
SURJECTIVITY OF NEAR SQUARE RANDOM MATRICES
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Abstract. We show that a nearly square iid random integral matrix is surjective over the integral lattice
with very high probability. This answers a question by Koplewitz [7]. Our result extends to sparse matrices

as well as to matrices of dependent entries.

1. Introduction

In this note we study random rectangular matrices Mn×(n+u) = (Mij) of size n × (n + u), where n → ∞
and u ≥ 0, and the entries Mij are i.i.d copies of a random variable ξ taking integral values and such that
for any prime p

max
x∈Z/pZ

P(ξ = x) ≤ 1− αn, (1)

where αn > 0 is a parameter allowed to depend on n. Such distributions are called αn-balanced.
For random square matrices of random Bernoulli entries taking values 0 and 1 with probability 1/2, the
problem to estimate the probability pn of Mn×n being singular has attracted quite a lot of attention. In
the early 60’s Komlós [5] showed pn = O(n−1/2). This bound was significantly improved by Kahn, Komlós,
and Szemerédi in the 90’s to pn ≤ 0.999n. About ten years ago, Tao and Vu [14] improved the bound to
pn ≤ (3/4 + o(1))n. We also refer the reader to [6] by Rudelson and Vershynin for implicit bounds of type
e−cn. The most recent record is due to and Bourgain, Vu and Wood [2], who show:

Theorem 1.1.

pn ≤
(

1√
2

+ o(1)

)n
.

These results imply that with very high probability the linear map Mn×n is injective over Zn (and hence
the lattice Mn×n(Zn) has full rank in Zn.) Another fundamental question of interest is the surjectivity onto
Zn, more specifically:
Is it true that with high probability Mn×n is also surjective over Zn (in other words, the quotient group
Zn/Mn×n(Zn) is trivial)?
Unfortunately, the answer to this question turns out to be negative: with high probability M is never
surjective over Zn. To explain this at the heuristic level, assume that the vector e1 = (1, 0, . . . , 0) is in the
image space Mn×n(Zn), then (assuming that Mn×n is non-singular)

x = M−1n×n(e1) = ((M−1n×n)11, . . . , (M
−1
n×n)1n)T ∈ Zn.

However, we have (M−1n×n)1i = det(M1i)
det(Mn×n)

, where M1i is the matrix obtained from Mn×n by removing the

first row and the i-th column. By the co-factor expansion

det(Mn×n) =

n∑
i=1

(−1)i−1M1i det(M1i). (2)

But as the M1i are independent from the submatrices M1i, 1 ≤ i ≤ n, it is highly unlikely that the random

sum |
∑n
i=1(−1)i−1M1i det(M1i)| becomes smaller than all |det(M1i)| so that the components det(M1i)

det(Mn×n)
of

x are all integral.
Having seen that Mn×n : Zn → Zn is unlikely to be surjective, it is natural to think of rectangular matrices
Mn×(n+u) : Zn+u → Zn which might have better chance to be surjective. In fact, in the past several years

there have been exciting developments (see for instance [8, 10, 17, 18]) in the study of Mn×(n+u)(Z
n+u) for
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various ensembles of Mn×(n+u). For instance a special version of a recent result by Wood [18, Corollary 3.4]
shows:

Theorem 1.2. Let u ≥ 0 be a fixed integer. Let Mn×(n+u) be a random matrix with entries being iid copies
of an αn-balanced random variable of fixed αn > 0. Let P be a finite set of primes, then

lim
n→∞

P
(
Cok(Mn×(n+u))P ' {id}

)
=
∏
p∈P

∞∏
k=1

(1− p−k−u),

where GP =
∏
p∈P Gp is the product of p-Sylow subgroups of G and the cokernel Cok(Mn×m) is the quotient

group Zn/Mn×m(Zm).

We remark that P is fixed and n → ∞ in this result. However as P increases, the probability on the right
hand side of the limit becomes arbitrarily small. Hence it follows that

lim sup
n→∞

P
(
Cok(Mn×n) ' {id}

)
≤ inf

P
lim
n→∞

P
(
Cok(Mn×n)P ' {id}

)
= 0

which officially answers our question above.
In the opposite direction, it has been conjectured by Koplewitz [7, 8] that

Conjecture 1.3. Let the matrix entries be iid copies of an αn-balanced random variable of fixed αn > 0.
Then for any fixed constant ε > 0,

lim
n→∞

P
(
Cok(Mn×b(1+ε)nc) ' {id}

)
= 1.

Also, with u→∞ together with n

lim
n→∞

P
(
Cok(Mn×(n+u)) ' {id}

)
= 1.

To support these conjectures, Koplewitz himself showed in [7, Theorem 1] (see also [8, Theorem 30]) that

P
(
Mn×b(2+ε)nc ' {id}

)
≥ 1 − e−cεn. In the same paper he also confirmed Conjecture 1.3 for random

matrices of entries distributed according to the Haar measure over the profinite completion Ẑ of Z.
In this note we confirm the first conjecture. In fact we are able to extend the result to very sparse matrices.
More specifically, we can assume ξ to take integer values as in (1) with

αn ≥
C0 log n

n
(3)

for a sufficiently large constant C0.

Theorem 1.4 (Main result). Let ξ be as in (3). Assume furthermore that ξ is bounded with probability one.
Then for every A, ε0 > 0, there exist B = B(A,C0, ε0) and an absolute constant c such that

P
(
Cok(Mn×(n+bB( logn

αn
log( logn

αn
)+logn)c)) ' {id}

)
≥ 1−O(n−A + e−cαnn).

In particular, if αn is fixed then

P
(
Cok(Mn×bn+log1+o(1) nc) ' {id}

)
≥ 1−O(n−ω(1)); (4)

as well as if αn ≥ logO(1) n
n then

P
(
Cok(Mn×b(1+o(1))nc) ' {id}

)
≥ 1−O(n−ω(1)). (5)

Note that a balanced assumption on ξ is necessary as the results no longer hold for instance if we work with
the Bernoulli ±1 ensemble; in this case the matrix cannot be surjective modulo 2 for even n. Note also by
considering the {0, 1} ensemble with αn = P(ξ = 1), we can see that roughly the stated number of additional
columns is necessary up to multiplicative constants, just by considering rows that are identically 0.
We will also discuss an extension to a family of matrices of dependent entries, see Section 3. Our method
is short and direct. We will first prove a slightly weaker version (Theorem 2.5) by relying on a totally
elementary lemma by Odlyzko (Lemma 2.3). We then refine the method by using a more involved result
by Maples from [9] (Theorem 2.9). However, as [9] appears to be slightly incomplete and contains several
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(minor) errors, we will take this opportunity to recast Maples’ proof toward our sparsest settings. Along the
way, we show that this approach also yields a completely new singularity bound for sparse integral matrices.

Theorem 1.5. There exists an absolute constant c > 0 such that as long as the entries of Mn×n are iid
copies of ξ distributed as in (3) (which is not necessarily bounded) then

pn ≤ e−cαnn.

We notice that the recent paper [1] by Basak and Rudelson addressed the singularity (and in more general
the least singular value) for a general family of sparse matrices. Unfortunately, Theorem 1.5 does not seem
to follow from [1] because we have no restriction on the spectral norm of Mn×n.

2. Proof of Theorem 1.4

We assume that

P(|ξ| ≤ K0) = 1,

for some positive constant K0. This assumption is only for Theorem 1.4, but not for Theorem 1.5.
A natural approach is to show that the equation system

Mn×mx = ei,

has solutions x ∈ Zm, for any standard unit vector ei = (0, . . . , 0, 1, 0, . . . , 0), 1 ≤ i ≤ n. However such an
approach does not look simple as we would have to prove cancellation of extremely large numbers involving
determinants of minors (see also the discussion around (2)). Instead, we will prove surjectivity by reducing
our matrices over finite fields via the following result.

Lemma 2.1. [7, Lemma 5] Let m ≥ n. A matrix Mn×m : Zm → Zn is surjective if and only if the modulo
matrix Mn×m/p : Fmp → Fnp is surjective for every prime p. Here Mn×m/p is the matrix over Fp given by
(Mn×m/p)ij = Mij( mod p).

Proof. (of Lemma 2.1) Assume that Mn×m/p : Fmp → Fnp is surjective, then Mn×m/p contains a submatrix
M ′n×n = M ′n×n(p) (depending on p) of size n×n such that det(M ′n×n/p) 6= 0( mod p). Thus det(M ′n×n) 6= 0.
This implies that the columns of M ′n×n generate Qn, and hence M ′n×n(Zn) is a full-rank integer lattice. In
particular, the lattice co–volume d = |Zn/Mn×m(Zm)| (which is independent of p) is finite and d divides
det(M ′n×n) for all p. Now assume that d 6= 1. Then as det(M ′n×n) 6= 0( mod p), d is not divisible by p. But
this holds for all prime p, a contradiction. �

By this lemma, for our problem we need to show that Mn×m/p : Fmp → Fnp is surjective (or equivalently,
Mn×m/p has rank n in Fnp ) for every prime p. This does not seem to be an easier task, but in what follows
we show that there is a way to restrict the treatment to a set of a only a few primes.
Our first ingredient is the following simple bound (see also [?, Lemma 3.9]).

Lemma 2.2 (quadratic estimate). Let p be a prime. Let 0 < εn < 1 be a given parameter that might depend
on n. Let Mn×n be a matrix of size n × n whose entries are iid copies of a random variable ξ from (3).

Then the probability that Mn×n has rank at most (1− εn)n in Fnp is smaller than e−αnε
2
nn

2+n.

To prove this result we rely on a useful result by Odlyzko [4].

Lemma 2.3. Let H be a subspace of dimension 1 ≤ d ≤ n in Fnp . Then if X is a random vector whose
entries are iid copies of a random variable ξ from (3), then

P(X ∈ H) ≤ (1− αn)n−d.

We insert a proof of this well-known result here for completion.

Proof of Lemma 2.3. Let {H1, H2, . . . ,Hd} be a basis for H. By permuting coordinates, we may assume

without loss of generality that the restrictions H̃1, H̃2, . . . , H̃d of these vectors to the first d coordinates
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are again linearly independent. Consider the event X = (ξ1, . . . , ξd, ξd+1, . . . , ξn)t ∈ H. From the linear

independence of
{
H̃i

}d
1
, there are unique c1, c2, . . . , cd ∈ Fp so that

(ξ1, . . . , ξd)
t =

d∑
i=1

ciH̃i.

Hence conditioning on (ξ1, . . . , ξd), if X = (ξ1, . . . , ξd, ξd+1, . . . , ξn)t ∈ H then

X =

d∑
i=1

ciHi.

In particular, each value ξd+1, ξd+2, . . . , ξn is determined. However the probability of each of these events is
at most 1− αn, and so by independence the event X ∈ H holds with probability at most (1− αn)n−d. �

Now we turn to the quadratic estimate.

Proof of Lemma 2.2. Let d = b(1− εn)nc. Assume that the columns Xi1 , . . . , Xid span the column space of
Mn×n. For now assume that {i1, . . . , id} = {1, . . . , d}. Let H be the subspace spanned by X1, . . . , Xd. We
are considering the event E1,...,d that Xi ∈ H, d+ 1 ≤ i ≤ n. By Lemma 2.3, for any i ≥ d+ 1,

P(Xi ∈ H) ≤ (1− αn)n−d ≤ e−αnεnn.

Applying this bound for d+ 1 ≤ i ≤ n and using independence we obtain

PXi,d+1≤i≤n

(
E1,...,d|X1, . . . , Xd

)
= PXi,d+1≤i≤n

(
Xd+1, . . . , Xn ∈ H|H

)
≤ e−αnε

2
nn

2

.

Taking the union bound over at most 2n choices of {i1, . . . , id} we conclude the proof. �

2.4. A simpler result. To get the main idea, in this subsection we show:

Theorem 2.5. For every A > 0, there exists sufficiently large B such that

P
(
Cok(Mn×(n+u)) ' {id}

)
≥ 1− n−A,

where

u =

⌊
B

log2 n

αN
+

√
n log n

αn

⌋
.

Note that u does not drop below
√
n log n.

In what follows we prove Theorem 2.5. The same argument will also be used to deal with matrices of
dependent entries. Let Pn be the set of primes up to (K0n)n/2

Pn :=
{
p prime , p ≤ (K0n)n/2

}
. (6)

By taking the union bound, Lemma 2.2 then implies:

Corollary 2.6. Let E be the event that the matrix Mn×n has rank at least (1− εn)n in Fnp for all p ∈ Pn.
Then

P(E) ≥ 1− e−αnε
2
nn

2+n logn+n+n logK0/2.

Set

εn :=

√
3 log n

αnn
.

With this value of εn < 1, Corollary 2.6 implies

P(E) ≥ 1− e−n logn.

Lemma 2.7 (surjectivity for small primes). For any A there is a B sufficiently large so that with probability
at least 1 − n−A, the random matrix Mn×(n+u) is surjective over Fnp for all p ∈ Pn simultaneously, and
u = u(B) is as in Theorem 2.5.
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Proof. (of Lemma 2.7) It suffices to show that with high probability Mn×(n+u) has full rank in Fnp (which
would then imply surjectivity in Fnp ).
We consider the submatrix Mn×n, the restriction of Mn×(n+u) to the first n columns. Let E be the event
defined in Corollary 2.6, i.e. that Mn×n has rank at least (1− εn)n over Fnp for all p ∈ Pn. We thus have

PMn×n(E) ≥ 1− e−n logn.

Consider also the event E6=0 that det(Mn×n) 6= 0, where by Theorem 1.5

P(E6=0) ≥ 1− n−A,

provided that C0 logn
n ≤ α for large C0.

Now we condition on Mn×n satisfying E and E6=0 and show that with high probability (with respect to the
last u columns) that Mn×(n+u) is surjective over all Fnp , p ∈ Pn.

Let P∗ = P∗(Mn×n) be the collection of prime divisors of det(Mn×n). Because |det(Mn×n)| ≤ (K0n)n/2 by
the Hadamard bound, the random set P∗ has small size, say

|P∗| ≤ n2.

Case 1. When p ∈ Pn but p /∈ P∗, then Mn×n has full rank in Fnp , and so does Mn×(n+u).
Case 2. Consider p ∈ P∗, we estimate the probability of the event Ep that Mn×(n+u)/p has full rank.
Let H0 ⊂ Fnp be the column subspace of Mn×n, for which by assumption

d0 := n− dim(H0) ≤ n− (1− εn)n ≤
√

3n log n

αn
.

We next expose the remaning u vectors in groups. For 1 ≤ i ≤ d0, at step i we will add ki column vectors
Xn+

∑i−1
l=1 kl+j

, 1 ≤ j ≤ ki to the set of already exposed column vectors X1, . . . , Xn+
∑i−1
l=1 kl

, where

ki :=

⌈
B log n

αdi−1

⌉
,

and where di−1 is the codimension of the subspace Hi−1 generated by 〈X1, . . . , Xn+
∑i−1
l=1 kl

〉. Notice that in

this exposing process the choice of ki depends on di−1, a decreasing sequence throughout the process.
Next let Fi be the event that dim(Hi) ≥ dim(Hi−1) + 1. In other words, Fi is the event that after adding
the vectors of group i we have a strict decrease in the co-rank,

di ≤ di−1 − 1.

Assuming that dim(Hi−1) < n, then by Lemma 2.3, and by independence of the column vectors,

P
(
Fi| ∧i−1j=0 Fj ∧ E ∧ E6=0,dim(Hi−1) < n

)
≥ 1− ((1− αn)codim(Hi−1))ki

≥ 1− ((1− αn)di−1)ki

≥ 1− n−B .

By Bayes’ rule, with probability at least (1 − n−B)d0 ≥ 1 − n−B+1, after adding
∑
i ki ≤

∑
i
B logn
αndi

+ 1 ≤
B logn
αn

log d0 + d0 columns, the matrix Mn×(n+B logn
αn

log d0+d0)
has full rank in Fnp .

Taking union bound over all primes p ∈ P∗, we obtain that with probability at least 1−n−B+3 the obtained
matrix has full rank in Fnp for all p ∈ P∗.
By Case 1. and Case 2., we have seen that with Mn×n satisfying E and E6=0, the matrix Mn×(n+u) is
surjective simultaneously over Fnp for all p ∈ Pn with the desired probability. The proof is then complete
after unfolding the conditioning on Mn×n (using Corollary 2.6). �

Proof. (of Theorem 2.5) We condition on the event E6=0. Note that with probability one |det(Mn×n)| ≤
(K0n)n/2. This shows that with prime p > (K0n)n/2, det(Mn×n) 6= 0( mod p). Hence on E6=0 the matrix

Mn×n is surjective over Fnp for all p ≥ (K0n)n/2.

Furthermore, Lemma 2.7 implies that with probability at least 1 − n−A, for all p ∈ Pn the random matrix
Mn×(n+u) is surjective over Fnp . Hence altogether our matrix Mn×(n+u) is surjective in Zn by Lemma 2.1. �
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2.8. Proof of Theorem 1.4. Now we turn to our main theorem, where the proof is similar but instead
of Lemma 2.3 we will be using the following result by Maples (see either [9, Theorem 1.2] or [10, Corollary
1.3].)

Theorem 2.9. Let p be any prime. Assume that the entries of Mn×n are iid copies of ξ from (1) with α
from (3). Then for all k ≤ ηn with a sufficiently small absolute constant η we have

P(rank(Mn×n/p) = n− k) = O
(
nk(p−k

2

+ e−cαn)
)
. (7)

In fact [10, Corollary 1.3] says much more, that the bound is precisely

p−k
2
k∏
i=1

(1− p−i)−1
∞∏

i=k+1

(1− p−i) +O(e−cαn). (8)

However, we will not need this later result (given that it has not been formally verified, especially for the
sparse case). Note that (8), in its limit form (n→∞), is a simple consequence of the aforementioned paper
[18, Corollary 3.5] by Wood. Back to [9], as this paper has some mistakes (for instance [9, Proposition 2.3] is
incorrect, see the appendix for further discussion), for transparency we will recast an almost complete proof
of Theorem 2.9 in the appendix. Theorem 2.9 and Theorem 1.5 will then follow as a byproduct.
Let P ′n be the set of primes up to ecαnn/2, where c is the sufficiently small constant from Theorem 2.9, i.e.

P ′n :=
{
p prime , p ≤ ecαnn/2

}
.

Note that P ′n ⊂ Pn (defined in (6)). By applying (7) with k = C1 log n for a sufficiently large constant C1

to each p ∈ P ′n and taking the union bound∑
p∈P′n

nk(p−k
2

+O(e−cαnn)) = n−ω(1).

Corollary 2.10. Let E ′ be the event that the matrix Mn×n has rank at least n − C1 log n in Fnp for all
p ∈ P ′n. Then

P(E ′) ≥ 1− n−ω(1).

We next prove an analog of Lemma 2.7. Set

u =

⌊
B ·
(

log n

αn
log

log n

αn
+ log n

)⌋
,

for a sufficiently large constant B.

Lemma 2.11. With probability at least 1− n−A, the random matrix Mn×(n+u) is surjective over Fnp for all
p ∈ Pn simultaneously.

Proof of Lemma 2.11. Again, if suffices to show that with high probabilityMn×(n+u)/p has full rank in each
Fnp .
We consider the submatrix Mn×n, the restriction of Mn×(n+u) to the first n columns. Let E ′ be the event
implied by Corollary 2.10 that this matrix Mn×n has rank at least n− C1 log n over Fnp for all p ∈ P ′n. We
thus have

PMn×n(E ′) ≥ 1− n−ω(1).
Consider also the event E6=0 that det(Mn×n) 6= 0 from Theorem 1.5. Conditioning on Mn×n satisfying E ′
and E6=0, we will show that with high probability (with respect to the last u columns) that Mn×(n+u) is
surjective over all Fnp , p ∈ Pn.
To do this, similarly to the proof of Lemma 2.7, let P∗ = P∗(Mn×n) be the collection of prime divisors of
det(Mn×n), then clearly the random set P∗ has size at most n2.
Case 1. When p ∈ Pn but p /∈ P∗, then Mn×n has full rank in Fnp , and so does Mn×(n+u).
Case 2. Consider p ∈ P∗, we estimate the probability of the event Ep that Mn×(n+u) has full rank over Fnp .

For this, first note that under E ′, if p ∈ P ′n (that is p ≤ ecαnn/2) then the corank of Mn×n over Fnp is at

most C1 log n. Now if ecαnn/2 < p ≤ (K0n)n/2, as |det(Mn×n)| ≤ (K0n)n/2, the corank of Mn×n over Fnp
6



for these large p must be at most log(K0n)
n/2

log p ≤ (cαn)−1 log(K0n). So in either case the corank is at most

(cαn)−1 log n+ C1 log n.
Let H0 ⊂ Fnp be the column subspace of Mn×n, for which by assumption

d0 := n− dim(H0) ≤ (cαn)−1 log n+ C1 log n.

Similarly to the proof of Theorem 2.5, for 1 ≤ i ≤ d0, we will add ki = d B logn
αndi−1

e column vectors

Xn+
∑i−1
l=1 kl+j

, 1 ≤ j ≤ ki to the set of already exposed column vectors X1, . . . , Xn+
∑i−1
l=1 kl

, where di−1

is the codimension of the subspace Hi−1 generated by 〈X1, . . . , Xn+
∑i−1
l=1 kl

〉.
Let Fi be the event that dim(Hi) ≥ dim(Hi−1) + 1. By Lemma 2.3, and by independence of the column
vectors,

P
(
Fi| ∧i−1j=0 Fj ∧ E

′ ∧ E 6=0,dim(Hi−1) < n
)
≥ 1− ((1− α)codim(Hi−1))ki ≥ 1− n−B .

By Bayes’ rule, with probability at least (1−n−B)d0 ≥ 1−n−B+1, after adding
∑
i ki = O( logn

αn
log d0+d0) :=

u columns, the matrix Mn×(n+u) has full rank in Fnp . (It is possible to improve the total number of extra
columns by a more careful analysis of the di but we will not do so here for simplicity.)
Taking the union bound over all primes p ∈ P∗, we obtain that with probability at least 1 − n−B+3 the
matrix Mn×(n+u) has full rank in Fnp for all p ∈ P∗.
We have seen that with Mn×n satisfying E and E6=0, the matrix Mn×(n+u) is surjective simultaneously over
Fnp for all p ∈ Pn with the desired probability. The proof is then complete after unfolding the conditioning
on Mn×n, knowing that these events hold with very high probability. �

Finally, for Theorem 1.4, conditioning on the event E6=0, with prime p > (K0n)n/2 we have det(Mn×n) 6=
0( mod p), and hence on E6=0 the matrix Mn×n is surjective over Fnp for all p ≥ (K0n)n/2.

On the other hand, Lemma 2.11 implies that with probability at least 1 − n−A, for all p ∈ Pn the random
matrix Mn×(n+u) is surjective over Fnp .

3. Some remarks

We have studied random matrices of independent entries. It is natural to consider Conjecture 1.3 for other
families of matrices of dependent entries. Here we discuss one such model.
Let Mn×n be a random symmetric matrix, where for simplicity we assume that the entries (Mn×n)ij , 1 ≤
i ≤ j ≤ n are iid copies of a bounded random variable ξ from (1) with fixed α. It follows from [12, 16] that
for this model the singularity probability can be bounded by

pn = n−ω(1). (9)

Heuristically, arguing similarly to (2) (where we expose both columns and rows at the same time to obtain a
quadratic variant of (2)), we can show that with high probability the matrix Mn×n is not surjective over Zn.
Actually an analog of Theorem 1.2 has been established in [10] for this model 1, which confirms the above
heuristic. However, we will show that by adding a couple of few more (say) independent rows, the matrix
becomes surjective.

Theorem 3.1. Let Mn×(n+u) be a random matrix where its restriction Mn×n to the first n columns is a
symmetric matrix as above, and the last u columns are independent with entries being iid copies of ξ. Then
for any A > 0, there exists B such that for u = bB

√
n log nc

P
(
Cok(Mn×(n+u)) ' {id}

)
≥ 1− n−A.

To justify this result, we establish the following analog of Lemma 2.2.

Lemma 3.2 (quadratic estimate). Let p be a prime. Let 0 < εn < 1 be a given parameter that might depend
on n. Let Mn×n be a symmetric matrix where (Mn×n)ij , 1 ≤ i ≤ j ≤ n are iid copies of a bounded random
variable ξ from (1) with fixed αn. Then the probability that Mn×n has rank at most (1 − εn)n in Fnp is

smaller than e−αnε
2
nn

2/2+n.

1To be more precise, M. M. Wood studied the Laplacian, but her result also covers the non-normalized ensemble.
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Proof of Lemma 3.2. Let d = b(1− εn)nc. Assume that the columns Xi1 , . . . , Xid spans the column space of
Mn×n. For now assume that {i1, . . . , id} = {1, . . . , d}. Let H be the span of X1, . . . , Xd. We are considering
the event E1,...,d that Xi ∈ H, d + 1 ≤ i ≤ n. Now as Xi is dependent on H, we cannot estimate the
probability of Xi ∈ H directly by Odlyzko’s bound. However, we can get rid of the dependence by deleting
the corresponding common entries as below.
For 1 ≤ j ≤ n− d set

Id+j := {1, . . . , d+ j}.
For any X ∈ Fnp and J ⊂ [n] we denote X|J by the restriction of X over the components indexed by J . For
convenience we also denote H|J by the subspace generated by X1|J , . . . , Xd|J . Assume that Xd+1, . . . , Xn ∈
H, then the following holds

• Xd+2|Id+1
∈ HId+1

, and more generally Xd+j+1|Id+j ∈ H|Id+j , 1 ≤ j ≤ n− d− 1;

• the vector Xd+j+1|Id+j is independent of H|Id+j ;

• the vectors Xd+j+1|Id+j , 1 ≤ j ≤ n− d− 1 are mutually independent.

Now as H|Id+j has rank at most d in Fd+jp , by Lemma 2.3 we have

P(Xd+j+1|Id+j ∈ H|Id+j ) ≤ (1− αn)j .

Applying this bound for 1 ≤ j ≤ n− d− 1 and using the independence of Xd+j+1|Id+j , we obtain

PXi,d+1≤i≤n

(
E1,...,d|X1, . . . , Xd

)
≤
n−d−1∏
j=1

(1− αn)j ≤ e−αnε
2
nn

2/2.

Taking union bound over at most 2n choices of {i1, . . . , id} we conclude the proof. �

We can now complete the proof of Theorem 3.1 verbatim as in the proof of Theorem 2.5 with fixed αnL.
Indeed, Corollary 2.6 follows from Lemma 3.2, and Lemma 2.7 can be justified similarly (conditioning on
(9)) because the last u columns are mutually independent, and are independent from Mn×n.

Acknowledgement. The authors thank Kyle Luh for helpful comments.

Appendix A. The corank estimate: proof proof of Theorem 2.9

We will work in a more general setting. Let q = pf be a prime power and Fq be the finite field with q
elements. We say that a probability distribution µ in Fq is αn-balanced (for some 0 < αn < 1) if for every
additive subgroup T in Fq and s ∈ Fq

µ(s+ T ) ≤ 1− αn.
In the general finite field setting, we will assume

αn ≥ n−1/2+ε for any ε > 0 . (10)

In the more specific setting when q = p (which is the setting of Theorem 2.9), as there is no non-trivial
additive subgroup in Fp, we will assume

max
x∈Fp

µ(x) = 1− αn

where

αn ≥
C0 log n

n
, for a sufficiently large constant C0. (11)

In what follows Mn×n is a random matrix where the entries are independent and identically distributed
according to an αn-balanced µ either from (10) or (11), and n → ∞. Notice that in either case, we do not
assume the support of µ to be bounded. Recall that X1, . . . , Xn are the columns of Mn×n and Wn−k is the
subspace 〈X1, . . . , Xn−k〉 generated by X1, . . . , Xn−k. Our first goal is to reprove the following variant of [9,
Proposition 2.1] and [11, Proposition 2.1.1].
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Theorem A.1. Assume that µ is distributed according to either (10) or (11) depending on q. Then there
exist positive constants c, η such that the following holds for 1 ≤ k ≤ ηn: there exists an event En−k on the
σ-algebra generated by X1, . . . , Xn−k of probability at least 1− e−cαnn such that for any k ≤ k0 ≤ ηn

PXn−k+1

(
Xn−k+1 ∈Wn−k

∣∣En−k ∧ codim(Wn−k) = k0

)
= q−k0 +O(e−cαnn).

Notice that there are some modifications of this result compared to the original statement by Maples in [9,
Proposition 2.1] or [11, Proposition 2.1.1] that

(i) the statement also holds when the codimension of Wn−k is not necessarily k;

(ii) the statement also holds for sparse settings such as (10) and (11).

Note that (i) is not new as it also appeared in a subsequent (unpublished) preprint by Maples ([10, Proposition
3.1]). We then deduce Theorem 2.9 restated here for finite field.

Corollary A.2. Assume that µ is distributed according to either (10) or (11). Assume that k ≤ ηn for
some sufficiently small η, then

P
(

rank(Mn×n) = n− k
)

= O
(
nk(q−k

2

+ e−cαn)
)
. (12)

It seems plausible to get rid of the factor nk here (especially for fixed α) but we do not attempt to do so, as
the reader can check that any improvement along this line has little affect on the bounds in Theorem 1.4.

Proof. (of Corollary A.2) The event rank(Mn×n) = n−k implies that there exist k column vectorsXi1 , . . . , Xik

which belong to the subspace of dimension n−k generated by the remaining column vectors Xi, i 6= i1, . . . , ik.
With a loss of a factor of nk in probability, we can assume that {i1, . . . , ik} = {n− k + 1, . . . , n}. We then
use Theorem A.1 to show

P
(
Xn−k+1, . . . , Xn ∈Wn−k ∧ codim(Wn−k) = k

)
=P
(
Xn−k+1, . . . , Xn ∈Wn−k ∧ En−k ∧ codim(Wn−k) = k

)
+O(e−cαnn)

≤P
(
Xn−k+1, . . . , Xn ∈Wn−k|En−k ∧ codim(Wn−k) = k

)
+O(e−cαnn)

≤
(
q−k +O(e−cαnn)

)k
+O(e−cαnn) = O(q−k

2

+ e−cαnn).

�

Taking k = 1 and q = p→∞ in Corollary A.2 we then obtain Theorem 1.5.

Corollary A.3. Assume that the entries of Mn×n are iid copies of a discrete random variable ξ taking
integer values such that

max
x∈Z

P(ξ = x) ≤ 1− C0 log n

n
, for a sufficiently large constant C0.

Then the matrix Mn×n is non-singular with probability at least 1− e−cαnn.

Proof. (of Corollary A.3) Choose a prime p to be large such that p ≥ max{n2n, |det(Mn×n)|} and supp(ξ) ⊂
(−p, p). It then suffices to show that Mn×n/p has full rank with probability at least 1 − e−cαnn. To this
end, and by Corollary A.6 (to be discussed in the sequel), it suffices to bound the probability that Mn×n/p
has corank k between 1 and ηn, but then the statement follows from corollary A.2 (stated for µ distributed
according to (11)) by taking union bound. �

Note that the trick to pass the singularity problem over Z to over Fp, and let p → ∞, is not new. See for
instance [2, 14] and the references therein.
Finally, we will also show the following more general variant of Theorem A.1 for rectangular matrices
Mn×(n+u) where Wk = 〈Xk+1, . . . , Xn+u〉.
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Theorem A.4. Assume that µ is distributed according to either (10) or (11) depending on q. Then there
exist positive constants c, η such that the following holds. Let 0 ≤ u ≤ ηn be given. Then for k ≤ ηn, there
exist an event En+u−k on the σ-algebra generated by X1, . . . , Xn+u−k of probability at least 1− e−cαnn such
that for any (k − u)+ ≤ k0 ≤ ηn

PXn+u−k+1

(
Xn+u−k+1 ∈Wn+u−k

∣∣En+u−k ∧ codim(Wn+u−k) = k0

)
= q−k0 +O(e−cαnn).

The rest of the appendix is mainly dedicated to verify Theorem A.1. The proof of Theorem A.4 will be
deduced shortly. As already mentioned, our approach mainly follows [9].

Part I: proof of Theorem A.1: In what follows the constants η, β, δ, d are sufficiently small but fixed (see
for instance (25) for a choice of d), and αn is allowed to depend on n as from (10) or (11) for sufficiently
large constant C0. The only place we have to treat (10) and (11) separately is in the proof of Proposition
A.8 below.
We first note that Odlyzko’s lemma in fact holds in any finite field.

Lemma A.5. For a deterministic subspace V of Fnq and a random vector X of iid entries from an αn-
balanced distribution

P(X ∈ V ) ≤ (1− αn)codim(V ).

Corollary A.6. Let X1, . . . , Xn−k be the columns of Mn×n. Then the probability that X1, . . . , Xn−k are
linearly independent in Fnq is at least 1− n(1− αn)k.

Proof. (of Corollary A.6) Let 0 ≤ i ≤ n− k− 1 be smallest such that Xi+1 ∈ Span(X1, . . . , Xi). By Lemma
2.3, this event is bounded by (1−αn)n−i. Summing over 0 ≤ i ≤ n−k−1, the probability under consideration
is bounded by n(1− αn)k. �

A.7. Sparse subspace. Let 0 < δ, η be small constants (independently from αn). Given a vector space
H ⊂ Fnq , we say that H is δ-sparse if there is a non-zero vector w with |supp(w)| ≤ δn (i.e. w is δ-sparse)
such that w ⊥ H, where supp(w) is the set of non-zero coordinates of w.

Proposition A.8 (random subspaces are not sparse). Let 0 < ε0 < 1/2 be any fixed constants. Then for
any 0 ≤ δ, η such that δ + η ≤ ε0, and with αn from (10) or (11) the following holds for 0 ≤ k < ηn: with
probability at least 1− e−cαnn with respect to X1, . . . , Xn−k the random subspace Wn−k is not δ-sparse. Here
c = c(ε0) is an absolute constant.

Proof. (of Proposition A.8) For σ ⊂ [n] with 1 ≤ t = |σ| ≤ δn, let Eσ be the event that Wn−k is orthogonal
to a vector w with supp(w) = σ, but is not orthogonal to any vector w′ with |supp(w′)| ≤ t− 1. Note that
in this case the σ-restricted vector w|σ is orthogonal to the σ-restricted column vectors X1|σ, . . . , Xn−k|σ.
The dimension of the annihilator of Wn−k in Fσq and the dimension of Span (X1|σ, . . . , Xn−k|σ) sum to t. If
the annihilator were more than 1 dimensional, there would necessarily exist a nonzero linear combination of
annihilators with support strictly contained in σ. Hence it follows that the column vectors X1|σ, . . . , Xn−k|σ
span a subspace of dimension t−1, and there are t−1 linearly independent column vectors Xi1 |σ, . . . , Xit−1 |σ
in Fσq .
We therefore define the event Eσ,i1,...,it−1

to be that

(1) Xi1 |σ, . . . , Xit−1
|σ are linearly independent,

(2) Xi|σ ∈ Span(Xi1 |σ, . . . , Xit−1
|σ) for all 1 ≤ i ≤ n− k,

(3) the annihilator of Span(Xi1 |σ, . . . , Xit−1 |σ) in Fσq contains no nonzero vectors with support begin a
proper set of σ,

and observe that Eσ is a union over all such Eσ,i1,...,it−1
.

Case 1. If 144α−1n ≤ t ≤ δn, then by Theorem A.21 (whose proof is given in Part II),

P(Eσ,i1,...,it−1) ≤
(

1

q
+

2√
αnt

)n−k−t+1

≤
(

1

q
+

2√
αnt

)(1−ε0)n

≤
(

2

3

)n/2
.

Thus

P(Eσ) ≤
∑

i1,...,it−1

P(Eσ,i1,...,it−1) ≤
(
n− k
t− 1

)(
2

3

)n/2
.
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So ∑
σ,|σ|≥144α−1

n

P(Eσ) ≤
∑

144α−1
n ≤t≤δn

(
n

t

)(
n− k
t− 1

)(
2

3

)n/2
≤
(

2

3

)n/4
.

provided that ε0 (and hence δ) are sufficiently small.
Case 2. If 1 ≤ t ≤ 144α−1n . We use the simple bound

P
(
Xi|σ ∈ Span(Xi1 |σ, . . . , Xit−1

|σ)
)
≤ 1− αn.

Hence

P(Eσ) ≤
∑

i1,...,it−1

P(Eσ,i1,...,it−1
) ≤

(
n− k
t− 1

)
(1− αn)(1−δ−η)n ≤

(
n− k
t− 1

)
(1− αn)(1−ε0)n.

Consequently, ∑
σ,|σ|≤144α−1

n

P(Eσ) ≤
∑

t≤144α−1
n

(
n

t

)(
n− k
t− 1

)
(1− αn)(1−ε0)n.

Subcase 2.1. Assume that αn is from (10). Then as αn ≥ n−1/2+ε, the above can be easily bounded by∑
σ,|σ|≤144α−1

n

P(Eσ) ≤ (1− αn)ε0n/2.

Subcase 2.2. Assume that αn is from (11),

C0 log n

n
≤ αn = 1−max

x
µ(x) ≤ n−1/2+ε.

We will rely on the following observation, which is a simple variant of Lemma [1, Lemma 3.2].

Claim A.9. The following holds with probability at least 1− e−cαnn with respect to X1, . . . , Xn−k. For any

1 ≤ t ≤ 144α−1n , and any σ ∈
(
[n]
t

)
, there are at least two columns Xi, Xi+1 whose restriction (Xi+1 −Xi)|σ

has exactly one non-zero entry.

Suppose that w ∈ Fnq has support σ of size t = |σ| = |supp(w)| ≤ 144α−1n . Then, conditioning on the event
in the lemma, there is some 1 ≤ i ≤ n − k − 1 so that (Xi+1 − Xi)|σ has exactly one nonzero entry, and
hence w|σ is not orthogonal to it. Hence, it cannot be simultaneously orthogonal to all Xi, 1 ≤ i ≤ n − k.
Thus, it suffices to prove the claim.

Proof of Claim A.9. For each i ∈ {1, 3, . . . , 2b(n − k − 1)/2c + 1}, consider the vectors Yi = Xi+1 − Xi.
The entries of this vector are iid copies of the symmetrized random variable ψ = ξ − ξ′, where ξ′, ξ are
independent and have distribution µ. With 1− α′n = P(ψ = 0), then we have

αn ≤ α′n ≤ 2αn

as this can be seen by

(1− αn)2 ≤ max
x

P(ξ = x)2 ≤
∑
x

P(ξ = x)2 = P(ψ = 0) ≤ max
x

P(ξ = x) = 1− αn.

Now let pσ be the probability that all Yi|σ, i ∈ {1, 3, . . . , 2b(n−k−1)/2c+1} fail to have exactly one non-zero
entry, then by independence of the columns and of the entries

pσ = (1− tα′n(1− α′n)t−1)(n−k)/2 ≤ (1− tα′ne−tα
′
n)n−k ≤ e−ntα

′
ne
−tα′n/2.

Notice that as 1 ≤ t ≤ 83/ε0α−1n , e−tα
′
n/2 ≥ c for some positive constant c, and hence

e−ntα
′
ne
−tα′n/2 ≤ (e−cnα

′
n)t ≤ n−cC0t/2e−cnαn/2.

Thus ∑
1≤t≤144α−1

n

∑
σ∈([n]

t )

pσ ≤
∑

1≤t≤144α−1
n

(
n

t

)
e−(n−k)tαne

−tαn ≤
∑

1≤t≤144α−1
n

(ntn−cC0t/2)e−cnαn/2 < e−cnαn/2,

provided that C0 is sufficiently large. �
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Our proof of Proposition A.8 is then complete by combining the cases considered above. �

Remark A.10. Our treatment here is quite different from [9, Section 2.1] as there is no need to use [9, Propo-
sition 2.3] (which states that “Let Z1, . . . , Zr be non-trivial iid random vectors in Fnq , then P(Z1, . . . , Zr ∈
V |Z1, . . . , Zr are linearly independent) ≤ P(Z ∈ V )r.” An elementary counterexample to this proposition
is that Zi are chosen uniformly at random from {a1, 2a1, 3a1, a2, a3}, where a1 /∈ V and a2, a3 are linearly
independent in V : in this case the LHS probability bound is larger than the RHS 2. Also, Maples did not
provide any treatment for the sparse case (Case 2) for Proposition A.8 in [9] or [11], which we have added.
See also the remark after Lemma A.12 below.

To conclude, given constants η, δ and the parameter αn from (10) or (11), let En−k,dense denote the event
considered in Proposition A.8,

P(En−k,dense) ≥ 1− e−cαnn. (13)

We next turn to another type of subspace.

A.11. Semi-saturated subspace. Given 0 < αn, δ, d < 1. We call a subspace V of co-dimension k0
semi-saturated (or semi-sat for short), where k0 ≤ ηn, if V is not δ-sparse and

e−dαnn < |P(X ∈ V )− 1

qk0
| ≤ 16

qk0
. (14)

Here we assume

e−dαnn <
16

qk0
.

If this condition is not satisfied (such as when q is sufficiently large), then the semi-saturated case can be
omitted.

Lemma A.12. [9, Proposition 2.5] For all β > 0 and δ > 0 there exists 0 < d = d(β, δ) < 1 in the definition
of semi-saturation and a deterministic set R ⊂ Fnq of non δ-sparse vectors and of size |R| ≤ (2βδ)nqn such
that every semi-saturated V is orthogonal to a vector R ∈ R. In fact the conclusion holds for any subspace
V satisfying the LHS of (14).

In short, semi-saturated subspaces are necessarily orthogonal to one of a small number of non-sparse vectors
in Fnq . A proof of this result will be given in Part II where we emphasize that αn can be as small as (11),
in contrast to the proof of [9, Proposition 2.5] where αn was treated as a constant.
Let Fn−k,k0,semi−sat be the event that codim(Wn−k) = k0 and Wn−k is semi-saturated.

Proposition A.13. Let β, δ > 0 be parameters such that βδ < 17−2/2. With d = d(β, δ) from Lemma A.12
we have

P(Fn−k,k0,semi−sat) ≤ e−n.

In particularly, with En−k,semi−sat being the event ∧k≤k0≤ηnFn−k,k0,semi−sat in the σ-algebra generated by
Xk+1, . . . , Xn, then

P(En−k,semi−sat) ≥ 1− e−n/2. (15)

Proof of Proposition A.13. We have

P(Fn−k,k0,semi−sat) =
∑

V semi−sat
P(Wn−k = V ) ≤

∑
V semi−sat

P(X1, . . . , Xn−k ∈ V ).

Now for each fixed V that is semi-saturated of co-dimension k0 ≥ k, by definition P(X ∈ V ) ≤ 17q−k0 . So

P(X1, . . . , Xn−k ∈ V ) ≤ 17n−kq−k0(n−k).

We next use Lemma A.12 to count the number Nsemi−sat of semi-saturated subspaces V . Each V is deter-
mined by its annihilator V ⊥ (of cardinality qk0). To count V ⊥, we first choose a vector v ∈ R, and then
another (k0 − 1) dimensional subspace that is linearly independent of v. The number of ways to complete

2We thank M. M. Wood for pointing out the mistake, as well as for supplying a counterexample.
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this space equals the number of ways to pick a (k0 − 1)–dimensional space from Fn−1q . The number of such
subspaces is given by the well–known (see [13, Proposition 1.3.18]) exact formula

k0−2∏
j=0

qn−1−j − 1

qk0−1−j − 1
≤ Cq(k0−1)(n−k0),

for some absolute constant C > 0. Therefore

Nsemi−sat ≤ C(2βδ)nqnk0−k
2
0+k0 .

Therefore

P(Fk,k0,semi−sat) ≤
∑

V semi−sat
P(X1, . . . , Xn−k ∈ V ) = O

(
(2βδ)nqnk0−k

2
0+k017n−kq−k0(n−k)

)
= O

(
17n−k(2βδ)nqk0qk0(k−k0)

)
= O

(
17n−k(2βδ)nqk0

)
.

Now recall that e−dαnn ≤ 16q−k0 , and so

P(Fn−k,k0,semi−sat) = O(17n−k(2βδ)nqk0) = O(17n+1−k(2βδ)nedαnn).

We then choose β so that 2βδ < 17−2 and with d < 1 we have P(Fn−k,k0,semi−sat) ≤ e−n. �

A.14. Unsaturated subspace. Recall that k ≤ ηn for sufficiently small η. Let V be a subspace of codi-
mension k0 ≥ k in Fnq . We say that V is unsaturated if V is not δ-sparse and

max(e−dαnn, 16q−k0) < |P(X ∈ V )− q−k0 |.

In particularly this implies that

P(X ∈ V ) ≥ max{17q−k0 ,
16

17
e−dαnn}.

The following is from [9, Lemma 2.8].

Lemma A.15. There is an α′n-balanced probability distribution ν on Fq with α′n = αn/64 such that if
Y ∈ Fnq is a random vector with iid coefficients distributed according to ν, then for any unsaturated proper
subspace V

|P(X ∈ V )− 1

qk0
| ≤ (

1

2
+ o(1))|P(Y ∈ V )− 1

qk0
|.

A proof of this lemma will be given in Part II. By definition, if V is unsaturated then

P(Y ∈ V ) ≥ (2− o(1))(P(X ∈ V )− 1

qk0
) +

1

qk0
>

3

2
P(X ∈ V ).

Definition A.16. Let V be a subspace in Fnq . Let dcomb ∈ {1/n, . . . , n2/n}. We say that V has combinatorial
codimension dcomb if

(1− αn)dcomb ≤ P(X ∈ V ) ≤ (1− αn)dcomb−1/n.

Now as we are in the unsaturated case, P(X ∈ V ) ≥ 16
17e
−dαnn, and so

dcomb ≤ 2dn.

In what follows we will fix dcomb from the above range, noting that d is sufficiently small, and there are only
O(n2) choices of dcomb.
Let be fixed any 0 < δ1 < δ2 < 1/3 such that

16(δ2 − δ1)(1 + log
1

δ2 − δ1
) < δ1. (16)

Set

r := bδ1nc and s := n− k − bδ2nc.
Let Y1, . . . , Yr be random vectors with entries distributed by ν obtained by Lemma A.15, and let Z1, . . . , Zs
and Xr+s+1, . . . , Xn−k be random vectors with entries distributed by µ.
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Proposition A.17. Let W = Span {X1, . . . , Xn−k} . We have

P
(
r + s ≤ dim(W ) ≤ n− k,Wunsaturated

)
≤ (3/2)−r/2

(
n− k
r + s

)
≤ (3/2)−δ1n/4.

The second inequality follows directly from (16) and the standard bound
(
n
k

)
≤
(

en
n−k

)n−k
. Notice that we

do not require {Xi} to be linearly independent. In other words, let En−k,unsat denote the complement of the
event above in the σ-algebra generated by X1, . . . , Xn−k, then

P(En−k,unsat) ≥ 1− (3/2)−δ1n/4. (17)

To prove Proposition A.17 we show the following:

Theorem A.18. Let V be any subspace of dimension between r + s and n − k and having dcomb ≤ 2dn.
Then we have

P
(

Span{X1, . . . , Xn−k} = V
)
≤ (3/2)−r/2

(
n− k
r + s

)
P
(

Span
{
{Yi}r1 , {Zi}

s
1 , {Xi}n−kr+s+1

}
= V

)
.

To conclude Proposition A.17 we then just use∑
V≤Fnq

codim(V )≥k

P
(

Span
{
{Yi}r1 , {Zi}

s
1 , {Xi}n−kr+s+1

}
= V

)
= 1. (18)

Proof of Theorem A.18. First of all, by independence between Xi, Yj , Zl,

P
(

Span{X1, . . . , Xn−k} = V
)
×P

(
Y1, . . . , Yr, Z1, . . . , Zs linearly independent in V

)
=P
(

Span{X1, . . . , Xn−k} = V ∧ Y1, . . . , Yr, Z1, . . . , Zs linearly independent in V
)
. (19)

We next estimate P(Y1, . . . , Yr, Z1, . . . , Zs linearly independent in V ). By conditioning,

P
(
Z1, . . . , Zs, Y1, . . . , Yr linearly independent in V

)
=P
(
Yr ∈ V

)
P
(
Yr−1 ∈ V, Yr−1 /∈ 〈Yr〉|Yr ∈ V

)
· · ·P

(
Y1 ∈ V, Y1 /∈ 〈Y2, . . . , Yr〉|Y2, . . . , Yr lin. in V

)
× · · · ×P

(
Z1 ∈ V,Z1 /∈ 〈Z2, . . . , Zr, Y1, . . . , Yr〉|Z2, . . . , Zs, Y1, . . . , Yr lin. in V

)
.

We first estimate the terms involving Yi. By Lemma 2.3

P
(
Yi ∈ V, Yi /∈ 〈Yi+1, . . . , Yr〉|Yi+1, . . . Yr lin. in V

)
≥ P(Yi ∈ V )− (1− α′)n−(r−i)

≥3

2
P(Xi ∈ V )− (1− α′n)n−(r−i) ≥ 3

2
(1− αn)dcomb − (1− α′n)n−(r−i)

≥3

2
(1− αn)dcomb(1− (1− αn)n/256−dcomb),

where we used that α′n = αn/64 and n− r ≥ (1− δ1)n ≥ n/2.
Similarly, the terms involving Zi can be estimated as

P
(
Zi ∈ V,Zi /∈ 〈Zi+1, . . . , Zs, Y1, . . . , Yr〉|Zi+1, . . . , Zs, Y1, . . . , Yr

)
≥P(Zi ∈ V )− (1− α′n)n−(r+s−i)

≥(1− αn)dcomb − (1− α′n)n−(r+s−i) ≥ (1− αn)dcomb − (1− αn)n/256,

where we used that r + s = n− k − (bδ2nc − bδ1nc) ≥ n/2. So

P
(
Y1, . . . , Yr, Z1, . . . , Zs linearly independent in V

)
≥ (3/2)r(1− αn)(r+s)dcomb

(
1− (1− αn)n/256−dcomb

)r+s
≥ (3/2)r−1(1− αn)(r+s)dcomb , (20)

where we used dcomb ≤ 2dn and d is sufficiently small.
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Now we estimate the probability P(Span{X1, . . . , Xn−k} = V ∧Y1, . . . , Yr, Z1, . . . , Zs linearly independent in V )
in (19). Since Y1, . . . , Yr, Z1, . . . , Zs are linearly independent in V and Span{X1, . . . , Xn−k} = V , there exists
n− k − r − s vectors Xi1 , . . . , Xin−k−r−s which together with Y1, . . . , Yr, Z1, . . . , Zs are a basis for V . With

a loss of a factor
(
n−k
r+s

)
in probability, we can assume that Span

{
{Yi}r1 , {Zi}

s
1 , {Xi}n−kr+s+1

}
= V, and the

remaining vectors X1, . . . , Xr+s belong to V . Thus,

P
(

Span{X1, . . . , Xn−k} = V ∧ Y1, . . . , Yr, Z1, . . . , Zs linearly independent in V
)

≤
(
n− k
r + s

)
P
(

Span
{
{Yi}r1 , {Zi}

s
1 , {Xi}n−kr+s+1

}
= V ∧X1, . . . , Xr+s ∈ V

)
≤
(
n− k
r + s

)
P
(

Span
{
{Yi}r1 , {Zi}

s
1 , {Xi}n−kr+s+1

}
= V

)
P(X1, . . . , Xr+s ∈ V )

≤
(
n− k
r + s

)
P
(

Span
{
{Yi}r1 , {Zi}

s
1 , {Xi}n−kr+s+1

}
= V

)
(1− αn)(r+s)(dcomb−1/n). (21)

Putting (19), (20) and (21) together,

P
(

Span{X1, . . . , Xn−k} = V
)

=
P
(

Span{X1, . . . , Xn−k} = V ∧ Y1, . . . , Yr, Z1, . . . , Zs linearly independent in V
)

P
(
Y1, . . . , Yr, Z1, . . . , Zs linearly independent in V

)
≤(3/2)−r+1(1− αn)−(r+s)dcomb

(
n− k
r + s

)
P
(

Span
{
{Yi}r1 , {Zi}

s
1 , {Xi}n−kr+s+1

}
= V

)
(1− αn)(r+s)(dcomb−1/n)

≤(3/2)−r/2
(
n− k
r + s

)
P
(

Span
{
{Yi}r1 , {Zi}

s
1 , {Xi}n−kr+s+1

}
= V

)
.

�

We remark that our proof above follows [14, Section 4]. The treatment of [9] is similar but the author
oversimplified the process by relying on the aforementioned incorrect result [9, Proposition 2.3]. We now
conclude the main result.

Proof of Theorem A.1. Let En−k,dense, En−k,semi−sat, En−k,unsat be the events introduced in (13), (15), (17).
By definition, on these events, if codim(Wn−k) = k0 then

|P(X ∈Wn−k)− 1

qk0
| ≤ e−dαnn.

�

Next we give a proof of Theorem A.4. The statement is clearly equivalent to Theorem A.1 if k > u. In what
follows we assume k ≤ u.

Proof of Theorem A.4. . By Proposition A.8, with probability at least 1−e−cαnn the subspace 〈X1, . . . , Xn−k〉
is not δ-sparse, and hence 〈X1, . . . , Xn+u−k〉 is also not δ-sparse on this event.
For the semi-saturated subspace, the conclusion of Proposition A.13 continues to hold using Lemma A.12.
Indeed, with the same choice of parameters, by the proof of Proposition of A.13

P(Fn+u−k,k0,semi−sat) =
∑

V semi−sat
P(Wn+u−k = V ) ≤

∑
V semi−sat

P(X1, . . . , Xn+u−k ∈ V )

≤
∑

V semi−sat
P(X1, . . . , Xn−k ∈ V ) ≤ e−n.

Finally, for unsaturated subspaces, by the same method we can show the following analog of Proposition
A.17 with the same parameters

P
(

Span{X1, . . . , Xn+u−k} unsaturated and of dim. between r + s and n
)
≤ (3/2)−r/2

(
n+ u− k
r + s

)
. (22)

15



Indeed, to justify this result we just use the same swapping method of Theorem A.18; the only difference
is that there are

(
n+u−k
r+s

)
ways to choose the X1, . . . , Xr+s in (21). The bound (22) is again smaller than

(3/2)−δ1n/4 if u ≤ ηn with η sufficiently small compared to δ1. �

Part II. Proofs of the lemmas: Here we sketch the proof of Lemma A.12, Lemma A.15, and Theorem
A.21 by following [9].

Recall that tr : Fq → Fp is the field trace, which gives rise to the isomorphism between Fq and F̂q by

x→ ep(tr(tx)) = exp(2πitr(tx)/p) (and so we will identify F̂q with Fq). Let µ be a probability measure on
Fq. The Fourier transform of µ is

µ̂(x) =
∑
t∈Fq

µ(t)ep(tr(xt)) = Eep(tr(xξ)), where ξ has distribution µ.

We define the additive spectrum by

Spec1−εµ := {x ∈ Fq, |µ̂(x)| ≥ 1− ε}.

We will be using the following two important results.

Theorem A.19 (Kneser). [15, Theorem 5.5] Let A,B ⊂ Z be finite subsets of an abelian group Z. Then

|A+B|+ |Sym(A+B)| ≥ |A|+ |B|,

where Sym(X) = {h ∈ Z : h+X = X}.

Note that Sym(X) is a symmetric additive subgroup of Z. As Sym(A1+ · · ·+Ak) is increasing in k, iterating
the result we obtain

Corollary A.20.

|A1 + · · ·+Ak|+ (k − 1)|Sym(A1 + · · ·+Ak)| ≥ |A1|+ · · ·+ |Ak|.

To start with, we prove the following version of the classical Erdős-Littlewood-Offord result in finite field,
which was used in the proof of Proposition A.8.

Theorem A.21. [9, Theorem 2.4] Let X ∈ Fnq be a random vector with iid entries taken from an α-balanced
distribution. Suppose w ∈ Fnq has at least m non-zero coefficients. Then we have

|P(X · w = r)− 1

q
| ≤ 2√

αm
.

Proof of Theorem A.21. Let ξ1, . . . , ξn denote the entries of X, and w1, . . . , wn denote the components of w.
By Fp–linearity of the field trace, we can write

1X·w=r =
1

q

∑
t∈Fq

ep

(
tr(
∑
l

ξlwl)
)
ep

(
− tr(rt)

)
.

By independence of the {ξi}n1 we can therefore write

P(X · w = r) = E(1X·w=r) =
1

q

∑
t∈Fq

n∏
l=1

Eep(tr(ξlwlt))ep(−tr(rt)).

By the triangle inequality

|P(X · w = r)− 1

q
| ≤ 1

q

∑
t∈Fq,t6=0

n∏
l=1

|Eep(tr(ξlwlt))| =
1

q

∑
t∈Fq,t6=0

n∏
l=1

|µ̂(wlt)|.

Define ψ(t) = 1− |µ̂(t)|2. Using |x| ≤ exp(−(1− x2)/2) for |x| ≤ 1,

|P(X · w = r)− 1

q
| ≤ 1

q

∑
t∈Fq,t6=0

exp

(
−1

2

n∑
l=1

ψ(wlt)

)
.
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Set f(t) =
∑
l ψ(wlt), then

|P(X · w = r)− 1

q
| ≤ 1

2

∫ ∞
0

1

q
|{t 6= 0, f(t) ≤ v}|e−v/2dv =

1

2

∫ ∞
0

1

q
|T ′(v)|e−v/2dv (23)

where the level sets are defined as

T (v) := {t, f(t) ≤ v} and T ′(v) = T (v)\{0}.

Claim A.22. For any v > 0 we have

kT (v) = T (v) + · · ·+ T (v) ⊂ T (k2v).

Proof. It suffices to show that for any β1, . . . , βk ∈ Fq

ψ(β1 + · · ·+ βk) ≤ k(ψ(β1) + · · ·+ ψ(βk)).

Indeed, by definition of ψ, after squaring out the above is equivalent to

1−
∑

t1,t2∈Fq

µ(t1)µ(−t2) cos
(2π

p
tr((t1+t2)(β1+· · ·+βk))

)
≤ k2−k

∑
i

∑
t1,t2∈Fq

µ(t1)µ(−t2) cos
(2π

p
tr((t1+t2)βi)

)
.

Hence it suffices to observe that for all real numbers (βi)
k
1 , cos(β1 + · · ·+ βk) ≥ k

∑
cosβi − k2 + 1, which

we justify now. If for even a single βi, cos(βi) ≤ 0, then the largest value that can be attained on the right
hand side is 1 − k, from which it follows the equality holds. Hence by periodicity, we may assume that all
these βi ∈ (−π/2, π/2). The function

(βi)
k
1 7→ cos(β1 + · · ·+ βk)− k

∑
cos(βi)

is smooth and its only local minimum in the domain considered can be checked to occur at 0, at which value
equality is attained.

�

By Corollary A.20

kT (v) ≤ |T (k2v)|+ (k − 1) Sym(T (v) + · · ·+ T (v)). (24)

We next claim that if k2v < αnm, that is k <
√

αnm
v , then T (k2v) contains no-nontrivial additive subgroup

H of Fq, and so |Sym(T (v) + · · ·+ T (v))| = 1. Indeed, fix a subgroup H, then

|H|−1
∑
t∈H

f(t) =

n∑
l=1

|H|−1
∑
t∈H

ψ(wlt) =

n∑
l=1

|H|−1
∑
t∈H

(1− |µ̂(wlt)|2).

By the Fourier inversion formula, and by the α-balanced assumption on the distribution µ

|H|−1
∑
t∈H

(1− |µ̂(wlt)|2) =
∑

s1,s2∈Fq

µ(s1)µ(s2)1H⊥(wl(s1 − s2)) ≤ 1− αn.

Since at least m of the choices wl are non-zero

|H|−1
∑
t

f(t) ≥ αnm.

Thus there exists t ∈ H such that f(t) ≥ αnm, and so H 6⊂ T (k2v). So by (24) we have

|T ′(v)| ≤
√

v

αnm
|T ′(αnm)| ≤

√
v

αnm
q, for all v ≤ αnm.

Substitute back to (23) we obtain

|P(X · w = r)− 1

q
| ≤ 1

2

1
√
αnm

∫ ∞
0

√
ve−v/2dv + e−αnm/2.

�

Now we prove the other lemmas that were used in the treatment of semi-saturated and un-saturated sub-
spaces.
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Proof of Lemma A.12. Note that V is not δ-sparse. Let k0 = codim(V ), let ξ1, . . . , ξn denote the entries of
X, we have

P(X ∈ V ) = Eq−k0
∑
t∈V ⊥

ep
(
tr(
∑
l

ξltl)
)

= q−k0
∑
t∈V ⊥

n∏
l=1

Eep(tr(ξltl)) = q−k0
∑
t∈V ⊥

n∏
l=1

µ̂(tl),

where t1, . . . , tn denote the entries of t, and where we used the fact that
∑
t∈V ⊥ ep(tr(

∑
l ξltl)) = 0 if and

only if X /∈ V . By the triangle inequality,

|P(X ∈ V )− q−k0 | ≤ q−k0
∑

t∈V ⊥,t6=0

n∏
l=1

|µ̂(tl)|.

By the pigeonhole principle, for some t ∈ V ⊥, t 6= 0,

e−dαnn ≤ |P(X ∈ V )− q−k0 | ≤
n∏
l=1

|µ̂(tl)|.

Again, using |x| ≤ exp(− 1
2 (1− x2)) for |x| ≤ 1,

n∑
l=1

1− |µ̂(tl)|2 ≤ 2dαnn.

By averaging, there exists an index set σ ⊂ [n] with |σ| ≥ (1− δ/2)n and |µ̂(tl)| ≥ 1− 10dδ−1αn for l ∈ σ.
In other words, for all l ∈ σ

tl ∈ Spec1−10dδ−1αnµ.

Claim A.23. The set Spec1−αn/2 does not contain any non-trivial additive subgroup H of Fq.

Proof. By Fourier’s inversion formula

(1− αn/2)2|H ∩ Spec1−αn/2(µ)| ≤
∑
s∈H
|µ̂(s)|2 ≤ |H|(1− αn),

where in the last estimate we used the fact that µ is αn-balanced. �

Set k := bβ−1c and choose d so that

d ≤ k−2δ/5. (25)

Then

Spec1−10dδ−1αn ⊂ Spec1−2k−2αn(µ) := A.

We next claim that

|A\{0}| ≤ βq. (26)

Indeed, this is because by applying Cauchy-Schwarz

kA ⊂ Spec1−2αn(µ).

Furthermore,

Sym(kA) ⊂ (kA)− (kA) = 2kA ⊂ Spec1−αn/2(µ).

By Claim A.23, Sym(kA) is trivially {0}. So by Corollary A.20

k|A| ≤ |kA|+ (k − 1) ≤ q + (k − 1),

proving (26).
Finally, let R be the set of non-zero t in Fnq which have at least (1− δ/2)n components tl in Spec1−10dδ−1α.
By (26), as t ⊥ V and V is not δ-sparse, at least δ/2 of the components ξl are non-zero

|R| ≤ 2n(βq)δn/2qn−δn/2 ≤ (2βδ/2q)n.

�

To prove Lemma A.15, we use the following rather standard Halász–type construction from [9, Proposition
3.6] (see also [14, Lemma 7.1] or [3]).
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Proposition A.24. There is a probability distribution ν : Fq → [0, 1] depending on µ and α such that the
following properties hold with t = (t1, . . . , tn) and

f(t) :=

n∏
l=1

|µ̂(tl)|, g(t) :=

n∏
l=1

|ν̂(tl)|.

• For all 0 < u < 1 we have 4F (u) ⊂ G(u), where

F (u) = {t ∈ Fnq , |f(t)| > u} and G(u) = {t ∈ Fnq , |g(t)| > u}.

• For all t ∈ V ⊥,

f(t) ≤ g16(t).

• For all t,

ν̂(t) ≥ 0.

• ν is α′n-balanced with α′n = αn/64.

Proof of Lemma A.15. Note that

P(Y ∈ V )− q−k = q−k
∑

t∈V ⊥,t6=0

n∏
l=1

ν̂(tl) = q−k
∑

t∈V ⊥,t6=0

g(t).

Thus to show |P(X ∈ V )− q−k| ≤ ( 1
2 + o(1))|P(Y ∈ V )− q−k|, as ν̂ ≥ 0 it suffices to show that∑

t∈V ⊥,t6=0

f(t) ≤ (
1

2
+ o(1))

∑
t∈V ⊥,t6=0

g(t).

Let ε > 0 be a parameter to be sent to 0. We write∑
t∈V ⊥,t6=0

f(t) =
∑

t∈V ⊥,t6=0,f(t)<ε

f(t) +
∑

t∈V ⊥,t6=0,f(t)≥ε

f(t) :=
∑
<ε

(f) +
∑
≥ε

(f).

As f(t) ≤ g(t)16, we have ∑
<ε

(f) ≤ ε15/16
∑
<ε

(g) < (
1

2
+ o(1))

∑
<ε

(g).

We also write ∑
≥ε

(f) =

∫ ∞
ε

|F ′(u)|du+ ε|F ′(ε)|,

where

F ′(u) = F (u)\{0} = {t ∈ V ⊥, t 6= 0, |f(t)| > u}.

Claim A.25. With ε = exp(− 1
2α
′
nδn), the set G(ε) does not contain any non-trivial additive subgroup

H ≤ V ⊥. In particularly, as G(u) is decreasing, the same happens for any u ≥ ε.

Proof. Clearly we can assume H ∼= Z/pZ. Assume that w = (w1, . . . , wn) ∈ V ⊥ that generates H. Since V
is unsaturated (and hence not δ-sparse), w has at least δn non-zero components. Define h(t) :=

∑n
l=1 1 −

|ν̂(tl)|2, t ∈ H. We can also write h(t) :=
∑k
i=1 1−|ν̂(twli)|2, t ∈ Z/pZ, where wli are non-zero. By Fourier’s

inversion formula, and as ν is α′n-balanced,
∑
t∈Z/pZ |ν̂(twli)|2 ≤ p(1− α′n). So∑

t∈H
h(t) ≥ pα′nk ≥ pα′nδn.

By pigeon-hole principle, there exists t ∈ H such that h(t) ≥ α′nδn. On the other hand

g(t) =

n∏
l=1

|ν̂(tl)| ≤ exp(−1

2

n∑
l=1

1− |ν̂(tl)|2) = exp(−1

2
h(t)) ≤ exp(−1

2
α′nδn) = ε.

We thus have found an element t ∈ H which lies outside G(ε). �
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Let u ≥ ε. By Proposition A.24, Sym(2F (u)) ⊂ 4F (u) ⊂ G(u). Thus by Claim A.25, the additive subgroup
Sym(2F (u)) must be trivial, and so by Corollary A.20

2|F (u)| ≤ | Sym(F (u) + F (u))|+ |F (u) + F (u)| ≤ 1 + |G(u)|.
It thus follows that for all u ≥ ε we have 2|F ′(u)| ≤ |G′(u)|. So∫ ∞

ε

|F ′(u)|du+ ε|F ′(ε)| ≤ 1

2
(

∫ ∞
ε

|G′(u)|du+ ε|G′(ε)|),

completing the proof of Lemma A.15. �
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