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Abstract. Let Zp be the finite field of prime order p and A be a subsequence
of Zp. We prove several classification results about the following questions:

(1) When can one represent zero as a sum of some elements of A ?
(2) When can one represent every element of Zp as a sum of some elements

of A ?
(3) When can one represent every element of Zp as a sum of l elements of

A ?

1. Introduction.

Let G be an additive group and A be a sequence of (not necessarily different)
elements of G. We denote by SA the collection of partial sums of A

SA :=

{∑

x∈B

x|B ⊂ A, |B| < ∞
}

.

For a positive integer l ≤ |A| we denote by l∗A the collection of partial sums of l
elements of A,

l∗A :=

{∑

x∈B

x|B ⊂ A, |B| = l

}
.

Example. If G = Z11, A = {1, 1, 7} then SA = {1, 2, 7, 8, 9} and 2∗A = {2, 8}.

The following questions are among the most popular in additive combinatorics

Question 1.1. When is 0 ∈ SA and when is SA = G ?

Question 1.2. For a given l when is 0 ∈ l∗A and when is l∗A = G?
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There is a vast amount of results concerning these questions ([8]), including classical
results such as Olson’s theorem and the Erdos-Ginzburg-Ziv theorem.

If 0 /∈ SA (or, respectively, 0 /∈ l∗A), then we say that A is zero-sum-free (or,
respectively, l-zero-sum-free). If SA = G (or, respectively, l∗A = G), then we say
that A is complete (or, respectively, l-complete); and otherwise we say that A is
incomplete (l-incomplete).

We will focus on the case G = Zp, the cyclic group of order p, where p is a large
prime. The main goal of this paper is to give a strong classification for zero-
sum-free, incomplete and l-incomplete sequences of Zp. These classifications refine
and extend an implicit result in [9]. Together they support the following general
phenomenon:

The main reason for a sequence to be zero-sum-free or incomplete is that its ele-
ments have small norm.

For instance, if the elements of a sequence (viewed as positive integers between 0
and p− 1) add up to a number less than p, then the sequence is clearly zero-sum-
free. One of our results, Theorem 2.2, shows that any zero-sum-free sequence in Zp

can be brought into this form after a dilation and after truncation of a negligible
subset.

Our results have many applications (see Sections 3,4,5 and 6). In particular, we
will prove a refinement of the well-known Erdős-Ginzburg-Ziv theorem (see Section
6). The common theme of these applications is the following.

Any long zero-sum-free or incomplete sequence is a subsequence of a unique ex-
tremal sequence (after a proper linear transformation and a possible truncation of
a negligible subsequence).

In the rest of this section, we introduce our notation. The remaining sections are
organized as follows. In Section 2, we present our classification theorems. Sections
3,4,5,6 are devoted to applications. Section 7 contains the main lemmas needed for
the proofs. The proofs of the classification theorems come in Sections 8,9 and 10.

Notation.

We will use Z to denote the set of integers and Q to denote the set of rational
numbers. Also ZD will denote the congruence group modulo D.

For sequences A and B, define A + B := {a + b|a ∈ A, b ∈ B}.

For an element b ∈ Zp and a sequence A, define b ·A := {ba|a ∈ A}.
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A good way to present a sequence A is to write A := {a[m1]
1 , . . . , a

[mk]
k }, where ma

is the multiplicity of a in A (sometime we use the notation ma(A) to emphasize the
role of A), and a1, . . . , ak are the different elements of A.

The maximum multiplicity of A is m(A) := maxa∈Zp
ma(A). We will always assume

that m(A) ≤ p, for every sequence A in the paper.

We say A is decomposed into subsequences A1, . . . , Ak and write A =
⋃∗k

i=1 Ai if
ma(A) =

∑k
i=1 ma(Ai) for every a ∈ Zp.

Asymptotic notation will be used under the assumption that p →∞. For x ∈ Zp,
‖x‖ (the norm of x) is the distance from x to 0. (For example, the norm of p − 1
is 1).

A subset X of Zp is called a K-net if for any n ∈ Zp there exists x ∈ X such that
n ∈ [x, x + K]. It is clear that if X is a K-net, then X + T = Zp for any interval
T of length K in Zp. We will use the same notion over Z and Q as well.

For a finite set X of real numbers we use min(X)(or, respectively, max(X)) to
denote the minimum (respectively, maximum) element of X.

2. The classifications.

In order to make the statements of the theorems less technical, we define

f(p,m) :=
⌊
(pm)6/13 log2 p

⌋
.

2.1. Zero-sum-free sequences. View the elements of Zp as integers between 0
and p− 1. The most natural way to construct a zero-sum-free sequence is to select
non-zero elements whose sum is less than p. Our first theorem shows that this is
essentially the only way.

Theorem 2.2. There is a positive constant c1 such that the following holds. Let
1 ≤ m ≤ p be a positive integer and A be a zero-sum-free sequence of Zp satisfying
m(A) ≤ m. Then there is a non-zero residue b and a subsequence A[ ⊂ A of
cardinality at most c1f(p,m) such that

∑

a∈b·(A\A[)

a < p.

Notice that zero-sum-freeness and incompleteness are preserved under dilation.
This explains the presence of the element b in the theorem. Another issue one
needs to address is the cardinality of the exceptional sequence A[. It is known (and
not hard to prove) that most zero-sum-free sequences with maximum multiplicity
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m in Zp have cardinality Θ((pm)1/2). Thus, in most cases, the cardinality of A[

(which is at most (pm)6/13+o(1)) is negligible compared to that of |A|. (The same
will apply for later results.) Exceptional sequences cannot be avoided (see Sections
3,4 and also [5]).

By setting m = 1, we have the following corollary for the case when A is a set.

Corollary 2.3. There is an absolute positive constant c1 such that the following
holds. For any zero-sum-free subset A of Zp there is a non-zero residue b and a set
A[ ⊂ A of cardinality at most c1f(p, 1) such that

∑

a∈b·(A\A[)

a < p.

2.4. Incomplete sequences. The easiest way to construct an incomplete sequence
is to select elements with small norms. Clearly, if A is a sequence where

∑
a∈A ‖a‖ <

p−1 then A is incomplete. Our second theorem shows that this trivial construction
is essentially the only possibility.

Theorem 2.5. There is a positive constant c2 such that the following holds. Let
1 ≤ m ≤ p be a positive integer and A be an incomplete sequence in Zp satisfying
m(A) ≤ m. Then there is a non-zero element b ∈ Zp and a subsequence A[ ⊂ A of
cardinality at most c2f(p,m) such that

∑

a∈b·(A\A[)

‖a‖ < p.

By setting m = 1, we have

Corollary 2.6. There is a positive constant c2 such that the following holds. For
any incomplete subset A of Zp there is a non-zero residue b and a set A[ ⊂ A of
cardinality at most c2f(p, 1) such that

∑

a∈b·(A\A[)

‖a‖ < p.

2.7. l-incomplete sequences. View A as a sequence of integers in the interval
[−(p− 1)/2, (p− 1)/2]. Our classification in this subsection is a little bit different
from the previous two. We are going to classify the structure of l∗A instead of that
of A. The reason is that this classification is natural and easy to state. Furthermore,
it is also easy to derive information about A using the classification of l∗A.

If all l-sums of A belong to an interval of length less than p in Z, then A is l-
incomplete in Zp. Of course, the converse is not true. However, our third theorem
says that the reversed statement can be obtained at the cost of a small modification
(in the spirit of the previous theorems).
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Theorem 2.8. There is a positive constant c3 such that the following holds. Let
1 ≤ m ≤ p be a positive integer, let A be a sequence in Zp, and let l be an in-
teger satisfying c3f(p,m) ≤ l ≤ |A| − c3f(p,m). Assume furthermore that A is
l-incomplete and m(A) ≤ m. Then there exist

• residues b, c ∈ Zp with b 6= 0,
• a sequence A[ ⊂ A of cardinality less than c3f(p,m), and
• an integer l1 ≥ l − 2f(p,m)

such that the union
⋃

l1≤l′≤l1+(pm)3/13 l′∗A′ is contained in an interval of length
less than p, where A′ := b · (A\A[) + c is considered as a sequence of integers in
[−(p− 1)/2, (p− 1)/2].

The property l-incompleteness is preserved under linear transforms. This explains
why we need two parameters b and c in the theorem. The reader is invited to state
a corollary for the case when A is a set.

3. Structure of long zero-sum-free sequences.

Let 1 ≤ m ≤ p be a positive integer and A be a zero-sum-free sequence of Zp with
maximum multiplicity m(A) ≤ m. Trying to make A as long as possible, we come
up with the following natural candidate

Am
1 := {1[m], 2[m], . . . , (n− 1)[m], n[k]}

where k and n are the unique integers satisfying 1 ≤ k ≤ m and

m(1 + 2 + · · ·+ n− 1) + kn < p ≤ m(1 + 2 + · · ·+ n− 1) + (k + 1)n.

As a consequence of Theorem 2.2, one can show that any zero-sum free sequence
with m(A) ≤ m and cardinality close to |Am

1 | is almost a subsequence of Am
1 , after

a proper dilation.

Theorem 3.1. Let 6/13 < α < 1/2 be a fixed constant. Assume that A is a
zero-sum-free sequence of Zp with maximum multiplicity m(A) ≤ m and cardinality
|Am

1 | − O((pm)α). Then there is a non-zero element b ∈ Zp and a subsequence
A[ ⊂ A of cardinality O((pm)(α+1/2)/2) such that b · (A\A[) ⊂ Am

1 .

We can go further by showing not only that |A\Am
1 | is small, but also that the

sum of the norm of the elements in this sequence is small. An example is given by
Theorem 1.9 of [5], which we restate below.
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Theorem 3.2. [5] Let A be a zero-sum-free subset of Zp of size at least .99
√

2p.
Then there is some non-zero element b ∈ Zp such that

∑

a∈b·A,a<p/2

‖a‖ ≤ p + O(p1/2)

and ∑

a∈b·A,a>p/2

‖a‖ = O(p1/2).

The bound O(p1/2) is sharp.

Now assume that the cardinality of A differs from that of the extreme example Am
1

by a constant. In this case, we can tell exactly what A is.

Let n(p) denote the largest integer n such that
n−1∑

i=1

i < p.

Theorem 3.3. [5] There is a constant C such that the following holds for all primes
p ≥ C.

• If p 6= n(p)(n(p)+1)
2 − 1, and A is a subset of Zp with n(p) elements, then

0 ∈ SA.
• If p = n(p)(n(p)+1)

2 −1, and A is a subset of Zp with n(p)+1 elements, then
0 ∈ SA. Furthermore, up to a dilation, the only zero-sum-free set with n(p)
elements is {−2, 1, 3, 4, . . . , n(p)}.

We sketch the proof of Theorem 3.1.

Proof (Proof of Theorem 3.1.) Theorem 2.2 implies that there is a non-zero
residue b and a subsequence A[ ⊂ A of cardinality less than c1f(p,m) such that∑

a∈A′ a < p, where A′ = b · (A\A[) is viewed as sequence of integers in [1, p− 1].

Notice that |A′| = |Am
1 |−O((pm)α)− c1f(p,m) = |A1

m|−O((pm)α). For short put
t = |A′\Am

1 |. It follows from the inequality n +
∑

a∈Am
1

a ≥ p ≥ ∑
a∈A′ a that

∑

a∈A′\Am
1

a ≤ n +
∑

a∈Am
1 \A′

a. (1)

Let A′1 be the any subsequence of cardinality t in Am
1 \A′ and let A′′1 = Am

1 \(A′∪A′1).
Note that

|A′′1 | = |Am
1 | − |A′| = O(pm)α and a ≤ n ≤ (2p/m)1/2 + 1



CLASSIFICATION THEOREMS FOR SUMSETS MODULO A PRIME 7

for any a ∈ A′′1 . Thus

n +
∑

a∈A′′1

a = O(pm)α(p/m)1/2. (2)

On the other hand, by definition, every element of A′\Am
1 is strictly greater than

every element of A′1. Additionally, since the maximum multiplicity is m, we have

∑

a∈A′\Am
1

a−
∑

a∈A′1

a ≥ 1 + · · ·+ 1 + 2 + · · ·+ 2 + 3 + · · ·+ 3 + · · · ,

where on the right hand side all numbers (with the possible exception of the last)
appear exactly m times and the total number of summands is t. It is clear that
such a sum is greater than t2/3m; thus

∑

a∈A′\Am
1

a−
∑

a∈A′1

a ≥ t2/3m. (3)

(1),(2),(3) together give

t2/3m ≤
∑

a∈A′\Am
1

a−
∑

a∈A′1

a ≤ n +
∑

a∈A′′1

a = O(pm)α(p/m)1/2.

In other words, t = O((pm)(α+1/2)/2).

4. Structure of long incomplete sequence.

Let 1 ≤ m ≤ p be a positive integer and A be an incomplete sequence of Zp with
maximum multiplicity m(A) ≤ m. Trying to make A as large as possible, we come
up with the following example,

Am
2 = {−n[k],−(n− 1)[m], . . . ,−1[m], 0[m], 1[m], . . . , (n− 1)[m], n[k]}

where 1 ≤ k ≤ m and n are the unique integers satisfying

2m(1 + 2 + · · ·+ n− 1) + 2kn < p ≤ 2m(1 + 2 + · · ·+ n− 1) + 2(k + 1)n.
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Using Theorem 2.5, we can prove the following.

Theorem 4.1. Let 6/13 < α < 1/2 be a fixed constant. Assume that A is an
incomplete sequence of Zp with maximum multiplicity m and cardinality |A| =
|Am

2 | − O((pm)α). Then there is a non-zero element b ∈ Zp and a subsequence
A[ ⊂ A of cardinality O((pm)(α+1/2)/2) such that b · (A\A[) ⊂ Am

2 .

The proof is similar to that of Theorem 3.1 and is omitted.

As an analogue of Theorem 3.2, we have

Theorem 4.2. [5] Let A be an incomplete subset of Zp of size at least 1.99p1/2.
Then there is some non-zero element b ∈ Zp such that

∑

a∈b·A
‖a‖ ≤ p + O(p1/2).

(Again, the error term O(p1/2) is sharp.)

A well-known theorem of J. E. Olson [7] gives a sharp estimate for the maximum
cardinality of an incomplete set.

Theorem 4.3. Let A be a subset of Zp of cardinality more than (4p− 3)1/2. Then
A is complete.

5. The number of zero-sum-free and incomplete sequences.

In this section we apply Theorems 2.2, 2.5 to count the number of zero-sum-free
sequences and incomplete sequences.

We fix m. The following theorem is well known in theory of partitions (a corollary
of a theorem of G. Meinardus, [1, Theorem 6.2]).

Theorem 5.1. Let pm(n) be the number of partitions of n in which each positive
integer appears at most m-times. Then

pm(n) = exp ((

√
(1− 1

m + 1
)
2
3
π + o(1))

√
n).

By Theorem 2.2, the main part of zero-sum-free sequences (after a proper dilation)
corresponds to a partition of a number less than p. Thus, using Theorem 5.1, we
infer the following.

Theorem 5.2. Let Nm
1 be the number of zero-sum-free sequences A satisfying

m(A) ≤ m. Then

Nm
1 = exp((

√
(1− 1

m + 1
)
2
3
π + o(1))

√
p).
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Corollary 5.3. The number of zero-sum-free sets is exp((
√

1
3π + o(1))

√
p).

By Theorem 2.5, the main part of incomplete sequences (after a proper dilation)
can be split into two parts, each of which corresponds to a partition of a number
less than p. Thus we obtain the following.

Theorem 5.4. Let Nm
2 be the number of incomplete sequences A satisfying m(A) ≤

m. Then

Nm
2 = exp((

√
(1− 1

m + 1
)
4
3
π + o(1))

√
p).

Corollary 5.5. The number of incomplete sets is exp((
√

2
3π + o(1))

√
p).

Proof (Proof of Theorem 5.2) The lower bound for Nm
1 is obvious, any partition of

p−1 in which each number appears at most m-times gives a zero-sum-free sequence
of maximum multiplicity bounded by m.

For the upper bound, we apply Theorem 2.2. First, the number of choice for A[

is
∑

n≤(pm)6/13+o(1)

(
pm
n

)
= exp(o(

√
p)). Second, the elements of A′ := b(A\A[)

forms a partition of
∑

a∈A′ a (which is a positive integer less than p) in which each
positive integer appears at most m-times. Hence, the number of choice for A] is at
most

∑

n≤p−1

pm(n) ≤ p exp((

√
(1− 1

m + 1
)
2
3
π + o(1))

√
p).

Finally, together with dilations, the number of zero-sum-free sequences is bounded
by

p2 exp((

√
(1− 1

m + 1
)
2
3
π + o(1))

√
p) = exp((

√
(1− 1

m + 1
)
2
3
π + o(1))

√
p).

Proof (Proof of Theorem 5.4) The lower bound for Nm
2 is again obvious, any two

partitions of (p − 3)/2 in which each number appears at most m-times give two
nonnegative sequences. We then take the union of one sequence with the negative
of the other sequence. It is not hard to check that the formed sequence A is
incomplete and m(A) ≤ m. Thus

Nm
2 ≥ (pm((p− 1)/2))2 = exp((

√
(1− 1

m + 1
)
4
3
π + o(1))

√
p).

For the upper bound we use Theorem 2.5. Argue similarly as in the proof of
Theorem 5.2, we infer that the number of exceptional sequences A[ is at most
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eo(
√

p). Write A′ := b(A\A[) = A+ ∪ A−, the decomposition of A′ into sequences
of nonnegative and negative elements respectively. The elements of A+ form a
partition of

∑
a∈A+ a in which each positive integer appears at most m-times. The

elements of A− corresponds to a partition of
∑

a∈A−(−a) in which each (negative)
number appears at most m-times. Thus the number of choice for A′ is at most

∑

k+l<p

pm(k)pm(l) ≤ p2 exp((

√
(1− 1

m + 1
)
4
3
π + o(1))

√
p).

Putting everything together, we obtain an upper bound for Nm
2 ,

Nm
2 ≤ peo(

√
p)p2 exp((

√
(1− 1

m + 1
)
4
3
π + o(1))

√
p)

≤ exp((

√
(1− 1

m + 1
)
4
3
π + o(1))

√
p).

6. l-incomplete sequences

Assume that A, l,m satisfy conditions of Theorem 2.8. Trying to make A as large
as possible, we come up with the following example,

Am
3 = {−n[k],−(n− 1)[m], . . . ,−1[m], 0[m], 1[m], . . . , (n− 1)[m], n[k]}

where k and n are the optimal integers such that 1 ≤ k ≤ m and all the l-sums of
Am

3 are contained in an interval of length less than p.

However, the extremal example for l-incomplete sequences, in general, is not unique
(for instance if l = m = p then any sequence {−1[n], 0[p], 1[p−2−n]} is l−incomplete
and of maximum cardinality). Nevertheless, Theorem 2.8 still allows us to conclude
that any l−incomplete sequence of size close to |Am

3 | can be dilated and translated
into one of the extremal examples, as in the spirit of Theorems 3.1 and 4.1.

Let us discuss in detail the special case l = p. This is motivated by the classical
theorem of P. Erdős, A. Ginzburg and A. Ziv [3], one of the starting points of
combinatorial number theory.

Theorem 6.1. (Erdős-Ginzburg-Ziv) For any sequence A ∈ Zp of cardinality 2p−1
there is a subsequence A′ ⊂ A of cardinality p such that

∑
a∈A′ a = 0.

In fact, P. Erdős, A. Ginzburg and A. Ziv proved the statement for any finite abelian
group G, by reducing it to the case G = Zp above.
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In the context of this paper, Theorem 6.1 stated that any sequence of cardinality
2p− 1 in Zp is not p-zero-sum-free. The bound 2p− 1 is sharp as shown by the ex-
ample A = {a[p−1], b[p−1]}, for any two different elements a, b ∈ Zp. Using Theorem
2.8, we prove that if A is p-zero-sum-free and |A| − p À f(p, p) = bp12/13 log2 pc,
then A has two elements of high multiplicities.

Theorem 6.2. There is a positive constant C such that the following holds for all
primes p > C. Assume that A is a p-zero-sum-free sequence and p + c3f(p, p) ≤
|A| ≤ 2p− 2. Then {a[ma], b[mb]} ⊂ A, where a, b are two different elements of Zp

and ma + mb ≥ 2(|A| − p− (c3 + 3)f(p, p)).

Notice that A must have at least p elements so that the notion of p-zero-sum-
free makes sense. Our theorem already yields a non-trivial conclusion when A has
slightly more than p elements. A similar statement was proved in [4], but under
the stronger assumption that |A| ≥ 3

2p.

As a corollary, one obtains the following refinement of Theorem 6.1.

Corollary 6.3 ([2]). The following holds for all sufficiently large primes p. Let A
be a p-zero-sum-free sequence of cardinality 2p−2 in Zp. Then A = {a[p−1], b[p−1]},
where a, b are two different elements of Zp.

Proof (Proof of Corollary 6.3) By Theorem 6.2, we may assume that

A = {0[p−k1], 1[p−k2], a1, . . . , al}
where 1 ≤ k1 = o(p), 1 ≤ k2 = o(p), l = k1 + k2 − 2 and ai are (not necessarily
distinct) integers in [−p/2, p/2]\{0, 1}. If l = 0 then we are done. Assume that
l ≥ 1. We are going to construct a subsequence of A of length p whose elements
sum up to zero modulo p.

Case 1: There is some ai with absolute value at least p/6.

Assume that p/2 > a1 ≥ p/6. The subsequence {0[a1−1], 1[p−a1], a1} has cardinality
p and sums up to zero modulo p. In the case −p/2 < a1 ≤ −p/6, consider the
subsequence {0[p−|a1|−1], 1[|a1|], a1}.

Case 2: All ai have absolute value less than p/6 and there are at least max{1, k1−
1} negatives among them.

By a greedy algorithm, one can find a non-empty sequence (say, a1, . . . , al1) of
negative elements such that l1 + |a1 + · · ·+ al1 | ≥ k1. Then the subsequence

{0[p−l1−|a1+...al1 |], 1[|a1+...al1 |], a1, . . . , al1}

sums up to zero modulo p.

Case 3: All ai have absolute value less than p/6 and there are at least min{l, k2}
positives among them.
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As each positive element is at least 2 and at most p/6, there is a subsequence of
(say, l2) positive elements whose sum is at least k2 and at most p/3. Assume that
a1, . . . , al2 are these elements. Then the subsequence

{0[(a1+...al1 )−l2], 1[p−(a1+...al2 )], a1, . . . , al2}
sums up to zero modulo p.

We conclude this section by sketching the proof of Theorem 6.2.

Proof (Sketch of proof of Theorem 6.2) Since A is p-zero-sum-free in Zp, A is also
p-incomplete. By Theorem 2.8, after a linear transform, we can find a subsequence
A′ of A such that

max{l∗1A′} −min{l∗1A′} < p, (4)

where l1 ≥ p−2f(p, p) and |A′| ≥ |A|−c3f(p, p) and where c3 is a positive constant.
(Recall that max(X) (respectively, min(X)) refers to the maximum (respectively,
minimum) element in X.)

Let A′ = {a1, . . . , aq}, where ai ≤ ai+1 for 1 ≤ i ≤ q − 1 = |A′| − 1 and rewrite (4)
as

l1∑

i=1

aq−l1+i −
l1∑

i=1

ai =
k∑

i=1

aq−k+i −
k∑

i=1

ai < p, (5)

where k = min(l1, q − l1). Note that

k∑

i=1

aq−k+i −
k∑

i=1

ai ≥
j0∑

i=i0

ai+p −
j0∑

i=i0

ai =
j0∑

i=i0

(ai+p − ai), (6)

where i0 = max(1, q − l1 − p + 1) and j0 = min(l1, q − p).

Since A has maximum multiplicity less than p, we have, for any i, that ai+p−ai ≥ 1.
Thus by (6) we obtain that

j0 − i0 ≤
j0∑

i=i0

(ai+p − ai) < p,

and we infer that the number of i ∈ [i0, j0] such that ai+p − ai = 1 is at least
2(j0 − i0)− p + 3. Next let i1 and j1 be the smallest and largest index i in [i0, j0]
such that ai+p − ai = 1. Thus ai1+p − ai1 = aj1+p − aj1 = 1 and
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2(j0 − i0)− p + 2 ≤ j1 − i1 ≤ j0 − i0 < p. (7)

In what follows, ai1 plays a special role, so we denote it by a to distinguish it
from the other ai. Let B = {ai1 , . . . , aj1+p}. Obviously |B| = j1 − i1 + p + 1 and
aj1+p − ai1 ≤ 2.

Set γ := j0 − i0. Then 0 ≤ γ ≤ l1 − 1. We consider two cases.

Case 1: aj1 = a. In this case aj1+p = 1 and B = {x[m0], (x + 1)[m1]} where

m0 + m1 = j1 − i1 + p + 1 ≥ 2(j0 − i0)− p + 2 + p + 1 = 2γ + 3. (8)

Case 2: aj1 = a+1. Recall that the number of pairs (ai, ai+p) such that ai+p−ai =
1 is at least 2(j0−i0)−p+2 = 2γ−p+2. Furthermore if ai+p−ai = 1 then either ai or
ai+p must be a+1. By this observation, none of the elements in {aj1+1, . . . , ap+i1−1}
belongs to any pair (ai, ai+p) with ai+p − ai = 1. Furthermore, we have ai = a + 1
for j1 + 1 ≤ i ≤ p + i1 − 1. As a consequence, the multiplicity m1 of a + 1 in B is
at least

m1 ≥ 2γ − p + 2 + (p + i1 − j1 − 1) = 2γ − (j1 − i1) + 1. (9)

It is convenient to write B = {a[m0], (a + 1)[m1], (a + 2)[m2]}. Clearly we have
min(p∗B) = min(p − m0,m1) + 2(p − m0 − min(p − m0, m1)) and max(p∗B) =
2m2 + min(p−m2, m1).

Besides, it is not hard to show that

p∗B = [min(p∗B), max(p∗B)]. (10)

The p-zero-sum-free assumption implies that max(p∗B) < p. It follows that

2m2 + min(p−m2,m1) < p. (11)

Consequently,

2m2 + m1 < p. (12)

From (9) and (12) we deduce that m2 ≤ (p − 2γ + (j1 − i1) − 2)/2. On the other
hand, m0 + m1 + m2 = |B| = j1 − i1 + p + 1. Thus
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m0 + m1 ≥ j1 − i1 + p + 1− (p− 2γ + (j1 − i1)− 2)/2 ≥ γ + 2 + (j1 − i1 + p)/2.

The latter inequality, together with (7), yields

m0 + m1 ≥ 2γ + 3. (13)

To summarize, in both cases ((8) and (13)) we have m0 + m1 ≥ 2γ + 3. Combining
this with the estimates l1 ≥ p− 2f(p, p) and q ≥ |A| − c3f(p, p) we get

m0 + m1 ≥ 2(min(l1, q − p)−max(1, q − l1 − p + 1)) + 3
≥ 2(|A| − p)− (2c3 + 6)f(p, p).

7. The key lemmas.

The key lemmas we use in proofs are the following results from [10].

Theorem 7.1. For any fixed positive integer d there exist positive C = C(d) and
c = c(d) depending on d such that the following holds. If A is a subset of [n] and l
is a positive integer such that ld|A| ≥ C(d)n and l ≤ |A|/2. Then l∗A contains an
arithmetic progression of length c(d)l|A|1/d.

Theorem 7.2. For any fixed positive integer d there exist positive C = C(d) and
c = c(d) depending on d such that the following holds. If A is a subset of Zp, |A| ≥ 2
and l is a positive integer such that ld+1|A| ≥ C(d)p, then l∗A contains all residue
classes modulo p or contains an arithmetic progression of length c(d)l|A|1/d.

Theorem 7.3. For any fixed positive integer d there exist positive C = C(d) and
c = c(d) depending on d such that the following holds. Let A1, . . . , Al be subsets
of cardinality |A| of Zp where l and |A| satisfy ld+1|A| ≥ C(d)p. Then A1 + · · · +
Al contains all residue classes modulo p or an arithmetic progression of length
c(d)l|A|1/d.

In our proofs we will be mainly interested in the case d = 1 and d = 2. We will
also use the following lemmas. The proofs are left as exercises.

Lemma 7.4. [7] There are positive constants C0 and c0 such that the following
holds. Let A be a set of Zp satisfying |A| ≤ C0p

1/2. Then

|l∗A| ≥ c0|A|2
where l = b|A|/2c.
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Lemma 7.5. Let D be a positive integer and X be a sequence of cardinality D in
ZD. Then SX contains the zero element. Furthermore, if the elements of X are
co-prime with D, then SX = ZD.

Lemma 7.6. [9] Let d1, . . . , dn be distinct positive integers and D = lcm(d1, . . . , dn).
Then for any 0 ≤ r ≤ D − 1 there exist 0 ≤ ai ≤ di − 1 such that

∑n
i=1 ai/di =

r/D(mod1).

Lemma 7.7. (a consequence of Chinese remainder theorem) Let d1, . . . , dn, D be
distinct positive integers and gcd(d1, . . . , dn, D) = 1. Then for any 0 ≤ r ≤ D − 1
there exist 0 ≤ ai ≤ D such that

∑n
i=1 ai ≤ D and

∑n
i=1 aidi/D = r/D(mod1).

We will mainly focus on the proof of Theorem 2.8, which is the most difficult among
the three theorems in Section 2. Theorem 2.5 can be proved by invoking the same
technique in a simpler manner and we will sketch its proof. Theorem 2.2 can be
deduced from Theorem 2.5 by several applications of Lemma 7.1.

8. Proof of Theorem 2.8

Our plan consists of four main steps

• We first obtain a long arithmetic progression (say P ) by using the subset
sums of a small subsequence of A.

• Next we show that (after a linear transform) one can find a reasonably
short interval (say A0) around 0 which contains many elements of A.

• Since A is l-incomplete, the sum of the subset sums of the remaining part
A\(A0 ∪ P ) with A0 and P does not cover Zp. Thus the main part of A
concentrates around a few points which are evenly distributed in Zp.

• Finally we use this structural information to deduce the statement of the
theorem.

8.1. Creating a long arithmetic progression. Assume that A is an l-incomplete
sequence with maximal multiplicity less than m. Recall that

f(p,m) = b(pm)6/13 log2 pc.

In what follows, we think of m and p as fixed and use shorthand f for f(p,m). By
setting c3 large, we can assume that |A|/f is large, whenever needed. If there is an
element a such that ma(A) ≥ |A| − f then the theorem is trivial, as we can take
A[ = {b ∈ A, b 6= a}. Thus we can assume that m(A) < |A| − f .

Let λ be a sufficiently large constant. We execute the first step of the plan by
showing the following.

Lemma 8.2. There is a subsequence A[ ⊂ A of cardinality at most f whose l[-sums,
for some integer l[ ≤ f , contain an arithmetic progression of length λ(pm)12/13/m.
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Here we abuse the notation A[ slightly. The current A[ is not necessarily the A[

in Theorem 2.8. However, as the reader will see, the latter will be the union of the
current A[ with a very small sequence of A.

Proof (Proof of Lemma 8.2) We consider three cases.

Case 1: m > (pm)6/13.

Since m(A) ≤ |A| − f by assumption, we can find in A f disjoint sets A1, . . . , Af ,
each has exactly two different elements. Let A′ = A\ ∪f

i=1 Ai. By the assumption
m > (pm)6/13, it follows that for each i = 1, . . . , f ,

f2|Ai| = 2f2 > (pm)12/13 À p.

Thus we can apply Theorem 7.3 to the f sets A1, . . . , Af and conclude that their
sum A1 + · · ·+Af contains an arithmetic progression P of length |P | ≥ c(1)f |Ai| >
c(1)(pm)6/13 log2 p, for some positive constant c(1).

On the other hand, the assumption m > (pm)6/13 yields that (pm)6/13 ≥ (pm)12/13/m.
Thus

|P | ≥ λ(pm)12/13/m

for any fixed constant λ. We complete by letting A[ =
⋃

i=1 Ai and l[ = f .

Case 2: p1/5 < m ≤ (pm)6/13.

Let A[ be an arbitrary subsequence of cardinality f in A. Since m(A[) ≤ m(A) ≤ m,
we can find in A[ disjoint sets A1, . . . , Am each of which has cardinality

b|Ai| = |A[|/mc = bf/mc.

Let k = b|A1|/2c. Since |Ai| ¿ p1/2, by Lemma 7.4 we have

|k∗Ai| ≥ c0|Ai|2.

Next choose a set Bi of cardinality |Bi| = c0|Ai|2 from k∗Ai for all i. Since

m2|Bi| ≥ m2c0(
f

m
− 1)2 > c0m

2 f2

4m2
> (pm)12/13 > p12/13+2/13 À p,
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we can apply Theorem 7.3 to the m sets B1, . . . , Bm to conclude that the sumset
B1 + · · ·+ Bm contains an arithmetic progression P of length

|P | = c(1)m|Bi| = c(1)c0m|Ai|2 >
c(1)c0

4
m

f

m

2

>
λ(pm)12/13

m
,

for any fixed λ, thanks to the definition of f = f(p,m).

Let l[ = mk. Note that the arithmetic progression P is contained in k∗A1 + · · ·+
k∗Am. But the latter sumset is a subset of (l[)∗A[. Thus the set (l[)∗A[ contains
an arithmetic progression P of length |P | ≥ λ(pm)12/13/m.

Case 3: m ≤ p1/6.

Again let A[ be an arbitrary subsequence of cardinality f of A. For each element
a, let ma be its multiplicity in A[. We partition A[ according the magnitudes of
these multiplicities. For 0 ≤ i ≤ log m− 1, let ni be the number of element a of A[

such that 2i ≤ ma < 2i+1. It is easy to see that f = |A[| ≤ ∑log m−1
i=0 ni2i+1 (here

the log has base 2), which implies that there exists an index 0 ≤ i0 ≤ log m − 1
satisfying

ni02
i0+1 ≥ f

log m
. (14)

Let a1, . . . , ani0
be elements of A[ whose multiplicity belongs to [2i0 , 2i0+1). Set

B1 := · · · = B2i0 := {a1, . . . , ani0
}. Then the union of the Bj is a subsequence of

A[. Furthermore,

|B1| = ni0 ≥
f

2i0+1 log m
>

(pm)6/13

m
(15)

because 2i0 ≤ m ≤ p. Let l1 = b|B1|/2c. By the assumption m ≤ p1/6 we have

l21|B1| > (pm)18/13/(8m3) À p.

Theorem 7.2 applied to B1 with d = 1, yields an arithmetic progression P1 ⊂ l∗1B1

of length

|P1| ≥ c(1)l1|B1| > c(1)|B1|2/4.

Since each Bi is a duplicate of B1, we obtain 2i0 duplicates P1, P2, . . . , P2i0 of P1

in l∗1B1, . . . , l
∗
1B2i0 respectively. Now consider P = P1 + · · ·+ P2i0 . Notice that
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|P | = 2i0 |P1| − (2i0 − 1) ≥ 2i0 |P1|/2.

By (14) and (15), we have

|P | ≥ 2i0c(1)|B1|2/8 = c(1)2i0ni0 |B1|/8 ≥

≥ (c(1)/8)(f/(2 log m))((pm)6/13/m) > λ(pm)12/13/m

for any fixed λ. Now observe that

P ⊂ l∗1B1 + · · ·+ l∗1B2i0 ⊂ (2i0 l1)∗A[.

Thus by setting l[ = 2i0 l1 we conclude that the collection of l[-sums of A[ contains
an arithmetic progression of length λ(pm)12/13/m.

By a dilation of A with some nonzero b′ ∈ Zp, we can assume that the arithmetic
progression P obtained by Lemma 8.2 is an interval, P = [p0, p0 + L] for some
residue p0 and L ≥ λ(pm)12/13/m.

8.3. Dense subsequence around zero. Let Q = b(pm)3/13c and A′ = A\A[.

Lemma 8.4. There exists a residue c′ ∈ Zp such that (A′+c′)∩[−p/(2Q2), p/(2Q2)]
contains a subsequence of cardinality 3Q.

Proof (Proof of Lemma 8.4) Call a pair (x, y) of Zp × Zp nice if

p/Q2 < ‖y − x‖ < L.

Note that if (x, y) is a nice pair then x + P ∩ y + P 6= ∅ and x + P ∪ y + P is an
interval of length

|x + P ∪ y + P | ≥ min(|P |+ p/Q2, p). (16)

Assume that B = {x1, y1, . . . , xr, yr} is a (maximal) sequence of nice pairs in A′

(this means that there is no more nice pair left in A′\B). We are going to show
that r < Q2. Assume otherwise. By (16),
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P ′ =
⋃

zi∈{xi,yi},1≤i≤Q2

z1 + · · ·+ zQ2 + P = Zp.

On the other hand, by the assumption of the Theorem,

∣∣∣∣∣∣
A′\

Q2⋃

i=1

{xi, yi}
∣∣∣∣∣∣
= |A| − |A[| − 2Q2 ≥ |A| − 2f ≥ l.

So we are able to choose a subsequence C in A′\B of cardinality l − l[ −Q2.

But then

Zp = P ′ +
∑

c∈C

c ⊂ l∗A,

which means that A is l-complete, impossible. Thus r < Q2.

We define a new A[ by taking the union of the existing one with B. The bound
on |B| shows that the new A[ is still of cardinality O((pm)6/13 log2 p). We keep
using the notation A′ for A\A[, but the reader should keep in mind that the new
A′ has no nice pair as we have discarded B. This implies that there are intervals
A0, . . . , An of Zp such that |Ai| ≤ p/Q2 and min{‖x− y‖

∣∣∣x ∈ Ai, y ∈ Aj} ≥ L for
any i 6= j and the union ∪n

i=1Ai contains A′. It then follows that

n + 1 ≤ p/L.

But by pigeon-hole principle there is an interval, say A0, which contains at least
|A′|/(n + 1) elements of A′. Recall that the length of A0 is less than p/Q2 and

|A′|/(n + 1) ≥ |A′|L/p > (pm)6/13+12/13/(pm) = (pm)5/13 > 3Q.

We infer from Lemma 8.4 that, by an appropriate translation, one can find a rea-
sonably short interval around 0 which contains many elements of A. (Notice that
the translation shifts P to another interval of the same length). We will work with
this translated image of A.
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8.5. Distribution of the elements of A. Let I0 and J0 be two disjoint subse-
quences of A′ ∩ [−p/(2Q2), p/(2Q2)] of cardinality Q and 2Q respectively.

Let A′′ = A′\(I0 ∪ J0). We show that almost all elements of A′′( and thus almost
all elements of A) concentrate around a few points which are regularly distributed
in Zp.

Lemma 8.6. There is a subsequence A′′′ ⊂ A′′ and an integer D such that

•
|A′′′| ≤ 2(pm)6/13,

•
D ≤ (pm)1/13,

• for any a ∈ A′′\A′′′ there is an integer 0 ≤ h ≤ D − 1 satisfying

|a− hp

D
| ≤ p

Q
.

We postpone the proof of Lemma 8.6 until Proposition 8.6.2.

Let a be any element of A′′. Then by Dirichlet’s theorem, there is a pair of positive
integers i and d satisfying 1 ≤ d ≤ Q and gcd(i, d) = 1 such that

|a− ip

d
| ≤ p

dQ
.

Next let

Xd = {a ∈ A′′ : |a− ip

d
| ≤ p

dQ
, 1 ≤ i ≤ d, 1 ≤ d ≤ Q, gcd(i, d) = 1}.

Call the index d rich if |Xd| ≥ 2d. Let us denote the rich indices by

d1 < d2 < · · · < ds.

We will collect some facts about the rich indices.

Proposition 8.6.1.
dj ≤ (pm)1/13.

Proof (Proof of Proposition 8.6.1) Let X ′
dj

= {a1, . . . , adj} be any subsequence of
dj elements of Xdj . By Lemma 7.5, for 0 ≤ i ≤ dj − 1 there exists Ai

dj
⊂ X ′

dj
such

that
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|
∑

a∈Ai
dj

a− ip

dj
| ≤ p

Q
.

Choose a sequence Bi
dj
⊂ I0 such that |Bi

dj
| = dj − |Ai

dj
|. By the definition of I0

we have

∑

b∈Bi
dj

|b| ≤ |Bi
dj
|p/(2Q2) ≤ djp/(2Q2) ≤ p/2Q.

Thus

|
∑

a∈Ai
dj

a +
∑

b∈Bi
dj

b− ip

dj
| ≤ 2p/Q. (17)

By definition,
∑

a∈Ai
dj

a+
∑

b∈Bi
dj

b ⊂ d∗j (Xdj∪I0). Thus the inequality (17) implies

that d∗j (X
′
dj
∪ I0) forms a K-net of Zp with K ≤ p/dj + 4p/Q.

Now we claim that K > L. Seeking a contradiction, suppose that K ≤ L. Then

d∗j (X
′
dj
∪ I0) + P = Zp. (18)

Because the cardinality of A′′\X ′
dj

is larger than l,

|A′′\X ′
dj
| = |A′| − |I0| − |J0| − |X ′

dj
| ≥ |A| − |A[| − 4Q ≥ l,

we can choose C ⊂ A′′\X ′
dj

of cardinality |C| = l − dj − l[. Next, by (18) we have

Zp = d∗j (X
′
dj
∪ I0) + P = d∗j (X

′
dj
∪ I0) + P +

∑

c∈C

c ⊂ l∗A.

Thus A is l-complete, a contradiction.

Observe that beside the inequality K > L we also have

L À p/Q and L ≥ λ(pm)12/13/m ≥ 2(pm)12/13/m.

Thus
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dj ≤ 2p/L ≤ (pm)1/13.

Proposition 8.6.1, in particular, implies that the number of rich indices is also small,

s ≤ (pm)1/13.

In the following, we prove a stronger fact.

Proposition 8.6.2. Let D = lcm(d1, . . . , ds). Then we have

D ≤ (pm)1/13.

Proof (Proof of Proposition 8.6.2) For each 1 ≤ i ≤ s let X ′
di

be a subsequence
of cardinality di in Xdi . We claim that (

∑s
i=1 di)∗(

⋃s
i=1 X ′

di

⋃
I0) is a K-net in Zp

with

K ≤ p/D + 4sp/Q.

To prove the claim, first let r be any integer between 0 and D − 1. By Lemma 7.6
there exist 0 ≤ ai ≤ di − 1 such that

∑s
i=1 aip/di = rp/D.

Next choose Ar
di
⊂ X ′

di
such that |∑a∈Ar

di

a − aip/di| ≤ p/Q. Summing these
inequalities over 1 ≤ i ≤ s we obtain

|
∑

a∈⋃s
i=1 Ar

di

a− rp/D| ≤ sp/Q. (19)

In addition, because

s∑

i=1

di ≤ bs(pm)1/9c ≤ b(pm)2/9c = Q = |I0|,

there are disjoint subsequences Br
d1

, . . . , Br
ds

of I0 such that |Br
di
| = dj−|Ar

dj
|. And

by the definotion of I0 we have
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∑

b∈⋃s
i=1 Br

di

|b| ≤ (
s∑

i=1

di)p/(2Q2) ≤ Qp/(2Q2) = p/2Q. (20)

Putting the estimates (19),(20) together to obtain

|
∑

a∈∪Ar
di

a +
∑

b∈∪Br
di

b− rp/D| ≤ sp/Q + p/2Q ≤ 2sp/Q. (21)

Notice that
∑s

i=1(|Ar
di
|+ |Br

di
|) =

∑s
i=1 di. Point (21) concludes the claim.

We now claim that K > L. Assume otherwise. Then

(
s∑

i=1

di)∗(
s⋃

i=1

X ′
di

⋃
I0) + P = Zp. (22)

But

|A′′\
s⋃

i=1

X ′
di
| = |A′| − |I0| − |J0| −

s∑

j=1

dj ≥ |A| − |A[| − 4Q ≥ l,

there exists a subsequence C in A′′\⋃s
i=1 X ′

di
of cardinality |C| = l−∑s

j=1 dj− l[.

Adding elements of C to (22) we achieve

Zp = d∗j (X
′
dj
∪ I0) + P = d∗j (X

′
dj
∪ I0) + P +

∑

c∈C

c.

The last sum of the equality above is a subset of l∗A. Thus A is l-complete, a
contradiction.

In conclusion we have just proved that (
∑s

i=1 di)∗(
⋃s

i=1 X ′
di

⋃
I0) is a K-net in Zp

with

L ≤ K ≤ p/D + 4sp/Q.

In particular,

L ≤ p/D + 4sp/Q,
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λ(pm)12/13/m− 4p(pm)1/13/(pm)3/13 ≤ p/D.

Hence (because λ ≥ 2)

D ≤ (pm)1/13.

For brevity set t :=
∑s

i=1 di, H :=
⋃s

i=1 X ′
di
∪ I0 and

T := t∗H = (
s∑

i=1

di)∗(
s⋃

i=1

X ′
di

⋃
I0).

Recall that T is a K-net with K ≤ p/D + 4sp/Q. We remove H from A′′ and
record the set T for latter use. Let us now prove Lemma 8.6 by putting everything
together.

Proof (Proof of Lemma 8.6) Call an element a of A′′ single if a 6∈ ⋃s
j=1 Xdj . By

Dirichlet’s theorem, any single point is an element of some Xd where d is not rich.
But |Xd| < 2d if d is not rich. Thus by double counting, the number of single
points, denoted by A′′′, is bounded by

|A′′′| ≤
∑

d≤Q

(2d− 1) < 2Q2 = 2(pm)6/13.

Let a be any element of A′′\A′′′, then a ∈ Xdj for some rich dj . Put h = iD/dj .
Then by definition

|a− hp

D
| = |a− ip

dj
| ≤ p

dj
≤ p

Q
.

Furthermore, by Proposition 8.6.1,

D ≤ (pm)1/13.

Add A′′′ to A[, the cardinality of A[ is still O((pm)6/13 log2 p). For 1 ≤ h ≤ D we
let
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Jh = {a|a ∈ A′′,
hp

D
− p

Q
≤ a ≤ hp

D
+

p

Q
}

and

Rh = {a− hp

D
|a ∈ Jh}.

By throwing away a small number (≤ sD ≤ (pm)2/13) of elements to A[, we can
assume that the cardinalities of Rh, 1 ≤ h ≤ s, are divisible by D. Note that the
sum of any D elements of Rh is an integer. We denote by R the sequence of all
reduced elements,

R =
s⋃

h=1

Rh.

Hence for any r ∈ R we have |r| ≤ p/Q.

Let us summarize what we attain up to this step. Up to a proper dilation (with b′

) and translation (with c′), there is a partition of A, A = A[ ∪ J0 ∪ H ∪ A′′ such
that

• |A[| = O((pm)6/13 log2 p) and l[
∗
A[ contains an interval P = [a, a + L] of

length L = λ(pm)12/13/m with some l[ ≤ (pm)6/13 log2 p .
• |H| ≤ 2(pm)3/13 and t∗H contains a p/D + 4sp/Q-net (named T ).
• |J0| = 2Q and J0 ⊂ [−p/(2Q2), p/(2Q2)].

8.7. Completing the proof of Theorem 2.8. Set

l0 := l − l[ − t.

Since the elements of R are small, the set l∗0R(⊂ Q) is dense in the interval in which
it is contained. We show that l∗0R∩Z is also dense in this interval. Suppose for the
moment that this interval is longer than p/D+4sp/Q. Then (l∗0R∩Z)+P contains
another interval of length p/D + 4sp/Q (in Z, as P is viewed as an interval of Z).
We then infer that l∗0A

′′ ∩Z+ P contains an interval of that same length in Zp. So

Zp = l∗0A
′′ + P + T ⊂ l∗A.

Which is impossible. We conclude that l∗0R must be supported by a short interval
of Q. In the following we explain the argument in detail.

Set



26 HOI H. NGUYEN AND VAN H. VU

l2 := l0 −D2 and l1 := l2 −Q = l2 − b(pm)1/3c.

Then

l2 > l1 ≥ l − 2(pm)6/13 log2 p.

Viewing R as a subsequence of Q in [−p/Q, p/Q], our goal is to establish the
following.

Lemma 8.8. Let m1 = minl1≤l′≤l2(min l′∗R) and m2 = maxl1≤l′≤l2(max l′∗R).
Then we have

m2 −m1 < p/D.

Proof (Sketch of proof of Lemma 8.8) Add several (at most D2) elements of R to
the representations of m1 and m2 respectively to make the number of summands
from each class Rh divisible by D. We obtain m′

1,m
′
2 with the following properties.

• m′
i ∈ l′i

∗
R, where l1 ≤ l′i ≤ l2 + D2.

• |m′
i −mi| ≤ D2p/Q. (Because to create m′

i we added at most D2 elements
from R, whose element is bounded by p/Q.)

• m′
1,m

′
2 ∈ Z. (As the sum of any D elements of Rh is an integer.)

By the properties above, we are done with the Lemma if m′
2−m′

1 ≤ p/D−2D2p/Q.
Seeking for contradiction, suppose that

m′
2 −m′

1 > p/D − 2D2p/Q. (23)

Let U1, U2 ⊂ R be sequences of cardinality l′1, l
′
2 respectively such that

∑

u∈Ui

u = m′
i.

The reader should find it straightforward to construct sequences V1, V2, . . . , Vn in
R such that all the following properties hold.

•
V1 = U1, Vn = U2.
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•
min{l′1, l′2} ≤ |Vi| ≤ max{l′1, l′2} for 1 ≤ i ≤ n.

•
|Vi+1\Vi| ≤ D. (24)

• For any 1 ≤ h ≤ s the cardinality of Vi ∩Rh is divisible by D, i.e.,

D||Vi ∩Rh| for 1 ≤ h ≤ s. (25)

Notice that condition (25) guarantees that
∑

v∈Vi
v is an integer, and (24) implies

that

|
∑

v∈Vi+1

v −
∑

v∈Vi

v| ≤ Dp/Q for 1 ≤ i ≤ n.

Thus the set {∑v∈Vi
v|i = 1, . . . , n} is a pD/Q-net (of Z) in the interval [m′

1,m
′
2].

Recall that

|J0| = 2Q > Q + D2 = l0 − l1 ≥ l0 − |Vi|,

i.e. for each 1 ≤ i ≤ n one can choose a sequence Wi of J0 of cardinality l0 − |Vi|
(Wi’s are not necessarily disjoint). Denote Vi ∪Wi by Xi. Then we have |Xi| = l0
and

|
∑

x∈Xi

x−
∑

v∈Vi

v| ≤ (l0 − |Vi|)p/Q2 ≤ (l0 − l1)p/Q2 ≤ p/Q. (26)

Because {∑v∈Vi
v|i = 1, . . . , n} is a Dp/Q-net in [m′

1, m
′
2], we have

[m′
1,m

′
2] ⊂ {

∑

v∈Vi

v|i = 1, . . . , n}+ [0, Dp/Q](modp);

and it follows from (26) that

[m′
1 + p/Q,m′

2 − p/Q] ⊂ {
∑

x∈Xi

x|i = 1, . . . , n}+ [0, 2Dp/Q]. (27)
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We proceed by claiming the following.

Claim 8.8.1. Suppose that (23) holds. Then the set

{
∑

x∈Xi

x + T |i = 1, . . . , n}

is a 8D2p/Q-net of Zp.

Proof (Proof of Claim 8.8.1) Obtain from (27) that

[m′
1 + p/Q,m′

2 + 7D2p/Q] ⊂ {
∑

x∈Xi

x|i = 1, . . . , n}+ [0, 8D2p/Q].

Consequently,

[m′
1 + p/Q,m′

2 + 7D2p/Q] + T ⊂ {
∑

x∈Xi

x|i = 1, . . . , n}+ [0, 8D2p/Q] + T.
(28)

Notice that because T is a p/D + 4sp/Q-net of Zp, and by (23) that

m′
2 + 7D2p/Q−m′

1 − p/Q ≥ p/D + 4D2p/Q > p/D + 4sp/Q,

we have

Zp = [m′
1 + p/Q,m′

2 + 7D2p/Q] + T.

Together with (28) this gives

({
∑

x∈Xi

x|i = 1, . . . , n}+ T ) + [0, 8D2p/Q] = Zp.

To finish the proof of Lemma 8.8 one observes that

L ≥ λp/(pm)1/13 ≥ 8p/(pm)1/13 ≥ 8D2p/Q.

Thus Claim 8.8.1 would give

{
∑

x∈Xi

x + T |i = 1, . . . , n}+ P = Zp.
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However, {∑x∈Xi
x + T |i = 1, . . . , n} + P ⊂ l∗A. Hence A is l−complete, a

contradiction. As a consequence, (23) can not hold.

Now we close the proof of Theorem 2.8. Dilate the whole set A with D. By viewing
D ·A′′ as a sequence of Z in [−Dp/Q, Dp/Q], one sees that

max
l1≤l′≤l2

max(l′∗(D ·A′′))− min
l1≤l′≤l2

min(l′∗(D ·A′′)) = Dm2 −Dm1 < p.

Thus if Φ denotes the linear map b′ · X + c′ then the statement of Theorem 2.8
holds for A[( of the statement ) := Φ−1(A[ ∪ J0 ∪H) and b := Db′, c := Dc′.

9. Sketch of proof of Theorem 2.5

Theorem 2.5 can be verified by following the proof of Theorem 2.8 above. In fact,
the situation here is somewhat simpler. Since the subset sums in Theorem 2.5 do
not need to have a fixed number of summands, we do not have to consider I0 and
J0.

Keep the same notation as in the proof of Theorem 2.8. As an analogue of Lemma
8.8, we can establish the following lemma.

Lemma 9.1. Let m1 = min(SR) and m2 = max(SR). Then we have

m2 −m1 < p/D.

Then by dilating the whole set A with D, one obtains Theorem 2.5.

10. Proof of Theorem 2.2

By Theorem 2.5 there exists a non-zero residue b and a small set A[ ⊂ A of cardi-
nality at most c2f(p,m) such that

∑

a∈b·(A\A[)

‖a‖ < p. (29)

Consider the sequence of positive and negative elements of b · (A\A[),

A+ := b · (A\A[) ∩ [1, (p− 1)/2] and A− := b · (A\A[) ∩ [−(p− 1)/2,−1].
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We shall prove the following.

Lemma 10.1. There exists an absolute constant β such that either |A+| ≤ βf(p,m)
or |A−| ≤ βf(p,m).

Assume for the moment, and without loss of generality, that |A−| ≤ βf(p,m). Then
Theorem 2.2 holds for A[ (of the statement) := A[ ∪ b−1 ·A− and c1 := c2 + β.

Proof (Proof of Lemma 10.1) Assume otherwise that

|A+|, |A−| ≥ βf(p,m) for large positive constant β. (30)

Note that from (29) we have

∑

a∈A+

a < p, and
∑

a∈A−
|a| < p. (31)

Set q := bp/f(p, m)c. Let B+ := A+ ∩ [1, q] and B− := A− ∩ [−1,−q] respectively.

We infer from (31) that

|B+| ≥ (β − 1)f(p,m) and |B−| ≥ (β − 1)f(p,m).

Viewing B+ and B− as sequence of integers in [−q, q], we then reach a contradiction
with the zero-sum-freeness property of A by showing that there exist some elements
of B+ and B− whose sum is 0.

Consider the following two cases.

Case 1: m ≥ p4/9.

By pigeon-hole principle there are two elements a+ ∈ B+, a− ∈ B− whose multi-
plicities (denoted by ma+ , ma− respectively) are large.

ma+ ≥ |B+|/q ≥ (β − 1)f(p,m)/(p/f(p,m)) > (pm)12/13/p > p/(pm)6/13 ≥ q,

and similarly

ma− > q.

Note that 0 ≤ |a−|, a+ ≤ q. Thus |a−| < ma− and a+ < ma+ , which yield
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0 = |a−|a+ + a+a− ∈ SB+ + SB− ⊂ SA, contradiction.

Case 2: 1 ≤ m < p4/9.

Without loss of generality assume that

|
∑

a∈B−
a| ≥

∑

a∈B+

a. (32)

Fix any subset X of B+ of cardinality |X| = f(p,m)/ max(log p,m).

First, one sees that

(f(p, m)/ log p)2 À p/f(pm) = q,

and

(f(p,m)/m)2 À p/f(p, m) = q.

Thus, Theorem 7.1 applied to X (with l = b|X|/2c and d = 1) yields an arithmetic
progression P = {a, a + d, . . . , a + Ld} of length L ≥ c(1)|X|2/2.

Note that P ⊂ SX ⊂ [1, |X|q], thus the difference d of P is bounded, i.e.,

d ≤ |X|q/L ≤ 2q/(c(1)|X|) ¿ (pm)1/13/ log p. (33)

Next, view (B+\X) ∪ B− as a sequence of residues modulo d. We throw away
residues of multiplicity less than d. Let W be the sequence of thrown elements. So
obviously,

|W | ≤ d2 ≤ (pm)2/9/ log2 p.

We consider two subcases.

Subcase 2.1: There exists a nontrivial divisor d1 of d which divides all the re-
maining residues.

Set
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B+
1 := { b

d1
|b ∈ B+\(X ∪W )} and B−

1 := { b

d1
|b ∈ B−\W}.

Observe that

|B+
1 |, |B−

1 | ≥ (β − 1)f(pm)− 2f(p,m)/ log p.

Also, B+
1 , B−

1 ⊂ [−q1, q1] := [−bq/d1c, bq/d1c].

Viewing B+
1 and B−

1 as B+ and B−, we reconsider Case 1 and Case 2. Thus
either a contradiction is obtained or we get B+

2 and B−
2 whose elements are divisible

by some integer d2 ≥ 2. Repeat the process until we get a contradiction thanks
to Case 1 or Subcase 2.2 as follows. (Notice that the process stops after at
most log p steps because qi decreases by a factor of at least 2 with each step, while
|B+

i |, |B−
i | ≥ (β − 2)f(p, m) always.)

Subcase 2.2: There does not exist such divisor of d. Thus the residues are
mutually co-prime with d.

By Lemma 7.7 there exist x1, . . . , xu ∈ X\X, y1, . . . , yv ∈ B− with u + v ≤ d and

a = −
u∑

i=1

xi −
v∑

j=1

yj(modd). (34)

Note that

u∑

i=1

xi + |
v∑

j=1

yj | ≤ dq ¿ dL. (35)

We consider the following two possibilities.

Subcase 2.2.1: |∑v
j=1 yi| −

∑u
i=1 xi ≥ a.

Then by (34) and (35) we get

|
v∑

j=1

yi| −
u∑

i=1

xi ∈ P.

Thus
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|
v∑

j=1

yi| ∈
u∑

i=1

xi + SX ,

and so

0 ∈
v∑

j=1

yi +
u∑

i=1

xi + SX ⊂ SX∪B− ⊂ SA, contracdition .

Subcase 2.2.2: |∑v
j=1 yi| −

∑u
i=1 xi < a.

Then let Y0 =: {y1, . . . , yv}. By Lemma 7.5 one can find Y ′
0 ⊂ B−\Y0 such that

|Y ′
0 | ≤ d and d|∑y∈Y ′0

y.

Set Y1 := Y0 ∪ Y ′
0 . If |∑y∈Y1

y| − ∑u
i=1 xi is still less than a then we again use

Lemma 7.5 to find Y ′
1 ⊂ B−\Y1 such that Y ′

1 has the same property as Y ′
0 . We next

increase Y1 by Y2 := Y1 ∪ Y ′
1 . Repeat the process until we get YN ⊂ B− such that

|
∑

y∈YN−1

y| −
u∑

i=1

xi < a and |
∑

y∈YN

y| −
u∑

i=1

xi ≥ a.

Notice that by (31) we have

u∑

i=1

xi + a + Ld ≤
∑

a∈B+

a ≤ |
∑

y∈B−
y|.

In addition, since q ¿ L,

u∑

i=1

xi + a ≤ |
∑

y∈Y

y| (36)

for any Y ⊂ B− with cardinality |Y | ≥ |B−| − d. Lemma 7.5 and (36) thus ensure
the existence of N above.

In sum,

0 ≤ |
∑

y∈YN

y| −
u∑

i=1

xi − a ≤ Ld

and
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d||
∑

y∈YN

y| −
u∑

i=1

xi − a.

It then follows that

|
∑

y∈YN

y| −
u∑

i=1

xi ∈ P.

0 ∈
∑

y∈YN

y +
u∑

i=1

xi + SX′ ⊂ SX∪Y ⊂ SA, contradiction .
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