
ANTI-CONCENTRATION OF INHOMOGENEOUS RANDOM WALKS

HOI H. NGUYEN

Abstract. We provide a characterization for anti-concentration of inhomogeneous ran-
dom walks in non-abelian groups. In application we extend the classical bounds by Erdős-
Littlewood-Offord and Sárközy-Szemerédi to non-abelian settings.

1. Introduction

Let G = (G, ·) be an ambient group which is not necessarily abelian. Let A1, . . . , An be
finite but not necessarily symmetric sets. Let µi be any probability distribution on Ai such
that

min
i

{
µi(a), a ∈ Ai

}
> p0, (1)

for some parameter p0 > 0 which is allowed to depend on n in some cases.

We define the concentration probability of the random walk generated by µ1, . . . , µn to be

ρ(µ1, . . . , µn) := ‖µn ∗ · · · ∗ µ1‖∞ = max
g∈G

µn ∗ · · · ∗ µ1(g).

Here the discrete convolution is defined as

µ ∗ ν(g) :=
∑

h∈supp(µ)

µ(h)ν(h−1g).

Thus in contrast to the classical setting of random walks, our concern here is on inhomoge-
neous ones where the supports Ai of µi can be totally different.

In the abelian setting with G = C and with µi(ai) = µi(−ai) = 1/2, the classical result of
Erdős [6] and Littlewood-Offord [9] shows

Theorem 1.1 (forward Erdős-Littlewood-Offord). Assume that ai are all non-zero complex
numbers, then
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ρ(µ1, . . . , µn) ≤

(
n
bn/2c

)
2n

. (2)

This result was improved later by Sárközy and Szemerédi [13] (see also [7, 14, 10]) under
an extra assumption.

Theorem 1.2 (forward Sárközy-Szemerédi). Assume that ai are distinct complex numbers,
then

ρ(µ1, . . . , µn) ≤ (

√
24

π
+ o(1))

1

n3/2
. (3)

All of these results are optimal. We also refer the reader to the work by Halász [8], and to
the survey [12] for further extensions and applications of these results.

1.3. Non-abelian results. Although in the abelian setting the ai can be different, the
ordering of the random steps does not matter. This is also the case for classical random
walks (in either abelian or non-abelian groups) of the form µ∗· · ·∗µ. However, this pleasant
property totally breaks down for inhomogeneous random walks in non-abelian groups, and
this makes the analysis quite intractable.

As far as we are concerned, not much is known in the general non-abelian setting for
inhomogeneous random walks. One related result we could find in the literature is from
Varopolous’ book [5, Chapter VII 1.2.] where G is a unimodular compactly generated group
with polynomial volume growth of order D, and where the inhomogeneous random walk is
generated by the µi of uniformly bounded density functions. It was shown in this case that
the density function of µn ∗ · · · ∗µ1 is bounded from above by n−D/2; we refer the reader to
[5] for more details.

Another result, which is directly relevant to our study, is a recent work by Pham and Vu
[15, Theorem 1.3].

Theorem 1.4 (forward Erdős-Littlewood-Offord for matrices). Let m,n, s be integers and
let ai, 1 ≤ i ≤ n be elements of GLm(C) with order at least s. Assume that Ai = {ai, a−1i }
and µi(ai) = µi(a

−1
i ) = 1/2. Then

ρ(µ1, . . . , µn) ≤ 141 max{1

s
,

1

n1/2
}.

This bound is optimal up to the explicit multiplicative constant.

One of the main goals of this note is to show the following analog of Theorem 1.4 in
asymptotic form.

Theorem 1.5 (forward Erdős-Littlewood-Offord for general groups). For any δ > 0, there
exist n0 and 0 < ε < 1 such that the following holds for n ≥ n0. Assume that the distribu-

tions µi in G satisfy (1) with p0 ≥ n−ε
3

and such that each Ai contains a pair of elements

ai, a
′
i with aia

′
i
−1 being order of at least s, then
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ρ(µ1, . . . , µn) ≤ max{1

s
,

1

n1/2−δ
}.

In particularly, assume that a1, . . . , an are of order at least s in G and the supports Ai
contain {ai, a−1i }, then the same conclusion holds.

Next, motivated by Sárközy-Szemerédi’s result, one might also be interested in getting a
non-trivial bound for ρ(µ1, . . . , µn) when the µi are essentially different. Our next result
shows

Theorem 1.6 (forward Sárközy-Szemerédi for general groups). For any δ > 0, there exist
n0 and 0 < ε < 1 such that the following holds for n ≥ n0. Assume that the distributions

µi in G satisfy (1) with p0 ≥ n−ε
3

such that each Ai contains a pair of elements ai, a
′
i so

that aia
′
i
−1, 1 ≤ i ≤ n, are all distinct. Then

ρ(µ1, . . . , µn) ≤ 1

n1−δ
.

In particularly, assume that a1, . . . , an are n distinct elements of G and the supports Ai
contain {idG, ai}, then the same conclusion holds.

In general the bound n−1+o(1) above is asymptotically sharp by the example that ai are
elements of subgroups of Θ(n) elements. We also note that the conclusion fails in general
if Ai contains {a−1i , ai} instead of {idG, ai} because the ai might have order two.

1.7. Method of proof. The way we prove Theorem 1.5 and Theorem 1.6 has its origin in
[21]. Notably, we will not be working directly with forward results as in Theorem 1.1,1.2,1.4
but with the backward ones. Roughly speaking, say if we want to prove Theorem 1.5, assume
for contradiction that

ρ(µ1, . . . , µn)� max{1

s
,

1

n1/2−δ
}. (4)

We then show that there exists a support Ai of µi where aia
′
i
−1 is of order smaller than s,

this violates the assumption of the theorem.

Similarly, to prove Theorem 1.6 we assume for contradiction that

ρ(µ1, . . . , µn)� 1

n1−δ
. (5)

Then there exists a set of size o(n1/2) that contains most of the aia
′
i
−1, which again contra-

dicts our assumption.

The study of (4) and (5), in its general framework, is called the inverse Littlewood-Offord
problem. This was raised by Tao and Vu [19, 20] about ten years ago.
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Problem 1.8. Characterize the sets A1, . . . , An when

ρ(µ1, . . . , µn) ≥ n−O(1).

We will devote the rest of this section to discuss this problem. To give an example of sets
of large concentration probability, we first introduce some arithmetic structures.

Definition 1.9 (progression). Let u1, . . . , ur be elements of G, and let (N1, . . . , Nr) be a
vector of positive integers. Then the set of all products in the ui and their inverses in which
each ui and its inverse appear at most Ni times is called a progression of rank r and size
lengths N1, . . . , Nr, and is denoted by P (u1, . . . , ur;N1, . . . , Nr) (or P for short).

When G is abelian, it is not hard to see that progressions grow very slow under addition in
G. Thus if A1, . . . , An ⊂ P (u1, . . . , ur;N1, . . . , Nr) with

∏
iNi = nO(1) then ρ(µ1, . . . , µn) ≥

n−O(1). It was shown by Tao and Vu in [20, 21] (see also [11] and [17]) that the converse is
also true.

Theorem 1.10 (inverse Erdős-Littlewood-Offord). Let G be a torsion-free abelian group.
Let A > 0 and 1 > ε > 0 be given constants, and let m be any quantity between nε and
n1−ε. Assume that µi(ai) = µi(−ai) = 1/2 and

ρ(µ1, . . . , µn) ≥ n−A.

Then there exists a symmetric progression P = P (u1, . . . , ur;N1, . . . , Nr) of rank r = O(1)

and size O(ρ−1/mr/2) and there exist n−m indices i ∈ [1, n] such that

Ai ⊂ P.

Our method develops a non-abelian counterpart of this result. We remark that the recent
work by Tao [17], among other things, studies the distribution µ when ρ(µ, . . . , µ) ≥ n−A.
The abelian inverse result, Theorem 1.10 above, can be viewed as a very special case of the
general framework of [17], but the results there do not seem to directly cover our current
setting of inhomogeneous random walks.

Notice that for general G, one does not expect the condition Ai ⊂ P to imply the largeness
of ρ(µ1, . . . , µn). However, it would do if we know that the progressions P are “almost
abelian”.

Definition 1.11 (nilprogression and coset nilprogression, [4]). Suppose that G is a group
and r ≥ 1, s ≥ 0 are integers.

• A nilprogression of rank r and step s is a progression P (u1, . . . , ur;N1, . . . , Nr)
with the property that every iterated commutator of degree s+ 1 in the generators
u1, . . . , ur equals the identity idG.
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• A coset nilprogression of rank r and step s is a set of the form π−1(P ), where P is
a nilprogression of rank r and step s in a quotient group G0/H, where H is a finite
normal subgroup of a subgroup G0 of G and π : G0 → G0/H is the quotient map.

Thus coset nilprogressions can be written under the form HP , where H is a finite subgroup
which commutes as set with elements of the subgroup 〈P 〉 generated by P .

We next introduce a special type of nilprogression.

Definition 1.12 (C-normal form, [4]). Let C ≥ 1. A nilprogression P (u1, . . . , ur;N1, . . . , Nr)
is said to be in C-normal form if the following axioms are obeyed.

• (Upper triangular form) For every i, j with 1 ≤ i < j ≤ r and for all four choices of
signs for the commutators

[u±1i , u±1j ] ∈ P (uj+1, . . . , ur;
CNj+1

NiNj
, . . . ,

CNr

NiNj
).

• (Local properness) The expressions un1
1 · · ·unrr are distinct as n1, . . . , nr range over

integers with

|ni| ≤
1

C
Ni.

• (Volume bound) One has

1

C
(2bN1c+ 1) . . . (2bNrc+ 1) ≤ |P | ≤ C(2bN1c+ 1) . . . (2bNrc+ 1).

A coset nilprogression π−1(P ) is said to be in C-normal form if the nilprogression P is
C-normal in the quotient group G0/H.

We also refer the reader to [2, 22] for several asymptotic equivalence between progressions
and nilprogressions in nilpotent groups. A crucial property of coset nilprogressions in C-
normal form is that their products grow polynomially slow (see [4, Proposition C.5]),

|HPn| = nOC,r(1)|H||P |. (6)

As such, similarly to the abelian case, coset nilprogressions are examples of sets of high
concentration probability.

Example 1.13. Assume that HP is a nilprogression in C-normal form with rank r and
step s of order O(1), and with small cardinality |HP | = nO(1).

• Assume that A1, . . . , An ⊂ HP , then by (6) and by the pigeonhole principle,

ρ(µ1, . . . , µn) ≥ n−O(1).
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• More generally, assume that there is a finite set X with |X| = O(1) such that for
each 1 ≤ i ≤ n and each a ∈ Ai there exists a permutation σa ∈ Sym(X) such that
for all x ∈ X,

a ∈ xHP (σa(x))−1.

It is clear that in this case

An . . . A1 ⊂ XHP . . .HPX−1 = XHPnX−1.

Hence |An . . . A1| = nO(1), and so by the pigeon principle

ρ(µ1, . . . , µn) ≥ n−O(1).

By adapting the method of [17], we will show the converse of the above.

Theorem 1.14. Let G be a non-abelian group. Let A > 0 an 1 > ε > 0 be given constants.

Assume that the distributions µi in G satisfy (1) with p0 ≥ n−ε
3

and such that

ρ = ρ(µ1, . . . , µn) ≥ n−A.

Then there exists a coset nilprogression HP with the following properties.

(1) P is in C-normal form with C = O(1) and with rank and step r, s = O(1),

(2) |HP | = O(ρ−1),

(3) there is a finite set X of cardinality |X| = O(1), and consecutive indices i0, . . . , i0+n′

with n′ = n1−O(ε) such that the following holds: for each a, a′ ∈ Ai, i0 ≤ i ≤ i0 + n′

there exists a permutation σ ∈ Sym(X) such that for all x ∈ X,

aa′
−1 ∈ xHP (σ(x))−1.

Here the implied constants depend on ε and A but not on G.

The bounds for p0 and n′ above can be slightly improved but our final conclusion is not
optimal, we refer the reader to Conjecture 4.3 for a possible extension of this theorem.
Although our characterization captures only n′ consecutive µi with some n′ = n1−O(ε) (in
comparison to n′ = (1− o(1))n from Theorem 1.10), we can certainly run the argument at
other segments; the obtained information is usually sufficient for asymptotic estimates.

Theorem 1.14 heuristically supports the phenomenon that for the type of inhomogeneous
random walks under consideration it is not at all coincident when the concentration proba-
bility is polynomially large at some sufficiently large step n. Indeed, generic inhomogeneous
random walks should have extremely small concentration probability. To illustrate this point
furthermore, allow us to give an example in the simple context of Sl2(R) in connection to
the discrete Anderson-Bernoulli model in 1D. The result is by no mean important but we
are not able to find similar statement in the literature.
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Consider the random walk generated by transfer matrices gi := (
E + λεi −1

1 0
) where

E, λ ∈ R, λ > 0 are given parameters, and where εi, 1 ≤ i ≤ n are independent random
variables with possibly different discrete distributions µi in R satisfying (1). Assume fur-
thermore that for any collection of n1−ε consecutive distributions µi0 , . . . , µi0+n1−ε there is
a distribution µi whose support contains a symmetric pair {ai,−ai} with ai is greater than
a given positive parameter γ.

Theorem 1.15. Let be given E, 0 < λ, 0 < γ and 0 < ε < 1, the following holds for
µ1, . . . , µn satisfying the above conditions with sufficiently large n depending on λ, γ and ε

sup
g∈Sl2(R)

P(g1 . . . g1 = g) = n−ω(1).

It is possible that the bound in Theorem 1.15 is sub-exponential or even smaller, but we
are unable to confirm this. Let us now discuss the proof of Theorem 1.14. To ease the
presentation, we will decompose the proof into three parts.

(1) In the first step we will rely on the celebrated result by Breuillard, Green and Tao [4]
to obtain structures in the supports of large convolution sequences µi0+2l∗0

∗· · ·∗µi0+l∗0
and µi0+l∗0 ∗ · · · ∗ µi0 for some l∗0 = n1−o(1) and i0 = o(n). To arrive at the point
of applying [4], we will use a simple dyadic argument and an asymmetric version of
Balog-Szemerédi-Gowers theorem due to Tao [16].

(2) In the second step, by following the mentioned work by Tao [17], we obtain structures
in the supports of smaller convolution sequences of type µi0+l∗0 ∗· · ·∗µi0+i, 0 ≤ i ≤ l0.
The main focus of this step is on a semi-metric defined with respect to the structures
obtained in Step 1.

(3) In the last step, we improve upon Step 2 to obtain structures in the support of each
individual µi0+i.

As we can see, our proof of 1.14 mainly relies on [4] and [17], so the implicit constants of
this result, and hence of Theorem 1.5, Theorem 1.6 and Theorem 1.15, are ineffective.

Notation. Throughout this paper, n as an asymptotic parameter going to infinity. We
write X = OK(Y ), X �K Y , or Y �K X to denote the claim that |X| ≤ CY for some
constant C that depends on K. We also use o(Y ) to denote any quantity bounded in
magnitude by c(n)Y for some c(n) that goes to zero as n→∞. Again, the function c(.) is
permitted to depend on fixed quantities.

The rest of the note is organized as follows. The proof of Theorem 1.14 is presented in
Sections 2, 3 and 4. Theorem 1.5 will be shown in Section 5 by following the same ideas
with some modifications. Finally, the proof of Theorem 1.6 and Theorem 1.15 will be
presented in Section 6 and Section 7 respectively.
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2. Proof of Theorem 1.14: first step

The main result of this section is Theorem 2.7. First of all, we introduce some elementary
inequalities to be used.

Claim 2.1 (Young’s inequality). Let µ and ν be probability measures with finite support in
G. Then

•
‖µ‖∞ ≤ ‖µ‖2 ≤ ‖µ‖1/2∞ ;

•
‖µ ∗ ν‖∞ ≤ ‖µ‖2‖ν‖2;

•
‖µ ∗ ν‖2 ≤ min{‖µ‖2, ‖ν‖2}.

Because of the second inequality, by passing to a subsequence of size at least n/2 when
needed, instead of assuming ‖µn ∗ · · · ∗ µ1‖∞ ≥ ρ, we assume that

‖µn ∗ · · · ∗ µ1‖22 ≥ ρ. (7)

For short, for i < j we write

µ[i,j] := µj ∗ · · · ∗ µi.

Claim 2.2. Let 0 < ε < 1 be given. There exist i0, l0 with i0 + 4l0 ≤ n and l0 ≥ n1−ε/2

such that

‖µ[i0,i0+4l0]‖2 ≥ c max
i0≤i≤i0+7l0/2

‖µ[i,i+l0/2]‖2, (8)

where c is a sufficiently small constant depending on ε.

Proof. (of Claim 2.2) The proof is standard. Assume otherwise, then we can find a nested
sequence [1, n] ⊃ [i1, i1 + 4l1] ⊃ [i2, 4l2] ⊃ · · · ⊃ [ik, ik + 4lk] such that lj+1 = lj/8 and that

‖µ[ij ,ij+4lj ]‖2 ≤ c‖µ[ij+1,ij+1+4lj+1]‖2.

However, as ‖µ[1,n]‖2 ≥ n−O(1) and ‖µ[.]‖2 ≤ 1, the nested sequence above must have at
most k = O(log1/c n) terms. By definition

lk = Ω(
n

8k
) = Ω(n1−ε/2).

�



INHOMOGENEOUS RANDOM WALKS 9

With i0, l0 from Claim 2.2 we have

∏
0≤j≤nε/2/2

‖µ[i0+l0−(j+1)n1−ε,i0+2l0]‖2
‖µ[i0+l0−jn1−ε,i0+2l0]‖2

=
‖µ[i0+l0−(nε/2/2+1)n1−ε,i0+2l0]

‖2
‖µ[i0+l0,i0+2l0]‖2

≥
‖µ[i0,i0+2l0‖2
‖µ[i0,i0+l0]‖2

≥ c.

Thus there exists 0 ≤ j ≤ nε/2/2 such that

‖µ[i0+l0−(j+1)n1−ε,i0+2l0‖2
‖µ[i0+l0−jn1−ε,i0+2l0]‖2

≥ 1− n−ε. (9)

Set j0 := i0 + l0 − jn1−ε and l∗0 := i0 + 2l0 − j0. Then

l∗0 ≥ l0 − n1−ε/2/2 ≥ l0/2.

Combine Claim 2.2 and (9), using the third monotonicity property from Claim 2.1 we obtain

Lemma 2.3. The exist j0, l
∗
0 with l∗0 ≥ n1−ε such that

‖µ[j0−l∗0 ,j0+l∗0 ]‖2 ≥ cmax
{
‖µ[j0−l∗0 ,j0−1]‖2, ‖µ[j0,j0+l∗0 ]‖2

}
(10)

and

|µ[j0−m,j0+l∗0 ]‖2 ≥ (1− n−ε)‖µ[j0,j0+l∗0 ]‖2 for all m ≤ n1−ε. (11)

Note that although we vary m in (11), the inequality is clearly most meaningful at m = n1−ε.
For the rest of this section, we will focus on (10). For brevity, write

µ := µ[j0,j0+l∗0 ], and ν := µ[j0−l∗0 ,j0−1].

We can rewrite (10) to

cmax
{
‖µ‖2, ‖ν‖2

}
≤ ‖µ ∗ ν‖2 ≤ min

{
‖µ‖2, ‖ν‖2

}
. (12)

To exploit this nice property, we will need an important notion of approximate group.

Definition 2.4. [4, Definition 1.2] Let K ≥ 1. A K-approximate group in a group G is a
multiplicative set A with the following properties

• the set A is symmetric: idG ∈ A and a−1 ∈ A if a ∈ A;

• there is a symmetric subset X ⊂ A3 with |X| ≤ K such that

AA ⊂ XA.
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By using the asymmetric weighted Balog-Szemerédi-Gowers theorem we obtain the following
analog of [3, Proposition A.1].

Lemma 2.5. Assume that µ and ν are probability measures such that

‖µ ∗ ν‖2 ≥
1

K
max{‖µ‖2, ‖ν‖2}.

Then there is a O(KO(1))-approximate subgroup A of G and x0, y0 ∈ G such that

|A| � KO(1)(max{‖µ‖2, ‖ν‖2})−2.

and

µ(x0A), ν(Ay0)� K−O(1).

In application, as by (12) we will set

K := c−1.

Proof. (of Lemma 2.5) We apply the machinery from [3, Proposition A.1] and [16, Theorem
4.6]. Set

δ :=
1

100K2
and M = 10K.

Define

µ′ := µ1µ≥M‖µ‖22 , µ
′′ := µ1µ≤δ‖µ‖22 , and µ̃ := µ− µ′ − µ′′.

We note that

∑
g∈supp(µ)

µ′(g) ≤
∑

g∈supp(µ)

µ′(g)
µ′(g)

M‖µ‖22
≤ 1

10K
.

Furthermore,

∑
g∈supp(µ)

µ′′(g)2 =
∑

g∈supp(µ)

µ(g)21µ≤δ‖µ‖22 ≤ δ‖µ‖
2
2.

As such, by Young’s inequality,
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‖µ′ ∗ ν‖2 ≤ min
{
‖µ′‖2‖ν‖1, ‖µ′‖1‖ν‖2

}
≤ 1

10K
‖ν‖2 ≤

1

10
‖µ ∗ ν‖2,

and

‖µ′′ ∗ ν‖2 ≤ min
{
‖µ′′‖2‖ν‖1, ‖µ′′‖1‖ν‖2

}
≤ δ1/2‖µ‖2 ≤

1

10
‖µ ∗ ν‖2.

Thus by the triangle inequality, ‖µ̃‖2 and ‖µ̃ ∗ ν‖2 are comparable to ‖µ ∗ ν‖2,

‖µ‖2 ≥ ‖µ̃‖2 ≥ ‖µ̃ ∗ ν‖2 ≥
4

5
‖µ ∗ ν‖2 ≥

4c

5
‖µ‖2.

By doing similarly with ν, we obtain

‖µ̃ ∗ ν̃‖2 ≥
1

2K
max{‖µ̃‖2, ‖ν̃‖2}. (13)

Setting B1 := supp(µ̃), B2 := supp(ν̃). Then by definition of µ̃ and ν̃

|B1|, |B2| �K ‖µ‖−22 and µ(B1), ν(B2) �K 1.

Also, by (13)

E(B1, B2)�K |B1|3,

where the implicit constants depend polynomially on K, and where E(B1, B2) is the mul-
tiplicative energy,

E(B1, B2) := #
{

(b1, b
′
1, b2, b

′
2) ∈ (B2

1 ×B2
2) : b1b2 = b′1b

′
2)
}
.

By Tao’s result on product set estimates for non-commutative groups [16, Theorem 5.2],

there exist subsets B′1 ⊂ B1, B
′
2 ⊂ B2 with |B′i| �

|Bi|
KO(1) and such that

|B′1B′2| ≤ KO(1)|B1|.

Also by [16, Theorem 4.6], there exists aO(KO(1))-approximate groupA of sizeO(KO(1)|B1|)
and a finite set Y of cardinality O(KO(1)) such that

B′1 ⊂ Y A and B′2 ⊂ AY.
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Thus there exists x0 ∈ Y and y0 ∈ Y such that

|B′1 ∩ x0A|, |B′2 ∩Ay0| ≥ |B1|/O(KO(1)) ≥ ‖µ‖−22 /O(KO(1)).

This completes the proof of Lemma 2.5. �

Our next ingredient is a simplified version 1 of the mentioned celebrated result by Breuillard,
Green, and Tao.

Theorem 2.6. [4, Theorem 2.10] Let A be a finite K-approximate group in a global group
G. Then A4 contains a coset nilprogression HP of rank and step OK(1) and |P | �K |A|.
Furthermore, P can be taken to be in OK(1)-normal form.

Combine Lemma 2.5 with K = c−1 and Theorem 2.6, after a covering argument (as A4 ⊂
X3A for approximate group A), we obtain the following.

Theorem 2.7. Assume as in Lemma 2.5, then there exists a coset nilprogression HP (in
Oc(1)-normal form) with |HP | �c ‖µ‖−22 and there exist x0, y0 ∈ G such that

µ(x0HP ), ν(HPy0)�c 1.

In particularly, Theorem 2.7 holds for µ and ν defined after Lemma 2.3.

For later steps, it will be more convenient to pass to a sub nilprogression Q of P which is
slightly more “proper”. Let D ≤ 1/ε be a constant to be chosen sufficiently large depending
on other parameters (such as rank, step, C-normal form) of the structure P obtained in
Theorem 2.7. Consider the nillprogression

Q := P1/CD2 = P (u1, . . . , ur;M1, . . . ,Mr) with Mi =
1

CD2
Ni. (14)

By definition, the following holds for Q

(i) for every 1 ≤ i < j ≤ r,

[u±1i , u±1j ] ∈ P (uj+1, . . . , ur;
Mj+1

D2MiMj
, . . . ,

Mr

D2MiMj
);

(ii) the expressions uk11 · · ·ukrr are distinct for all k1, . . . , kr with

|ki| ≤ DMi;

(iii)

|HQ| �c |HP |.

1This result holds in more general setting where G can be local, see [4].
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We show that if x ∈ HQ and x2 ∈ HQ then x is asymptotically an element of HQ1/2.

Claim 2.8. The following holds with D sufficiently large

(1) Assume that x is an element of Q where each ui and u−1i appears with frequencies ni, n
′
i

respectively. Then u can be written as x = u
m1−m′1
1 . . . u

mr−m′r
n with

max{|mi − ni|, |m′i − n′i|} ≤
Mi

D
for all i.

(2) Assume that x = un1
1 . . . unrn ∈ Q, then x2 = um1

1 . . . um2
r with

|mi − 2ni| ≤
Mi

D
.

(3) Assume that x ∈ HQ and such that x2 ∈ HQ, then

x ∈ HQ(1+ 1
D
).

We insert here a proof for completion.

Proof. (of Claim 2.8) We will prove the first assertion, the second one follows similarly.

Assume that in the representation of x there are exactly n
(0)
i = ni and n

′(0)
i = n′i copies of

ui and u−1i respectively for 1 ≤ i ≤ r. We will move all copies of u1 and u−11 to the left. By

(i), each step of replacing of uiu1 by u1ui[ui, u1] would change the multiplicities n
(0)
j of uj

to n
(1)
j where i+ 1 ≤ j ≤ n and

|n(1)j − n
(0)
j | ≤

Mj

D2MiM1
.

Thus, after moving the first copy of u1 all the way to the left after some k1 ≤ 2(M1+· · ·+Mr)
replacements, one has

|n(k1)j − n(0)j | ≤
Mj

D2M1

∑
i≤j−1

s
(0)
i

Mi
≤ rMj

D2M1
, (15)

where we used the fact that s
(0)
i , the number of times u1 meets ui, is bounded by s

(0)
i ≤

n
(0)
i ≤Mi. As a consequence, after ni steps of moving all u1 to the left, one has 2

|n(k1+···+kn1 )j − n(0)j | ≤ n
(0)
j ·O(

rMj

D2M1
) = O(

rMj

D2
). (16)

2Strictly speaking, the bounds of s
(0)
i from (15) will increase after each round of moving a copy u1 all the

way to the left, but this change is negligible.
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Hence if we write x = u
n1−n′1
1 y, then in y the uj , 2 ≤ j ≤ r appears with total frequency mj

where

nj −O(rMi/D
2) ≤ mj ≤ nj +O(rMi/D

2).

We apply the collecting process again for y. The process terminates after 2r iterations, and
at the end we obtain the desired bounds assuming D to be large compared to r.

Now we show the third claim for the case of nilprogression. We write x in the form un1
1 . . . unrn

with |ni| ≤ (1 + 1/D)Mi as in (1). By the second assertion,

x2 = um1
1 . . . umrr

with |mi − 2ni| ≤Mi/D.

However, as the elements uk11 . . . ukrr are distinct for all |k1| ≤ DM1, . . . , |kr| ≤ DMr, and
as x2 ∈ Q, by (1) we must have |mi| ≤ (1 + 1/D)Mi, and so

2|ni| −Mi/D ≤ (1 + 1/D)Mi.

Thus

|ni| ≤
1

2
(1 +

1

D
)Mi.

For the coset nilprogression case, note that if x ∈ HQ and x2 ∈ HQ then π(x) ∈ Q and
π2(x) = π(x2) ∈ Q. We then argue as above for π(x). �

By using covering arguments, one sees that Theorem 2.7 remains valid when P is replaced
by Q (although with slightly worse constants). Without loss of generality we will assume
our nilprogression P to satisfy Claim 2.8 from now on.

3. Proof of Theorem 1.14: second step

We next continue our proof of Theorem 1.14 by exploiting Theorem 2.7 and equation (11)
from Lemma 2.3. Our main result of this section, Lemma 3.5, is obtained by following the
approach of [17].

Set

n0 := nε.
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For a given coset nilprogression HP (x1, . . . , xr;N1, . . . , Nr), and for g ∈ 〈HP 〉, we define
the norm of g with respect to HP to be

‖g‖HP := inf
{
λ : g ∈ HP (x1, . . . , xr;λN1, . . . , λNr)

}
.

For short, we will denote HP (x1, . . . , xr;λN1, . . . , λNr) by HPλ. Note that in the special
case that ‖g‖HP < 1/max{N1, . . . , Nr} then g ∈ H.

Next, for g ∈ X〈HP 〉X−1 we also define the norm of g with respect to X and HP as

‖g‖HP,X := inf
{
λ : ∃σ ∈ Sym(X) so that ∀x ∈ X, g ∈ xHPλ(σ(x))−1

}
. (17)

Again, in the special case that ‖g‖HP,X < 1/max{N1, . . . , Nr} then there exists σ ∈
Sym(X) so that for all x ∈ X, g ∈ xH(σ(x))−1.

Recall from the second property (11) of Lemma 2.3 that

‖µ ∗ ηm‖2 ≥ (1− 1/n0)‖µ‖2

with µ = µ[j0,j0+l∗0 ] and ηm = µ[j0−m,j0−1] for any m ≤ n1−ε.

This can be rewritten as

∫
G

∫
G
‖µ ∗ δg − µ ∗ δh‖22dηm(g)dηm(h) = 2(‖µ‖22 − ‖µ ∗ ηm‖22) ≤

4

n0
‖µ‖22.

Motivated by this, we call a pair (g, h) ∈ G2 in supp(ηm)× supp(ηm) typical if

‖µ ∗ δg − µ ∗ δh‖2 ≤
1

n
1/2−ε/2
0

‖µ‖2. (18)

Note that ηm has discrete support. Let Tηm denote the set of typical pairs.

Claim 3.1. For ηm-asymptotically almost surely, any pair (g, h) ∈ Tηm is typical. More
precisely,

∑
(g,h)/∈Tηm

ηm(g)ηm(h) ≤ 4

nε0
.

Proof. (of Claim 3.1) By definition,
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1

n1−ε0

‖µ‖22
∑

(g,h)/∈Tηm

ηm(g)ηm(h) ≤
∑

(g,h)/∈Tηm

‖µ ∗ δg − µ ∗ δh‖22ηm(g)ηm(h) ≤ 4

n0
‖µ‖22.

Thus

∑
(g,h)/∈Tηm

ηm(g)ηm(h) ≤ 4

nε0
.

�

We next consider a typical pair (g, h) ∈ Tηm . Notice that we can write µ ∗ δg(x) = µ(xg−1)
and µ ∗ δh(x) = µ(xh−1). Thus, with k = hg−1, by definition

∑
x∈G

(µ(x)− µ(xk))2 =
∑
x∈G

(µ(xg−1)− µ(xh−1))2 ≤ 1

n1−ε0

∑
x∈G

µ2(x). (19)

Thus it is natural to introduce the “distance” with respect to µ:

dµ(g, h) :=

√∑
x∈G(µ(xg−1)− µ(xh−1))2∑

x∈G µ
2(x)

.

Thus (g, h) is typical iff

dµ(g, h) ≤ 1

n
1/2−ε/2
0

. (20)

Using definition, we can show the following elementary properties about dµ.

Fact 3.2. For every k we have dµ(k, idG) = dµ(k−1, idG). Furthermore dµ is right-invariant,
symmetric, and satisfies the triangle inequality.

For the remaining part of this section we will continue to understand further properties
of dµ given the structure of supp(µ) obtained from Theorem 2.7. As µ is fixed, allow us
to drop the subscript µ in dµ(.) for convenience. We first show that the set of k of small
distance to idG can be covered efficiently.

Claim 3.3. For δ sufficiently small depending on c (from Lemma 2.3), there exists a col-

lection of O(c−O(1))-left translations of HP 2 which contains all k with d(k, idG) ≤ δ.

Proof. (of Claim 3.3) Let x0HP be the coset nilprogression obtained from Theorem 2.7. By
assumption d(k−1, idG) = d(k, idG) ≤ δ,
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∑
x∈x0HP

(µ(x)− µ(xk−1))2 ≤
∑
x∈G

(µ(x)− µ(xk−1))2 ≤ δ2‖µ‖22. (21)

As (µ(x)− µ(xk−1))2 ≥ 1
2µ

2(x)− µ2(xk−1), it follows that

∑
x∈x0HP

µ2(xk−1) ≥ 1

2

∑
x∈x0HP

µ2(x)− δ2‖µ‖22.

Thus if we choose δ ≤ δ0 with sufficiently small δ0 depending on c,

∑
x∈x0HP

µ2(xk−1) ≥ K−O(1)‖µ‖22. (22)

We now consider a maximal collection of disjoint left translations of the form

{
kiHP, 0 ≤ i ≤ N

}
, where k0 = idG and d(ki, idG) ≤ δ, i ≥ 1. (23)

By disjointness (and as P = P−1 and HP = PH),

x0HPk
−1
i ∩ x0HPk

−1
j = ∅.

By (22) we must have

N = KO(1).

By the maximality assumption, for any k with d(k, idG) ≤ δ there exists ki such that
kHP ∩ kiHP 6= ∅, thus

k ∈ kiHP (HP )−1 ⊂ kiHP 2.

�

Let C0 = N + 1 = O(KO(1)) = O(c−O(1)) be the constant obtained from the proof of Claim
3.3. We can always assume C0 ≥ 2. As we can always extend a maximal collection of
disjoint translations of form (23) with respect to δ1 (which plays the role of δ in Claim 3.3)
to a maximal one with respect to δ2 ≥ δ1, and because we have seen from the proof of
Claim 3.3 that each such maximal collection has at most C0 members as long as δ ≤ δ0,
there exists an integer l = OK(1) such that

Cδ0/Cl+1
0

= Cδ0/Cl−1
0
, (24)
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where Cδ0/Cl+1
0

and Cδ0/Cl−1
0

are such two maximal collections with respect to δ1 = δ0/C
l+1
0

and δ2 = δ0/C
l−1
0 . Let {kl−1,1, . . . , kl−1,r} = {kl+1,1, . . . , kl+1,r} be the representatives with

respect to Cδ0/Cl+1
0

(and equivalently, with respect to Cδ0/Cl−1
0

, and hence also with respect

to Cδ0/Cl0) where r ≤ C0.

In the next step we define T to be the collection of the left cosets kl,i〈HP 〉. Because
of our definition (23) that every maximal collection contains HP , T contains the coset
tidG = 〈HP 〉.

One can put a “distance” dT on the coset elements of T as

dT (x〈HP 〉, y〈HP 〉) := inf
g∈G

{
d(g, idG) : gx〈HP 〉 = y〈HP 〉

}
.

We remark that if dT (.) is well defined on the coset elements of T then it does not de-
pend on the representatives and it is symmetric. To show that it is well defined, for
any vertex pair (t, t′) = (kl,i〈HP 〉, kl,j〈HP 〉) in T , because d(kl,i, idG) and d(kl,j , idG)
are both finite, dT (kl,i〈HP 〉, idG〈HP 〉) and dT (idG〈HP 〉, kl,j〈HP 〉) are finite, and so is
dT (kl,i〈HP 〉, kl,j〈HP 〉) by the triangle inequality with respect to d(.). More precisely,

dT (t, t′) = dT (kl,i〈HP 〉, kl,j〈HP 〉) ≤ dT (kl,i〈HP 〉, idG〈HP 〉) + dT (idG〈HP 〉, kl,j〈HP 〉)

≤ d(kl,i, idG) + d(kl,j , idG) ≤ 2δ/C l+1
0 ≤ δ/C l0. (25)

Next we consider the weighted complete graph G on T with weights w(f) = dT (t, t′) on any

edge f = (t, t′) ∈
(
T
2

)
.

Claim 3.4. There exists a spanning tree F of G with the following properties

(1) for each pair (t, t′) ∈
(
T
2

)
, each weight of the edges on the tree path connecting t to

t′ is at most dT (t, t′);

(2) one can also choose corresponding coset representatives xt for each t ∈ T such that
as long as (t, t′) is an edge of F

dT (t, t′) = d(xt, xt′);

(3) furthermore, for any (t, t′) ∈
(
T
2

)
dT (t, t′) �K d(xt, xt′). (26)

The proof of this claim follows [17, Lemma 3.2], we present it here for the reader’s conve-
nience.

Proof. (of Claim 3.4) We construct the tree and the coset representatives by a simple greedy
algorithm starting from step 0 with F0 = {idG}. Assume that at step i we already obtain a
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subtree Fi with the coset representative xt for each t ∈ Fi, we then find an edge connecting
Fi to T\V (Fi) of least weight, say e = (t, t′). It is clear that for any t′′ ∈ Fi

dT (t, t′) ≤ dT (t′′, t′). (27)

Let g be an element from G such that d(g, idG) = dT (t, t′) by the definition of dT (.). In the
next step set xt′ := gxt and Fi+1 := Fi ∪ {e}, we continue the process until the last vertex.

The first claim then follows from (27) and the way F was constructed. The second claim
also follows because xt do not change along the construction process. For the third claim,
first recall that |V (T )| = OK(1). Assume that t0 = t, t1, . . . , tj−1, tj = t′ is the F -path
connecting t to t′. By the triangle inequality

dT (t, t′) ≤
∑

t0=t,t1,...,tj−1,tj=t′,(ti,ti+1)∈F

dT (ti, ti+1)

=
∑

t0=t,t1,...,tj−1,tj=t′,(ti,ti+1)∈F

d(xti , xti+1) ≤ |V (T )|d(xt, xt′),

where in the last estimate we used the first claim (1). For the other direction, again by (1)
and by the triangle inequality

dT (t, t′) ≥ 1

j

∑
t0=t,t1,...,tj−1,tj=t′,(ti,ti+1)∈F

dT (ti, ti+1)

=
1

j

∑
t0=t,t1,...,tj−1,tj=t′,(ti,ti+1)∈F

d(xti , xti+1) ≥ 1

|V (T )|
d(xt, xt′).

�

Set

X := {xt : t ∈ T}.

Then |X| ≤ C0 = O(KO(1)) and the cosets x〈HP 〉, x ∈ X are disjoint. Furthermore, assume
that x comes from the coset t = kl,i〈HP 〉, then

d(x, idG) ≤ |V (T )|dT (t, tidG) ≤ |V (T )|d(kl,i, idG) ≤ |V (T )|δ0/C l+1
0 ≤ δ0/C l0, (28)

where we recall that kl,i is one of the representatives of Cδ0/Cl+1
0

.

By Claim 3.3 and by (24) we have
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x ∈ kl,iHP 2.

In other words,

kl,i ∈ xHP 2.

We also notice that this holds for any representative kl,i where x ∈ kl,i〈HP 〉. Thus, again
by Claim 3.3 and (24)

{
g : d(g, idG) ≤ δ/C l−10

}
⊂ ∪ri=1kl,iHP

2 ⊂ ∪∗x∈XxHP 4, (29)

where the disjointness comes from the mentioned fact that x〈HP 〉, x ∈ X, are disjoint.

We now establish the connection between ‖.‖HP,X and d(.).

Lemma 3.5. As long as d(g, idG) ≤ δ0/C l0, we have

‖g‖HP,X � d1−O(ε)(g, idG).

Proof. (of Lemma 3.5) Consider any g with d(g, idG) ≤ δ0/C l0. Then for any x ∈ X,

d(gx, idG) ≤ d(gx, x) + d(x, idG) = d(g, idG) + d(x, idG) ≤ δ0/C l0 + δ0/C
l
0 ≤ δ0/C l−10 ,

where we used (28).

Thus, by (29), gx ∈ x′HP 4 for some x′ ∈ X. Write

gx = x′h, for some h ∈ HP 4.

Note that by the definition of x, x′

d(x, x′) ≤ |V (T )|d(x〈HP 〉, x′〈HP 〉) ≤ |V (T )|d(g, idG).

Thus

d(x′, x′h) = d(x′, gx) ≤ d(x′, x) + d(x, gx) ≤ (|V (T )|+ 1)d(g, idG).

Again by right invariance and by the triangle inequality

d(idG, h
q) = d(x′, x′hq) ≤ q(|V (T )|+ 1)d(g, idG).
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Let q be the largest power of 2 that is smaller than δ0/C
l
0d(g, idG)

δ0

2C l0d(g, idG)
≤ q = 2k ≤ δ0

C l0d(g, idG)
. (30)

Thus d(idG, h
q) < δ0/C

l−1
0 , and so by (29) and by the fact that h ∈ HP 4

hq ∈ (∪∗x∈XxHP 4) ∩ 〈HP 〉.

Because idG ∈ X and the cosets x〈HP 〉, x ∈ X, are all disjoint, we obtain

hq ∈ HP 4.

By the properness of HP , after iterating the third conclusion of Claim 2.8 k times, we obtain
that h ∈ HP(1+1/D)k/2k ⊂ HP1/q1−O(ε) as D was chosen to be larger than 1/ε. Hence,

‖h‖HP = O(
1

q1−O(ε)
)� d1−O(ε)(g, idG). (31)

Thus we have

‖g‖HP,X � d1−O(ε)(g, idG).

To complete the proof, we note that the map x→ x′ above depends on g and it is one-to-one
because the representatives x come from different cosets of 〈HP 〉.

�

4. Proof of Theorem 1.14: third step

We show the following form of Theorem 1.14.

Theorem 4.1 (Structures for am’s). There exists a coset nilprogression HP in O(1)-normal
form of small rank and step with |HP | = O(ρ−1), and a finite set X of cardinality O(1)
such that or all 1 ≤ m ≤ n1−ε,

‖ama′m
−1‖2HP,X ≤

1

n
1−O(ε)
0

, for all am, a
′
m ∈ Aj0−m.

Proof. (of Theorem 4.1) First observe that
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ηm = µj0 ∗ · · · ∗ µj0−m := ηm−1 ∗ µj0−m.

Claim 4.2. For any a, a′ ∈ Aj0−m there is a typical pair with respect to ηm of the form
(ga, ha′), where (g, h) is also a typical pair with respect to ηm−1.

Proof. (of Claim 4.2) First of all, if we look at the typical pairs of ηm−1, then by Claim 3.1

∑
(g,h)/∈Tηm−1

ηm−1(g)ηm−1(h) ≤ 4

nε0
.

Let Ta,a′ be the collection of pairs of words (g′, h′) in supp(ηm) × supp(ηm) of the form
(ga, ha′) where (g, h) forms a typical pair with respect to ηm−1. Then by (1)

∑
(g′,h′)∈Ta,a′

ηm(g′)ηm(h′) ≥ p20
∑

(g,h)∈Tηm−1

ηm−1(g)ηm−1(h) > p20/2.

On the other hand, by Claim 3.1 applied to ηm

∑
(g′,h′)/∈Tηm

ηm(g′)ηm(h′) ≤ 4

nε0
.

But as p0 ≥ 1/nε
3 ≥ (8/nε0)

1/2, we have

Ta,a′ ∩ Tν 6= ∅.

So there is a typical pair (g, h) with respect to ηm satisfying the conclusion. �

Let HP be the coset nilprogression obtained from Theorem 2.7, for which by (7)

|HP | = O(ρ−1).

For any 1 ≤ m ≤ n1−ε, and for any a, a′ ∈ Aj0−m consider a νm−1-typical pair (g, h) so that
(ga, ha′) is also a νm-typical pair. By right invariance,

d(gaa′
−1
, h) = d(ga, ha′)� n

−1/2+ε/2
0 .

Thus

d(a′a−1g−1h, idG)� n
−1/2+ε/2
0 .
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Furthermore, as (g, h) is νm−1-typical

d(g−1h, idG)� n
−1/2+ε/2
0 .

By the triangle inequality,

d(a′a−1, idG) = d(a′a−1g−1h, g−1h) ≤ d(a′a−1g−1h, idG) + d(idG, g
−1h)� n

−1/2+ε/2
0 .

(32)

The proof of Theorem 4.1 is then complete by Lemma 3.5. �

We remark that the use of triangle inequality to obtain (32) as above is rather wasteful.
We suspect the following.

Conjecture 4.3. Assume that µi are as in Theorem 1.14 with idG ∈ Ai such that ρ(µ1, . . . , µn) ≥
n−O(1). Then there exist consecutive indices i0, . . . , i0 + n1−ε such that∑

i0≤i≤i0+n1−ε

∑
ai∈Ai

‖ai‖2HP,X � 1.

This bound, if true, would be a non-abelian analog of [18, Equation 7.9] and it would
directly yield the second conclusion of Theorem 1.5.

5. The Erdős-Littlewood-Offord bound in non-abelian groups

To prove Theorem 1.5 we will follow the proof of Theorem 1.14. Assume for contradiction
that for some sufficiently large constant

‖µn ∗ · · · ∗ µ1‖∞ ≥ C0 max{1

s
,

1

n1/2−δ
}.

Without loss of generality (by passing to n/2 consecutive µi, see also (7)) we can assume

‖µn ∗ · · · ∗ µ1‖22 ≥ C0 max{s−1, n−1/2+δ}. We will choose C0 to be larger than any other
implied constants in the sequel.

Argue as in Section 2, by (9), there exists 0 ≤ k ≤ n1−ε such that

‖µ[i0+l0−(j+1)n1−ε+k,i0+2l0]‖2
‖µ[i0+l0−(j+1)n1−ε+k+1,i0+2l0]‖2

≥ 1− 1

n1−ε
.

Set j0 = i0 + l0− (j + 1)n1−ε + k+ 1 and l∗0 = i0 + 2l0− j0. We obtain the following analog
of Lemma 2.3.
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Lemma 5.1. The exist j0, l
∗
0 with l∗0 ≥ n1−ε such that

‖µ[j0−l∗0 ,j0+l∗0 ]‖2 ≥ cmax
{
‖µ[j0−l∗0 ,j0−1]‖2, ‖µ[j0,j0+l∗0 ]‖2

}
(33)

and
|µ[j0−1,j0+l∗0 ]‖2 ≥ (1− n1−ε)‖µ[j0,j0+l∗0 ]‖2. (34)

Set µ := µ[j0,j0+l∗0 ], ν := µ[j0−l∗0 ,j0−1], we follow Section 2 to obtain Theorem 2.7 for µ, ν.

In the next step, let

n0 = n1−ε and η = µj0−1.

Note that in contrast to Section 3 and Section 4, our n0 here is large and we will only focus
on one special η (instead of many ηm). By (34) we have

‖µ ∗ η‖2 ≥ (1− 1/n0)‖µ‖2.

By the argument of Section 3, especially by combining Claim 3.1 (for ηm = µj0−1), equation
(20) and Lemma 3.5, we obtain the following analog of Theorem 4.1.

Theorem 5.2. There exists a coset nilprogression HP in O(1)-normal form of small rank

and step with |HP | = O( 1
C0

min{s, n1/2−δ}), and a finite set X of cardinality O(1) and a

distribution µj0−1 whose support contains a pair {a, a′} such that aa′−1 has order at least s
and

‖aa′−1‖2HP,X ≤ n
−1+O(ε)
0 < n−1+O(ε).

Now consider the bound ‖aa′−1‖HP,X ≤ n−1/2+Cε for some absolute constant C. If we
choose ε so that δ > Cε, then

|HP | = O(min{s, n−1/2+δ}) = O(n1/2−δ) < n1/2−Cε.

Thus, the bound ‖aa′−1‖HP,X ≤ n−1/2+Cε forces p to be in H for any representation of the

form xpσ(x)−1 of aa′−1 with p ∈ HP . In other words, for all x ∈ X

aa′
−1 ∈ xHσ(x)−1.

Replace x = σ(x) and iterate the relation d times where d is the order of σ in Sym(X).
After multiplying the obtained identities, we have

(aa′
−1

)d ∈ xHx−1.
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However, this would imply that the order k of aa′−1 is at most

k ≤ d|H| = O(|HP |) = O(
1

C0
s) < s,

where C0 was chosen sufficiently large. This contradicts with our assumption that aa′−1

must have order at least s.

6. The Sárközy-Szemerédi’s bound in non-abelian groups

We prove Theorem 1.6. Assume otherwise, then again by passing to n/2 consecutive µi we
can assume ‖µn ∗ · · · ∗ µ1‖22 � n−1+δ. By Theorem 4.1, with ε = δ/2, there exists a coset
nilprogression HP with the following properties

(1) P has rank and step r, s = O(1) and |HP | = O(n1−δ);

(2) There is a finite set X of cardinality |X| = O(1), and consecutive indices i0, . . . , i0 +
n′ with n′ = n1−ε such that

sup
i0≤i≤i0+n′

‖aia′i
−1‖HP,X < 1.

More specifically, each element aia
′
i
−1, i0 ≤ i ≤ i0 + n1−ε, can be written as xh(x′)−1 for

some x, x′ ∈ X and h ∈ HP . However, this is impossible when ε = δ/2 because the aia
′
i
−1

are distinct and there are only |X|2|HP | = O(n1−δ) ways to choose for the values of aia
′
i
−1

from the set XHPX−1.

7. Proof of Theorem 1.15

Assume otherwise that for some positive constant A

ρ = sup
g∈Sl2(R)

P(gn . . . g1 = g) ≥ n−A.

By Theorem 1.14, there exists a nilprogression HP with size |HP | = O(nA) and there exist

a finite set X of cardinality |X| = O(1) and indices i0, . . . , i0 + n′ with n′ = n1−O(ε) such
that the following holds: for each a ∈ supp(µi), i0 ≤ i ≤ i0 + n′ there exists a permutation
σa ∈ Sym(X) such that for all x ∈ X,

(
E + λa −1

1 0

)
∈ xHP (σa(x))−1.

By our assumption, among these n′ consecutive µi, there exists one whose support contains
a,−a with a > γ. We will be focusing on these two elements. For short, write
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g1 :=

(
E + λa −1

1 0

)
and g2 :=

(
E − λa −1

1 0

)
.

By definition, for any integer k the ball Bk(g1, g2) which consists of words of length at most
k in g±11 , g±12 has size

|Bk(g1, g2)| ≤ |XHP kX| = O(kO(1)|HP |) = O(kO(1)nC), (35)

where we used (6) in the estimate of HP k.

On the other hand, (g1)
−1 = (

0 1
−1 E + λa

) and (g2)
−1 = (

0 1
−1 E − λa ). So

h1 = g1(g2)
−1 =

(
1 2λa
0 1

)
and h2 = (g1)

−1g2 =

(
1 0

2λa 1

)
.

Choose k0 = d1/2λe so that 2k0λ ≥ 1, and consider

h′1 := hk01 =

(
1 2k0λa
0 1

)
and h′2 := hk02 =

(
1 0

2k0λa 1

)
.

We next use the following lemma.

Lemma 7.1. [1] If µ ∈ R with |µ| ≥ 2 then the group generated by the matrices
(

1 µ
0 1

)
and

(
1 0
µ 1

)
is free.

Thus by Lemma 7.1, for any k

|Bk(g1, g2)| ≥ |Bk/2k0(h′1, h
′
2)| ≥ 2k/2k0 .

However this would contradict with the polynomial bound (35).
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Series A 119 (2012) 977-993

[11] H. Nguyen and V. Vu, Optimal Littlewood-Offord theorems, Advances in Mathematics, Vol. 226, 6
(2011), 5298-5319.

[12] H. Nguyen and V. Vu, Small probability, inverse theorems, and applications, Paul Erdos’ 100th anniver-
sary, Bolyai Society Mathematical Studies, Vol. 25 (2013)).

[13] A. Sárközy and E. Szemerédi, Uber ein Problem von Erdős und Moser, Acta Arithmetica, 11 (1965)
205-208.

[14] R. Stanley, Weyl groups, the hard Lefschetz theorem, and the Sperner property, SIAM J. Algebraic
Discrete Methods 1 (1980), no. 2, 168-184.

[15] T. Pham and V. Vu, Non-abelian Littlewood-Offord inequalities, Adv. Math. 302 (2016), 1233-1250.
[16] T. Tao, Product set estimates for non-commutative groups, Combinatorica, 28 (2008), 547-594.
[17] T. Tao, Inverse theorems for sets and measures of polynomial growth, to appear, The Quarterly Journal

of Mathematics, arxiv.org/abs/1507.01276.
[18] T. Tao and V. Vu, On the singularity probability of random Bernoulli matrices, Journal of the A. M. S

20 (2007), 603-673.
[19] T. Tao and V. Vu, From the Littlewood-Offord problem to the circular law: universality of the spectral

distribution of random matrices, Bulletin of the American Mathematical Society, 46 (2009), 377-396.
[20] T. Tao and V. Vu, Inverse Littlewood-Offord theorems and the condition number of random matrices,

Annals of Mathematics (2), 169 (2009), no 2, 595-632.
[21] T. Tao and V. Vu, A sharp inverse Littlewood-Offord theorem, Random Structures Algorithms 37 (2010),

no. 4, 525-539.
[22] M. Tointon, Freiman’s theorem in an arbitrary nilpotent group, Proceedings London Mathematical

Society (3) 109 (2014) 318-352.

Department of Mathematics, The Ohio State University, Columbus, OH 43210, USA

E-mail address: nguyen.1261@math.osu.edu

arxiv.org/abs/1507.01276

	1. Introduction
	1.3. Non-abelian results
	1.7. Method of proof

	2. Proof of Theorem 1.14: first step
	3. Proof of Theorem 1.14: second step
	4. Proof of Theorem 1.14: third step
	5. The Erdos-Littlewood-Offord bound in non-abelian groups
	6. The Sárközy-Szemerédi's bound in non-abelian groups
	7. Proof of Theorem 1.15
	References

