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Abstract. In this short note we study a non-degeneration property of eigenvectors of symmetric random

matrices with entries of symmetric sub-gaussian distributions. Our result is asymptotically optimal under

the sub-exponential regime.

1. introduction

Let x be a random vector uniformly distributed on the unit sphere Sn−1, where n → ∞. It is well known
that x can be represented as

v := (
ξ1
S
, . . . ,

ξn
S

)

where ξi are iid standard Gaussian and S =
√∑n

i=1 |ξi|2. One then can deduce that for any deterministic
vector f = (f1, . . . , fn) ∈ Rn with

∑
i f

2
i = n,

fTv
d→ N(0, 1).

We also refer the reader to the survey [17] for further nice properties of x.

Let Mn be a random symmetric matrix of size n× n of real-valued entries. When Mn is GOE, then by the
rotation invariance, the individual eigenvectors of Mn have the same distribution as x above. One then can
deduce various nice properties of these eigenvectors. Motivated by the universality phenomenon, it is natural
to ask if these properties are universal.

Question 1.1. Is it true that the eigenvectors of Mn are ”asymptotically uniformly distributed” for more
general random ensemble Mn?

We assume for the moment that Mn has simple spectrum. Let λ1 < · · · < λn be the real eigenvalues of Mn,
and u1, . . . ,un be the corresponding unit eigenvectors (which are unique up to a sign). Among many nice
results, the followings can be read from [26, Theorem 13] and [1, Theorem 1.2] regarding Question 1.1.

Theorem 1.2. Let Mn be a random symmetric matrix where mij , 1 ≤ i ≤ j ≤ n are iid copies of a random
variable ξ. Let f = (f1, . . . , fn) ∈ Rn be any deterministic vector with

∑
i f

2
i = n.

• [26] Assume that ξ is symmetric, ξ
d
= −ξ, and has moment matching up to the fourth order with

N(0, 1). Then for any 1 ≤ i ≤ n,
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fTui
d→ N(0, 1).

More precisely, there exists a positive constant c such that for any x > 0

P(|fTui| ≤ x) =
2√
2π

∫ x

0

e−t
2/2dt+O(n−c). (1)

• [1] Assume that ξ has mean zero, variance one, and having finite moment of all orders. Then (1)

holds for any eigenvector ui with i ∈ [1, n1/4]∪ [n1−δ,n−n1−δ
]∪ [n−n1/4, n], with possibly different c.

We also refer the readers to [26] and [1] for further beautiful results such as the joint independence and
gaussianity of the eigenvectors.

Note that the constants c above can be made explicit but are rather small in both results. Thus, assume
that if we are interested in the tail bound estimates |fTui| ≤ x, then the above results are less effective when
x� n−c. In fact, it was not even known whether asymptotically almost surely fTui 6= 0. This question was
raised by Dekel, Lee and Linial in [5] for f = (1, 0, . . . , 0) in connection to the notion of strong and weak
nodal domains in random graph G(n, p). This question has been confirmed in [14] in the following form.

Theorem 1.3. Assume that Fn is a symmetric matrix with ‖Fn‖2 ≤ nγ for some constant γ > 0. Consider
the matrix Mn + Fn with the random symmetric matrix Mn of entries mij , 1 ≤ i < j ≤ n, being iid copies
of a random variable ξ of mean zero, variance one, and bounded (2 + ε)-moment for given ε > 0. Then for
any A, there exists B depending on A and γ, ε such that

P
(
∃ a unit eigenvector u = (u1, . . . , un) of Mn with |ui| ≤ n−B for some i

)
= O(n−A).

Although the above result holds for very general matrices, the approach does not seem to extend to the case
that f has many non-zero entries, which is the main focus of our current note.

Condition 1.1. Let c,K1,K2 be positive parameters.

• (assumption for f) We assume that the following holds for all but cn indices 1 ≤ i ≤ n

n−c ≤ |fi| ≤ nc.

• (assumption for Mn) We assume that the entries of mij , 1 ≤ i ≤ j ≤ n, are iid copies of a random
variable ξ of mean zero, variance one, and so that

– For every t > 0,

P(|ξ| ≥ t) ≤ K1 exp(−t2/K2), (2)

– ξ is symmetric.

For the rest of this note we will be conditioning on the following result.

Theorem 1.4. [27, 14] With Mn as above, there exists a constant c > 0 such that with probability at least
1− exp(−nc), Mn has simple spectrum.

In the above setting, we are able to prove the following
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Theorem 1.5 (Main result). Let Mn and f be as in Condition 1.1 for some positive constants K1,K2,
and for some sufficiently small constant c. Conditioning on the event of Theorem 1.4, let λ1 < · · · < λn
be the eigenvalues of Mn and u1, . . . ,un be the associated eigenvectors. Then the following holds for any
δ ≥ exp(−nc)

P
(

sup
i
|〈ui, f〉| ≤ δ

)
≤ ncδ.

It seems that our result can also be extended to the case when mij and mii have different distributions, but
we will not focus on this setting for simplicity. The current method does not extend to non-symmetric ξ,
although we believe that our result should hold in this generality.

In what follows we connect our result to the study of controllability of matrices. Consider the discrete-time
linear state-space system whose state equation is

x(k + 1) = Ax(k) +Bu(k).

In the above, A and B are n× n and n× r matrices, respectively, while each u(k) is an r× 1 vector that we
wish to solve for based on the state values x(k) of size n× 1.

We say that our system is controllable if we can always find the control values u(n− 1),u(n− 2), · · · ,u(0)
based on the state values x(·). Note that

x(1) = Ax(0) +Bu(0)

x(2) = Ax(1) +Bu(1) = A2x(0) +ABu(0) +Bu(1)

...

x(n) = Anx(0) +An−1Bu(0) +An−2Bu(1) + · · ·+ABu(n− 2) +Bu(n− 1).

That is

x(n)−Anx(0) = (An−1B An−2B · · · AB B)(uT (0) uT (1) · · · uT (n− 1))T .

From here it is easy to see that we can always find the control values u(·) if and only if the left matrix has
full rank. Restricting to the case where r = 1 and switching around columns to remain consistent with the
literatures, this motivates the following definition of controllability.

Definition 1.6. Let A be an n × n matrix and let b be a vector in Rn. We say that the pair (A,b) is
controllable if the n× n column matrix

(b Ab · · · An−1b)

has full rank.

As it turns out, the notion of controllability is related to the existence of eigenvectors orthogonal to b via
the Popov-Belevitch-Hautus test [15].

Theorem 1.7. With A and b as above, (A,b) is uncontrollable if and only if there exists an eigenvector v
of A such that 〈b,v〉 = 0.

This is [16, Lemma 1], we insert it here for completeness.
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Proof. (of Theorem 1.7) The backward direction follows almost immediately. Indeed, if we can find an
eigenvalue-eigenvector pair (λ,v) of A such that vTb = 0, then for each k, we have vTAkb = λkvTb = 0.
Letting A′ denote the controllability matrix in Definition 1.6, we have that vTA′ = 0 and thus A′ is
uncontrollable.

For the forward direction, suppose that each eigenvector v satisfies vTb 6= 0. Then each eigenspace of A has
dimension one (if we can find an eigenspace of dimension at least 2, then considering the intersection of that
eigenspace with the orthogonal complement of the subspace spanned by b leads us to an eigenvector v such
that vTb = 0). Since A is symmetric, it thus follows that the eigenvalues are distinct so that A has simple
spectrum. Now suppose that the spectrum of A is simple and assume that (A,b) is uncontrollable, i.e. we
can find a nonzero vector a = (a0, · · · , an−1) such that A′a = 0, where

A′ = (b Ab · · · An−1b)

is our controllability matrix. Further suppose that our eigenvalue-eigenvector pairs are denoted (λi,vi) with
λ1 < · · · < λn. We begin to use the spectral theorem to decompose each Akb as

Akb =

n∑
j=1

(λkjv
T
j b)vj .

Since A′a = 0, we have that

0 = A′a =

n−1∑
k=0

akA
kb =

n−1∑
k=0

ak

n∑
j=1

(λkjv
T
j b)vj =

n∑
j=1

vj(

n−1∑
k=0

vTj bλkj ak).

Letting

βj =

n−1∑
k=0

vTj bλkj ak,

we have that each βj = 0 by linear independence of our eigenbasis. Write

βj = vTj b


1
λ1
j
...

λn−1
j


T

a.

Since each vTj b 6= 0 by assumption, it must then be the case that
1
λ1
j
...

λn−1
j


T

a = 0.

But this implies that the Vandermonde matrix
1 1 · · · 1
λ1 λ2 · · · λn
...

...
. . .

...
λn−1

1 λn−1
2 · · · λn−1

n


T

is singular, and hence λi = λj for some i 6= j, a contradiction. �
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Recent developments in the area of matrix controllability have come from imposing randomness on the
matrix A and imposing varying rigidity on the deterministic vector b. For example, in [16] O’Rourke and
Touri were able to prove the following conjecture of Godsil.

Conjecture 1.8. Let 1n be the vector in Rn consisting of all 1’s and An be the adjacency matrix of G(n, 1/2).
Then as n approaches infinity, (An,1n) is controllable asymptotically almost surely.

This has been verified recently by O’Rourke and Touri in stronger form. To state their result, we first
introduce a notion called (K, δ)−delocalization.

Definition 1.9. Let K, δ be positive parameters. We say that a unit vector v = (v1, · · · , vn) is (K, δ)-
delocalized if at least n− bδnc coordinates k satisfy the following

(1) vk = pk
qk

, where pk, qk ∈ Z,

(2) |pk|, |qk| ≤ K,

(3) pk, qk 6= 0.

Thus if v is (K, δ)-delocalized then most of the entries of v are non-zero rational numbers of bounded height.
Through this notion, the authors of [15, 16] were able to prove Godsil’s conjecture by the following theorem.

Theorem 1.10. [15, Theorem 3.4] Assume that Mn is a random symmetric matrix where the off-diagonal
entries mij , 1 ≤ i < j ≤ n, are iid copies of ξ as in Theorem 1.5, while the diagonal entries are iid copies of
a possibly different subgaussian random variable ζ. Fix K ≥ 1 and α > 0. Then there exist constants C > 0
and δ ∈ (0, 1) (depending on K,α, ξ, and ζ) such that the following holds. Let b be a vector in Rn which is
(K, δ)−delocalized. Then (Mn,b) is controllable with probability at least 1− Cn−α.

Our result, Theorem 1.5, can be seen as a near optimal generalization of Theorem 1.10 (in the case that mii

and mij have the same distribution) where the entries of f are not necessarily rational.

Notations. Throughout this paper, we regard n as an asymptotic parameter going to infinity (in particular,
we will implicitly assume that n is larger than any fixed constant, as our claims are all trivial for fixed n),
and allow all mathematical objects in the paper to implicitly depend on n unless they are explicitly declared
to be “fixed” or “constant”. We write X = O(Y ), X � Y , or Y � X to denote the claim that |X| ≤ CY for
some fixed C; this fixed quantity C is allowed to depend on other fixed quantities such as K1,K2 of ξ unless
explicitly declared otherwise. We also use o(Y ) to denote any quantity bounded in magnitude by c(n)Y for
some c(n) that goes to zero as n → ∞. For a square matrix Mn and a number λ, for short we will write
Mn − λ instead of Mn − λIn. All the norms in this note, if not specified, will be the usual `2-norm.

2. Supporting ingredients and existing results

In this section we introduce the necessary tools to prove our main result. First of all, for the rest of the note
we will condition on the following event, which is known to hold with probability 1− exp(−Θ(n))

‖Mn‖ ≤ 10
√
n. (3)
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2.1. Approximate eigenvectors are not asymptotically sparse. We first need the definition of com-
pressible and incompressible vectors.

Definition 2.1. Let c0, c1 ∈ (0, 1) be two numbers (chosen depending on the parameters K1,K2,K
′
1,K

′
2 of

ξ, ζ) A vector x ∈ Rn is called sparse if |supp(x)| ≤ c0n. A vector x ∈ Sn−1 is called compressible if x is
within Euclidean distance c1 from the set of all sparse vectors. A vector x ∈ Sn−1 is called incompressible
if it is not compressible.

The sets of compressible and incompressible vectors in Sn−1 will be denoted by Comp(c0, c1) and Incomp(c0, c1)
respectively.

Regarding the behavior of Mnx for compressible vectors, the following was proved in [28].

Lemma 2.2. [28, Proposition 4.2] There exist positive constants c0, c1 and α0 (depending on K1,K2 of ξ)
such that the following holds for any λ0 of order O(

√
n). For any fixed u ∈ Rn one has

P( inf
x∈Comp(c0,c1)

‖(Mn − λ0)x− u‖ �
√
n) = O(exp(−α0n)).

We deduce the following immediate consequence.

Lemma 2.3 (Approximate eigenvectors are not asymptotically sparse). There exist positive constants c0, c1
and α0 (depending on K1,K2 of ξ) such that

P
(
∃ a unit vector v ∈ Comp(c0, c1) and λ = O(

√
n) such that ‖(Mn − λ)v‖ �

√
n
)

= O(exp(−α0n)).

Proof. (of Lemma 2.3) Assuming (3), we can find λ0 as a multiple of n−2 inside [−10
√
n, 10

√
n] such that

|λ− λ0| ≤ n−2. Hence

‖(Mn − λ0)v‖ = ‖(λ− λ0)v‖ ≤ n−2.

On the other hand, for each fixed λ0, by Lemma 2.2,

P(∃v ∈ Comp(c0, c1) : ‖(Mn − λ0)v‖ ≤ n−2) = O(exp(−α0n)).

The claim follows by a union bound with respect to λ0. �

2.2. Approximate eigenvectors cannot have structures. We next introduce a concept developed by
Rudelson and Vershynin via the notion of least common denominator (see [18]). Fix parameters κ and γ
(which may depend on n), where γ ∈ (0, 1). For any nonzero vector x define

LCDκ,γ(x) := inf
{
θ > 0 : dist(θx,Zn) < min(γ‖θx‖, κ)

}
.

Theorem 2.4 (Small ball probability via LCD). [18] Let ξ be a sub-gaussian random variable of mean zero
and variance one, and let ξ1, . . . , ξn be iid copies of ξ. Consider a vector x ∈ Rn. Then, for every κ > 0 and
γ ∈ (0, 1), and for

ε ≥ 1

LCDκ,γ(x/‖x‖)
,

we have

ρε(x) = O

(
ε

γ‖x‖
+ e−Θ(κ2)

)
,

where the implied constants depend on ξ.
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One of the key properties of vectors of small LCD is that they accept a fine net of small cardinality (see
[19, Lemma 4.7] and also [14, Lemma B6] for the current form).

Lemma 2.5. Let D0 ≥ c
√
n. Then the set {x ∈ Rn, ‖x‖ ≤ 1, c

√
m ≤ LCDκ,γ(x/‖x‖) ≤ D0} has a

(2κ/D0)-net of cardinality at most (C0D0/
√
m)mD2

0 for some absolute constant C0.

For the rest of our paper γ = 1/2 and κ = n2c for some constant c chosen sufficiently small (compared to all
other parameters).

To deal with symmetric or Hermitian Wigner matrices, it is more convenient to work with the so-called
regularized least common denominator. Let x = (x1, . . . , xn) ∈ Sn−1 . Let c0, c1 ∈ (0, 1) be given constants,
and assume x ∈ Incomp(c0, c1). It is not hard to see that (see for instance [18, Section 3]) there are at least
c0c

2
1n/2 coordinates xk of x which satisfy

c1√
2n
≤ |xk| ≤

1
√
c0n

. (4)

Thus for every x ∈ Incomp(c0, c1) we can assign a subset spread(x) ⊂ [n] such that (4) holds for all
k ∈ spread(x) and

|spread(x)| = dc′ne,
where we set

c′ := c0c
2
1/4. (5)

Definition 2.6 (Regularized LCD, see also [28]). Let α ∈ (0, c′/4). We define the regularized LCD of a
vector x ∈ Incomp(c0, c1) as

L̂CDκ,γ(x, α) = max
{

LCDκ,γ

(
xI/‖xI‖

)
: I ⊆ spread(x), |I| = dαne

}
.

Roughly speaking, the reason we choose to work with L̂CD is that we want to detect structure of x in
sufficiently small segments. From the definition, it is clear that if LCD(x) is small (i.e. when x has strong

structure), then so is L̂CD(x, α).

For given D,κ, γ and α, we denote the set of vectors of norm 1 + o(1) with bounded regularized LCD by

TD,κ,γ,α := {x ∈ Incomp(c0, c1) : L̂CDκ,γ(x, α) ≤ D}.
The following is [14, Lemma 5.9].

Lemma 2.7. Assume that Mn is a random Wigner matrix with subgaussian entries. Then there exist
c > 0, α0 > 0 depending on c0, c1 from Lemma 2.3 such that the following holds with κ = n2c and γ = 1/2.
Let α,D be such that

n−c ≤ α ≤ c′/4, and 1 ≤ D ≤ nc/α.

Then for any fixed u ∈ Rn and any real number λ0 of order O(
√
n), with β = κ√

αD
we have

P
(
∃x ∈ TD,κ,γ,α : ‖(Mn − λ0)x− u‖ = o(β

√
n)
)

= O(exp(−α0n)),
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We remark that, while Lemma 2.3 and Lemma 2.7 were proved for unit vectors x, the proofs automatically
extend to vectors of norm 1± n−2c. For instance Lemma 2.7 can be extended to

P
(
∃x : 1− n−2c ≤ ‖x‖ ≤ 1 + n−2c ∧ x/‖x‖ ∈ TD,κ,γ,α : ‖(Mn − λ0)x− u‖ = o(β

√
n)
)

= O(exp(−α0n)).

Indeed, the event ‖(Mn − λ0)x − u‖ = o(β
√
n) implies ‖(Mn − λ0)x/‖x‖ − u/‖x‖‖ = o(β

√
n), and the

later implies that ‖(Mn − λ0)x/‖x‖ − ui‖ = o(β
√
n) for some deterministic ui appropriately chosen to

approximate u/‖x‖ with an error, say, at most β. As one can easily construct a set of size nO(1)/β for
the ui’s, taking union bound over these approximating points will not dramatically change the exponential
bound O(exp(−α0n)) of the right hand side of Lemma 2.7 as β ≥ exp(−nc).

We deduce the following crucial consequence from Lemma 2.3 and Lemma 2.7.

Corollary 2.8. Let u ∈ Rn, λ0 be fixed, and D,β be as above. Let Eu,λ0
be the event that for any x

with 1 − n−2c ≤ ‖x‖ ≤ 1 + n−2c , if ‖(Mn − λ0)x − u‖ = o(β
√
n) then x/‖x‖ /∈ TD,κ,γ,α and x/‖x‖ ∈

Incomp(c0, c1). We then have the bound

P(Eu,λ0) ≥ 1−O(exp(−α0n)).

Finally, together with the structural results above, we will also need the following result (see [18, Lemma
2.2]) to pass from small ball bounds to a total bound.

Theorem 2.9. Let ζ1, · · · , ζn be independent nonnegative random variables, and let K, t0 > 0. If one has

P (ζk < t) ≤ Kt
for all k = 1, · · · , n and all t ≥ t0, then for all t ≥ t0

P (

n∑
k=1

ζ2
k < t2n) ≤ O((Kt)n).

We remark that all of the results in this section including Lemma 2.2, Lemma 2.3, Lemma 2.7 and Theorem
1.4 hold for matrices where the entry distributions are not necessarily symmetric.

3. Proof of Theorem 1.5

3.1. Extra randomness. A key observation, by using the fact that ξ is symmetric, is that if ε1, . . . , εn
are iid Bernoulli random variables independent of Mn, then Mn and M ′n = (εiεjmij) have the same matrix
distribution. Furthermore, a quick calculation shows that Mnu = λu if and only if M ′nu′ = λu′, where
u′ = (ε1u1, . . . , εnun). So the eigenvalues of Mn and M ′n are identical, and the spectrum of Mn is simple if
and only if the spectrum of M ′n is simple.

Lemma 3.1. [16, Lemma 10.2] Conditioning on the event E that the spectrum of Mn is simple. For any
δ > 0 and any deterministic vector f we have

P
(
|〈u, f〉| ≤ δ|E) = P(|〈u′, f〉| ≤ δ|E

)
.

Consequently, by Theorem 1.4,

P
(

sup
i
|〈ui, f〉| ≤ δ

)
≤ P

(
sup
i
|〈u′i, f〉| ≤ δ

)
+ exp(−nc).

As the proof of this lemma is short but crucial, we insert it here for the reader’s convenience.
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Proof. (of Lemma 3.1) Let λ be the eigenvector associated to both u and u′. Let Pλ denote the orthogonal
projection of Mn onto the eigenspace associated with λ, and let P ′λ denote the orthogonal projection of M ′n
onto the eigenspace associated with λ. From the fact that Mn and M ′n have the same distribution, Pλ and
P ′λ also have the same distribution. Also, when our spectrum is simple, we have that Pλ(·) = 〈u, ·〉u and
P ′λ(·) = 〈u′, ·〉u′. It thus follows that

P(|〈u, f〉| ≤ δ | E) = P(|〈u, f〉||u| ≤ δ | E)

= P(|Pλ(f)| ≤ δ | E)

= P(|P ′λ(f)| ≤ δ | E)

= P(|〈u′, f〉| ≤ δ | E),

i.e. P(|〈u, f〉| ≤ δ ∩ E) = P(|〈u′, f〉| ≤ δ ∩ E). Hence

P(|〈u, f〉| ≤ δ) ≤ P(|〈u′, f〉| ≤ δ ∩ E) + exp(−nc) ≤ P(|〈u′, f〉| ≤ δ) + exp(−nc),
as desired. �

It is remarked that one can deduce from here an almost optimal analog of (1) of Theorem 1.2, say, for the
sequence f = (1, . . . , 1). Indeed, by Lemma 3.1 it suffices to show the comparison for u′ = (ε1u1, . . . , εnun).
To this end, by the classical Berry-Esseen bound, as

∑
i(fiui)

2 =
∑
i u

2
i = 1 and maxi |ui| ≤ n−1/2+o(1) (see

for instance [9, 10, 29])

Pε1,...,εn(
∑
i

εiuifi ≤ x) =
1√
2π

∫ x

−∞
e−t

2/2dt+ sup
i
|fiui| =

1√
2π

∫ x

−∞
e−t

2/2dt+O(n−1/2+o(1)).

3.2. Starting from controlled sets. Now suppose |〈u, f〉| = |u1f1 + · · ·+unfn| ≤ δ for some unit eigenvec-
tor u of Mn. By Lemma 3.1, the probability of this event is bounded above by the probability of the event
|ε1u1f1 + · · · + εnunfn| ≤ δ for some unit eigenvector u of Mn and for some Bernoulli vector (ε1, . . . , εn).
This extra randomness allows us to study our main problem as follows.

(1) (Randomness on Mn) show that with respect to Mn, the eigenvectors u = (u1, . . . , un) of Mn does not
have structure.

(2) (Randomness on ε1, . . . , εn) conditioned on the event above, the proof is concluded by applying Theorem
2.4.

Now we look at the first step more closely. Without loss of generality we assume that n−c ≤ |f1|, . . . , |fn0
| ≤

nc for n0 = (1− c)n. For now we fix a parameter i and let u be the i-th eigenvector. Assume otherwise that

Pε1,...,εn(|
∑
i

εifiui| ≤ δ) ≥ n2cδ.

We are not ready to apply Theorem 2.4 yet as
∑
i(uifi)

2 is not necessarily 1. However, by Condition 1.1
and by Lemma 2.2, provided that c is sufficiently small, it suffices to consider the case

n−c �

√√√√ n0∑
i=1

(uifi)2 � nc.

Approximate
√∑n0

i=1(uifi)2 by
√
pj where pj ∈ [−nc, nc] is an integral multiple of n−5c,
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1− n−4c ≤
∑
i

(
1
√
pj
fiui)

2 ≤ 1 + n−4c. (6)

Thus the event |
∑
i εifiui − u| ≤ δ implies that

|
n0∑
i=1

εi
1
√
pj
fiui −

u
√
pj
| ≤ ncδ.

In other words, there exists some pj such that, with δ′ = ncδ

sup
u

P(|
∑
i

εi(
fiui√
pj
− u)| ≤ δ′) ≥ ncδ′.

Let x = ( f1u1√
pj
, . . . ,

fn0
un0√
pj

). By theorem 2.4, the above implies that

D = LCDγ,κ(
x

‖x‖
) ≤ δ′−1

.

Notice that as there are many non-zero ui, 1 ≤ i ≤ n0 by Lemma 2.2 and by the assumption δ ≥ exp(−nc),
√
n� D � exp(nc) := D0.

By Lemma 2.5, there is a set Sj,D0
(corresponding to pj) of cardinality at most (CD0/

√
n)n0 which is a

(2κ/D0)-net for the set of x above.

For each Sj,D0 , we consider the scaling map from x = (x1, . . . , xn0) to v′ = (v1, . . . , vn0) :

v′ :=
(
√
pjx1/f1, . . . ,

√
pjxn0/fn0)

||x||
.

This creates a new set Vj,D0
of vectors v′ which well approximates the truncated vectors u′ = (u1, . . . , un0

)
of our eigenvector u

‖u′ − v′‖ =

√√√√ n0∑
i=1

(ui −
√
pjxi

||x||fi
)2 ≤

√√√√n2c||x||2
n0∑
i=1

(
||x||fiui√

pj
− xi)2 ≤ nc(1 + n−4c)

2κ

D0
≤ nc 4κ

D0

We can also κ/D0-approximate the remaining n − n0 coordinates trivially by a set of size (D0/κ)n−n0 =
(D0/κ)cn. Append this to Vj,D0 above, and take union over pj , we obtain the following.

Theorem 3.2. There exists a deterministic set V of size nO(1)(CD0/
√
n)n(
√
n/κ)cn such that for any unit

vector u ∈ Sn−1 with supu P(|
∑
i εifiui − u| ≤ δ′) ≥ ncδ′, there exists v ∈ V such that

‖u− v‖ � ncκ/D0.

Notice that by the approximation, for any v ∈ V
1−O(ncκ/D0) ≤ ‖v‖ ≤ 1 +O(ncκ/D0).

Using this approximation, if (Mn − λ)u = 0 then by (3), with β0 = κnc/D0,

‖(Mn − λ)v‖ ≤
√
nβ0.
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From now on, let ti := i/D0. We say that v is an approximate vector of Mn if there exists i such that

‖(Mn − ti)v‖ = O(
√
nβ0).

3.3. Concluding the proof of Theorem 1.5. In what follows we will choose α = n−6c, for a constant c
to be chosen sufficiently small. Our main goal is to show the following.

Theorem 3.3. With V from Theorem 3.2,

P
(
∃i,∃v ∈ V, ‖(Mn − ti)v‖ ≤ β0n

1/2
)
≤ exp(−α0n).

It is clear that Theorem 1.5 follows from Theorem 3.3. It remains to prove Theorem 3.3 for a fixed ti, and
then take union bound over ti (the factor of D0 will be absorbed by exp(−c0n)). Recall that β0 = κnc/D0

and α = n−6c. We now condition on the event E0,ti of Corollary 2.8 with D = D0 and β1 = κ/
√
αD0. On

this event, if ‖(Mn − ti)v‖ ≤ β0n
1/2 = o(β1n

1/2),v ∈ Sn−1, then

v/‖v‖ ∈ Incomp(c0, c1) and L̂CDκ,γ(v/‖v‖, α) ≥ D0. (7)

Consequently, on E0,ti , for any v ∈ V we either have ‖(Mn − ti)v‖ > β0n
1/2 or (7) holds for v. So to prove

Theorem 3.3 for ti one just need to focus on these vectors v.

Set n′ = αn. For v = (v1, . . . , vn), let pα,β(v) be as below

pα,β(v) = inf
i1,...,in′

sup
x

P(|ξi1vi1 + · · ·+ ξin′ vin′ − x| ≤ β).

By splitting Mn accordingly,

Mn =

(
Mn−n′ B
B∗ Mn′

)
and v =

(
v′

v′′

)
,

where Mn′ is the n′×n′ principle minor of Mn with indices i1, . . . , in′ and Mn−n′ is the remaining principle

minor. Here v′ ∈ Rn−n′ and v′′ ∈ Rn′ .

So ‖(Mn − ti)v‖ ≤ β0
√
n implies that

‖Bv′′ − (Mn−n′ − ti)v′‖ ≤ β0

√
n.

We will condition on the matrix Mn−n′ . Using Theorem 2.9, we thus have

P(‖(Mn − ti)v‖ ≤ n1/2β0) ≤ (2ρα,β0
(v))n−n

′
.

Indeed, we will consider P(
∑
r2
i ≤ β2

0n), where

ri = bi,1vn−n′+1 + · · ·+ bi,n′vn − (mi,1v1 + · · ·+ (mi,i − ti)vi + · · ·+mi,n−n′vn−n′)

denotes the ith row of Bv′′ − (Mn−n′ − ti)v′. Conditioning on B, we have that P(|ri| ≤ β0) ≤ ρα,β0 by the
definition of ρα,β . We claim that P(|ri| ≤ t) is true for every t ≥ t0 with t0 = β0 and K = ρα,β0/β0. Indeed,
breaking the interval [0, t) into dt/β0e intervals each of length at most β0, we have that

P(|ri| ≤ t) ≤ (t/β0 + 1)ρα,β0 ≤ 2Kt

and we are done via Theorem 2.9.
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Now we estimate the event considered in Theorem 3.3 for a fixed ti conditioning on E0,ti

P
(
∃v ∈ V,v satisfies (7), ‖(Mn − t0)v‖ ≤ β0n

1/2
)
≤

∑
v∈V,v∈(7)

(2ρα,β0
(v))n−n

′
.

To this end, as v satisfies (7)

L̂CDκ,γ(v/‖v‖, α) ≥ D0.

By definition, there exists I ⊆ spread(v), |I| = dαne such that

LCDκ,γ

(
vI/‖vI‖

)
≥ D0 = ncβ−1

0 .

Thus

ρα,β0
(v) ≤ ρβ0/

√
α(vI/‖vI‖) = O(β0n

4c),

where in the last estimate we apply Theorem 2.4 as β0n
4c > 1/D0. So

∑
v∈V

(2ρα,β0(v))n−n
′
≤ (β0n

4c)(1−α)n|V|

≤ (C ′β0n
4c)(1−α)nnO(1)(CD0/

√
n)n(
√
n/κ)cn

≤ (C ′β0n
4c)(1−α)nnO(1)(Cncβ−1

0 /
√
n)n(
√
n/n2c)cn

≤ β−αn0 n−(1/2−6c)n

≤ en
cn−6cnn−(1/2−6c)n

≤ n−(1/2−6c)n

provided that n is sufficiently large, where we noted that β0 > 1/D0 = exp(−nc) and c is sufficiently small.

The proof of Theorem 3.3 is then complete where the bound exp(−α0n) comes from the complement of the
event of Corollary 2.8 we conditioned on.
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[10] L. Erdős, B. Schlein, and H. T. Yau, Semicircle law on short scales and delocalization of eigenvectors for Wigner random

matrices, Ann. Probab., 37(3):815-852, 2009.

[11] G. Halász, Estimates for the concentration function of combinatorial number theory and probability, Periodica Mathematica
Hugarica, 8 (1977), 197-211.

[12] H. Nguyen and V. Vu, Small ball probability, inverse theorems, and applications, Erdős Centennial Proceeding, Eds. L.
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