
CONCENTRATION OF DISTANCES IN WIGNER MATRICES

HOI H. NGUYEN

Abstract. It is well-known that distances in random iid matrices are highly concentrated around
their mean. In this note we extend this concentration phenomenon to Wigner matrices. Exponential
bounds for the lower tail are also included.

1. Introduction

Let ξ be a real random variable of mean zero, variance one, and there exists a parameter K0 > 0
such that for all t

P(|ξ| ≥ t) = O(exp(−t2/K0)).

Let A = (aij) be a random matrix of size N by N where aij are iid copies of ξ. For convenience,
we denote by ri(A) = (ai1, . . . , ain) the i-th row vector of A.

For a given 1 ≤ n ≤ N − 1 let B be the submatrix of A formed by r2(A), . . . , rn+1(A) and let
H ⊂ RN be the subspace generated by these row vectors. The following concentration result is
well known (see for instance [17, Lemma 43], [14, Corollary 2.1.19] or [11, Corollary 3.1]).

Theorem 1.1. With m = N − n, we have

P
(
|dist(r1, H)−

√
m| ≥ t

)
≤ exp(−t2/K4

0 ).

One can justify Theorem 1.1 by applying concentration results of Talagrand or of Hanson-Wright.
But all of these methods heavily rely on the fact that r1 is independent from H. In fact, Theorem
1.1 holds as long as H is any deterministic non-degenerate subspace.

As Theorem 1.1 has found many applications (see for instance [7, 15, 16, 17]) and as concentration
is useful in Probability in general, it is natural to ask if Theorem 1.1 (or its variant) continues to
hold when r1 and H are correlated. We will address this issue for one of the simplest models, the
symmetric Wigner ensembles. In our matrix model A = (aij), the upper diagonal entries aij , i ≤ j
are iid copies of ξ.
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Theorem 1.2 (Main result, concentration of distance). With the assumption as above, there exists
a sufficiently small positive constant κ depending on the subgaussian parameter K0 of ξ such that

the following holds for any m ≥ logκ
−1
N

P
(
|dist(r1, H)−

√
m| ≥ t

)
= O

(
N−ω(1) +N exp(−κt)

)
.

Note that our bound is weaker than Theorem 1.1 mainly due to the use of other spectral concen-
tration results (Lemma 3.3 and Theorem A.1). Theorem 1.2 also implies identical control for the
distance from r1 to other n rows (not necessarily consecutive). We will be also giving tail bounds
throughout the proof (see for instance Theorem 5.6 and 6.1).

As we have mentioned, the main bottleneck of our problem is that x and H are not independent.
Roughly speaking, one might guess that the distance of r1 = (a11, . . . , a1n) to H is close to the
distance from the truncated vector (a12, . . . , a1n) to the subspace in RN−1 generated by the corre-
sponding truncated row vectors of B. The main problem, however, is that the ”error term” of this
approximation involves a few non-standard statistics of the matrix P which is obtained from B by
removing its first column. Notably, we have to resolve the following two obstacles

(1) the operator norm ‖(PP T )−1‖2 must be under control;

(2) the sum
∑

1≤i≤n((PP T )−1P )ii must be small;

For bounding ‖(PP T )−1‖2 in (1), as it is the reciprocal of the least singular value σn(P ) of P , we
need to find an efficient lower bound for σn(P ).

When n = N − 1, P can be viewed as a random square symmetric matrix of size N − 1 (and so
let’s pass to A). It is known via the work of [5] and [18] that in this case A is non-singular with
very high probability. More quantitatively, the result of Vershynin in [18] shows the following.

Theorem 1.3. There exists a positive constant κ′ such that the following holds. Let σN (A) be the
smallest singular value of A, then for any ε < 1,

P(σN (A) ≤ κ′εN−1/2) = O(ε1/8 + e−N
κ′

).

It is conjectured that the bound can be replaced by O(ε + e−Θ(n)), but in any case these bounds
show that we cannot hope for a good control on σ−1

N . The situation becomes better when we
truncate A as the matrix becomes less singular. In fact this has been observed for quite a long time
(see for instance [1]). Here we will show the following variant of a recent result by Rudelson and
Vershynin from [10].

Theorem 1.4. There exist positive constants δ, κ′ such that the following holds for any ε < 1

P(σn(B) ≤ κ′εmN−1/2) ≤ εδm + e−N
κ′
.

Thus, if m grows to infinity with N , this theorem implies that ‖(PP T )−1‖2 is well under control
with very high probability. We will discuss a detailed treatment for Theorem 1.4 starting from
Section 4 by modifying the approach by Rudelson-Vershynin from [10] and by Vershynin from [18].
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For the task of controlling T =
∑

1≤i≤n((PP T )−1P )ii in (2), which is the main contribution of our

note, there are two main steps. In the first step we show that with high probability ((PP T )−1P )ii

is close to −
∑

1≤j≤n−1((RiR
T
i )−1Ri)j

Di
, where Di has order N and Ri is the matrix obtained from P by

removing its i-th row and column. On the other hand, in the second step we show that T is close
to
∑

1≤j≤n−1((RiR
T
i )−1Ri)j for any 1 ≤ i ≤ n with high probability. These two results will then

imply that T is close to zero. Our detailed analysis will be presented in Section 2 and Section 3.

In short, our proof of Theorem 1.2 uses both spectral concentration and anti-concentration coupled
with linear algebra identities. Given the simplicity of the statement and of its non-Hermitian
counterpart, perhaps it is natural to seek for more direct proof.

To complete our discussion, we give here an application of Theorem 1.2 on the delocalization of the
normal vectors in random symmetric matrices.

Corollary 1.5. Let x be the normal vector of the subspace generated by r2(A), . . . , rN (A). Then
with overwhelming probability

‖x‖∞ = O(
log3/2N√

N
).

This is an analog of a result from [6] where A is a non-symmetric iid matrix, see also [12]. However,
the method in these papers do not seem to extend to our symmetric model.

Finally, as the i-th row vector of the inverse matrix A−1 is orthogonal to all other row vectors of
index different from i of the matrix A, by comparing in each row and then each column, we deduce
the following bound on the entries (A−1)ij of the inverse marix A−1.

Corollary 1.6. With overwhelming probability we have

sup
1≤i,j≤N

|(A−1)ij |
‖A−1‖HS

≤ log3N

N
.

For terminology, we will use both row and column vectors frequently in this note, here ri(A) and
cj(A) stand for the i-th row and j-th column of A respectively. Throughout this paper, we regard
N as an asymptotic parameter going to infinity. We write X = O(Y ), X � Y , or Y � X to denote
the claim that |X| ≤ CY for some fixed C; this fixed quantity C is allowed to depend on other
fixed quantities such as the sub-gaussian parameter K0 of ξ unless explicitly declared otherwise.
We also write X � Y or X = Θ(Y ) for X,Y > 0 to denote the claim that X � Y � X. Lastly,
to simplify our presentation, a same constant may used in different places even when they can be
totally different.
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Figure 1. We sampled 1000 random matrices of size 1000 from GOE and symmetric
Bernoulli ensembles. The histogram represents (dist2−m)/

√
m, where the distance

is measured from the first row to the subspace generated by the next 900 rows.

2. Proof of Theorem 1.2: main ingredients

Let x = r1(A) = (a11, . . . , a1N ) be the first row vector ofA, and yi := ri+1(A) = (a(i+1)1, . . . , a(i+1)N )
be the (i+ 1)-st row vector of A for 1 ≤ i ≤ n. Recall that B is the matrix of size n×N with rows
yi, 1 ≤ i ≤ n. We can represent dist(r1, H) = dist(x, H) by the following formula

dist2(x, H) = x(IN −BT (BBT )−1B)xT . (1)

Lemma 2.1. We have

dist2(x, H) = x[1](IN−1 − P T (PP T )−1P )x[1]T +
[a11 − zT (PP T )−1Px[1]T ]2

1 + zT (PP T )−1z
,

where P be the matrix obtained from B by removing its first column z := (a21, . . . , a(n+1)1)T , and

x[1] is the truncated row vector of x, x[1] = (a12, . . . , a1N ), B =
(
z P

)
.
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Proof. A direct calculation shows

Q := (BBT )−1 = (PP T + zzT )−1 = (PP T )−1 − (PP T )−1zzT (PP T )−1

1 + zT (PP T )−1z
. (2)

Thus BT (BBT )−1B = BTQB, which has the form

BTQB =

(
zTQz zTQP
P TQz P TQP

)
.

Hence,

x(IN −BT (BBT )−1B)xT = xxT − a2
11z

TQz− 2a11z
TQPx[1]T − x[1]P TQPx[1]T .

Using (2), we obtain the following

zTQz = zT (PP T )−1z− (zT (PP T )−1z)2

1 + zT (PP T )−1z
=

zT (PP T )−1z

1 + zT (PP T )−1z
;

as well as

zTQPx[1]T = zT [(PP T )−1 − (PP T )−1zzT (PP T )−1

1 + zT (PP T )−1z
]Px[1]T

= zT (PP T )−1Px[1]T − zT (PP T )−1zzT (PP T )−1Px[1]T

1 + zT (PP T )−1z

=
zT (PP T )−1Px[1]T

1 + zT (PP T )−1z
;

and

x[1]P TQPx[1]T = x[1]P T [(PP T )−1 − (PP T )−1zzT (PP T )−1

1 + zT (PP T )−1z
]Px[1]T

= x[1]P T (PP T )−1Px[1]T − x[1]P T (PP T )−1zzT (PP T )−1Px[1]T

1 + zT (PP T )−1z
.

Putting together, one obtains the following
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dist2(x, H) = x(IN −BT (BBT )−1B)xT

= x[1](IN−1 − P T (PP T )−1P )x[1]T + a2
11 − a2

11

zT (PP T )−1z

1 + zT (PP T )−1z

− 2a11
zT (PP T )−1Px[1]T

1 + zT (PP T )−1z
+

x[1]P T (PP T )−1zzT (PP T )−1Px[1]T

1 + zT (PP T )−1z

= x[1](IN−1 − P T (PP T )−1P )x[1]T

+
a2

11 − 2a11z
T (PP T )−1Px[1]T + x[1]P T (PP T )−1zzT (PP T )−1Px[1]T

1 + zT (PP T )−1z

= x[1](IN−1 − P T (PP T )−1P )x[1]T +
[a11 − zT (PP T )−1Px[1]T ]2

1 + zT (PP T )−1z
,

proving the lemma. �

Note that the term x[1](IN−1−P T (PP T )−1P )x[1]T in Lemma 2.1 is just the squared distance from

x[1] to the subspace generated by the rows of P in RN−1. The key difference here is that x[1] is now
independent of P , so we can apply Theorem 1.1, noting that by Theorem 1.3 with probability at
least 1−exp(−Nκ′) the matrix obtained from A by removing its first row and column has full rank,
and so the co-dimension of the subspace generated by the rows of P in RN−1 is N − 1−n = m− 1
with very high probability.

Theorem 2.2. Assume that the entries of A have subgaussian parameter K0 > 0. Then

P

(
|
√

x[1]T (IN−1 − P T (PP T )−1P )x[1] −
√
m− 1| ≥ λ

)
≤ exp(−λ2/K4

0 ) + exp(−Nκ′).

This confirms the lower tail bound in Theorem 1.2. Thus, in order to prove our main result, we

must study the remaining term [a11−zT (PPT )−1Px[1]T ]2

1+zT (PPT )−1z
in Lemma 2.1.

Theorem 2.3 (Bound on the error term, key lemma). We have

P(
[a11 − zT (PP T )−1Px[1]T ]2

1 + zT (PP T )−1z
≥ t) = O

(
N−ω(1) +N exp(−κt)

)
.

It is clear that Theorem 2.2 and Theorem 2.3 together imply Theorem 1.2. It remains to justify
Theorem 2.3.

3. Proof of Theorem 2.3

We will view P as the matrix of the first n rows of a symmetric matrix A of size N ×N . We will
first need a standard deviation lemma (see for instance [11]).

Lemma 3.1 (Hanson-Wright inequality). There exists a constant C = C(K0) depending on the
sub-gaussian moment such that the following holds.
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(i) Let A be a fixed M×M matrix. Consider a random vector x = (x1, . . . , xM ) where the entries
are i.i.d. sub-gaussian of mean zero and variance one. Then

P(|xTAx−ExTAx| > t) ≤ 2 exp(−C min(
t2

‖A‖2HS
,

t

‖A‖2
)).

In particularly, for any t > 0

P
(
|xTAx−ExTAx| > t‖A‖HS

)
≤ exp(−Ct).

(ii) Let A be a fixed N ×M matrix. Consider a random vector x = (x1, . . . , xM ) where the entries
are i.i.d. sub-gaussian of mean zero and variance one. Then

P (|‖Ax‖2 − ‖A‖HS | > t‖A‖2) ≤ exp(−Ct2).

Here the Hilbert-Schmidt norm of A is defined as

‖A‖HS =

√∑
i,j

a2
ij .

By the first point of Lemma 3.1,

P
(
|zT (PP T )−1z− tr(PP T )−1| > t‖(PP T )−1‖HS

)
≤ exp(−Ct) (3)

and

P

(
|zT (PP T )−1Px[1]T −

∑
i

((PP T )−1P )ii| ≥ t‖(PP T )−1P‖HS

)
≤ exp(−Ct). (4)

3.2. Treatment for z(PP T )−1zT . To estimate (3), we need to consider the stable rank of the
matrix (PP T )−1. By Theorem 1.4 (where B is replaced by P ) and by definition, we have the
following important estimate with very high probability

P(σ−2
n (P ) ≤ (κ′ε)−2N/m2) ≥ 1− ε−δm − exp(−Nκ′). (5)

We next introduce another useful ingredient whose proof is deferred to Appendix A.

Lemma 3.3. Let C1 < C2 be given constants, then there exists a constant C = C(C1, C2) such that

the following holds with probability at least 1−N−ω(1): for any logC N ≤ m ≤ N/C, the intervals

[x0 + C1m/N
1/2, x0 + C2m/N

1/2], 0 < x0 ≤ N/Cm contain Θ(m) singular values of P .

To avoid notational complication, we will assume

p = N−ω(1) + exp(−δm) + exp(−Nκ′), (6)

where the exponent ω(1) might vary in different contexts.
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We deduce the following asymptotic behavior of the trace of (PP T )−1.

Corollary 3.4. With probability at least 1− p,

‖(PP T )−1P‖2HS = tr((PP T )−1) � N/m.

Proof. For the lower bound, let σi, . . . , σj be the Θ(m) singular values of P lying in the interval

[m/N1/2, Cm/N1/2]. Then

tr((PP T )−1) ≥
∑
i≤k≤j

σ−2
i � mN/m2 = N/m.

For the upper bound, first of all by (5), it suffices to assume that all of the singular values of P are

at least cm/N1/2 for some sufficiently small c.

First, it is clear that the inverval [cm/N1/2, C1m/N
1/2] contains O(m) singular values of P . For

the remaining interval [C1m/N
1/2,Θ(N/N1/2)] (where we note that the top singular value of P

has order Θ(N1/2) with probability 1 − exp(−CN)) we divide it into intervals Ik of length (C2 −
C1)m/N1/2 each with 1 ≤ k ≤ Θ(N/m). By Lemma 3.3 the number of singular vectors in each
interval is proportional to m. As such

tr((PP T )−1) =
∑
i

σ−2
i =

∑
k

∑
i∈Ik

σ−2
i �

∑
k

mN/k2m2 � N/m.

�

By Corollary 3.4 and (5),

P(
tr(PP T )−1

‖(PP T )−1‖2
� m) ≥ 1− p. (7)

Notice that

‖(PP T )−1‖HS =

√∑
i

σ2
i ((PP

T )−1) ≤
√
‖(PP T )−1‖2

∑
i

σi((PP T )−1)

=
√
‖(PP T )−1‖2

√
tr((PP T )−1).

As a consequence, with probability at least 1− 2p

tr((PP T )−1)

‖(PP T )−1‖HS
≥
√

tr((PP T )−1)√
‖(PP T )−1‖2

� m1/2, (8)
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where we used (7) in the last estimate.

Combining (3), (7) and (8), we have learned that

Lemma 3.5. There exists a positive constant C such that the following holds for any t > 0,

P
(
|zT (PP T )−1z− tr((PP T )−1)| ≥ Ct

m1/2
tr((PP T )−1)

)
≤ p+ exp(−t/C).

Consequently, with probability at least 1− (p+ exp(−c
√
m))

zT (PP T )−1z � tr((PP T )−1) � N

m
.

3.6. Treatment for zT (PP T )−1Px[1]. To show this quantity small, we will divide the treatment
into two main steps.

Step 1: Set-up. We will present here the calculation for ((PP T )−1P )11, the formula for other
((PP T )−1P )ii follows the same line. We first recall the definition of yi at the beginning of Section
2. For simplicity, we will drop the super index [1] in all yi (as we can view P as the submatrix of
the first n rows of A). One interprets

((PP T )−1P )11 = 〈r1((PP T )−1), c1(P )〉.

Because the matrix PP T depends on c1(P ), we need to separate the dependences. First of all, we
write PP T as a rank-one perturbation PP T = QQT +c1(P )cT1 (P ), where Q is the matrix obtained
from P by removing its first column. By applying the formula for inverting rank-one perturbed
matrices (which will be reused many times)

(PP T )−1 = (QQT + c1(P )cT1 (P ))−1

= (QQT )−1 − [(QQT )−1c1(P )][(c1(P ))T ((QQ)T )−1]

1 + (c1(P ))T (QQT )−1c1(P )
. (9)

It follows that

(PP T )−1c1(P ) = (QQT )−1c1(P )− 1

1 + (c1(P ))T (QQT )−1c1(P )
[(QQT )−1c1(P )][(c1(P ))TQQT )−1]c1(P )

=
1

1 + (c1(P ))T (QQT )−1c1(P )
(QQT )−1c1(P ). (10)

In particular,
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((PP T )−1P )11 = 〈r1((PP T )−1), c1(P )〉 =
1

1 + (c1(P ))T (QQT )−1c1(P )
〈r1((QQT )−1), c1(P )〉.

Now the matrix QQT still depends on c1(P ), so we are going to remove the dependence once more,
this time using Schur complement formula (see [4]).

Fact 3.7. Let M =

(
X Y
Y T Z

)
. Assuming invertibility whenever necessary, we have

M−1 =

(
(X − Y Z−1Y T )−1 −X−1Y (Z − Y TX−1Y )−1

(−X−1Y (Z − Y TX−1Y )−1)T (Z − Y TX−1Y )−1

)
.

Note that QQT can be written as

(
y

[1]
1 (y

[1]
1 )T y

[1]
1 RT

R(y
[1]
1 )T RRT

)
, where R is the matrix obtained from Q

by removing its first row y
[1]
1 . From now on, for short we set

x2 := y
[1]
1 (y

[1]
1 )T

and

d2 := x2 − y
[1]
1 RT (RRT )−1R(y

[1]
1 )T .

To begin with, the top left corner is

(X − Y Z−1Y T )−1 = (x2 − y
[1]
1 RT (RRT )−1R(y

[1]
1 )T )−1 = d−2.

Next, the bottom right Schur complement then can be calculated as

(Z − Y TX−1Y )−1 = [RRT − 1

x2
R(y

[1]
1 )Ty

[1]
1 RT ]−1.

Note that this again can be considered as rank-one perturbation as in (9),

[RRT − 1

x2
R(y

[1]
1 )Ty

[1]
1 RT ]−1 = (RRT )−1 +

1

x2

[(RRT )−1R(y
[1]
1 )T ][y

[1]
1 RT (RRT )−1]

1− 1
x2

y
[1]
1 RT (RRT )−1R(y

[1]
1 )T

= (RRT )−1 +
[(RRT )−1R(y

[1]
1 )T ][y

[1]
1 RT (RRT )−1]

d2
.

Similarly, the top right Schur complement is
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−X−1Y (Z − Y TX−1Y )−1 = − 1

x2
y

[1]
1 RT

[
(RRT )−1 +

[(RRT )−1R(y
[1]
1 )T ][y

[1]
1 RT (RRT )−1]

d2

]

= − 1

x2
y

[1]
1 RT (RRT )−1 + (

1

x2
− 1

d2
)y

[1]
1 RT (RRT )−1

= −d−2y
[1]
1 RT (RRT )−1.

Putting together,

(QQT )−1 =

(
d−2 −d−2y

[1]
1 RT (RRT )−1

−d−2(RRT )−1R(y
[1]
1 )T (RRT )−1 + d−2[(RRT )−1R(y

[1]
1 )T ][y

[1]
1 RT (RRT )−1]

)
(11)

where we note that the involved matrices are invertible by Theorem 1.3 with extremely large
probability.

It follows that

〈r1((QQT )−1), c1(P )〉 = d−2[c1(P )1 − y
[1]
1 RT (RRT )−1c1(P )[1]].

Also, the denominator of (10) can be written as

(c1(P ))T (QQT )−1c1(P ) = d−2[(c1(P )1)2 − 2c1(P )1(c1(P )[1])T (RRT )−1R(y
[1]
1 )]

+ (c1(P )[1])T (RRT )−1c1(P )[1]

+ d−2[(c1(P )[1])T (RRT )−1R(y
[1]
1 )T ][y

[1]
1 RT (RRT )−1c1(P )[1]]

= (c1(P )[1])T (RRT )−1c1(P )[1] + d−2[c1(P )1 − y
[1]
1 RT (RRT )−1c1(P )[1]]2.

Combining the formulas, we arrive at the following.

Lemma 3.8. We have

((PP T )−1P )11 =
c1(P )1 − y

[1]
1 RT (RRT )−1c1(P )[1]

d2(1 + (c1(P )[1])T (RRT )−1c1(P )[1]) + (c1(P )1 − y
[1]
1 RT (RRT )−1c1(P )[1])2

.

To proceed further, note that d2 = x2−y
[1]
1 RT (RRT )−1R(y

[1]
1 )T is just the distance from y

[1]
1 to the

subspace generated by the rows of R, and thus is well concentrated around (N − 1)− (n− 1) = m
by Theorem 1.1, that is with probability at least 1− exp(−cm)

d2 � m. (12)
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Corollary 3.9. With probability at least 1− (p+ exp(−c
√
m)),

|((PP T )−1P )11| = O(
1√
N

).

Consequently,

∑
i

(PP T )−1P )ii = O(
n√
N

) = O(
√
N).

Proof. By Cauchy-Schwarz,

|c1(P )1 − y
[1]
1 RT (RRT )−1c1(P )[1]|

d2(1 + (c1(P )[1])T (RRT )−1c1(P )[1]) + (c1(P )1 − y
[1]
1 RT (RRT )−1c1(P )[1])2

≤ 1

2
√
d2(1 + (c1(P )[1])T (RRT )−1c1(P )[1])

= O(
1√
N

),

where in the last estimate we used d2 � m and Lemma 3.5 for R. �

We also deduce the following consequence.

Corollary 3.10. With probability at least 1− p− exp(−c
√
m)

|c1(P )1 − y
[1]
1 RT (RRT )−1c1(P )[1]| �

√
N.

Proof. By Corollary 3.9, with probability at least 1− p− exp(c
√
m)

|
∑
i

(RT (RRT )−1)ii| = O(
√
N).

Also, by Corollary 3.4, with probability at least 1− p

‖RT (RRT )−1‖2HS = tr((RRT )−1) = O(
N

m
).

Conditioning on these events of R, Lemma 3.1 applied to the random vectors y
[1]
1 and c1(P )[1]

implies that with probability at least 1− exp(−c
√
m)

|y[1]
1 RT (RRT )−1c1(P )[1] −

∑
i

(RT (RRT )−1)ii| ≤
√
m‖RT (RRT )−1‖HS �

√
N.

The proof is complete by noting that due to the sub-gaussian assumption, |c1(P )1| = O(
√
N) with

probability 1− exp(−Θ(N)).
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�

We remark that Lemma 3.5 and Corollary 3.10 allow us to conclude that [x1−zT (PPT )−1Px[1]T ]2

1+zT (PPT )−1z
has

order at most m with high probability, but this is not strong enough for Theorem 2.3. We will
improve this in the next phase of the proof.

Step II: Comparison. In this step we show that
∑

1≤i≤n((PP T )−1P )ii is close to
∑

1≤i≤n−1((RRT )−1R)ii.

Recall that

(PP T )−1 = (QQT + wwT )−1

= (QQT )−1 − 1

1 + wT (QQT )−1w
[(QQT )−1w][wT (QQT )−1]

=: (QQT )−1 −Q′

where for convenience, we denote the second matrix by Q′.

We recall the formula (11) for (QQT )−1 and

P = (w Q) =

(
x0 y
z R

)

where for short we denote w = c1(P ) = (x0, z)T and

d2 = yyT − yRT (RRT )−1RyT .

We now compute
∑

2≤i≤n((PP T )−1P )ii. To do this, we start from (QQT )−1P and eliminate its

first row and column to obtain a matrix M1 of size (n− 1)× (N − 1)

M1 = −d−2(RRT )−1RyTy +
(

(RRT )−1 + d−2[(RRT )−1RyT ][yRT (RRT )−1]
)
R

= (RRT )−1R− d−2(RRT )−1RyTy(I −RT (RRT )−1R)

= (RRT )−1R−M ′1, (13)

with

M ′1 := d−2(RRT )−1RyTy(I −RT (RRT )−1R). (14)

Next, for the contribution of Q′P (after the elimination of its first row and column), we need to
compute the vector (QQT )−1w.
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(QQT )−1w =

(
d−2(x0 − yRT (RRT )−1z)

−x0d
−2(RRT )−1RyT +

(
(RRT )−1 + d−2[(RRT )−1RyT ][yRT (RRT )−1]

)
z

)

=

(
d−2(x0 − yRT (RRT )−1z)

−d−2(x0 − yRT (RRT )−1z)(RRT )−1RyT + (RRT )−1z

)
.

=

(
a

−a(RRT )−1RyT + (RRT )−1z

)
,

with

a := d−2(x0 − yRT (RRT )−1z).

As a result, the bottom left submatrix of (QQT )−1wwT (QQT )−1 is the vector −a2(RRT )−1RyT +
a(RRT )−1z and the bottom right submatrix is the matrix

a2(RRT )−1RyTyRT (RRT )−1+(RRT )−1zzT (RRT )−1−a(RRT )−1RyT zT (RRT )−1−a(RRT )−1zyRT (RRT )−1.

It follows that the matrix M2 obtained by eliminating the first row and column of Q′P can be
written as

M2 =
1

1 + wT (QQT )−1w

[
− a2(RRT )−1RyTy + a(RRT )−1zy

+ a2(RRT )−1RyTyRT (RRT )−1R+ (RRT )−1zzT (RRT )−1R− a(RRT )−1[RyT zT + zyRT ](RRT )−1R
]

=
1

1 + wT (QQT )−1w

[
a2(RRT )−1RyTy(RT (RRT )−1R− I) + a(RRT )−1zy

+ (RRT )−1zzT (RRT )−1R− a(RRT )−1[RyT zT + zyRT ](RRT )−1R
]
. (15)

In summary,

∑
2≤i≤n

((PP T )−1P )ii =
∑

1≤i≤n−1

((RRT )−1R)ii −
∑

1≤i≤n−1

(M ′1 +M2)ii.

In what follows, by using the formulas for M ′1,M2 from (13), (15) we show that
∑

1≤i≤n−1(M ′1 +

M2)ii is negligible.

We will try to simplify the formulae a bit. First,
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1 + wT (QQT )−1w = 1 + (c1(P ))T (QQT )−1c1(P ) = 1 + (c1(P )[1])T (RRT )−1c1(P )[1]

+
1

x2 − y
[1]
1 RT (RRT )−1R(y

[1]
1 )T

[c1(P )1 − y
[1]
1 RT (RRT )−1c1(P )[1]]2

= 1 + zT (RRT )−1z + d−2[x0 − yRT (RRT )−1z]2. (16)

Thus, by Lemma 3.5 together with (12) and Corollary 3.10, with probability at least 1 − (p +
exp(−c

√
m)),

wT (QQT )−1w � tr((RRT )−1) � N

m
. (17)

Also from (14) and (16)

(1 + wT (QQT )−1w)M ′1 = d−2(RRT )−1RyTy(I −RT (RRT )−1R)(1 + zT (RRT )−1z)+

+ a2(RRT )−1RyTy(I −RT (RRT )−1R).

Hence the normalized matrix (1 + wT (QQT )−1w)(M ′1 +M2) can be expressed as

(1 + wT (QQT )−1w)(M ′1 +M2) = ((RRT )−1)
(
d−2(1 + zT (RRT )−1z)RyTy(I −RT (RRT )−1R) + azy

+ zzT (RRT )−1R− a[RyT zT + zyRT ](RRT )−1R
)

:= (RRT )−1S.

We can write the second matrix S as
∑

1 +
∑

2 where

∑
1

: = d−2
([

(x0 − yRT (RRT )−1z)z + (1 + zT (RRT )−1z)RyT
][

y(I −RT (RRT )−1R)
])
,

and ∑
2

:= d−2
([

(y(I −RT (RRT )−1R)yT )z− (x0 − yRT (RRT )−1z))RyT
][

zT (RRT )−1R
])
.

By the triangle inequality,
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|
∑

1≤i≤n−1

(M ′1 +M2)ii| ≤

≤ 1

d2(1 + wT (QQT )−1w)
|x0 − yRT (RRT )−1z||

∑
1≤i≤n−1

(
(RRT )−1zy(I −RT (RRT )−1R)

)
ii
|

+
1

d2(1 + wT (QQT )−1w)
(1 + zT (RRT )−1z)|

∑
1≤i≤n−1

(
(RRT )−1RyTy(I −RT (RRT )−1R)

)
ii
|

+
1

d2(1 + wT (QQT )−1w)
(y(I −RT (RRT )−1R)yT )|

∑
1≤i≤n−1

(
(RRT )−1zzT (RRT )−1R

)
ii
|

− 1

d2(1 + wT (QQT )−1w)
|x0 − yRT (RRT )−1z||

∑
1≤i≤n−1

(
(RRT )−1RyT zT (RRT )−1R

)
ii
|

:= E1 + E2 + E3 + E4. (18)

To complete our estimates for E1, E2, E3, E4, we recall from (8), (12) and Corollary 3.10 that with
probability at least 1− (2p+ exp(c

√
m))

•
m1/2‖(RRT )−1‖HS � tr((RRT )−1), (19)

•
m� d2, (20)

•
|x0 − yRT (RRT )−1z| �

√
N. (21)

In what follows we will be conditioning on these events. To proceed further, we will repeatedly
use the following elementary (Cauchy-Schwarz) fact that if a = (a1, . . . , am1) ∈ Rm1 and b =
(b1, . . . , bm2) ∈ Rm2 are column vectors with m1 ≤ m2 then

∑
1≤i≤m1

(abT )ii =
∑

1≤i≤m1

aibi ≤ ‖a‖2‖b‖2.

By (2) of Theorem 3.1, the following holds with probability at least 1−O(p+ exp(−c
√
m))

|E1| =
1

d2(1 + wT (QQT )−1w)
|x0 − yRT (RRT )−1z||

∑
1≤i≤n−1

(
(RRT )−1zy(I −RT (RRT )−1R)

)
ii
|

� (tr((RRT )−1))−1m−1
√
N‖(RRT )−1‖HS‖(I −RT (RRT )−1R)‖HS

= (tr((RRT )−1))−1m−1
√
N‖(RRT )−1‖HS

√
tr((I −RT (RRT )−1R)2)

= (tr((RRT )−1))−1m−1
√
N‖(RRT )−1‖HS

√
tr(I −RT (RRT )−1R)

� (tr((RRT )−1))−1m−1
√
N
√
m‖(RRT )−1‖HS �

√
N

m
,
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where in the second to last inequality we used the fact that with probability at least 1− exp(−Nκ)
(see also the discussion by Theorem 2.2 and by (12)) the projection matrix I −RT (RRT )−1R onto
the orthogonal complement of the subspace generated by the row vectors of R in RN−2 has trace
N − 2− (n− 2) = m.

Similarly, with probability at least 1−O(p+ exp(−c
√
m))

E2 =
1

d2(1 + wT (QQT )−1w)
(1 + zT (RRT )−1z)|

∑
1≤i≤n−1

(
(RRT )−1RyTy(I −RT (RRT )−1R)

)
ii
|

� (tr((RRT )−1))−1m−1tr((RRT )−1)‖(RRT )−1R‖HS‖(I −RT (RRT )−1R)‖HS

� m−1

√
N

m

√
m =

√
N

m
;

and

E3 =
1

d2(1 + wT (QQT )−1w)
(y(I −RT (RRT )−1R)yT )|

∑
1≤i≤n−1

(
(RRT )−1zzT (RRT )−1R

)
ii
|

≤ (tr((RRT )−1))−1m−1m‖(RRT )−1‖HS‖(RRT )−1R)‖HS
� (tr((RRT )−1))−1/2‖(RRT )−1‖HS � (tr((RRT )−1))−1/2tr((RRT )−1)m−1/2

� (tr((RRT )−1))1/2m−1/2 �
√
N

m
.

Lastly, with probability at least 1−O(p+ exp(−c
√
m)) we also have

|E4| =
1

d2(1 + wT (QQT )−1w)
|x0 − yRT (RRT )−1z||

∑
1≤i≤n−1

(
(RRT )−1RyT zT (RRT )−1R

)
ii
|

� (tr((RRT )−1))−1m−1
√
N‖(RRT )−1R‖2HS

�
√
N

m
.

We sum up below
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|
∑

1≤i≤n
((PP T )−1P )ii −

∑
1≤i≤n−1

((RRT )−1R)ii|

≤ |((PP T )−1P )11|+ |
∑

2≤i≤n
((PP T )−1P )ii −

∑
1≤i≤n−1

((RRT )−1R)ii|

≤ |((PP T )−1P )11|+ |E1|+ E2 + E3 + |E4|

� 1√
N

+

√
N

m
�
√
N

m
.

Lemma 3.11. With probability at least 1−O(p+ exp(−c
√
m)) we have

|E1| �
√
N

m

where E1 =
∑

1≤i≤n((PP T )−1P )ii −
∑

1≤i≤n−1((RRT )−1R)ii.

Here it is emphasized that the index 1 of E1 shows the error of comparison between
∑

1≤i≤n((PP T )−1P )ii
and

∑
1≤i≤n−1((RRT )−1R)ii where R is obtained by removing the first row and column of P . If

we remove its k-th row and column instead, then we use Ek to denote the difference.

3.12. Putting things together. Set

T :=
∑

1≤i≤n
((PP T )−1P )ii.

Recall the formula of ((PP T )−1P )11 in Lemma 3.8

((PP T )−1P )11 =
c1(P )1 − y

[1]
1 RT (RRT )−1c1(P )[1]

d2(1 + (c1(P )[1])T (RRT )−1c1(P )[1]) + (c1(P )1 − y
[1]
1 RT (RRT )−1c1(P )[1])2

.

By the triangle inequality, the numerator can be written as

c1(P )1 − y
[1]
1 RT (RRT )−1c1(P )[1]

= c1(P )1 −
∑

1≤i≤n−1

((RRT )−1R)ii − [y
[1]
1 RT (RRT )−1c1(P )[1] −E

y
[1]
1

y
[1]
1 RT (RRT )−1c1(P )[1]]

= E1 − T − [y
[1]
1 RT (RRT )−1c1(P )[1] −E

y
[1]
1

y
[1]
1 RT (RRT )−1c1(P )[1]] + c1(P )1.

By Lemma 3.1, with probability at least 1−O(p+ exp(−c
√
m) + exp(−Ct)), this can be bounded

from above by −T +O(
√
N/m) + t(‖(RiRTi )−1Ri‖HS + 1), and hence by Corollary 3.4

c1(P )1 − y
[1]
1 RT (RRT )−1c1(P )[1] ≤ −T +O(

√
N/m+ t(

√
N/m+ 1)).
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Furthermore, by Lemma 3.5 and (20), with probability at least 1−O(p+ exp(−c
√
m)) the denom-

inator can be estimated from below by

D1 =
[
x2 − y

[1]
1 RT (RRT )−1R(y

[1]
1 )T

][
1 + (c1(P )[1])T (RRT )−1c1(P )[1]

]
+ [c1(P )1 − y

[1]
1 RT (RRT )−1c1(P )[1]]2 � N.

Thus with probability at least 1−O(p+ exp(−c
√
m) + exp(−Ct))

((PP T )−1P )11 +
T

D1
= O(

√
N/m+ t(

√
N/m+ 1)

N
).

Estimating similarly for (PP T )−1P )ii, i ≥ 2, by the triangle inequality and by taking union bound,
the following holds with probability at least 1−O(Np+N exp(−c

√
m) +N exp(−Ct))

|T + T (
∑
i

1

Di
)| ≤

∑
i

O(

√
N/m+ t(

√
N/m+ 1)

N
)

= O(
√
N/m+ t(

√
N/m+ 1)).

We summarize into a lemma as follows.

Lemma 3.13. With probability at least 1−O(Np+N exp(−c
√
m) +N exp(−Ct)),

|T | = O(
√
N/m+ t(

√
N/m+ 1)).

We now complete the proof of Theorem 2.3. By Hanson-Wright estimates, and by Lemma 3.13,
with probability at least 1−O(Np+N exp(−c

√
m) +N exp(−Ct)),

[x1 − zT (PP T )−1Px[1]T ]2

1 + zT (PP T )−1z
≤

[
|
∑

1≤i≤n((PP T )−1P )ii|+ t‖(PP T )−1P‖HS
]2

tr(PP T )

= O(
(
√
N/m+ t(

√
N/m+ 1))2

N/m
)

= O(t2)

provided that t is sufficiently large. Our proof is then complete by choosing κ (stated in Theorem
2.3) to be any constant smaller than δ, κ′, c.
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4. Proof of Theorem 1.4: sketch

In this section we sketch the idea to prove Theorem 1.4, details of the proof will be presented in
later sections. Roughly speaking, we will follow the treatment by Rudelson and Vershynin from
[10] and by Vershynin from [18] with some modifications. We also refer the reader to a more recent
paper by Rudelson and Vershynin [13] for similar treatments.

We first need some preparations, for a cosmetic reason, let us view B as a column matrix of size N
by n of the last n columns of A from now on,

B =
(
cm+1(A) . . . cN (A)

)
.

Let c0, c1 ∈ (0, 1) be two numbers. We will choose their values later as small constants that depend
only on the subgaussian parameter K0.

Definition 4.1. A vector x ∈ Rn is called sparse if |supp(x)| ≤ c0n. A vector x ∈ Sn−1 is
called compressible if x is within Euclidean distance c1 from the set of all sparse vectors. A vector
x ∈ Sn−1 is called incompressible if it is not compressible.

The sets of compressible and incompressible vectors in Sn−1 will be denoted by Comp(c0, c1) and
Incomp(c0, c1) respectively.

Given a vector random variable x and a radius r, we define the Levy concentration of x (or the
small ball probability with radius r) to be

L(x, r) := sup
u

P(‖x− u‖2 ≤ r).

In order to prove Theorem 1.4, we decopose Sn−1 into compressible and incompressible vectors for
some appropriately chosen parameter c0 and c1. Let EK be the event that

EK = {‖B‖2 ≤ 3K
√
N}.

P
(

min
x∈Sn−1

‖BTx‖2 ≤ ε(
√
N −

√
n) ∩ EK

)
≤ P

(
min

x∈Comp(c0,c1)
‖BTx‖2 ≤ ε(

√
N −

√
n) ∩ EK

)
+ P

(
min

x∈Incomp(c0,c1)
‖BTx‖2 ≤ ε(

√
N −

√
n) ∩ EK

)
.

In this section we only treat with the compressible vectors by giving a stronger bound.

First of all, we bound for a fixed vector x. The following follows from the mentioned work by
Vershynin for symmetric matrices.

Lemma 4.2. [18, Proposition 4.1] For every vector x ∈ Sn−1 one has

L(BTx, c
√
N) = sup

u
P(‖BTx− u‖2 ≤ c

√
N) ≤ exp(−cn).

Now we bound uniformly over all compressible vectors (see also [18, Proposition 4.2]).

Lemma 4.3. We have

P
{

inf
x/‖x‖2∈Comp(c0,c1)

‖Bx− u‖2 ≤ c
√
N‖x‖2 ∩ EK

}
≤ exp(−cn/2).
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Proof. We will sketch the proof. First, it is known that there exists a (2c1)-net N of the set
Comp(c0, c1) such that

N ≤ (9/c0c1)c0n.

Next, by unfolding the vectors, there exists v0 such that if x/‖x‖2 ∈ Comp(c0, c1) with ‖Bx−u‖2 ≤
c
√
N‖x‖2 and assuming EK , then there exists x0 ∈ N such that ‖Bx0 − v0‖2 ≤ c

√
N .

The proof is complete by taking union bound as

(9/c0c1)c0n
20

c1
2 exp(−cn) ≤ exp(−cn/2),

if c0 is chosen small enough depending on c1 and c. �

5. Proof of Theorem 1.4: treatment for incompressible vectors

Let x1, . . . ,xn ∈ RN denote the columns of the matrix B. Given a subset J ⊂ [n]d, where
d = δm = δ(N − n) for some sufficiently small δ to be chosen, we consider the subspace

HJ := span(xi)i∈J .

Define

spreadJ :=
{

y ∈ S(RJ) : K1/
√
d ≤ |yk| ≤ K2/

√
d, k ∈ J

}
,

where S(RJ) is the unit sphere in the Euclidean space determined by the indices of J . In what
follows J is a subset chosen randomly uniformly among the subsets of cardinality d in [n] and PJ
is the projection onto the coordinates indexed by J .

Lemma 5.1. [10, Lemma 6.1] For every c0, c1 ∈ (0, 1), there exist K1,K2, c > 0 which depend only
on c0, c1 such that the following holds. For every x ∈ Incomp(c0, c1), the event

E(x) :=
{
PJx/‖PJx‖2 ∈ spreadJ and c1

√
d/
√

2N ≤ ‖PJx‖2 ≤
√
d/
√
c0N

}
satisfies

PJ(E(x)) > cd.

This lemma follows easily from a simple property of incompressible vectors whose proof is omitted.

Claim 5.2. [10, Lemma 2.5] Let x ∈ Incomp(c0, c1). Then there exists a set σ = σ(x) ⊂ [n] of
cardinality |σ| ≥ c0c

2
1n/2 such that

c1/
√

2n ≤ |xk| ≤ 1/
√
c0n, k ∈ σ.

We now pass our estimate to spreadJ .

Lemma 5.3. Let c0, c1 ∈ (0, 1). There exist C, c > 0 which depend only on c0, c1 such that the
following holds. Then for any ε > 0

P
(

inf
x∈Incomp(c0,c1)

‖Bx‖2 < cε

√
d

n

)
≤ Cd max

J∈[n]d
P
(

inf
z∈spreadJ

dist(Bz, HJc) < ε
)
,
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Where HJc is the subspace generated by the columns of B indexed by Jc.

We remark that there is a slight difference between this result and Lemma [10, Lemma 6.2] in that
we take the supremum over all choices of J , as in this case the distance estimate for each J is not
identical.

Note that the following proof gives K1 = c1

√
c0/2,K2 = 1/K1, c = c2/

√
2, C = 2e/c0c

2
1.

Proof. (of Lemma 5.3) Let x ∈ Incomp(c0, c1). For every J we have

‖Bx‖2 ≥ dist(Bx, HJc) = dist(BPJx, HJc).

Condition on E(x) of Lemma 5.1, we have z = PJx/‖PJx‖2 ∈ spreadJ , and

‖Bx‖2 ≥ ‖PJx‖2 × inf
z∈spreadJ

dist(Bz, HJc) = ‖PJx‖2D(B, J)

with

D(B, J) := inf
z∈spreadJ

dist(Bz, HJc).

Thus on E(x),

‖Bx‖2 ≥ (c
√
d/N)D(B, J).

Define the event

F := {B : PJ(D(B, J) ≥ ε) > 1− cd}. (22)

Markov’s inequality then implies that

PB(Fc) ≤ c−dEBPJ(D(B, J) < ε) ≤ c−dEJPB(D(B, J) < ε)

≤ c−d max
J

PB(D(B, J) < ε).

Fix any realization of B for which F holds, and fix any x ∈ Incomp(c0, c1). Then

PJ(D(B, J) ≥ ε) + PJ(E(x)) ≥ (1− cd) + cd > 1.

Thus for any x there exists J such that E(x) and D(B, J) ≥ ε. We then conclude from (22) that
for any B for which F holds,

inf
x∈Incomp(c0,c1)

‖Bx‖2 ≥ εc
√
d/n,

completing the proof. �

By Lemma 5.3, we need to study P(infz∈spreadJ dist(Bz, HJc) < ε) for any fixed J ⊂ [n]d. From
now on we assume that J = {N − d + 1, . . . , N} as the other cases can be treated similarly. We
restate the problem below.

Theorem 5.4. Let B be the matrix of the last n columns of A, and let J = {N − d + 1, . . . , N}.
Then

P
(

inf
z∈spreadJ

dist(Bz, HJc) ≤ ε
)
≤ εcm +O(exp(−nε0)),

for some absolute constanst c, ε0 > 0.
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Notice that HJc has co-dimension N − (n− d) = m+ d in RN , thus εΘ(m) is expected in the RHS
in Theorem 5.4.

As there is still dependence between Bz and HJc , we will delete the last m rows from B to arrive
at a matrix B′ of size N − d by n. That is

B =
(
cm+1(A) . . . cN (A)

)
=


B′

rN−d+1

. . .
rN


and

B′ =


a1(m+1) a1(m+2) . . . a1N

a2(m+1) a1(m+2) . . . a2N

. . . . . . . . . . . .
a(N−d)(m+1) a(N−d)(m+2) . . . a(N−d)N

 .

We now ignore the contribution of distances from the last d rows by an easy observation

Fact 5.5. Assume that B is as in Theorem 5.6, and B′ is obtained from B by deleting its last d
rows. Then for any z ∈ spreadJ ,

dist(Bz, HJc) ≥ dist(B′z, HJc(B
′)),

where HJc(B
′) is the subspace spanned by the first n− d columns of B′.

By Fact 5.5, to prove Theorem 5.4, it suffices to show

P
(

inf
z∈spreadJ

dist(B′z, HJc(B
′)) ≤ ε

)
≤ εcm +O(exp(−nε0)).

Note that the matrix B′′ generated by the columns of B′ indexed from Jc has size (N−d)×(n−d),
and thus HJc(B

′) has co-dimension (N − d)− (n− d) = m in RN−d. Also

B′′ := (
D
G

),

where G is a random symmetric matrix (inherited from A) of size N −m− d = n− d, and D is a
matrix of size m× (n− d),

B′′ =



a1(m+1) a1(m+2) . . . a1(N−d)

a2(m+1) a1(m+2) . . . a2(N−d)

. . . . . . . . . . . .

a(m+1)(m+1) a1(m+2) . . . a(m+1)(N−d)

. . . . . . . . . . . .
a(N−d)(m+1) a(N−d)(m+2) . . . a(N−d)(N−d)


.

As for any fixed z ∈ spreadJ , the vector B′z is independent of HJc(B
′), and that the entries are

iid copies of a random variable having the same subgaussian property as our original setting. Our
next task is to prove another variant of the distance problem in contrast to Theorem 1.2.
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Theorem 5.6 (Distance problem, lower bound). Let B′ be as above. Let x = (x1, . . . , xN−d) be a
random vector where xi are iid copies of a subgaussian random variable of mean zero and variance
one and are independent of HJc(B

′)), then

P
(

dist(x, HJc(B
′)) ≤ ε

√
m
)
≤ εcm +O(exp(−nε0)),

for some absolute positive constants c, ε0.

We remark that the upper bound of distance is now ε
√
m as we do not normalize x. Notice that

Theorem 5.6 is equivalent with

P
(

dist(x, HJc(B
′)) ≤ t

√
d
)
≤ (t/

√
δ)(cδ−1)d +O(exp(−nε0)), (23)

where

t := ε
√
δ−1.

We will prove Theorem 5.6 in Sections 6 and 7. Assuming it for now, we can pass back to
P(infz∈spreadJ dist(Bz, HJc) < ε) to complete the proof of Theorem 5.4. First of all, for short

let P be the projection onto (HJc(B
′))⊥, and let W be the random matrix W = PB′|RJ . Notice

that for z ∈ spreadJ ,

dist(B′z, (HJc(B
′))⊥) = Wz.

By Theorem 1.1

P(‖W‖2 ≥ K
√
d) ≤ exp(−CK2d) (24)

for any K sufficiently large.

To finish the proof, we rely on the following result from [10] where we will choose K = C0 sufficiently
large so that the RHS exp(−cK2d) of (24) is much smaller than C−m from Lemma 5.3, for instance
one can take

C0 = (c−1) logCm/d = (c−1)(logC)δ−1. (25)

Lemma 5.7. [10, Lemma 7.4] Assume that W is the projection W = PB|RJ , then for an t ≥
exp(−N/d) we have

P
(

inf
z∈spreadJ

‖Wz‖2 < t
√
d and ‖W‖2 ≤ K0

√
d
)
≤ (Ct)cm + exp(−K2

0d).

6. Proof of Theorem 5.6: preparation

Without loss of generality, we restate the result below by changing n to N and d to m.

Theorem 6.1 (Distance problem, again). Let B be the matrix obtained from A by removing its
first m columns. Let H be the subspace generated by the columns of B, and let x = (x1, . . . , xN ) be
a random vector independent of B whose entries are iid copies of a subgaussian random variable of
mean zero and variance one, then

P(dist(x, H) ≤ ε
√
m) ≤ (δε)m +O(exp(−N ε0)),

for some absolute constants δ, ε0 > 0.
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After discovering Theorem 6.1, the current author had found that this result is similar to [13,
Theorem 8.1] (although the result of [13] has a lower bound restriction on ε.) As the proof here is
short thanks to the simplicity of our model, we decide to sketch here for the sake of completion.
Recall that for any random variable S, then the Levy concentration of radius r (or small ball
probability of radius r) is defined by

L(S, r) = sup
s

P(|S − s| ≤ r).

6.2. The least common denominator. Let x = (x1, . . . , xN ). Rudelson and Vershynin [10]
defined the essential least common denominator (LCD) of x ∈ RN as follows. Fix parameters α
and γ, where γ ∈ (0, 1), and define

LCDα,γ(x) := inf
{
θ > 0 : dist(θx,ZN ) < min(γ‖θx‖2, α)

}
.

We remark that for convenience we do not require ‖x‖2 to be larger than 1, and it follows from the
definition that for any δ > 0,

LCDα,γ(δx) ≤ δ−1LCDα,γ(x).

Theorem 6.3. [10] Consider a vector x ∈ RN which satisfies ‖x‖2 ≥ 1. Then, for every α > 0
and γ ∈ (0, 1), and for

ε ≥ 1

LCDα,γ(x)
,

we have

L(S, ε) ≤ C0(
ε

γ
+ e−2α2

),

where C0 is an absolute constant depending on the sub-gaussian parameter of ξ.

The definition of the essential least common denominator above can be extended naturally to higher
dimensions. To this end, consider d vectors x1 = (x11, . . . , x1N ), . . . ,xm = (xm1, . . . , xmN ) ∈ RN .
Define y1 = (x11, . . . , xm1), . . . ,yn = (x1N , . . . , xmN ) be the corresponding vectors in Rm. Then
we define, for α > 0 and γ ∈ (0, 1),

LCDα,γ(x1, . . . ,xm)

:= inf
{
‖Θ‖2 : Θ ∈ Rm,dist((〈Θ,y1〉, . . . , 〈Θ,yN 〉),ZN ) < min(γ‖(〈Θ,y1〉, . . . , 〈Θ,yN 〉)‖2, α)

}
.

The following generalization of Theorem 6.3 gives a bound on the small ball probability for the
random sum S =

∑N
i=1 aiyi, where ai are iid copies of ξ, in terms of the additive structure of the

coefficient sequence xi.

Theorem 6.4 (Diophatine approximation, multi-dimensional case). [10] Consider d vectors x1, . . . ,xm
in RN which satisfies

N∑
i=1

〈yi,Θ〉2 ≥ ‖Θ‖22 for every Θ ∈ Rm, (26)

where yi = (xi1, . . . , xim). Let ξ be a random variable such that supa P(ξ ∈ B(a, 1)) ≤ 1 − b for
some b > 0 and a1, . . . , aN be iid copies of ξ. Then, for every α > 0 and γ ∈ (0, 1), and for

ε ≥
√
m

LCDα,γ(x1, . . . ,xm)
,
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we have

L(S, ε
√
m) ≤

( Cε
γ
√
b

)m
+ Cme−2bα2

.

We next introduce the definition of LCD of a subspace.

Definition 6.5. Let H ⊂ RN be a subspace. Then then LCD of H is defined to be

LCDα,γ(H) := inf
y0∈H,‖y0‖2=1

LCDα,γ(y0).

In what follows we prove some useful results regarding this LCD.

Lemma 6.6. Assume that ‖x1‖2 = · · · = ‖xm‖2 = 1. Let H ⊂ RN be the subspace generated by
x1, . . . ,xm. Then √

mLCDα,γ(x1, . . . ,xm) ≥ LCDα,γ(H).

Proof. (of Lemma 6.6) Assume that

dist((〈Θ,y1〉, . . . , 〈Θ,yN 〉),ZN ) < min(γ‖(〈Θ,y1〉, . . . , 〈Θ,yN 〉)‖2, α).

Set y0 := 1
t (θ1x1 + · · ·+ θmxm) where t is chosen so that ‖y0‖2 = 1. By definition

dist(ty0,Z
N ) = dist((〈Θ,y1〉, . . . , 〈Θ,yN 〉),ZN )

< min(γ‖(〈Θ,y1〉, . . . , 〈Θ,yN 〉)‖2, α)

= min(γ‖ty0‖2, α).

On the other hand, as ‖xi‖2 = 1, one has

‖θ1x1 + · · ·+ θmxm‖2 ≤ |θ1|+ · · ·+ |θm| ≤
√
m‖Θ‖2.

So,
t ≤
√
m‖Θ‖2.

Hence,
LCDα,γ(y0) ≤

√
mLCDα,γ(x1, . . . ,xm).

�

Corollary 6.7. Let H ⊂ RN be a subspace of co-dimension m such that LCD(H⊥) ≥ D for some
D. Let a = (a1, . . . , aN ) be a random vector where ai are iid copies of ξ. Then for any ε ≥ m/D

P(dist(a, H) ≤ ε
√
m) ≤

( Cε
γ
√
b

)m
+ Cme−2bα2

.

Proof. Let e1, . . . , em be an orthogonal basis of H⊥ and let M be the matrix of size m×N generated
by these vectors. By Lemma 6.6,

LCDα,γ(e1, . . . , em) ≥ D/
√
m.

Also, by definition
dist(a, H) = ‖Ma‖2.

Thus by Theorem 6.4, for ε ≥ m
D , we have

L(Ma, ε
√
m) ≤

( Cε
γ
√
b

)m
+ Cme−2bα2

.

�
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Now we discuss another variant of arithmetic structure which will be useful for matrices of correlated
entries.

6.8. Regularized LCD. Let x = (x1, . . . , xN ) be a unit vector. Let c∗, c0, c1 be given constants.
We assign a subset spread(x) so that for all k ∈ spread(x),

c0√
N
≤ |xk| ≤

c1√
N
.

Following Vershynin [18] (see also [8]), we define another variant of LCD as follows.

Definition 6.9 (Regularized LCD). Let λ ∈ (0, c∗). We define the regularized LCD of a vector
x ∈ Incomp(c0, c1) as

L̂CDα,γ(x, λ) = max
{

LCDα,γ

(
xI/‖xI‖2

)
: I ⊆ spread(x), |I| = dλNe

}
.

We will denote by I(x) the maximizing set I in this definition.

Note that in our later application λ can be chosen within n−λ0 ≤ λ ≤ λ0 for some sufficiently small
constant λ0.

From the definition, it is clear that if LCD(x) small then so is L̂CD(x) (with slightly different
parameter).

Lemma 6.10. For any x ∈ SN−1 and any 0 < γ < c1

√
λ/2, we have

L̂CDα,γ(c1
√
λ/2)−1(x, λ) ≤ 1

c0

√
λLCDα,γ(x).

Consequently, for any 0 < γ < 1

L̂CDκ,γ(x, α) ≤ 1

c0

√
αLCDκ,γ(c1

√
α/2)(x).

Proof. (of Lemma 6.10) See [8, Lemma 5.7]. �

We now introduce a result connecting the small ball probability with the regularized LCD.

Lemma 6.11. Assume that

ε ≥ 1

c1

√
λ(L̂CDα,γ(x, λ))−1.

Then we have

L(S, ε) = O

(
ε

γc1
√
λ

+ e−Θ(α2)

)
.

Proof. See for instance [8, Lemma 5.8]. �
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7. Estimating additive structure and completing the proof of Theorem 6.1

Again, we will be following [10, 18] with modifications. A major part of this treatment can also be
found in [8, Appendix B] but allow us to recast here for completion.

We first show that with high probability H⊥ does not contain any compressible vector, where we
recall that H is spanned by the column vectors of B.

Theorem 7.1 (Incompressible of subspace). Consider the event E1,

E1 := {H⊥ ∩Comp(c0, c1) = ∅}.
We then have

P(Ec1) ≤ exp(−cn).

The treatment is similar to Section 4 except the fact that we are working with BT and vectors in
RN . We start with a version of Lemma 4.2.

Lemma 7.2. For every c0-sparse vector x ∈ SN−1 one has

L(BTx, c
√
N) = sup

u
P(‖BTx− u‖2) ≤ exp(−cN).

Proof. Without loss of generality, assume that the last (1 − c0)N components of x are all zero.
What remains is similar to the proof of Lemma 4.2. �

Proof. (of Theorem 7.1) First of all, there exists a (2c1)-net N of sparse vectors only of the set
Comp(c0, c1) such that

|N | ≤ (9/c0c1)c0N .

It is not hard to show that if there exist x ∈ Comp(c0, c1) with ‖BTx − u‖2 ≤ cN1/2‖x‖2 and
assuming EK , then there exists x0 ∈ N such that

‖BTx0 − v0‖2 ≤ c
√
N

for some v0. This leaves us to estimate the probability P(‖BTx0−v0‖2 ≤ c
√
N) for each individual

sparse vector x0, and for this it suffices to apply Lemma 7.2. �

The main goal of this section is to verify the following result.

Theorem 7.3 (Structure theorem). Consider the event E2

E2 := {∀y0 ∈ H⊥ : L̂CDα,c(y0, λ) ≥ N c/λ}.
We then have

P(Ec2) ≤ exp(−cN).

Notice that in this result, c = γ(c0

√
λ)−1. Assume Theorem 7.3 for the moment, we provide a proof

of our distance theorem.

Proof. (of Theorem 6.1) Within E2, L̂CD(y0) is extremely large, and so LCD(H⊥) is also large

because of Lemma 6.6 (where the factor
√
m is absorbed into N c/λ). We then apply Theorem 6.4

(or more precisely, Corollary 6.7) to complete the proof. �
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7.4. Proof of Theorem 7.3. (See also [18] and [8, Appendix B]). The first step is to show that

the set of vectors of small L̂CD accepts a net of considerable size.

Lemma 7.5. Let λ ∈ (c/N, c∗). For every D ≥ 1, the subset {x ∈ Incomp(c0, c1) : L̂CDα,c(x, λ) ≤
D} has a α/D

√
λ-net N of size

|N | ≤ [CD/(λN)c]ND1/λ.

Definition 7.6. Let D0 ≥ γ0

√
N . Define SD0 as

SD0 := {x ∈ Incomp : D0 ≤ LCDα,c(x) ≤ 2D0},

where γ0 is a constant.

Lemma 7.7. [10, Lemma 4.7] There exists a (4α/D0)-net of SD0 of cardinality at most (C0D0/
√
N)N .

One can in fact obtain a more general form as follows .

Lemma 7.8. Let c ∈ (0, 1) and D ≥ D0 ≥ c
√
N . Then the set SD0 has a (4α/D)-net of cardinality

at most (C0D/
√
N)N .

Proof. First, by the lemma above one can cover SD0 by (C0D0/
√
N)N balls of radius 4α/D0. We

then cover these balls by smaller balls of radius 4α/D, the number of such small balls is at most

(5D/D0)N . Thus in total there are at most (20C0D/
√
N)N balls in total. �

Now we put the nets together over dyadic intervals.

Lemma 7.9. Let c ∈ (0, 1) and D ≥ c
√
N . Then the set {X ∈ Incomp(c0, c1) : c

√
N ≤

LCDα,c(X) ≤ D} has a (4α/D)-net of cardinality at most (C0D/
√
N)N log2D.

Notice that in the above lemmas, ‖x‖2 ≥ 1 was assumed implicitly. Using the trivial bound
log2D(D/α) ≤ D2, we arrive at

Lemma 7.10. Let c ∈ (0, 1) and D ≥ c
√
N . Then the set {x ∈ Incomp(c0, c1) : c

√
N ≤

LCDα,c(Bx/‖x‖2) ≤ D} has a (4α/D)-net of cardinality at most (C0D/
√
N)ND2.

Proof. (of Lemma 7.5) Write x = xI0 ∪ spread(x), where spread(x) = I1 ∪ · · · ∪ Ik0 ∪ J such that
|Ik| = λN and |J | ≤ λN . Notice that we trivially have

|spread(x)| ≥ |I1 ∪ · · · ∪ Ik0 | = k0dαne ≥ |spread(x)| − αn ≥ c′n/2.

Thus we have
c′

2α
≤ k0 ≤

2c′

α
.

In the next step, we will construct nets for each xIj . For xI0 , we construct trivially a (1/D)-net N0

of size

|N0| ≤ (3D)|I0|.

For each Ik, as

LCDκ,γ(xIk/‖xIk‖) ≤ L̂CDκ,γ(x) ≤ D,
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by Lemma 7.10 (where the condition LCDκ,γ(xIk/‖xIk‖)�
√
|Ik| follows the standard Littlewood-

Offord estimate because the entries of xIk/‖xIk are all of order
√
αn while κ = o(

√
αn)), one obtains

a (2κ/D)-net Nk of size

|Nk| ≤

(
C0D√
|Ik|

)|Ik|
D2.

Combining the nets together, as x = (xI0 , xI1 , . . . , xIk0 , xJ) can be approximated by y = (yI0 , yI1 , . . . , yIk0 , yJ)

with ‖xIj − yIj‖ ≤ 2κ
D , we have

‖x− y‖ ≤
√
k0 + 1

2κ

D
� κ√

αD
.

As such, we have obtain a β-net N , where β = O( κ√
αD

), of size

|N | ≤ 2n|N0||N1| . . . |Nk0 | ≤ 2n(3D)|I0|
k0∏
k=1

(
CD√
|Ik|

)|Ik|
D2.

This can be simplified to

|N | ≤ (CD)n

√
αn

c′n/2
DO(1/α).

�

Now we complete the proof of Theorem 7.3 owing to Lemma 7.5 and the following bound for any
fixed x.

Lemma 7.11. [18, Proposition 6.11] Let x ∈ Incomp(c0, c1) and λ ∈ (0, c∗). Then for any

ε > 1/L̂CDα,γ(x) one has

L(BTx, ε
√
N) ≤ (

ε

γ
√
λ

+ exp(−α2))N−λN .

Proof. Assume that D ≤ N c/γ . Then with β = α/(Dλ) ≥ 1/D, by a union bound

P
(
∃y0 ∈ H ⊂ SD, ‖BTy0 − u‖2 ≤ β

√
N
)
≤
( ε

γ
√
λ

+ exp(−α2)
)N−λN

× (CD)N

√
λn

c∗N/2
D2/λ = N−cN .

This completes the proof of our theorem. �

8. Application: proof of Corollary 1.5

For short, denote by B the (N − 1) × N matrix generated by r2(A), . . . , rN (A). We will follow
the approach of [12, 6]. Let I = {i1, . . . , im−1} be any subset of size m − 1 of {2, . . . , N}, and
let H be the subspace generated by the remaining columns of B. Let PH be the projection from
RN−1 onto the orthogonal complement H⊥ of H. For now we view PH as an idempotent matrix
of size (N − 1) × (N − 1), P 2

H = PH . It is known (see for instance [18, 5]) that with probability

1− exp(−N c) we have dim(H⊥) = m−1. So without loss of generality we assume tr(PH) = m−1.
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Recall that by definition,

x1c1(B) + xi1ci1(B) + · · ·+ xim−1cim−1(B) +
∑

i/∈{1,i1,...,im−1}

xici(B) = 0. (27)

Thus, projecting onto H⊥ would then yield

x1PHc1(B) + xi1PHci1(B) + · · ·+ xim−1PHcim−1(B) = 0.

It follows that

|x1|‖PH(c1(B))‖2 = ‖xi1PH(ci1(B)) + · · ·+ xim−1PH(cim−1(B))‖2. (28)

Now if m = C log n with sufficiently large C, then by Theorem 1.2 the following holds with over-
whelming probability (that is greater than 1−O(n−C) for any given C)

‖PHc1(B)‖2 �
√
m and ‖PHcij (B)‖2 �

√
m, 1 ≤ j ≤ m− 1;

and hence trivially

|cTij1 (B)PHcij2 (B)| � m, j1 6= j2.

Let EI be this event, on which by Cauchy-Schwarz we can bound the square of the RHS of (28) by

‖xi1PH(ci1) + · · ·+ xim−1PH(cim−1)‖22 � m(
m−1∑
j=1

x2
ij ) +m2(

m−1∑
j=1

x2
ij ).

Thus we obtain

|x1| � m1/2(

m−1∑
j=1

x2
ij )

1/2. (29)

Now let I1, . . . , I n−1
m−1

be any partition of {2, . . . , n} into subsets of size m − 1 each (where for

simplicity we assume m− 1|n− 1). Set

E := ∧1≤j≤ n−1
m−1
EIj .

By a union bound, E holds with overwhelming probability. Furthermore, it follows from (29) that
on E ,

|x1| ≤ min
{
m1/2(

∑
i∈Ij

x2
i )

1/2, 1 ≤ j ≤ n− 1

m− 1

}
.

But as
∑

j

∑
i∈Ij x

2
i = 1− x2

1 < 1, by the pigeon-hole principle

min{
∑
i∈Ij

x2
i , 1 ≤ j ≤

n− 1

m− 1
} ≤ m− 1

n− 1
.

Thus conditioned on E ,

|x1| ≤ m1/2

√
m− 1

n− 1
= O(

(log n)3/2

√
n

).

The claim then follows by Bayes’ identity.
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Appendix A. Proof of Lemma 3.3

We can rely on the powerful concentration result of eigenvalues inside the bulk for random Wigner
matrices from [2], [17] or [3].

Theorem A.1. Let A be a random Wigner matrix as in Theorem 1.1. Let ε, δ be given positive
constants. Then there exists a positive constant κ such that the following holds with probability at

least 1−N−ω(1): let I be any interval of length logκ
−1
N/
√
N inside [0, 2− ε], then the number NI

of eigenvalues λi with modulus |λi| ∈ I is well concentrated

|NI −
∫
x∈I

ρqc(x)dx| ≤ δ
√
NI,

where ρqc(x) = 2
π1x∈[0,2]

√
4− x2 is the quarter-circle density.

As a consequence, with probability at least 1 − N−ω(1), for any logκ
′
N � m � N , any interval

[x0 + C1m/N
1/2, x0 + C2m/N

1/2], x0 ≥ 0 inside the bulk contains at least 2m and at most C ′m
singular values of A, where C1, C2, C

′ depend on δ, ε,K0. Lemma 3.3 then can be obtained by
iterating the Cauchy interlacing law for eigenvalues of submatrices of Hermitian matrices, noting
if A2 is obtained from A1 by removing one of its row, then A2A

∗
2 is a principle submatrix of A1A

∗
1.
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