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Abstract. Let X be a matrix sampled uniformly from the set of doubly stochastic matri-
ces of size n×n. We show that the empirical spectral distribution of the normalized matrix√

n(X − EX) converges almost surely to the circular law. This confirms a conjecture of
Chatterjee, Diaconis and Sly.

1. Introduction

Let M be a matrix of size n× n and let λ1, . . . , λn be the eigenvalues of M . The empirical
spectral distribution (ESD) µM of M is defined as

µM :=
1
n

∑
i≤n

δλi .

We also define µcir as the uniform distribution over the unit disk,

µcir(s, t) :=
1
π
mes

(
|z| ≤ 1;<(z) ≤ s,=(z) ≤ t

)
.

Resolving a long standing conjecture in random matrix theory, Tao and Vu (appendix by
Krishnapur) have proved that the ESD of random i.i.d. matrices obeys the circular law.

Theorem 1.1. [34] Assume that the entries of M are i.i.d. copies of a complex random
variable of mean zero and variance one, then the ESD of the matrix 1√

n
M converges almost

surely to the circular measure µcir.

This result is built on earlier developments by Girko [14, 15], Bai [1], Götze-Tikhomirov [16],
Pan-Zhou [26] and by many others. In view of universality phenomenon, it is of importance
to study the law for random matrices of non-independent entries. Probably one of the
first results in this direction is due to Bordenave, Caputo and Chafai [6] who proved the
following.

Theorem 1.2. [6, Theorem 1.3] Let X be a random matrix of size n × n whose entries
are i.i.d. copies of a non-negative continuous random variable with finite variance σ2 and
bounded density function. Then with probability one the ESD of the normalized matrix
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√
nX̄, where X̄ = (x̄ij)1≤i,j≤n and x̄ij := xij/(xi1 + · · · + xin), converges weakly to the

circular measure µcir.

In particular, when x11 follows the exponential law of mean one, Theorem 1.2 establishes
the circular law for the Dirichlet Markov ensemble (see also [7]).

Related results with ”linear” assumption of independence include a result of Tao, who
among other things proves the circular law for random zero-sum matrices.

Theorem 1.3. [30, Theorem 1.13] Let X be a random matrix of size n× n whose entries
are i.i.d. copies of a random variable of mean zero and variance one. Then the ESD of
the normalized matrix 1√

n
X̄, where X̄ = (x̄ij)1≤i,j≤n and x̄ij := xij − 1

n(xi1 + · · · + xin),
converges almost surely to the circular measure µcir.

With a slightly different assumption of dependence, Vu and the current author showed in
[25] the following.

Theorem 1.4. [25, Theorem 1.2] Let 0 < ε ≤ 1 be a positive constant. Let Mn be a random
(−1, 1) matrix of size n × n whose rows are independent vectors of given row-sum s with
some s satisfying |s| ≤ (1 − ε)n. Then the ESD of the normalized matrix 1

σ
√
n
Mn, where

σ2 = 1− ( sn)2, converges almost surely to the distribution µcir as n tends to ∞.

To some extent, the matrix model in Theorem 1.4 is a discrete version of the random Markov
matrices considered in Theorem 1.2 where the entries are now restricted to ±1/s. However,
it is probably more suitable to compare this model with that of random Bernoulli matrices.
By Theorem 1.1, the ESD of the normalized random Bernoulli matrices obeys the circular
law, and hence Theorem 1.4 serves as a local version of the law.

Although the entries of the matrices above are mildly correlated, the rows are still inde-
pendent. This allows sufficient room so that we can adapt the existing approaches to bear
with the problems. Our focus in this note is on a matrix model whose rows and columns
are not independent.

Theorem 1.5 (Circular law for random doubly stochastic matrices). Let X be a matrix
chosen uniformly from the set of doubly stochastic matrices. Then the ESD of the normalized
matrix

√
n(X −EX) converges almost surely to µcir.

Little is known about the properties of random doubly stochastic matrices as it falls outside
the scope of techniques from the usual random matrix theory. However, there have been
recent breakthrough by Barvinok and Hartigan (see for instance [3, 4, 5]). The Birkhoff
polytope Mn, which is the set of doubly stochastic matrices of size n × n, is the basic
object in operation research because of its appearance as the feasible set for the assignment
problem. Doubly stochastic matrices also serve as a natural model for priors in statistical
analysis of Markov chains. There is a close connection between the Birkhoff polytope and
MS(n, c), the set of matrices of size n×n with non-negative integer entries and all column
sums and row sums equal c. These matrices are called magic squares, which are well known
in enumerative combinatorics. We refer the reader to the work of Chatterjee, Diaconis and
Sly [8] for further discussion.
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There is a strong belief that random doubly stochastic matrices behave like i.i.d. random
matrices. This intuition has been verified in [8] in many ways. Among other things, it has
been shown that the normalized entry nx11 converges in total variation to an exponential
random variable of mean one. More general, the authors of [8] showed that the normalized
projection nXk, where Xk is the submatrix generated by the first k rows and columns
of X and where k = O(

√
n

logn), converges in total variation to the matrix of independent
exponential random variables.

Regarding spectral distribution of X, it has been shown by Chatterjee, Diaconis and Sly that
the empirical distribution of the singular values of

√
n(X −EX) obey the quarter-circular

law.

Theorem 1.6. [8, Theorem 3] Let 0 ≤ σ1, . . . , σn be the singular values of
√
n(X −

EX), where X is a random doubly stochastic matrix. Then the empirical spectral mea-
sure 1

n

∑
i≤n δσi converges in probability and in weak topology to the quarter-circle measure

1
π

√
4− x21[0,2]dx.

The key ingredients in the proof of Theorem 1.6 are a sharp concentration result coupled
with two transference principles (Lemmas 2.2 and 2.3 below). These principles help translate
results from i.i.d random matrices of independent random exponential variables to random
doubly stochastic matrices.

It has been conjectured in [8] that the empirical spectral distribution of
√
n(X−EX) obeys

the circular law, which we confirm now. For the rest of this section we sketch the general
plan to attack Theorem 1.5.

For the entries of X are exchangeable, EX is the matrix Jn of all 1/n. The matrix X−EX
has a zero eigenvalue and we want to single this outlier out due to several technical reasons.
One way to do this is passing to X̄, a matrix of size (n− 1)× (n− 1) defined as

X̄ :=


x22 − x21 · · · x2n − x21

x32 − x31 · · · x3n − x31
...

...
...

xn2 − xn1 · · · xnn − xn1

 .

It is not hard to show that the spectra of
√
n(X −EX) is the union of zero and the spectra

of
√
nX̄. Indeed, consider the matrix λIn −

√
n(X −EX). By adding all other rows to its

first row, and then subtracting the first column from every other column, we arrive at a
matrix whose determinant is λ det(λIn−1−

√
nX̄), thus confirming our observation. Hence,

it is enough to prove the circular law for X̄.

Theorem 1.7 (Main theorem). Let X be a matrix chosen uniformly from the set of doubly
stochastic matrices. Then the ESD of the matrix

√
nX̄ converges almost surely to µcir.

One way to prove our main result above is to showing that the Stieltjes transform of µ√nX̄
converges to that of the circular measure. However, it is slightly more convenient to work
with the logarithmic potential. We will mainly rely on the following machinery from [34,
Theorem 2.1].
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Lemma 1.8. Suppose that M = (mij)1≤i,j≤n is a random matrix. Assume that

• 1
n‖M‖

2
HS = 1

n

∑
i,jm

2
ij is bounded almost surely;

• for almost all complex numbers z0, the logarithmic potential 1
n log |det(M − z0In)|

converges almost surely to f(z0) =
∫
C log |w − z0|dµcir(w).

Then µM converges almost surely to µcir.

We will break the main task into two parts, one showing the boundedness and one proving
the convergence.

Theorem 1.9. Let X be a matrix chosen uniformly from the set of doubly stochastic ma-
trices. Then the square sum

∑
2≤i,j≤n(xij − xi1)2 is bounded almost surely.

The proof of Theorem 1.9 will be presented at the end of Section 2. The heart of our paper
is to establish the convergence of 1

n log |det(
√
nX̄ − z0In−1)|.

Theorem 1.10. For almost all complex numbers z0, 1
n log | det(

√
nX̄ − z0In−1)| converges

almost surely to f(z0).

The main difficulty in establishing Theorem 1.10 is that the entries in each row and each
column of X̄ are not at all independent. To our best knowledge, the convergence for such
model has not been studied before in the literature. We will present its proof in Section 6.

Notation. Here and later, asymptotic notations such as O,Ω,Θ, and so for, are used under
the assumption that n→∞. A notation such as OC(.) emphasizes that the hidden constant
in O depends on C.

For a matrix M , we use the notation ri(M) and cj(M) to denote its i-th row and j-th
column respectively. For an event A, we use the subscript Px(A) to emphasize that the
probability under consideration is taking according to the random vector x.

For a real or complex vector v = (v1, . . . , vn), we will use the shorthand ‖v‖ for its L2-norm(∑
i |vi|2

)1/2.

2. Some properties of random doubly stochastic matrices

We will gather here some basic properties of random doubly stochastic matrices. The reader
is invited to consult [8] for further insight and applications.

2.1. Relation to random i.i.d matrix of exponentials. LetMn be the Birkhoff poly-
tope generated by the permutation matrices. Let Φ be the projection from Rn2

to R(n−1)2

by mapping (xij)1≤i,j≤n to (xij)2≤i,j≤n.

Let Γ : R(n−1)2 → Rn2
denote the following function
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Γ(X) = Γ(X)ij :=


xij 2 ≤ i, j ≤ n;
1−

∑n
k=2 xik 2 ≤ i ≤ n, j = 1;

1−
∑n

k=2 xkj 2 ≤ j ≤ n, i = 1;
1−

∑n
l=2(1−

∑n
k=2 xkl) i = j = 1.

Thus Γ extends a matrix X of size (n − 1) × (n − 1) to a doubly stochastic matrix of size
n × n whose bottom right corner is X. With the above notation, the doubly stochastic
matrices correspond to (n− 1)× (n− 1)-matrices of the set

Sn :=
{
X = (xij)2≤i,j≤n ∈ [0, 1](n−1)2 : 0 ≤ Γ(X)ij ≤ 1

}
.

The distribution of X as a random doubly stochastic matrix is then given by the uniform
distribution on Sn. We next introduce an asymptotic formula by Canfield and Mckay [11]
for the volume of Sn

Vol(Sn) =
1

nn−1

1
(2π)n−1/2n(n−1)2

exp(
1
3

+ n2 + o(1)). (1)

This formula plays a crucial role in the transference principles to be introduced next.

Define

Dn :=
{
Y = (yij)1≤i,j≤n : Φ(

1
n
Y ) ∈ Sn,min

{ 1
n
yij − Γ(Φ(

1
n
Y ))ij

}
≥ 0
}
,

where Φ : Rn2 → R(n−1)2 is the projection X = (xij)1≤i,j≤n 7→ (xij)2≤i,j≤n.

Let Y = (yij)1≤i,j≤n be a random matrix where yij are i.i.d. copies of a random exponential
variable with mean one. As an application of (1), it is not hard to deduce the follow-
ing transference principle between random doubly stochastic matrices X and random i.i.d
matrices Y .

Lemma 2.2. [8, Lemma 2.1] Condition on Y ∈ Dn, we have ( 1
nyij)2≤i,j≤n is uniform on

Sn. Furthermore, for large n we have

P(Y ∈ Dn) ≥ n−4n.

Lemma 2.2 is useful when we want to pass an extremely rare event from the model 1
nY to

the model X. In applications (in particular when working with concentration results), it is
more useful to work with matrices of bounded entries. With this goal in mind we define

S̃n :=
{
X̃ = (x̃ij)2≤i,j≤n ∈ [0, 1](n−1)2 , 0 ≤ Γ(X̃)ij ≤

10 log n
n

}
,
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and

D̃n :=
{
Ỹ = (ỹij)1≤i,j≤n ∈ [0, 10 log n]n

2
,

1
n
Ỹ ∈ S̃n, 0 ≤

1
n
ỹij − Γ(Φ(

1
n
Ỹ ))ij ≤ n−4

}
.

Observe that S̃n corresponds to doubly stochastic matrices X̃ of entries bounded by 10 log n/n.

Let Ỹ = (ỹij)1≤i,j≤n where ỹij are i.i.d. copies of a truncated exponetial ỹ of the following
density function

ρỹ(x) =


exp(−x)/(1− n−10) if x ∈ [0, 10 log n],

0 otherwise.
(2)

It is clear that E(ỹ2) = Θ(1) and E(ỹ4) = Θ(1). We now introduce another transference
principle which is an analogue of Lemma 2.2.

Lemma 2.3. [8, Lemma 4.1] Condition on Ỹ ∈ D̃n, we have that ( 1
n ỹij)2≤i,j≤n is uniform

on S̃n. Furthermore, for large n we have

P(Ỹ ∈ D̃n) ≥ n−10n.

Notice that in the corresponding definition of D̃n in [8, Section 4] the bound 10 log n was
replaced by 6 log n, but one can easily check that this modification does not affect the
validity of Lemma 2.3.

2.4. Relation to random stochastic matrices. Let R = Rr,n denote the r(n − 1)-
dimensional polytope of nonnegative matrices of size r × n whose rows sum to 1. let µr
denote the uniform probability measure on R and let νr denote the measure on R induced
by the first r rows of a random doubly stochastic matrix X. As another application of
(1) (to be more precise, we need a more general form for volume of polytopes generated
by rectangular matrices of constant row and column sums), one can show that these two
measures are comparable as long as r is small.

Lemma 2.5. [8, Lemma 3.3] For a fixed integer r ≥ 1 and n > r the Radon-Nikodym
derivative of the measures µr and νr satisfies

dνr
dµr
≤ (1 + o(1)) exp(r/2)

as n→∞.

It then follows that, in terms of order, there is not much difference between the models X
and X̃.
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Theorem 2.6. Assume that B > 4 is a constant, then

PX(n−B ≤ nx11 ≤ B log n) ≥ 1−O(n−B/2).

In particular, since the entries of X are exchangeable, Theorem 2.6 yields the following.

Corollary 2.7. Assume that X is a random doubly stochastic matrix, then

P(X ∈ S̃n) = P(|xij | ≤ 10 log n/n for all 1 ≤ i, j ≤ n) ≥ 1−O(n−3).

Proof. (of Theorem 2.6) It follows from Lemma 2.5 (for r = 1) that

P(n−B ≤ nx11 ≤ B log n) ≤
(
1 + o(1)

)
exp(1/2)P(n−B ≤ nx1 ≤ B log n),

where x1 has distribution B(1, n− 1).

The claim then follows because

P(n−B ≤ nx1 ≤ B log n) = (n− 1)
∫ B logn

n−B
(1− x)n−2dx

= 1− (n− 1)
(∫ n−B

0
(1− x)n−2dx+

∫ 1

B logn
(1− x)n−2dx

)
≥ 1−O(n−B/2).

�

We end this section by giving a proof for the boundedness of Lemma 1.8.

2.8. A proof for Theorem 1.9. We first focus on the random vector x = (x1, . . . , xn)
chosen uniformly from the simplex S =

{
x = (x1, . . . , xn), 0 ≤ xi ≤ 1,

∑
i xi = 1

}
. Because

each xi has distribution B(1, n− 1), we have

Ex‖x‖2 =
2

n+ 1
. (3)

Also, it can be shown that (for instance from [22, equation (19)])

Exx1x2 =
1

n(n+ 1)
. (4)
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It thus follows from (3) that ‖x‖ = O(1/
√
n) with high probability. It turns out that this

probability is extremely close to one.

Lemma 2.9. Assume that x is sampled uniformly from S and assume that ε > 0 is a
sufficiently small constant. Then there exists a positive constant C > 0 such that

P(‖x‖ ≥ C/
√
n) ≤ exp(−ε

√
n).

We assume Lemma 2.9 for the moment.

Proof. (of Theorem 1.9) First, it follows from Lemma 2.5 (for r = 1) that

P(x2
21 + · · ·+ x2

n1 ≥ C/n) ≤
(
1 + o(1)

)
exp(1/2)P(x2

2 + · · ·+ x2
n ≥ C/n)

= O(1)P(x2
1 + x2

2 + · · ·+ x2
n ≥ C/n)

where (x1, x2, . . . , xn) are sampled uniformly from the simplex S. But Lemma 2.9 indicates
that the RHS is bounded by exp(−ε

√
n). Thus

P(x2
21 + · · ·+ x2

n1 ≥ C/n) = O(exp(−ε
√
n)). (5)

And so, as xij are exchangeable, for any j we also have

P(x2
2j + · · ·+ x2

nj ≥ C/n) = O(exp(−ε
√
n)). (6)

The claim of Theorem 1.9 then follows because
∑

2≤i,j≤n(xij − xi1)2 ≥ C would imply∑n
i=2 x

2
ij ≥ C/4n for some j.

�

It remains to prove for Lemma 2.9. We apply the following concentration result by Paouris.

Theorem 2.10. [27, Theorem 1.1] There exists an absolute constant c > 0 such that if K
is an isotropic convex body in Rn, then

P(x ∈ K, ‖x‖ ≥ c
√
nLKt) ≤ exp(−

√
nt)

for every t ≥ 1, where LK is the isotropic constant of K.

Observe that, by the triangle inequality, for Lemma 2.9 it is enough to give a similar
probability bound for the event ‖x− (1/n, . . . , 1/n)‖ ≥ C/

√
n.
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We first shift S to the hyperplane H := {x′ = (x′1, . . . , x
′
n), x′1 + · · · + x′n = 0} by the

translation x = (x1, . . . , xn) 7→ (x1 − 1/n, . . . , xn − 1/n). We then scale the obtained
body by a factor α = Θ(n) to obtain a regular simplex S′ of volume one. Elementary
computations show that this is an isotropic body of bounded isotropic constant. Indeed, if
x′ = (x′1, . . . , x

′
n) is sampled uniformly from S′ and if Θ = (θ1, . . . , θn) is any unit vector in

H, then by (3) and (4)

Ex′∈S′〈x′,Θ〉2 = Ex′∈S′(
∑
i

θix
′
i)

2

= Ex∈S
∑
i

α2(
∑
i

θi(xi −
1
n

))2

= α2
∑
i

θ2
i (xi −

1
n

)2 + 2α2
∑
i 6=j

θiθj(xi −
1
n

)(xj −
1
n

)

= α2(
2

n(n+ 1)
− 1
n2

)
∑
i

θ2
i + 2α2(

1
n(n+ 1)

− 1
n2

)θiθj

= α2(
1

n(n+ 1)
)
∑
i

θ2
i + α2(

1
n(n+ 1)

− 1
n2

)(
∑
i

θi)2

=
α2

n(n+ 1)
.

Thus the isotropic constant of S′ is of constant order. Theorem 2.10 applied to x′ yields
the following for sufficiently large constant C

P(x′ ∈ S′, ‖x′‖ ≥ C
√
n) ≤ exp(−ε

√
n).

Lemma 2.9 then follows because α‖x− (1/n, . . . , 1/n)‖ = ‖x′‖.

3. The singularity of X̄

In order to justify Theorem 1.10, one of the key steps is to bound the singularity probability
of the matrix

√
nX̄ − z0In−1. This problem is of interest of its own.

We will show the following general result regarding the least singular value σn−1.

Theorem 3.1. Let F = (fij)2≤i,j≤n be a deterministic matrix where |fij | ≤ nγ with some
positive constant γ. Let X be an n × n matrix chosen uniformly from the set of doubly
stochastic matrices. Then for any positive constant B there exists a positive constant A
such that

P(σn−1(X̄ + F ) ≤ n−A) ≤ n−B.

Combine with Theorem 2.7 we obtain the following important corollary which will be re-
served for later applications.
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Corollary 3.2. Let F = (fij)2≤i,j≤n be a deterministic matrix where |fij | ≤ nγ with some
positive constant γ. Let X̃ = (xij) be a random doubly stochastic matrix where xij ≤
10 log n/n for all 1 ≤ i, j ≤ n. Then there exists a positive constant A such that

P(σn−1( ¯̃X + F ) ≤ n−A) = O(n−3).

Here ¯̃X is obtained from X̃ in the same way as how X̄ was defined from X.

We remark that a similar version of Theorem 3.1 had appeared in [34] to deal with random
matrices of i.i.d. entries (see also [6, 25] and the references therein). However, our task here
looks much harder as the entries in each row and each column are not independent. We
will now sketch the proof of Theorem 3.1, more details will be presented in Section 4.

Assume that σn−1(X̄+F ) ≤ n−A. Then, by letting C = (cij)2≤i,j≤n be the cofactor matrix
of X̄ + F , there exist vectors x and y such that ‖x‖ = 1 and ‖y‖ ≤ n−A and

Cy = det(X̄ + F )x.

So

‖Cy‖ = | det(X̄ + F )|.

Thus by Cauchy-Schwarz inequality, with a loss of a factor of n in probability and without
loss of generality we can assume that

n∑
j=2

|c2j |2 ≥ n2A−1| det(X̄ + F )|2. (7)

In what follows we fix the matrix X(n−2)×(n−1) generated by the last (n− 2) rows and the
last (n− 1) columns of X (equivalently, we fix the last (n− 2) rows of X̄).

Let s2, . . . , sn be the column sums of X(n−2)×(n−1). By Theorem 2.6, the probability that
all x11, . . . , x1n, x21, . . . , x2n are greater than n−2B−2 is bounded from below by 1−O(n−B),
in which case we have

si ≤ 1− n−2B−2 for all i ≥ 2, and 0 ≤ s1 := (n− 2)− (s2 + · · ·+ sn) ≤ 1− n−2B−2. (8)

Thus it is enough to justify Theorem 3.1 conditioning on this event.

Next, given a sequence s2, . . . , sn satisfying (8), we will choose x2 := x22, . . . , xn := x2n

uniformly and respectively from the interval [0, 1− s2], . . . , [0, 1− sn] such that
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s1 ≤ x2 + · · ·+ xn ≤ 1. (9)

The upper bound guarantees that x1 := x21 = 1 − (x2 + · · · + xn) ≥ 0, while the lower
bound ensures that x11 = 1− s1 − x21 = x2 + · · ·+ xn − s1 ≥ 0.

We now express det(X̄+F ) as a linear form of its first row (x2−x1 +f22, . . . , xn−x1 +f2n),

det(X̄ + F ) =
∑

2≤j≤n
c2j(X̄ + F )(xj − x1 + f2j).

By using the fact that x1 = 1−
∑

2≤j≤n xj we can rewrite the above as

det(X̄ + F ) =
∑

2≤j≤n
(c2j +

∑
2≤i≤n

c2i)xj + c, (10)

where c is a constant depending on c2j ’s and f2j ’s.

Observe that

∑
2≤j≤n

|c2j +
∑

2≤i≤n
c2i|2 =

∑
2≤j≤n

|c2j |2 + (n+ 1)|
∑

2≤j≤n
c2j |2 ≥

∑
2≤j≤n

|c2j |2.

Thus, by increasing A if needed, we obtain from (7) and (10) the following

|
∑

2≤j≤n
xjaj + c| ≤ n−A,

where

aj :=
c2j +

∑
2≤i≤n c2i

(
∑

2≤j≤n |c2j +
∑

2≤i≤n c2i|2)1/2
. (11)

Roughly speaking, our approach to prove Theorem 3.1 consists of two main steps.

• Inverse step. Given the matrix X(n−2)×(n−1) for which all the column sums si satisfy
(8), assume that

Px2,...,xn

(
|
∑

2≤j≤n
ajxj + c)| ≤ n−A

)
≥ n−B,

where the probability is taken over all xi, 2 ≤ i which satisfy (9). Then there is a
strong structure among the cofactors c2j of X(n−2)×(n−1).



12 HOI H. NGUYEN

• Counting step. With respect to X(n−2)×(n−1), the probability that there is a strong
structure among the cofactors c2j is negligible.

We pause to discuss the structure mentioned in the inverse step. A set Q ⊂ C is a GAP of
rank r if it can be expressed as in the form

Q = {g0 + k1g1 + · · ·+ krgr|ki ∈ Z,Ki ≤ ki ≤ K ′i for all 1 ≤ i ≤ r}
for some (g0, . . . , gr) ∈ Cr+1 and (K1, . . . ,Kr), (K ′1, . . . ,K

′
r) ∈ Zr.

It is convenient to think of Q as the image of an integer box B := {(k1, . . . , kr) ∈ Zr|Ki ≤
ki ≤ K ′i} under the linear map Φ : (k1, . . . , kr) 7→ g0 + k1g1 + · · ·+ krgr.

The numbers gi are the generators of Q, the numbers K ′i and Ki are the dimensions of
Q, and Vol(Q) := |B| is the size of B. We say that Q is proper if this map is one to one,
or equivalently if |Q| = Vol(Q). For non-proper GAPs, we of course have |Q| < Vol(Q). If
−Ki = K ′i for all i ≥ 1 and g0 = 0, we say that Q is symmetric.

We are now ready to state our steps in details.

Theorem 3.3 (Inverse Step). Let 0 < ε < 1 and B > 0 be given constants. Assume that

Px2,...,xn

(
|
∑

2≤j≤n
ajxj + c)| ≤ n−A

)
≥ n−B.

for some sufficiently large integer A, where aj are defined in (11), and xj are chosen uni-
formly from the intervals [0, 1 − si] such that the constraint (9) holds. Then there exists a
vector u = (u2, . . . , un) ∈ Cn−1 which satisfies the following properties.

• 1/2 ≤ ‖u‖ ≤ 2 and |〈u, ri(X̄ + F )〉| ≤ n−A+γ+2 for all but the first row r1(X̄ + F )
of X̄ + F .

• All but n′ components ui belong to a GAP Q (not necessarily symmetric) of rank
r = OB,ε(1), and of cardinality |Q| = nOB,ε(1).

• All the real and imaginary parts of ui and of the generators of Q are rational numbers
of the form p/q, where |p|, |q| ≤ n2A+3/2.

In the second step of the approach we show that the probability for X(n−2)×(n−1) having
the above properties is negligible.

Theorem 3.4 (Counting Step). With respect to X(n−2)×(n−1), or equivalently, with respect
to the last (n− 2) rows of X̄, the probability that there exists a vector u as in Theorem 3.3
is exp(−Θ(n)).

Proof. (of Theorem 3.4) Firstly, we show that the number of structural vectors u described
in Theorem 3.3 is bounded by nOB,ε(n)+OA(nε). Indeed, because each GAP is determined
by its generators and its dimensions, and because all the real and complex parts of the
genrators are of the form p/q where |p|, |q| ≤ n2A+3/2, there are nOA,B,ε(1) GAPs which have
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rank OB,ε(1) and size nOB,ε(1). Next, for each determined GAP Q of size nOB,ε(1), there are
|Q|n = nOB,ε(n) ways to choose the ui as its elements. For the remaining O(nε) exceptional
ui that may not belong to Q, there are nOA(nε) ways to choose them as numbers of the form
p/q where |p|, |q| ≤ n2A+3/2. Putting these together we obtain the bound as claimed.

Secondly, as for each fixed structural vector u from Theorem 3.3 we have |〈u, ri(X̄+F )〉| =
O(n−A+γ+2) for all 2 ≤ i ≤ n− 1. So

∣∣∣∑
2≤j

uj(xij − xi1 + fij)
∣∣∣ =

∣∣∣∑
2≤j

xij(uj +
∑
2≤k

uk)−
∑
2≤j

uj +
∑
2≤j

ujfij

∣∣∣ = O(n−A+γ+2). (12)

We next view this inequality as for the matrix model Y and Ȳ , where Y was introduced in
Section 2 and Ȳ is obtained from Y in the same way as how X̄ was defined from X,

|
∑
2≤j

1
n
yij(uj +

∑
2≤k

uk)−
∑
2≤j

uj +
∑
2≤j

ujfij | = O(n−A+γ+2). (13)

Observe that

∑
2≤j≤k

|uj +
∑

2≤k≤n
uk|2 ≥

∑
2≤k≤n

u2
k ≥ 1/4.

Thus there exits j0 such that

|uj0 +
∑

2≤k≤n
uk| ≥ 1/2

√
n.

It then follows that for each i, with room to spare

P
(∣∣∑

2≤j

1
n
yij(uj +

∑
2≤k

uk)−
∑
2≤j

uj +
∑
2≤j

ujfij
∣∣ = O(n−A+γ+2)

)
= Pyij ,j 6=j0Pyij0

(∣∣ 1
n
yij0(uj0 +

∑
2≤k≤n

uk) +
∑
j 6=j0

1
n
yij(uj +

∑
2≤k≤n

uk)− . . .
∣∣ = O(n−A+γ+2)|yij,j 6=j0

)
= O(n−A+γ+10),

where in the last conditional probability estimate we used the fact that yij are i.i.d expo-
nentials of mean one.

Hence, for each fixed structural vector u, the probability Pu that (13) holds for all rows
ri(Ȳ + F ), 2 ≤ i ≤ n− 1, is bounded by
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Pu ≤ n(−A+γ+10)(n−2).

Summing over structural vectors u, we thus obtain the following upper bound for the
probability that there exists a structural vector u for which (13) holds for all rows ri(Ȳ +
F ), 2 ≤ i ≤ n− 1

∑
u

Pu ≤ nOB,ε(n)+OA(nε)n(−A+γ+10)(n−2) = O(n−An/2),

provided that A is large enough.

To conclude the proof of Theorem 3.4, we use Lemma 2.2 to pass from Y and Ȳ back to
X and X̄. The probability that there exists a structural vector u for which (12) holds for
all rows ri(X̄ + F ), 2 ≤ i ≤ n − 1, is then bounded by O(n−An/2+4n) = O

(
exp(−Θ(n))

)
,

provided that A is sufficiently large. �

4. proof of Theorem 3.3

We recall from the assumption of Theorem 3.3 that

Px2,...,xn

(
|
∑
j≥2

ajxj + c| ≤ n−A
)
≥ n−B, (14)

where x2, . . . , xn are uniformly sampled from the interval [0, 1−s2], . . . , [0, 1−sn] respectively
so that (9) holds.

This is a large concentration of linear form of mildly dependent random variables. Our first
goal is to relax these dependencies.

4.1. A simple reduction step. Let En be the set of all (x2, . . . , xn) uniformly sampled
from [0, 1− s2]× · · ·× [0, 1− sn] so that (9) holds. We recall from (8) that si ≤ 1−n−2B−2.

Consider the event s1 ≤ x′2 + · · · + x′n ≤ 1, where x′i are independently and uniformly
sampled from the interval [0, 1− si] respectively.

Note that E(x′2 + · · · + x′n) =
∑

2≤i≤n(1 − si)/2 = (1 − s1)/2. Since the random variables
x′i − (1 − si)/2 are symmetric and uniform, the density function f(x) of x′2 + · · · + x′n is
maximized at (1− s1)/2 and decreases as |x− (1− s1)/2)| increases. Thus we have
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P
(
(x′2, . . . , x

′
n) ∈ En

)
= P(s1 ≤ x′2 + · · ·+ x′n ≤ 1)

=
∫ 1

s1

f(x)dx =

∫ 1
s1
f(x)dx∫ (1−s2)+···+(1−sn)

0 f(x)dx

≥ 1− s1

(1− s2) + · · ·+ (1− sn)
=

1− s1

1 + s1

= Ω(n−2B−2),

where we noted from (8) that s1 ≤ 1− n−2B−2.

Observe that if we condition on sn ≤ x′2 + · · ·+x′n ≤ 1, then the distribution of (x′2, . . . , x
′
n)

is uniform over the set En. It thus follows from (14) that

Px′2,...,x
′
n

(
|
∑
j≥2

ajx
′
j + c| ≤ n−A

)
≥ n−3B−2. (15)

In the next step of the reduction, we divide the intervals [0, 1 − si] into disjoint intervals
Ii1, . . . , Iiki of length n−3B−2, where ki = (1 − si)/n−3B−2 (without loss of generality, we
assume that ki are integers). Next, to sample x′i uniformly from the interval [0, 1 − si]
we first choose at random an interval from {Ii1, . . . , Iiki} and then sample x′i from it. By
this way, (15) implies that there exist intervals Iiji , 2 ≤ i ≤ n, such that if x′i are chosen
uniformly from Iiji then

Px′2,...,x
′
n

(
|
∑
j≥2

ajx
′
j + c| ≤ n−A

)
≥ n−3B−2. (16)

Observe furthermore that, by shifting c if needed, we can assume that Iiji = [0, n−3B−2] for
all i. Finally, by passing to x′′i := n3B+2x′i and by decreasing A to A − (3B + 2), we can
assume that all x′i are uniformly sampled from the interval [0, 1].

4.2. High concentration of linear form. A classical result of Erdős [12] and Littlewood-
Offord [21] asserts that if bi are real numbers of magnitude |bi| ≥ 1, then the probability that
the random sum

∑n
i=1 bixi concentrates on an interval of length one is of order O(n−1/2),

where xi are i.i.d. copies of a Bernoulli random variable. This remarkable inequality has
generated an impressive way of research, particularly from the early 1960s to the late 1980s.
We refer the reader to [18, 20] and the references therein for these developments.

Motivated by inverse theorems from additive combinatorics, Tao and Vu studied the under-
lying reason as to why the concentration probability of

∑n
i=1 bixi on a short interval is large.

A closer look at the definition of GAPs defined in the previous section reveals that if bi are
very close to the elements of a GAP of rank O(1) and size nO(1), then the concentration
probability of

∑n
i=1 bixi on a short interval is of order n−O(1), where xi are i.i.d. copies of

a Bernoulli random variable.
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It has been shown by Tao and Vu [32, 34, 35] in an implicit way, and by the current author
and Vu [24] in a more explicit way that these are essentially the only examples that have
high concentration probability.

We say that a complex number a is δ-close to a set Q ⊂ C if there exists q ∈ Q such that
|a− q| ≤ δ.

Theorem 4.3 (Inverse Littlewood-Offord theorem for linear forms). [24, Corollary 2.10]
Let 0 < ε < 1 and C > 0. Let β > 0 be an arbitrary real number that may depend on n.
Suppose that bi = (bi1, bi2) are complex numbers such that

∑n
i=1 ‖bi‖2 = 1, and

sup
a

Px(|
n∑
i=1

bixi − a| ≤ β) = ρ ≥ n−C ,

where x = (x1, . . . , xn), and xi are i.i.d. copies of random variable ξ satisfying P(c1 ≤
ξ − ξ′ ≤ c2) ≥ c3 for some positive constants c1, c2 and c3 . Then, for any number n′

between nε and n, there exists a proper symmetric GAP Q = {
∑r

i=1 kigi : ki ∈ Z, |ki| ≤ Li}
such that

• at least n− n′ numbers bi are β-close to Q;

• Q has small rank, r = OC,ε(1), and small cardinality

|Q| ≤ max
(
OC,ε(

ρ−1

√
n′

), 1
)

;

• there exists a non-zero integer p = OC,ε(
√
n′) such that all generators gi = (gi1, gi2)

of Q have the form gij = β
pij
p , with pij ∈ Z and |pij | = OC,ε(β−1

√
n′).

Theorem 4.3 was proved in [24] with c1 = 1, c2 = 2 and c3 = 1/2, but the proof there
automatically extends to any constants 0 < c1 < c2 and 0 < c3.

The interested reader is invited to read also [23],[28],[39] for other variants and further
developments of the inverse results.

We now prove Theorem 3.3. Theorem 4.3 applied to (16), with n′ = nε, C = 3B + 2 and
xi being independently and uniformly distributed over the interval [0, 1], implies that there
exists a vector v = (v2, . . . , vn) such that

• |ai − vi| ≤ n−A for all indices i from {2, . . . , n};

• all but n′ numbers vi belong to a GAP Q of small rank, r = OB,ε(1), and of small
cardinality |Q| = O(nOB,ε(1));

• all the real and imaginary parts of vi and of the generators of Q are rational numbers
of the form p/q, with p, q ∈ Z and |p|, |q| = OB,ε(nA+1/2).

Recall that
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aj =
c2j +

∑
2≤i≤n c2i

(
∑

2≤j≤n |c2j +
∑

2≤i≤n c2i|2)1/2
.

We will translate the above useful information on aj ’s to cj ’s. To do so we fist find a number
of the form p/nA, where p ∈ Z and −nA ≤ p ≤ nA such that

∣∣∣ p
nA
−

∑
2≤j≤n c2j

(
∑

j |c2j +
∑

2≤i≤n c2i|2)1/2

∣∣∣ ≤ 1
nA

.

Thus, by shifting the GAP Q by p/nA, we obtain |a′j − v′j | ≤ 2n−A, and so

‖a′ − v′‖ = O(n−A+1/2),

where a′ = (a′2, . . . , a
′
n),v′ = (v′2, . . . , v

′
n) and

a′j =
c2j

(
∑

j |c2j +
∑

2≤i≤n c2i|2)1/2
, as well as v′j = vj −

p

nA
.

By definition, 1/2n2 ≤
∑
|a′j |2 ≤ 1, so by the triangle inequality

‖v′‖ ≥ ‖a′‖ −O(n−A+1/2) ≥ 1/
√

2n−O(n−A+1/2)

and

‖v′‖ ≤ ‖a′‖+O(n−A+1/2) ≤ 1 +O(n−A+1/2).

More importantly, as a′ is proportional to (c22, . . . , c2n) (which are the cofactors of X̄ +F ),
a′ is orthogonal to all but the first row of X̄ + F . In other words, |〈a′, ri(X̄ + F )〉| = 0 for
all i ≥ 2. It is thus implied that

|〈v′, ri(X̄ + F )〉| ≤ n−A+γ+1.

In the last step of the proof, we find nonzero numbers p′, q′ ∈ Z, |p′|, |q′| = O(n) so that
‖v′‖/2 ≤ p′/q′ ≤ 2‖v′‖.

Set

u :=
q′

p′
v′,
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we then have

• 1/2 ≤ ‖u‖ ≤ 2 and 〈u, ri(X̄ + F )〉 ≤ n−A+γ+2 for all but the first rows of X̄ + F ;

• all but n′ components ui belong to a GAP Q′ (not necessarily symmetric) of small
rank, r = OB,ε(1), and of small cardinality |Q′| = O(nOB,ε(1));

• all the real and imaginary parts of ui and of the generators of Q′ are rational numbers
of the form p/q, with p, q ∈ Z and |p|, |q| = OB,ε(n2A+3/2).

5. Spectral concentration of i.i.d. random covariance matrices

From now on we will mainly focus on the bounded model X̃ rather than on X. This is the
model where we can relate to Ỹ , a matrix of bounded i.i.d entries (defined in Section 2) for
which concentration results may easily apply. Furthermore, by Corollary 2.7, there is not
much difference between the two models X and X̃.

Having learned from Corollary 3.2 that |det(
√
n ¯̃X − z0In−1)| is bounded away from zero,

we will show that 1
n log | det(

√
n ¯̃X − z0In−1)| is well concentrated around its mean. This

result will then immediately imply Theorem 1.10.

In order to study the concentration of det(
√
n ¯̃X − z0In−1), we might first relate it to the

counterpart ¯̃Y . However, the entries of the later model are not independent, and so certain
well-known concentration results for i.i.d matrices are not applicable. To avoid this technical
issue, we will modify

√
n ¯̃X as follows. Observe that

det(
√
n ¯̃X − z0In−1) =

1√
n

det(
√
nX̃(n−1)×n − Fz0), (17)

where Fz0 is the deterministic matrix obtained from z0In−1 by attaching (−
√
n, . . . ,−

√
n)

and (−
√
n, 0, . . . , 0)T as its first row and first column respectively, and X̃(n−1)×n is the

matrix obtained from X̃ by replacing its first row by a zero vector,

√
nX̃(n−1)×n − Fz0 :=


√
n

√
n · · ·

√
n√

nx̃21
√
nx̃22 − z0 · · ·

√
nx̃2n

...
...

. . .
...√

nx̃n1
√
nx̃n2 · · ·

√
nx̃nn − z0

 .

As it turns out, it is more pleasant to work with X̃(n−1)×n because the entries of its coun-

terpart Ỹ(n−1)×n are now independent. To relate the singularity of
√
n ¯̃X − z0In−1 to that

of
√
nX̃(n−1)×n − Fz0 , we have a crucial observation below.
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Claim 5.1. Suppose that A is sufficiently large constant. We have

σn(
√
nX̃(n−1)×n − Fz0) ≥ 1

n
min

( 1√
2n
σn−1(

√
n ¯̃X − z0In−1)−O(n−A), n−A

)
.

To prove this claim, let c1, . . . , cn be the columns of
√
nX̃(n−1)×n−Fz0 . Let v = (v1, . . . , vn)

be any unit vector. If |v1+· · ·+vn| ≥ n−A−1/2, then it is clear that ‖(
√
nX̃(n−1)×n−Fz0)v‖ ≥

|
√
n(v1 + · · ·+ vn)| ≥ n−A. Otherwise, as |v1|2 + · · ·+ |vn|2 = 1, we can easily deduce that

|v2|2 + · · ·+ |vn|2 ≥ 1/2n. Next, by the triangle inequality,

‖(
√
nX̃(n−1)×n − Fz0)v‖ = ‖

∑
2≤i≤n

vici‖ = ‖
∑

2≤i≤n
vi(ci − c1) + (v1 + · · ·+ vn)c1‖

≥ ‖
∑

2≤i≤n
vici‖ − n−A−1/2‖c1‖

≥ (|v2|2 + · · ·+ |vn|2)1/2σn−1(
√
n ¯̃X − z0In−1)−

√
2n−A

≥ 1√
2n
σn−1(

√
n ¯̃X − z0In−1)−O(n−A).

Claim 5.1 guarantees that the polynomial probability bound for σn−1(
√
n ¯̃X − z0In−1) from

Corollary 3.2 continues to hold for σn(
√
nX̃(n−1)×n − Fz0) (with probably worse A).

Theorem 5.2. There exists a positive constant A such that

P(σn(
√
nX̃(n−1)×n − Fz0) ≤ n−A) = O(n−3).

Our goal is then to establish a large concentration of 1
n log | det(

√
nX̃(n−1)×n−Fz0)| around

its mean. We now pass to consider Ỹ .

5.3. Large concentration for Ỹ . Consider the i.i.d matrices Ỹ defined from Section 2,
and let Ỹ(n−1)×n be the matrix obtained from Ỹ by replacing its first row by the zero vector.

We first observe from Claim 5.1 that

σn(
1√
n
Ỹ(n−1)×n − Fz0) ≥ 1

n
min

( 1√
2n
σn−1(

1√
n

¯̃Y − z0In−1)−O(n−A), n−A
)
,

where

1√
n
Ỹ(n−1)×n − Fz0 =


√
n

√
n · · ·

√
n

1√
n
ỹ21

1√
n
ỹ22 − z0 · · · 1√

n
ỹ2n

...
...

. . .
...

1√
n
ỹn1

1√
n
ỹn2 · · · 1√

n
ỹnn − z0

 .
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On the other hand, conditioning on ỹ21, . . . , ỹn1, the entries ỹij − ỹi1 of the matrix ¯̃Y are
independent, and so we can apply known singularity bounds, for instance [31, Theorem
2.1], for i.i.d matrices to conclude that for any positive constant B, there exists a positive
constant A such that P(σn−1( 1√

n
¯̃Y − z0In−1 ≤ n−A) = O(n−B). Returning to Ỹ(n−1)×n, we

hence obtain the following.

Theorem 5.4. For any positive constant B, there exists a positive constant A such that

P(σn(
1√
n
Ỹ(n−1)×n − Fz0) ≤ n−A) = O(n−B).

This bound will be exploited later on.

Next, let H denote the following Hermitian matrix

H := (
1√
n
Ỹ(n−1)×n − Fz0)∗(

1√
n
Ỹ(n−1)×n − Fz0).

It is clear that the eigenvalues λ1(H), . . . , λn(H) of H can be written as

λ1(H) = σ2
1(

1√
n
Ỹ(n−1)×n − Fz0), . . . , λn(H) = σ2

n(
1√
n
Ỹ(n−1)×n − Fz0),

where σi( 1√
n
Ỹ(n−1)×n − Fz0) are the singular values of 1√

n
Ỹ(n−1)×n − Fz0 .

The following concentration result will serve as our main lemma.

Lemma 5.5. Assume that f is a function so that g(x) := f(x2) is convex and has finite
Lipshitz norm ‖g‖L. Then for any δ ≥ CK‖g‖L/n, where K = 10 log n is the upper bound
for the entries of Ỹ(n−1)×n and C is a sufficiently large absolute constant, we have

P

(∣∣∣ n∑
i=1

f(λi(H))−E(
n∑
i=1

f(λi(H)))
∣∣∣ ≥ δn) = O

(
exp(−C ′ n2δ2

K2‖g‖2L
)
)
,

here C ′ and the implied constant depend on C.

Remark that when Fz0 vanishes, Lemma 5.5 is essentially [17, Corollary 1.8] of Guionnet and
Zeitouni. We will show that the method there can be easily extended for any deterministic
matrix Fz0 .

Proof. (of Lemma 5.5) Consider the following Hermitan matrix K2n of size 2n× 2n

K2n =

(
0 ( 1√

n
Ỹ(n−1)×n − Fz0)∗

1√
n
Ỹ(n−1)×n − Fz0 0

)
.
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Apparently,

K2
2n =

(
( 1√

n
Ỹ(n−1)×n − Fz0)∗( 1√

n
Ỹ(n−1)×n − Fz0) 0

0 ( 1√
n
Ỹ(n−1)×n − Fz0)( 1√

n
Ỹ(n−1)×n − Fz0)∗

)
.

So to prove Lemma 5.5, it is enough to show that

P

(∣∣∣ 2n∑
i=1

g(λi(K2n))−E(
2n∑
i=1

g(λi(K2n)))
∣∣∣ ≥ 2δn

)
= O

(
exp(−C ′ n2δ2

K2‖g‖2L
)
)
, (18)

where λi(K2n) are the eigenvalues of K2n.

Next, by following [17, Lemma 1.2] we obtain the following.

Lemma 5.6. The function M 7→ tr(g( 1√
n
M+F )) of Hermitian matrices M = (mij)1≤i,j≤n,

where F is a deterministic Hermitian matrix whose entries may depend on n, is a

• convex function;

• Lipschitz function of constant bounded by 2‖g‖L.

We refer the reader to Appendix A for a proof of Lemma 5.6. To deduce (18) from Lemma
5.6, we apply the following well-known Talagrand concentration inequality [29].

Lemma 5.7. Let D be the disk {z ∈ C, |z| ≤ K}. For every product probability µ in DN ,
every convex function F : CN 7→ R of Lipschitz norm ‖F‖L, and every r ≥ 0,

P(|F −M(F )| ≥ r) ≤ 4 exp(−r2/16K2‖F‖2L),

where M(F ) denotes the median of F .

Indeed, let F be the function : Ỹ ′ 7→ tr(g(K2n)) = tr(g( 1√
n
Ỹ ′ + F ′)), where

Ỹ ′ =

(
0 Ỹ ∗(n−1)×n

Ỹ(n−1)×n 0

)

and

F ′ =
(

0 −F ∗z0
−Fz0 0

)
.
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Observe that the entries of Ỹ ′ are supported on |x| ≤ K = 10 log n. By Lemma 5.6, F is
convex function with Lipschitz constant bounded by 2‖g‖L. The conclusion (18) of Lemma
5.5 then follows by applying Lemma 5.7.

�

In what follows we will apply Lemma 5.5 for two functions, one gives an almost complete
control on the large spectra of H and one yields a good bound on the number of small
spectra of H. We will choose c to be a sufficiently small constant, and with room to spare
we set

ε = δ = Θ(n−c).

5.8. Concentration of large spectra for i.i.d matrices. Following [10] and [13], we
first apply Lemma 5.5 to the cut-off function fε(x) := log(max(ε, x)). Note that fε(x2) has
Lipschitz constant 2ε−1/2. Although the function is not convex, it is easy to write it as a
difference of two convex functions of Lipschitz constant O(ε−1/2), and so Lemma 5.5 applies
because δ = Θ(n−c) ≥ Cε1/2K/n.

Theorem 5.9. We have

P

∣∣∣ ∑
σ2
i ( 1√

n
Ỹ(n−1)×n−Fz0 )∈Sε

log σi(
1√
n
Ỹ(n−1)×n − Fz0)−E

( ∑
σ2
i (... )∈Sε

log σi(. . . )
)∣∣∣ ≥ δn



= O
(

exp(−n2δ2ε/K2)
)

= O(exp(−n log2 n)),

where Sε := {x ∈ R, x ≥ ε}.

For short, from now on we set

hε,Ỹ(n−1)×n
(z0) :=

1
n

E
( ∑
σ2
i ( 1√

n
Ỹ(n−1)×n−Fz0 )∈Sε

log σi(
1√
n
Ỹ(n−1)×n − Fz0)

)
.

Serving as the main term, hε,Ỹ(n−1)×n
(z0) will play a key role in our analysis. In our next

subsection we apply Lemma 5.5 to another function f .

5.10. Concentration of the number of small eigenvalues for i.i.d matrices. Let I
be the interval [0, ε]. We are going to show that the number NI of the eigenvalues λi(H)
which belong to I is small with very high probability.
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It is not hard to construct two functions f1, f2 such that (f1− f2)− 1I is non-negative and
supported on an interval of length ε/C, and so that both of g1(x) = f1(x2) and g2(x) =
f2(x2) are convex functions of Lipschitz constant O(ε−1/2). (For instance one may construct
f1(x), f2(x) in such a way that the even function g1(x) = f1(x2) is identical to 1 on the
interval [ε1/2, ε1/2] and being straight concave down from both edges with a slope ofO(ε−1/2),
while the graph of the function g2(x) = f2(x2) is obtained from that of g1(x) by replacing
its positive part with zero).

Next, by Lemma 5.5 we have

P

∣∣∣ ∑
λi(H)

f1(λi(H))−E(
∑
λi(H)

f1(λi(H)))
∣∣∣ ≥ δn

 = O
(

exp(−n log2 n)
)
,

and

P

∣∣∣ ∑
λi(H)

f2(λi(H))−E(
∑
λi(H)

f2(λi(H))
∣∣∣ ≥ δn

 = O
(

exp(−n log2 n)
)
.

By the triangle inequality, we thus have

P

∣∣∣ ∑
λi(H)

(f1 − f2)(λi(H))−E(
∑
λi(H)

(f1 − f2)(λi(H)))
∣∣∣ ≥ 2δn

 = O
(

exp(−n log2 n)
)
.

Because the error-function f = (f1−f2)−1I is nonnegative, it follows that with probability
1−O(exp(−n log2 n))

∑
λi(H)

1I(λi(H)) +
∑
λi(H)

f(λi(H)) ≤ E
( ∑
λi(H)

(f1 − f2)(λi(H))
)

+ 2δn,

and hence

NI =
∑
λi(H)

1I(λi(H)) ≤ E
( ∑
λi(H)

(f1 − f2)(λi(H))
)

+ 2δn

≤ 2E
( ∑
λi(H)

1J(λi(H))
)

+ 2δn

≤ 2E(NJ) + 2δn,
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where J is the interval [0, ε+ ε/C] and NJ is the number of eigenvalues of H in J . (Strictly
speaking, we have to set J = [−ε/C, ε+ ε/C]. However, as λi are non-negative, we can omit
its negative interval.)

To exploit the above information furthermore, we apply a result saying that NJ has small
expected value (see also [37, Proposition 28] and the references therein).

Lemma 5.11. For all J ⊂ R with |J | ≥ K2 log2 n/n1/2, one has

NJ � n|J |

with probability 1− exp(−ω(log n)). In particular,

E(NJ) ≤ Cn|J |,
where C is a sufficiently large constant.

Remark that this result holds for any deterministic matrix F0 in the definition of H. We
defer the proof of Lemma 5.11 to Appendix B.

In summary, we have obtained the following result.

Theorem 5.12. With probability O(exp(−n log2 n)), we have

NI ≥ 2Cεn+ 2δn,

where NI is the number of σi( 1√
n
Ỹ(n−1)×n − Fz0) such that σ2

i (
1√
n
Ỹ(n−1)×n − Fz0) ∈ [0, ε].

Consequently, it follows from Theorems 5.4 and 5.12 that with probability 1−O(n−B) the
following holds

1
n

∑
σ2
i ( 1√

n
Ỹ(n−1)×n−Fz0 )∈[0,ε]

log σi(
1√
n
Ỹ(n−1)×n − Fz0) = O((ε+ δ) log n) = O(n−c log n).

Thus, combining with Theorem 5.9, we infer the following.

Theorem 5.13. Let z0 be fixed and let B be a positive constant. Then the following holds
with probability 1−O(n−B)

∣∣∣∣ 1n log |det(
1√
n
Ỹ(n−1)×n − Fz0)| − hε,Ỹ(n−1)×n

(z0)
∣∣∣∣ ≤ 2δ +O(n−c log n) = O(n−c log n),

where the implied constants depend on B.
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5.14. Asymptotic formula for hε,Ỹ(n−1)×n
(z0). We next claim that 1

n log |det( 1√
n
Ỹ(n−1)×n−

Fz0)| also converges to the corresponding part of the circular law, and so giving an asymp-
totic formula for hε,Ỹ(n−1)×n

(z0).

Theorem 5.15. For almost all z0, the following holds with probability one

1
n

log | det(
1√
n
Ỹ(n−1)×n − Fz0)| −

∫
C

log |w − z0|dµcir(w) = o(1). (19)

Note that this result is more or less a circular law for random matrices of i.i.d. entries. To
prove it we just simply rely on [34].

Proof. (of Theorem 5.15) We first pass to ¯̃Y

¯̃Y =


ỹ22 − ỹ21 · · · ỹ2n − ỹ21

ỹ32 − ỹ31 · · · ỹ3n − ỹ31
...

...
...

ỹn2 − ỹn1 · · · ỹnn − ỹn1

 ,

where ỹij are i.i.d. copies of ỹ.

As

det(
1√
n
Ỹ(n−1)×n − Fz0) =

√
n det(

1√
n

¯̃Y − z0In−1),

it is enough to prove the claim for det( 1√
n

¯̃Y − z0In−1).

View ¯̃Y as a sum of the matrix (ỹij)2≤i,j≤n and R, the (n − 1) × (n − 1) matrix formed
by (−ỹi1, . . . ,−ỹi1) for 2 ≤ i ≤ n. Because R has rank one and the average square of its
entries 1

n−1

∑
i ỹ

2
i1 is bounded almost surely (with respect to ỹ21, . . . , ỹn1), [34, Corollary

1.15] applied to ¯̃Y implies that the ESD of 1√
n

¯̃Y converges almost surely to the circular law.

Finally, thanks to [34, Theorem 1.20], for almost all z0 the following holds with probability
one

1
n

log
∣∣det(

1√
n

¯̃Y − z0In−1)
∣∣− ∫

C
log |w − z0|dµcir(w) = o(1).

�

Theorems 5.13 and 5.15 immediately imply that for almost all z0
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hε,Ỹ(n−1)×n
(z0)−

∫
C

log |w − z0|dµcir(w) = o(1). (20)

By substituting (20) back to Theorem 5.9, we have

P

∣∣∣ 1
n

∑
σ2
i ( 1√

n
Ỹ(n−1)×n−Fz0 )∈Sε

log σi(
1√
n
Ỹ(n−1)×n − Fz0)−

∫
C

log |w − z0|dµcir(w)
∣∣∣ ≥ δ + o(1)


= O(exp(−n log2 n)). (21)

6. Large concentration for X̃, proof of Theorem1.10

In this section we will apply the transference principle of Lemma 2.3 to pass the results of
Section 5 back to X̃. Our treatment here is similar to [8, Section 4].

By Lemma 2.3 and (21), conditioning on Ỹ ∈ D̃n we have

P

∣∣∣ 1
n

∑
σ2
i ( 1√

n
Ỹ(n−1)×n−Fz0 )∈Sε

log σi(
1√
n
Ỹ(n−1)×n − Fz0)−

∫
C

log |w − z0|dµcir(w)
∣∣∣ ≥ δ + o(1)|Ỹ ∈ D̃n


= O(n10n exp(−n log2 n)) = O(exp(−n log2 n/2)). (22)

Next, for each Ỹ ∈ D̃n we will compare the singular values of 1√
n
Ỹ(n−1)×n − Fz0 with those

of
√
nX̃(n−1)×n−Fz0 , where X̃ is determined by Φ( 1

n Ỹ ), i.e. x̃ij = 1
n ỹij for all 2 ≤ i, j ≤ n.

By definition, as Ỹ ∈ D̃n, we have | 1n ỹi1 − x̃i1| ≤ n−4, and so the operator norm of the
difference matrix is bounded by

∥∥∥(
1√
n
Ỹ(n−1)×n − Fz0)− (

√
nX̃(n−1)×n − Fz0)

∥∥∥ ≤ 1
n2
.

This leads to a similar bound for the singular values for every i (see for instance [19])

∣∣∣σi( 1√
n
Ỹ(n−1)×n − Fz0)− σi(

√
nX̃(n−1)×n − Fz0)

∣∣∣ ≤ 1
n2
. (23)

Notice furthermore that, conditioning on Ỹ ∈ D̃n, Φ( 1
n Ỹ ) is uniformly distributed on the

set S̃n of bounded doubly stochastic matrices X̃. Thus, by a slight modification of ε by
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an amount of n−2 (thus the order of ε remains Θ(n−c)), we obtain from (22) the following
upper tail bound with respect to X̃

P

 1
n

∑
σ2
i (
√
nX̃(n−1)×n−Fz0 )∈Sε+n−2

log σi(
√
nX̃(n−1)×n − Fz0)−

∫
C

log |w − z0|dµcir(w) ≥ δ + o(1)



= O(exp(−n log2 n/2)).

Also, we obtain a similar probability bound for the lower tail

P

 1
n

∑
σ2
i (
√
nX̃(n−1)×n−Fz0 )∈Sε−n−2

log σi(
√
nX̃(n−1)×n − Fz0)−

∫
C

log |w − z0|dµcir(w) ≤ −(δ + o(1))



= O(exp(−n log2 n/2)).

Notice that these bounds hold for any ε = Θ(n−c). By gluing them together we infer the
following variant of (22).

Theorem 6.1. With respect to X̃ we have

P

∣∣∣ 1
n

∑
σ2
i (
√
nX̃(n−1)×n−Fz0 )∈Sε

log σi(
√
nX̃(n−1)×n − Fz0)−

∫
C

log |w − z0|dµcir(w)
∣∣∣ ≥ δ + o(1)


= O(exp(−n log2 n/2)).

Next, conditioning on Ỹ ∈ D̃n, by Theorem 5.12 and Lemma 2.3, with probabilityO(n10n exp(−n log2 n)) =
O(exp(−n log2 n/2)) we have

NI ≥ 2Cεn+ 2δn,

where NI is the number of σi( 1√
n
Ỹ(n−1)×n − Fz0) such that σ2

i (
1√
n
Ỹ(n−1)×n − Fz0) ∈ [0, ε].

Because Φ( 1
n Ỹ ) is uniformly distributed on the set S̃n conditioning on Ỹ ∈ D̃n, and also

because of (23), we imply the following.

Theorem 6.2. With probability O(exp(−n log2 n)) with respect to X̃, we have

NI ≥ 2C(ε+
1
n2

)n+ 2δn,
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where NI is the number of σi(
√
nX̃(n−1)×n − Fz0) such that σ2

i (
√
nX̃(n−1)×n − Fz0) ∈ [0, ε].

We now gather the ingredients together to complete the proof of our main result.

Proof. (of Theorem 1.10 for X̃) By Theorems 5.2 and 6.2, we have that

P
( 1
n

∑
σ2
i (
√
nX̃(n−1)×n−Fz0 )∈[0,ε]

log σi(
√
nX̃(n−1)×n − Fz0) = O((ε+ δ) log n)

)
= 1−O(n−3).

A combination of this fact with Theorem 6.1 implies that for almost all z0,

P
(∣∣∣ 1
n

log |det(
√
nX̃(n−1)×n − Fz0)−

∫
C

log |w − z0|dµcir(w)
∣∣∣ = o(1)

)
= 1−O(n−3).

Hence, by (17),

P
(∣∣∣ 1
n

log |det(
√
n ¯̃X − z0In−1)−

∫
C

log |w − z0|dµcir(w)
∣∣∣ = o(1)

)
= 1−O(n−3),

completing the proof.

�

Appendix A. Proof of Lemma 5.6

The main goal of this section is to justify Lemma 5.6. Although our proof is identical to
[17, Theorem 1.1] and [17, Corollary 1.8], let us present it here for the sake of completeness.

A.1. Convexity. For simplicity, we first show that the function M 7→ tr(g(M + F )) is
convex. It then follows that the function M 7→ tr(g( 1√

n
M + F )) is also convex.

For any Hermitian matrices U and V

g(V + F )− g(U + F ) =
∫ 1

0
Dg
(
U + F + η(V − U)

)
](V − U)dη

where

Dg(U + F )](V ) = lim
ε→0

ε−1
(
g(U + F + εV )− g(U + F )

)
.
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For polynomial functions g, the non-commutative derivation D can be computed and one
finds in particular that for any p ∈ N,

(V+F )p−(U+F )p =
∫ 1

0

(
p−1∑
k=0

(U + F + η(V − U))k(V − U)(U + F + η(V − U))p−k−1

)
dη.

(24)

For such a polynomial function, by taking the trace and using tr(AB) = tr(BA), one
deduces that

tr
(
(U+F )p

)
−tr

(
(
U + V

2
+F )p

)
= p

∫ 1

0
tr
(

(
U + V

2
+ F + η

U − V
2

)p−1U − V
2

)
dη, (25)

tr
(
(V +F )p

)
−tr

(
(
U + V

2
+F )p

)
= p

∫ 1

0
tr
(

(
U + V

2
+ F − ηU − V

2
)p−1V − U

2

)
dη. (26)

It follows from (24),(25) and (26) that

∆ := tr
(
(U + F )p

)
+ tr

(
(V + F )p

)
− 2tr

(
(
U + V

2
+ F )p

)
=
p

2

p−2∑
k=0

∫ 1

0

∫ 1

0
ηdηdθtr

(
(U − V )Zkη,θ(U − V )Zp−2−k

η,θ

)
(27)

with

Zη,θ :=
U + V

2
+ F − ηU − V

2
+ ηθ(U − V ).

Next, for fixed η, θ ∈ [0, 1]2, and fixed U, V, F Hermitian matrices, Zη,θ is also Hermitian,
and so we can find a unitary matrix Uη,θ and a diagonal matrix Dη,θ with real diagonal
entries λη,θ(1), . . . , λη,θ(n) so that

Zη,θ = Uη,θDη,θU
∗
η,θ.

Let Wη,θ = Uη,θ = U∗η,θ(U − V )Uη,θ. Then
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∆ =
p

2

p−2∑
k=0

∫ 1

0

∫ 1

0
ηdηdθtr

(
Wη,θD

k
η,θWη,θD

p−2−k
η,θ

)

=
p

2

p−2∑
k=0

∫ 1

0

∫ 1

0
ηdηdθ

p−2∑
k=0

∑
1≤i,j≤n

λkη,θ(i)λ
p−2−k
η,θ (j)|Wη,θ(ij)|2. (28)

But

p−2∑
k=0

λkη,θ(i)λ
p−2−k
η,θ (j) =

λp−1
η,θ (i)− λp−1

η,θ (j)

λη,θ(i)− λη,θ(j)
= (p− 1)

∫ 1

0

(
αλη,θ(j) + (1− α)λη,θ(i)

)p−2
dα.

Hence, substituting in (28) gives,

∆ =
1
2

∑
1≤i,j≤n

∫ 1

0

∫ 1

0

∫ 1

0
dαηdηdθ|Wη,θ(ij)|2g′′(αλη,θ(j) + (1− α)λη,θ(i)) ≥ 0 (29)

for the polynomial g(x) = xp.

Now, with U, V, F being fixed, the eigenvalues λη,θ(1), . . . , λη,θ(n) and the entries of Wη,θ

are uniformly bounded. Hence, by Runge’s theorem, we can deduce by approximation that
(29) holds for any twice continuously differentiable function g. As a consequence, for any
such convex function, g′′ ≥ 0 and

∆ = tr
(
g(U + F )

)
+ tr

(
g(V + F )

)
− 2tr

(
g(
U + V

2
+ F )

)
≥ 0.

A.2. Boundedness. Now we show that the function M 7→ tr(g( 1√
n
M + F )) has Lipschitz

constant bounded by 2‖g‖L.

First, for any bounded continuously differentiable function g we will show that

∑
1≤i,j≤n

(
d<(xij)tr(g(

1√
n
M + F ))

)2
+

∑
1≤i,j≤n

(
d=(xij)tr(g(

1√
n
M + F ))

)2
≤ 4‖g‖2L.

We can verify that

d<(xij)tr
(
g(

1√
n
M + F )

)
=

1√
n

tr
(
g′(

1√
n
M + F )∆ij

)
(30)

where ∆ij(kl) = 1 if kl = ij or ji and zero otherwise.
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Indeed, (30) is a consequence of (24) for polynomial functions, and it can be extended for
bounded continuously differentiable functions by approximations. In other words, we have

d<(xij)tr
(
g(

1√
n
M + F )

)
=


1√
n

(
g′( 1√

n
M + F )(ij) + g′( 1√

n
M + F )(ji)

)
i 6= j;

1√
n
g′( 1√

n
M + F )(ii) i = j.

Hence,

∑
i,j

(
d<(xij)tr

(
g(

1√
n
M+F )

))2
≤ 2
n

∑
i,j

|g′( 1√
n
M+F )(ij)|2 =

2
n

tr
(
g′(

1√
n
M+F )g′(

1√
n
M+F )∗

)
.

But if λ1, . . . , λn denote the eigenvalues of 1√
n
M + F then

tr
(
g′(

1√
n
M + F )g′(

1√
n
M + F )∗

)
=

1
n

∑
(g′(λi))2 ≤ ‖g′‖2∞.

Thus we have

∑
i,j

(
d<(xij)tr

(
g(

1√
n
M + F )

))2
≤ 2‖g′‖2∞.

The same argument applies for derivatives with respect to =(xij), and so by integration by
parts and by Cauchy-Schwarz inequality

∣∣∣tr(g(
1√
n
U + F )

)
− tr

(
g(

1√
n
V + F )

)∣∣∣ ≤ 2‖g‖L‖U − V ‖

for any U and V .

Observe that this last result for bounded continuously differentiable function g naturally
extends to Lipschitz functions by approximations, completing the proof.

Appendix B. Proof of Lemma 5.11

Note that if Fz0 vanishes then this is [37, Proposition 28] (see also [2]). We show that the
method there extends easily to any deterministic Fz0 .

Assume for contradiction that

|NJ | ≥ Cn|J |
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for some large constant C to be chosen later. We will show that this will lead to a contra-
diction with high probability.

We will control the eigenvalue counting function NJ via the Stieltjes transform

s(z) :=
1
n

n∑
j=1

1
λj(H)− z

.

Fix J and let x be the midpoint of J . Set η := |J |/2 and z := x+ iη, we then have

=(s(z))
4
5
NJ

ηn
.

Hence,

=(s(z))� C. (31)

Next, with H ′ := ( 1√
n

Φ(Ỹ )− Fz0)( 1√
n

Φ(Ỹ )− Fz0)∗ = 1
nMM∗ where M := Φ(Ỹ )−

√
nFz0 ,

we have (see also [2, Chapter 11])

s(z) =
1
n

∑
k≤n

1
h′kk − z − a∗k(H

′
k − zI)−1ak

,

where h′kk is the kk entry of H ′; H ′k is the n− 1 by n− 1 matrix with the k-th row and k-th
column of H ′ removed; and ak is the k-th column of H ′ with the k-th entry removed.

Note that =(1
z ) ≤ 1

=(z) , one concludes from (31) that

1
n

∑
k≤n

1∣∣η + =(a∗k(H
′
k − zI)−1ak)

∣∣ � C.

By the pigeonhole principle, there exists k such that

1∣∣η + =(a∗k(H
′
k − zI)−1ak)

∣∣ � C. (32)

Fix such k, note that

ak =
1
n
Mkr∗k, and H ′k =

1
n
MkM

∗
k
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where rk = rk(M) and Mk is the (n − 1) × n matrix formed by removing rk(M) from M .
Thus if we let v1 = v1(Mk), . . . ,vn−1 = vn−1(Mk) and u1 = u1(Mk), . . . ,un−1 = un−1(Mk)
be the orthogonal systems of left and right singular vectors of Mk, and let λj = λj(H ′k) =
1
nσ

2
j (Mk) be the associated eigenvalues, one has

a∗k(H
′
k − zI)−1ak =

∑
1≤j≤n−1

|a∗kvj |2

λj − z
.

Thus

=
(
a∗k(H

′
k − zI)−1ak

)
≥ η

∑
1≤j≤n−1

|a∗kvj |2

η2 + |λj − x|2
.

We conclude from (32) that

∑
1≤j≤n−1

|a∗kvj |2

η2 + |λj − x|2
� 1

Cη
.

Note that a∗kvj can be written as

a∗kvj =
σj(Mk)
n

rkuj .

Next, from the Cauchy interlacing law, one can find an interval L ⊂ {1, . . . , n−1} of length

|L| � Cηn

such that λj ∈ L. We conclude that

∑
j∈L

σ2
j

n2
|rkuj |2 �

η

C
.

Since λj ∈ J , one has σj = Θ(
√
n), and thus

∑
j∈L
|rkuj |2 �

ηn

C
.

The LHS can be written as ‖πV (r∗k)‖2, where V is the span of the eigenvectors uj for j ∈ L
and πV (.) is the projection onto V . But from Talagrand inequality for distance (Lemma
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B.1 below), we see that this quantity is � ηn with very high probability, giving the desired
contradiction.

Lemma B.1. Assume that V ⊂ Cn is a subspace of dimension dim(V ) = d ≤ n− 10. Let
f be a fixed vector (whose coordinates may depend on n). Let y = (0, y2, . . . , yn), where
y = ỹi − 1 and ỹi are i.i.d. copies of ỹ defined from (2). Let σ = Θ(1) denote the standard
deviation of ỹ and K = 10 log n denote the upper bound of ỹ, then for any t > 0 we have

Py

(
πV (y + f) ≥

√
2σ
√
d/2−O(K)− t

)
≥ 1−O

(
exp(− t2

16K2
)
)
.

We now give a proof of Lemma B.1. It is clear that the function (y2, . . . , yn) 7→ πV (y + f)
is convex and 1-Lipschitz. Thus by Theorem 5.7 we have

Py

(
|πV (y + f)−M(πV (y + f))| ≥ t

)
= O

(
exp(−16t2/K2)

)
. (33)

Hence, it is implied that

Py,y′

(
|πV (y + f) + πV (y′ + f)− 2M(πV (y + f))| ≤ 2t

)
=
(

1−O(exp(−16t2/K2))
)2

= 1−O
(

exp(−16t2/K2)
)
, (34)

where y′ is an independent copy of y.

On the other hand, by the triangle inequality

πV (y + f) + πV (y′ + f) ≥ πV (y − y′).

Applying Talagrand inequality once more for the random vector y − y′ (see for instance
[36, Lemma 68]), we see that

Py,y′

(
|πV (y − y′)−

√
2σ
√
d| ≥ t

)
= O

(
exp(−t2/16K2)

)
.

Thus,

Py,y′

(
πV (y) + πV (y′) ≥

√
2σ
√
d− t

)
= 1−O

(
exp(−t2/16K2)

)
.

By comparing with (34), we deduce that

M(πV (y + f)) ≥
√

1/2σ
√
d−O(K).



RANDOM DOUBLY STOCHASTIC MATRICES: THE CIRCULAR LAW 35

Substituting this bound back to (34), we obtain the one-sided estimate as desired.
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