p has a non-zero normal vector w with 144β−1

n ≤ |supp(w)| ≤ c0n.

Lemmas 8.21 and 8.22 will be verified in Appendix D by following the proofs of Lemmas 7.4 and 7.5.
We next discuss an analog of Lemma 7.6 on the existence of structured but not sparse normal vectors

of Wn0
/p. Similarly to Section 7, we let n′ = dnε/2α−1

n e and m = n − n′, and we will apply Theorem 8.19
with this choice of n′ and C = 3. By replacing w = (w1, . . . , wn) by (w1 − wi, . . . , wn − wi) if needed (note
that this shifted vector is again a normal vector of Wn0

/p because this subspace consists of vectors of zero
entry sum modulo p), we can simply say that Theorem 8.19 implies structure for w1, . . . , wn. We call a GAP
Q well-bounded if it is of rank ≤ Cε and |Q| ≤ Cεn

3, where Cε is the maximum of C ′ and the constants
from the OC,ε bounding the rank of volume of |Q|. Motivated by this, and similarly to Section 7, we call a
vector w structured if it is non-zero, and there exists a symmetric well-bounded GAP Q such that all but n′

coordinates of w belong to Q.

Lemma 8.23. Let αn ≥ n−1+ε. Let p be a prime p ≥ Cεn
3. The following event happens with probability

Oε(p
Cεn−εn/5): the space Wn0

/p has a structured normal vector w, and Wn0
/p does not have a non-zero

normal vector w′ such that |supp(w′)| ≤ c0n with c0 from Lemma 8.22.

Lemma 8.18 then can be shown by combining Lemmas 8.21, 8.22 and 7.7 the way Lemma 6.7 was concluded
in the end of Section 7. Finally, the proof of Lemma 8.23 is almost identical to that of Lemma 7.6, the only
difference is that we need to apply Theorems 8.4 and 8.19 instead of Theorems 6.3 and 7.3 in the argument
leading to Equations (20) and (21), and thus we again omit the detail.
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Appendix A. Inequality Lemmas

We have a straightforward inequality (easily checked by considering the cases when A ≤ 1 and A > 1).

Lemma A.1. Let 0 < d1 < 1 and A > 0, and n ≥ 1 be an integer. Then we have

(d1 + (1− d1) exp(−A))
n ≤ max(exp(−(1− d1)An/2), ((1 + d1)/2)

n
).

The following is a standard estimate with binomial coefficients.

Lemma A.2. Let D1 > 0. For every f > 0, for all δ > 0 sufficiently small (given D1, f), we have that for
all sufficiently large n (given D1, f, δ), that

bδnc∑
k=0

(
n

k

)
Dk

1 ≤ exp(fn).
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We put these lemma together to obtain the inequality below.

Lemma A.3. Let D1 > 0 and 0 < d1 < 1. Then for positive γ sufficiently small (given D1 and d1), the
following holds. Let ∆′ > 2/(1− d1). For n sufficiently large (given D1, d1, γ,∆

′) we have

bγnc∑
k=1

(
n

k

)
Dk

1 (d1 + (1− d1) exp(−(∆′ log n/n)k))n ≤ 3n−((1−d1)∆′/2−1).

Proof. For n ≥ 2, we have that (∆′ log n/n)k > 0. So by Lemma A.1 with A = (∆′ log n/n)k, we have

bγnc∑
k=1

(
n

k

)
Dk

1 (d1 + (1− d1) exp(−(∆′ log n/n)k))n

≤
bγnc∑
k=1

(
n

k

)
Dk

1 exp(−(1− d1)An/2) +

bγnc∑
k=1

(
n

k

)
Dk

1 ((1 + d1)/2)
n

=

bγnc∑
k=1

(
n

k

)
Dk

1 exp(−(1− d1)∆′(log n)k/2) +

bγnc∑
k=1

(
n

k

)
Dk

1 ((1 + d1)/2)
n
.

We have

r ·
(
n

k

)
Dk

1 exp(−(1− d1)∆′(log n)k/2) ≥
(

n

k + 1

)
Dk+1

1 exp(−(1− d1)∆′ log n(k + 1)/2)

if and only if

r ≥ n− k
k + 1

D1

n(1−d1)∆′/2
.

If (1− d1)∆′/2 > 1, then for n sufficiently large given D1, d1 and ∆′, we have

n− k
k + 1

D1

n(1−d1)∆′/2
≤ D1n

2n(1−d1)∆′/2
=

D1

2n(1−d1)∆′/2−1
≤ 1

2
.

So, if (1− d1)∆′/2 > 1, then for n sufficiently large given D1, d1 and ∆′, we have

1

2
·
(
n

k

)
Dk

1 exp(−(1− d1)∆′(log n)k/2) ≥
(

n

k + 1

)
Dk+1

1 exp(−(1− d1)∆′ log n(k + 1)/2).

In particular, that implies

bγnc∑
k=1

(
n

k

)
Dk

1 exp(−(1− d1)∆′(log n)k/2) ≤2n−((1−d1)∆′/2−1).

For the second sum, let f = − log(1 + d1/2)/2 > 0 and note that f + log((1 + d1/2)) < 0. Then by
Lemma A.2, we have that for γ sufficiently small given D1, d1 that for all n sufficiently large (given D1, d1, γ)

bγnc∑
k=1

(
n

k

)
Dk

1 ((1 + d1)/2)
n ≤ exp(fn+ log(1 + d1/2)n) = exp(log(1 + d1/2)n/2).

For n sufficiently large given d1,∆
′, we have

exp(log(1 + d1/2)n/2) ≤ n−((1−d1)∆′/2−1).

The lemma follows. �
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Appendix B. Approximate transition probabilities: proof of Theorem 5.3

First, we prove the following simplified version of the theorem. Using a coupling, we show that if the
transition probabilities of two sequences of random variables are close, then the distribution of the random
variables must be close.

Lemma B.1. Let w and w′ be sequences of random variables with w0 = w′0 = 0, for each i ≥ 0

P(w′i+1 = a|w′i = b) = P(wi+1 = a|wi = b) + δ(i, b, a)

for all a and b such that P(w′i = b) = P(wi = b) 6= 0 ,

and wi and w′i only take on countably many values. Then for any n ≥ 0 and any set A of values taken by
wn or w′n, we have

|P(wn ∈ A)−P(w′n ∈ A)| ≤ 1

2

∑
0≤i≤n−1

∑
b

∑
c

|δ(i, b, c)|P(wi = b) ≤ 1

2

∑
0≤i≤n−1

max
b

∑
c

|δ(i, b, c)|,

where b is summed over {b | P(wk = b) 6= 0 and P(w′k = b) 6= 0)} and c is summed over {c | P(wi+1 = c) 6=
0 or P(w′i+1 = c) 6= 0)}.

Proof. Let Si be the set of values taken on by wi and w′i. Let µ be Lebesgue measure on the interval [0, 1].
For each i ≥ 0 and b ∈ Si, we can choose measurable functions φi,b : [0, 1] → Si+1 and φ′i,b : [0, 1] → Si+1

such that for all c ∈ Si,
P(wi+1 = c|wi = b) = µ(φ−1

i,b (c)) and P(w′i+1 = c|w′i = b) = µ((φ′)−1
i,b (c)),

and µ({x ∈ [0, 1]|φi,b(x) 6= φ′i,b(x)}) = 1
2

∑
c∈Si+1

|δ(i, b, c)|. (If b isn’t a value taken by one of the variables,

we will just take φi,b = φ′i,b.) Then we construct Markov chains xi and x′i, with x0 = x′0 = 0, and to

determine xi+1 and x′i+1, we pick a random x ∈ [0, 1], and then let xi+1 = φi,xi(x) and xi+1 = φ′i,xi(x). Note
that for all i ≥ 0 and all b ∈ Si and c ∈ Si+1, we have

P(xi+1 = c|xi = b) = P(wi+1 = c|wi = b) and P(x′i+1 = c|x′i = b) = P(w′i+1 = c|w′i = b).

Thus, for all n ≥ 0, we have P(xi = a) = P(wi = a) and P(x′i = a) = P(w′i = a). Note that xn and
x′n are equal, unless for some 0 ≤ i ≤ n − 1, we have that xi = x′i, but xi+1 6= x′i+1, and in particular,
φi,xi(x) 6= φ′i,xi(x). To see how likely this is for a given i, we sum over all b ∈ Si, and have

P(xi = x′i ∧ xi+1 6= x′i+1) ≤
∑
b∈Si

P(xi = b)P(xi = x′i = b ∧ xi+1 6= x′i+1|xi = b)

≤
∑
b∈Si

P(xi = b)P(φi,b(x) 6= φ′i,b(x)|xi = b)

≤
∑
b∈Si

P(xi = b)
1

2

∑
c∈Si+1

|δ(i, b, c)|.

So

P(xn 6= x′n) ≤ 1

2

n−1∑
i=0

∑
b∈Si

∑
c∈Si+1

P(xi = b)|δ(i, b, c)|,

and from this the result follows, since

|P(wn ∈ A)−P(w′n ∈ A)| = |P(xn ∈ A)−P(x′n ∈ A)| ≤ max(P(xn ∈ A ∧ x′n 6∈ A),P(xn 6∈ A ∧ x′n ∈ A)).

�

Theorem 5.3 will follow by applying Lemma B.1 to a modified sequence.

Proof of Theorem 5.3 . We insert half-steps xi+1/2 = (xi, gi) and yi+1/2 = (yi, 1). We compare the transi-
tional probabilities as follows, first for i integral:

P(yi+1/2 = (r, 1)|yi = r)−P(xi+1/2 = (r, 1)|xi = r) = P(gi 6= 1|xi = r)

and
P(yi+1/2 = (r, 0)|yi = r)− P (xi+1/2 = (r, 1)|xi = r) = −P(gi 6= 1|xi = r).
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Also for i integral, we have

P(yi+1 = s|yi+1/2 = (r, 1))−P(xi+1 = s|xi+1/2 = (r, 1)) = δ(i, r, s).

Then applying Lemma B.1, we have

|P(xn ∈ A)−P(yn ∈ A)|

≤ 1

2

n−1∑
i=0

∑
r

2P(gi 6= 1|xi = r)P(xi = r) +
1

2

n−1∑
i=0

∑
r

∑
s

|δ(i, r, s)|P(xi = r)

=

n−1∑
i=0

P(gi 6= 1) +
1

2

n−1∑
i=0

∑
r

∑
s

|δ(i, r, s)|P(i = r).

�

Appendix C. Inverse theorem: proof of Theorem 7.3

We first introduce a more general structure in finite additive groups.

Definition C.1. A set P in a given finite additive group G is a coset progression of rank r if it can be
expressed as in the form of

H +Q,

whereH is a finite subgroup ofG, andQ = {a0+x1a1+· · ·+xrar|Mi ≤ xi ≤M ′i and xi ∈ Z for all 1 ≤ i ≤ r}
is a GAP of rank r.

• We say that P with this presentation (i.e. choice of H, ai, Mi, M
′
i) is proper if the sums h + a0 +

x1a1 + · · ·+ xrar, h ∈ H,Mi ≤ xi ≤M ′i are all distinct.

• More generally, given a positive integer t we say that P is t-proper with this presentation if H + tQ
is proper.

• If −Mi = M ′i for all i ≥ 1 and a0 = 0, then we say that P with this presentation is symmetric.

To prove Theorem 7.3 we will make use of two results from [31] by Tao and Vu. The first result allows
one to pass from coset progressions to proper coset progressions without any substantial loss.

Theorem C.2. [31, Corollary 1.18] There exists a positive integer C1 such hat the following statement holds.
Let Q be a symmetric coset progression of rank d ≥ 0 and let t ≥ 1 be an integer. Then there exists a t-proper
symmetric coset progression P of rank at most d such that we have

Q ⊂ P ⊂ Q(C1d)3d/2t.

We also have the size bound

|Q| ≤ |P | ≤ td(C1d)
3d2/2|Q|.

The second result, which is directly relevant to us, says that as long as |kX| grows slowly compared to
|X|, then it can be contained in a structure. This is a long-ranged version of the Freiman-Ruzsa theorem.

Theorem C.3. [31, Theorem 1.21] There exists a positive integer C2 such hat the following statement holds:
whenever d, k ≥ 1 and X ⊂ G is a non-empty finite set such that

kd|X| ≥ 22C2d
226d

|kX|,

then there exists a proper symmetric coset progression H + Q of rank 0 ≤ d′ ≤ d − 1 and size |H + Q| ≥
2−2C2d

226d

kd
′ |X| and x, x′ ∈ G such that

x+ (H +Q) ⊂ kX ⊂ x′ + 22C2d
226d

(H +Q).

Note that any GAP Q = {a0 + x1a1 + · · · + xrar| − Ni ≤ xi ≤ Ni for all 1 ≤ i ≤ r} is contained in a
symmetric GAP Q′ = {x0a0 + x1a1 + · · ·+ xrar| − 1 ≤ x0 ≤ 1,−Ni ≤ xi ≤ Ni for all 1 ≤ i ≤ r}. Thus, by
combining Theorem C.3 with Theorem C.2 we obtain the following
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Corollary C.4. Whenever d, k ≥ 1 and X ⊂ G is a non-empty finite set such that

kd|X| ≥ 22C2d
226d

|kX|,

then there exists a 2-proper symmetric coset progression H + P of rank 0 ≤ d′ ≤ d and size |H + P | ≤
2d(C1d)3d2/22d2C2d

226d |kX| such that

kX ⊂ H + P.

As for Theorem 7.3, the explicit constants in Corollary C.4 will not be important. (Although a more

careful analysis would allow αn to be as small as n−1+O( 1
log log logn ) here, and hence in our main theorems.

But in order to keep our presentation simple we will not work with this technical assumption, only staying
with αn ≥ n−1+ε.) Now we give a detailed proof of Theorem 7.3. In general our method follows that of [22],
but the details are more complicated because we have to obtain an actual inverse result in Z/pZ, as well as
we need to take into account the almost sharp sparsity of the randomness.

Proof. (of Theorem 7.3) First, for convenience we will pass to symmetric distributions. Let ψ = ν − ν′ be
the symmetrization and let ψ′ be a lazy version of ψ that

P(ψ′ = x) =

{
1
2P(ψ = x) if x 6= 0

P(ψ′ = x) = 1
2P(ψ = x) + 1

2 , if x = 0.

Notice that ψ′ is symmetric as ψ is symmetric. Similarly to (18), we can check that maxx P(ψ = x) ≤ 1−αn,
and so

sup
x

P(ψ′ = x) ≤ 1− αn/2.

We assume that P(ψ′ = tj) = P(ψ′ = −tj) = βj/2 for 1 ≤ j ≤ l, and that P(ψ′ = 0) = β0, where
tj1 ± tj2 6= 0 mod p for all j1 6= j2.

Consider a ∈ Z/pZ where the maximum is attained, ρ = ρ(w) = P(S = a), here S = ξ1w1+· · ·+ξnwn = a.
Using the standard notation ep(x) for exp(2π

√
−1x/p), we have

ρ = P(S = a) = E
1

p

∑
x∈Z/pZ

ep(x(S − a)) = E
1

p

∑
x∈Z/pZ

ep(ξS)ep(−xa) ≤ 1

p

∑
x∈Z/pZ

|Eep(xS)|. (34)

By independence

|Eep(xS)| =
n∏
i=1

|Eep(xηiwi)| ≤
n∏
i=1

(
1

2
(|Eep(xηiwi)|2 +1)) =

n∏
i=1

|Eep(xψ′wi)| =
n∏
i=1

(β0 +

l∑
j=1

βj cos
2πxtjwi

p
).

It follows that

ρ ≤ 1

p
|
∑

x∈Z/pZ

n∏
i=1

(β0 +

l∑
j=1

βj cos
2πxtjwi

p
)| ≤ 1

p

∑
x∈Z/pZ

n∏
i=1

(β0 +

l∑
j=1

βj | cos
πxtjwi
p
|), (35)

where we made the change of variable x→ x/2 (in Z/pZ) and used the triangle inequality.
By convexity, we have that | sinπz| ≥ 2‖z‖ for any z ∈ R, where ‖z‖ := ‖z‖R/Z is the distance of z to

the nearest integer. Thus,

| cos
πx

p
| ≤ 1− 1

2
sin2 πx

p
≤ 1− 2‖x

p
‖2. (36)

Hence for each wi

β0 +

l∑
j=1

βj | cos
πxtjwi
p
| ≤ 1− 2

l∑
j=1

βj‖
xtjwi
p
‖2 ≤ exp(−2

l∑
j=1

βj‖
xtjwi
p
‖2).

Consequently, we obtain a key inequality

ρ ≤ 1

p

∑
x∈Z/pZ

n∏
i=1

(β0 +

l∑
j=1

βj | cos
πxtjwi
p
|) ≤ 1

p

∑
x∈Fp

exp(−2

n∑
i=1

l∑
j=1

βj‖
xtjwi
p
‖2). (37)
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Large level sets. Now we consider the level sets Sm := {ξ|
∑n
i=1

∑l
j=1 βj‖

xtjwi
p ‖

2 ≤ m}. We have

n−C ≤ ρ ≤ 1

p

∑
x∈Fp

exp(−2

n∑
i=1

l∑
j=1

βj‖
xtjwi
p
‖2) ≤ 1

p
+

1

p

∑
m≥1

exp(−2(m− 1))|Sm|.

As p is assumed to be much larger than nC , and as
∑
m≥1 exp(−m) < 1, there must be is a large level set

Sm such that

|Sm| exp(−m+ 2) ≥ ρp. (38)

In fact, since ρ ≥ n−C , we can assume that m = O(log n).

Double counting and the triangle inequality. By double counting we have

n∑
i=1

∑
x∈Sm

l∑
j=1

βj‖
xtjwi
p
‖2 =

∑
x∈Sm

n∑
i=1

l∑
j=1

βj‖
xtjwi
p
‖2 ≤ m|Sm|.

So, for most vi ∑
x∈Sm

l∑
j=1

βj‖
xtjwi
p
‖2 ≤ m

n′
|Sm| (39)

for some large constant C0.
By averaging, the set of wi satisfying (39) has size at least n − n′. We call this set W ′. The set

{w1, . . . , wn}\W ′ has size at most n′ and this is the exceptional set that appears in Theorem 7.3. In the rest
of the proof, we are going to show that W ′ is a dense subset of a proper GAP.

Since ‖ · ‖ is a norm, by the triangle inequality, we have for any a ∈ kW ′

∑
x∈Sm

l∑
j=1

βj‖
xtja

p
‖2 ≤ k2m

n′
|Sm|. (40)

More generally, for any k′ ≤ k and a ∈ k′V ′

∑
x∈Sm

l∑
j=1

βj‖
xtja

p
‖2 ≤ k′2m

n′
|Sm|. (41)

Dual sets. Set

α′n :=

l∑
j=1

βj = 1− β0.

Then by definition of ξ, we have

α′n ≥ αn/2 ≥ n−1+ε.

Define

S∗m := {a|
∑
x∈Sm

l∑
j=1

βj‖
xtja

p
‖2 ≤ α′n

200
|Sm|}

where the constant 200 is ad hoc and any sufficiently large constant would do. We have

|S∗m| ≤
8p

|Sm|
. (42)

To see this, define Ta :=
∑
x∈Sm

∑l
j=1 βj cos

2πatjx
p . Using the fact that cos 2πz ≥ 1−100‖z‖2 for any z ∈ R,

we have, for any a ∈ S∗m

Ta ≥
∑
x∈Sm

(1− 100

l∑
j=1

βj‖
xtja

p
‖2) ≥ α′n

2
|Sm|.
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One the other hand, using the basic identity
∑
a∈Z/pZ cos 2πaz

p = pIz=0, we have (taking into account that

tj1 6= tj2 mod p)

∑
a∈Z/pZ

T 2
a ≤ 2p|Sm|

∑
j

β2
j ≤ 2p|Sm| max

1≤j≤l
βj(

l∑
j=1

βj) ≤ 2p|Sm|α′n
2
.

Equation (42) then follows from the last two estimates and averaging.
Next, for a properly chosen constant c1 we set

k := c1

√
α′nn

′

m
.

By (41) we have ∪kk′=1k
′W ′ ⊂ S∗m. Next, set

W
′′

:= W ′ ∪ {0}.

We have kW
′′ ⊂ S∗m ∪ {0}. This results in the critical bound

|kW
′′
| = O(

p

|Sm|
) = O(ρ−1 exp(−m+ 2)). (43)

The long range inverse theorem. We are now in the position to apply Corollary C.4 with X as the set of

distinct elements of W
′′
. As k = Ω(

√
α′nn

′

m ) = Ω(
√

α′nn
′

logn ),

ρ−1 ≤ nC ≤ k4C/ε+1. (44)

It follows from Corollary C.4 that kX is a subset of a 2-proper symmetric coset progression H + P of
rank r = OC,ε0(1) and cardinality

|H + P | ≤ OC,ε|kX|.

Now we use the special property of Z/pZ that it has only trivial proper subgroup. As |kX| = O(nC), and
as p� nC , the only possibility that |kX| � |H + P | is that H = {0}. Consequently, kX is now a subset of
P , a 2-proper symmetric GAP of rank r = OC,ε0(1) and cardinality

|P | ≤ OC,ε|kX|. (45)

To this end, we apply the following dividing trick from [22, Lemma A.2].

Lemma C.5. Assume that 0 ∈ X and that P = {
∑r
i=1 xiai : |xi| ≤ Ni} is a 2-proper symmetric GAP that

contains kX. Then

X ⊂ {
r∑
i=1

xiai : |xi| ≤ 2Ni/k}.

Proof. (of Lemma C.5) Without loss of generality, we can assume that k = 2l. It is enough to show that
2l−1X ⊂ {

∑r
i=1 xiai : |xi| ≤ Ni/2}. Since 0 ∈ X, 2l−1X ⊂ 2lX ⊂ P , any element x of 2l−1X can be written

as x =
∑r
i=1 xiai, with |xi| ≤ Ni. Now, since 2x ∈ P ⊂ 2P and 2P is proper GAP (as P is 2-proper), we

must have 0 ≤ |2xi| ≤ Ni. �

Combining (45) and Lemma C.5 we thus obtain a GAP Q that contains X and

|Q| = OC,ε0(k−r|kX|) = OC,ε0(k−r|kW
′′
|) = OC,ε0

(
ρ−1 exp(−m)(

√
α′nn

′

m
)−r

)
= OC,ε0(ρ−1(α′nn

′)−r),

concluding the proof. �
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Appendix D. Sparse subspaces for the Laplacian case: proof of Lemmas 8.21 and 8.22

Our methods are almost identical to those of Lemma 7.4 and 7.5, with a few minor exceptions.

Proof. (of Lemma 8.21) Argue similarly as in the proof of Lemma 7.4, it suffices to show that the following

holds with probability at least 1− e−c1βnn/2. For any 1 ≤ t ≤ 144β−1
n , and any σ ∈

(
[n]
t

)
, there are at least

two columns Xi, Xj with i, j /∈ σ whose restriction (Xj −Xi)|σ has exactly one non-zero entry.
For a given σ of size t, assume that {i1, . . . , jn0−t} ⊂ [n0]\σ. For i ∈ {1, 3, . . . , 2b(n0− t)/2c−1}, consider

the vectors Yi = Xji+1
|σ − Xji |σ. Note that as ji, ji+1 /∈ σ and Xji ∈ Tji and Xji+1

∈ Tji+1
, the entries

of Yi are iid copies of the symmetrized random variable ψ = ξ − ξ′, where ξ′, ξ are independent and have
distribution ξn. Recall that with 1−β′n = P(ψ = 0), then βn ≤ β′n ≤ 2βn. Now let pσ be the probability that
all Yi|σ, i ∈ {1, 3, . . . , 2b(n0− t)/2c− 1} fail to have exactly one non-zero entry (in Z), then by independence
of the columns and of the entries

pσ = (1− tβ′n(1− β′n)t−1)b(n0−t)/2c ≤ (1− tβ′ne−(t−1)β′n)b(n0−t)/2c ≤ e−ntβ
′
ne
−(t−1)β′n/4,

where we used n0 − t > n/2 because αn ≥ 6 log n/n and t ≤ 144β−1
n . The rest of the proof is similar to that

of Lemma 7.4. �

Proof. (of Lemma 8.22) For σ ⊂ [n] with 144β−1
n ≤ t = |σ| ≤ c0n, consider the event that Wn0/p is normal

to a vector w with supp(w) = σ but not with any other vector of smaller support size. With a loss of a
multiplicative factor

(
n
t

)
in probability, we assume that σ = {1, . . . , t}. Consider the submatrix Lt×n0

of
Ln×n consisting of the first t rows and first n0 columns of Ln×n0

. Since the restriction w|σ of w to the first
t coordinates is normal to all the columns of Lt×n0

/p, the matrix Lt×n0
/p has rank t− 1 (if p = 0, we mean

rank over R). We assume that the column space of Lt×n0/p is spanned the columns {Xi1 , . . . , Xit−1} for
some {i1, . . . , it−1} ⊂ [n0].

Note that for p > 2nT , the value of ξn is determined by its value mod p, and so βn = 1−maxx∈Z/pZ P(ξn/p =
x). If we fix Xi1 |σ, . . . , Xit−1 |σ such that the subspace Wi1,...,it−1 |σ/p generated by these vectors has a normal
vector with all t coordinates non-zero, then by Theorem 6.3 , the probability that Xi|σ/p ∈ Wi1,...,it−1 |σ/p
for all i ∈ [n0]\(σ ∪ {i1, . . . , it−1}) (as for these vectors the entries of Ti restricted to σ are independent) is
at most

(
1

p
+

2√
βnt

)n0−2t−1 ≤ (
1

p
+

2√
βnt

)(1−3c0)n ≤ (
2

3
)n/2

as long as C0 is sufficiently large and c0 is sufficiently small. Thus the total probability of the event in the
lemma is at most ∑

144β−1
n ≤t≤c0n

(
n

t

)(
n0

t− 1

)
(
2

3
)n/2 ≤ (

2

3
)n/4.

�
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