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Abstract. Gaps (or spacings) between consecutive eigenvalues are a central topic in random matrix theory.

The goal of this paper is to study the tail distribution of these gaps in various random matrix models. We

give the first repulsion bound for random matrices with discrete entries and the first super-polynomial bound
on the probability that a random graph has simple spectrum, along with several applications.

1. Introduction

Let Mn be a random Hermitian matrix of size n, with eigenvalues λ1 ≤ · · · ≤ λn. In this paper, we study the
tail distribution of the gap (spacing) δi := λi+1 − λi, and more generally the tail distribution of λi+l − λi,
where l is fixed and 1 ≤ i ≤ n− l. We are going to consider the following classes of random matrix ensembles.

Wigner matrices. A Wigner matrix Xn is a random Hermitian matrices whose strictly upper triangular
entries are iid sub-gaussian random variables with mean 0 and variance 1 and whose diagonal entries are
independent sub-gaussian random variables with mean 0 and variances bounded by n1−o(1), with the diagonal
entries independent of the strictly upper triangular entries. Here and in the sequel we say that ξ is a sub-
gaussian random variable with sub-gaussian moment m0 > 0 if one has P(|ξ| ≥ t) ≤ m−1

0 exp(−m0t
2) for all

t > 0.

Adjacency matrix of random graphs. Let G(n, p) be the Erdős-Rényi graph on n vertices with edge density
p. We denote by An(p) the (zero-one) adjacency matrix of G(n, p).

Random matrix with arbitrary mean. We consider a random Hermitian matrixMn of the formMn := Fn+Xn,
where F = Fn is a deterministic symmetric matrix of size n and of norm ‖Fn‖2 = nO(1), and Xn is a random
Hermitian matrix where the off-diagonal entries ξij , 1 ≤ i < j ≤ n are iid copies of a random real variable
ξ of zero mean, unit variance, and finite (2 + ε0)-th moment with fixed ε0 > 0. The diagonal entries are
independent random variables with mean zero and variance bounded by O(1).

Here and later all asymptotic notations are used under the assumption that n→∞.

Gaps between consecutive eigenvalues have a central place in the theory of random matrices. The limiting
(global) gap distribution for gaussian matrices (GUE and GOE) has been known for some time [16]. Recent
progresses on the universality conjecture showed that these limiting distributions are universal with the class
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of Wigner matrices; see [30, 10, 31] for surveys. However, at the microscopic level, there are many open
problems concerning basic questions. In the following discussion, when we say limiting distribution, we
always mean after a proper normalization.

The first natural question is the limiting distribution of a given gap δi := λi+1 − λi. For GUE, this
was computed very recently by the second author [25]. Within the class of Wigner matrices, the four
moment theorem from [33, Theorem 15] asserts that this distribution is universal, provided the four matching
moment condition. The matching moment condition was recently removed by Erdős and Yau [13] using
sophisticated techniques from the theory of parabolic PDE to analyze a Dyson Brownian motion, allowing
for a computation of the gap distribution for random matrix ensembles such as the GOE or Bernoulli
ensembles.

Another issue is to understand the size of the minimum gap δmin := min1≤i≤n−1(δi+1 − δi). For the GUE

ensemble, Bourgade and Ben-Arous [3] showed that the minimum gap δmin is of order n−5/6 and computed
the limiting distribution. To our best knowledge we are not aware of a polynomial lower bound (of any fixed
exponent) for δmin for discrete random matrices, which are of importance in applications in random graph
theory and theoretical computer science. Even proving that δmin > 0 (in other words the random matrix
has simple spectrum) with high probability in the discrete case is already a highly non-trivial problem, first
raised by Babai in the 1980s (motivated by his study of the isomorphism problem [4]). This latter problem
was solved only very recently by the last two authors [34].

Our main goal is to provide lower tail bounds for the gaps δi, and hence on the minimum gap δmin. For
the model Xn, by Wigner’s semi-circle law [16], most eigenvalues are in the interval [−2

√
n, 2
√
n], thus the

average gap is of order n−1/2. The question is to estimate the probability that a particular gap is significantly
smaller than the average:

Question 1.1. Estimate P(δi ≤ n−1/2δ), where δ may tend to zero with n.

As well known, tail bounds (or deviation) are essential tools in probability, and we believe that good bounds
for the probability in question will have a wide range of applications.

Let us first discuss a few results related to this question. The last two authors showed [33] that for every
constant c0 > 0 there exists c1 > 0 such that for Wigner matrices and for fixed ε > 0 one has

sup
εn≤i≤(1−ε)n

P(δi ≤ n−c0−
1
2 )� n−c1 .

The restriction to the bulk region εn ≤ i ≤ (1−ε)n was removed in [29], and the mean zero requirement was
partially removed in [19]. The weakness of this theorem is that c1 is small (much smaller than 1, regardless
the value of c0), and thus one cannot use the union bound to conclude that δi > 0 simultaneously for all i.

In [11], Erdős et. al. proved for real Wigner matrices

1

n

∑
εn≤i≤(1−ε)n

P(δi ≤ δn−1/2)� δ2, (1)
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for any constant ε, δ > 0, with a similar result also available at the edge of the spectrum. The quadratic
decay δ2 here comes from an eigenvalue repulsion phenomenon, reflecting the first-order decay of the two-
point correlation function ρ2(x, y) of the GOE ensemble as one approaches the diagonal x = y. However,
this result only give a bound on the average probability, and furthermore δ needs to be a constant.

Under some strong smoothness and decay hypotheses on the entries of a Hermitian Wigner matrix Xn, it
was shown by Erdős, Schlein, and Yau [12] that one has the Wegner estimate

P
(
En1/2 − ε

n1/2
≤ λi ≤ λi+k−1 ≤ En1/2 +

ε

n1/2
for some i

)
� εk

2

(2)

for any fixed k ≥ 1 and any ε > 0 and any bounded E ∈ R (note that the normalization in [12] is different
from the one used here). Setting k = 2 and applying the union bound (together with a standard bound on
the operator norm of Xn), we conclude that

P(δmin ≤ δn−1/2)� nδ3 + exp(−cn)

for some absolute constant c > 0. This is a strong (and essentially optimal) bound for small δ, but it is
only established for very smooth and rapidly decreasing complex probability distributions on the entries; in
particular it does not apply at all to discrete ensembles such as the Bernoulli ensemble, or to real ensembles
such as GOE.

Finally, in [34], the last two authors established the bound

P(δi = 0)� n−A

for all 1 ≤ i ≤ n and any fixed A > 0, for any of the three random matrix models (Wigner, Erdős-Renyi,
random matrix with arbitrary mean) considered above. By the union bound (and shifting A by 1), this also
gives

P(δmin = 0)� n−A.

In this paper, we are going to give answers to Question 1.1, and also to the more general question of
bounding P(λi+l − λi ≤ n−1/2δ), for a fixed l. As with [34], our method is based on probabilistic inverse
Littlewood-Offord theorems (avoiding the use of moment comparison theorems or analysis of Dyson Brownian
motion), and works for any of the three random matrix ensembles introduced above, without requiring any
smoothness on the distribution of the entries. (However, the two special models of Wigner matrices and
adjacency matrices allow a more delicate analysis leading to better bounds.)

2. Main results

For the sake of applications, we will be mainly focusing on real symmetric matrices. All results can be
extended to the complex case.

We begin with the Wigner model, where our results are strongest. Our first main theorem is as follows.

Theorem 2.1 (Lower tail bound for a single gap). There is a constant 0 < c < 1 (depending on the sub-
gaussian moments) such that the following holds for the gaps δi := λi+1(Xn) − λi(Xn) of real symmetric
Wigner matrices Xn. For any quantities n−c ≤ α ≤ c and δ ≥ n−c/α, we have

sup
1≤i≤n−1

P(δi ≤ δn−
1
2 ) = O

(
δ√
α

)
.
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Notice that there is a trade-off between the quality of the bound and the range of δ. At the one end, taking
α to be a small constant, we have

Corollary 2.2. For any constant C0 > 0 there is a constant c0 > 0 such that for real symmetric Wigner
matrices Xn, we have

sup
1≤i≤n−1

P(δi ≤ δn−
1
2 ) ≤ c0δ,

for all δ ≥ n−C0 . Consequently, by the union bound,

δmin ≥ n−3/2−o(1)

with probability 1− o(1).

At the other end, taking α = n−c, we have

Corollary 2.3. Let Xn be a real symmetric Wigner matrix where the upper triangular entries are Bernoulli
(taking value ±1 with probability 1/2), then Xn has multiple eigenvalues with probability at most O(exp(−nc))
for some constant c > 0.

This corollary improves the polynomial bound in [34] for this specific case, although the result in [34] holds
in a more general context (the main assumption being that the distribution of any individual entry on the
matrix is not concentrated at a single point). We conjecture that the probability that a Bernoulli matrix
has multiple eigenvalues is in fact O(exp(−cn)) for some constant c > 0.

In the next theorem, we treat the gap λi+l − λi, where l ≥ 1 is fixed. Let d := blog2 lc, and set

cl :=
(3l + 3− 2d+1)2d − 1

3
.

Thus c2 = 3 and cl ≥ l2+2l
3 .

Theorem 2.4 (Repulsion for multiple gaps). There is a constant 0 < c < l (depending on the sub-gaussian
moments and on l) such that the following holds for real symmetric Wigner matrices Xn. For any quantities
n−c ≤ α ≤ c and δ ≥ n1−c/α

sup
1≤i≤n−l

P(|λi+l(Xn)− λi(Xn)| ≤ δn− 1
2 ) = O

((
δ√
α

)cl)
.

Similar to Corollary 2.2, we have

Corollary 2.5. For any constant l, C0 > 0 there is a constant c0 > 0 such that for real Wigner matrices Xn

sup
1≤i≤n−l

P(|λi+l(Xn)− λi(Xn)| ≤ δn− 1
2 ) ≤ c0δcl ,

for all δ ≥ n−C0 .
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The key feature of this result is that the bound δcl yields evidence for the repulsion between nearby eigen-
values. For l = 2, we have cl = 3, yielding the bound O(δ3). If there was no repulsion, and the eigenvalues

behave like point in a Poisson process, then the bound would be O(δ2) instead. The bound cl ≥ l2+2l
3 seems

to be sharp, up to a constant factor; compare with (2).

We next consider the general model Mn := Fn+Xn. It is often useful to view Mn as a random perturbation
of the deterministic matrix Fn, especially with respect to applications in data science and numerical analysis,
where matrices (as data or inputs to algorithms) are often perturbed by random noise. One can consult
for instance [32] where this viewpoint is discussed with respect to the least singular value problem. As an
illustration for this view point, we are going to present an application in numerical analysis.

Theorem 2.6. Assume ‖Fn‖2 ≤ nγ for some constant γ > 0. Then for any fixed A > 0, there exists B > 0
depending on γ,A such that

sup
1≤i≤n−1

P(δi ≤ n−B) = O(n−A),

where δi := λi+1(Mn) − λi(Mn) is the ith gap of a random matrix Mn = Fn + Xn with arbitrary mean. In
particular, the matrix Mn has simple spectrum with probability 1−O(n−A) for any fixed A > 0.

This theorem shows that eigenvalue separation holds regardless the means of the entries. The dependence of
B in terms of A and γ in Theorem 2.6 can be made explicit, for instance one can (rather generously) assume
B > (5A+ 6) max{1/2, γ}+ 5.

Finally, let us focus on the adjacency matrix of the random graph G(n, p), where 0 < p < 1 is a constant.
Set Fn := p(Jn − In), where Jn is the all-one matrix and In is the identity. In this case, we can sharpen the
bound of Theorem 2.6 to almost match with the better bound in Theorem 2.1.

Theorem 2.7. Let 0 < p < 1 be independent of n, and let An be the adjacency matrix of the random
graph G(n, p). Let δi := λi+1(An)− λi(An) denote the eigenvalue gaps. Then for any fixed A > 0, and any
δ > n−A, we have

sup
1≤i≤n−1

P(δi ≤ δn−
1
2 ) = O(no(1)δ).

All of our results extend to the Hermitian case. In this case the upper triangular entries are complex
variables whose real and complex components are iid copies of a sub-gaussian random variable of mean zero
and variance 1/2. The value of cl in Theorem 2.4 doubles; see Remark 6.3 for a discussion.

Our approach also works, with minor modifications, for random matrices where the variance of the entries
decays to zero with n. In particular, we can have them as small as n−1+c for any fixed c > 0. This case
contains in particular the adjacency matrix of sparse random graphs. Details will appear elsewhere.

3. Applications

3.1. Random graphs have simple spectrum. Babai conjectured that G(n, 1/2) has a simple spectrum,
with probability 1− o(1). This conjecture was recently settled in [34]. Using the new deviation bounds, we
can have the following stronger statement.

Theorem 3.1. With probability 1 − o(1), the gap between any two eigenvalues of G(n, 1/2) is at least
n−3/2+o(1).
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To prove this theorem, apply Theorem 2.7 with δ = n−1−o(1) and then apply the union bound.

3.2. Nodal domains of random graphs. Consider a random graph G(n, p) (with p constant) and the
accompanying matrix An(p). Let u be an eigenvector of An(p). A strong nodal domain (with respect to u) is
a maximal connected component S of the graph, where for any i, j ∈ S, uiuj > 0 (here ui is the coordinate
of u corresponding to i). A weak nodal domain is defined similarly, but with uiuj ≥ 0. Notice that strong
nodal domains are disjoint, while the weak ones may overlap.

The notion of (weak and strong) nodal domains comes from Riemann geometry and has become increasingly
useful in graph theory and algorithmic applications (see [8, 36, 5, 6, 7]). In [8], Dekel, Lee and Linial studied
nodal domains of the random graph G(n, p) and raised the following conjectured [8, Question 1].

Conjecture 3.2. With probability 1 − o(1), all eigenvectors of G(n, p) do not have zero coordinates. In
other words, weak and strong nodal domains are the same.

We can now confirm this conjecture in the following stronger form

Theorem 3.3 (Non-degeneration of eigenvectors). Assume that Mn = Xn + Fn as in Theorem 2.6. Then
for any A, there exists B depending on A and γ such that

P
(
∃ an eigenvector v = (v1, . . . , vn) of Mn with |vi| ≤ n−B for some i

)
= O(n−A).

To make the picture complete, let us mention that recently Arora et. al. [2] proved that with high probability,
G(n, p) has only two weak nodal domains, one corresponds to coordinates ui ≥ 0, and the other to ui ≤ 0.
Combining this with Theorem 3.3, we have

Corollary 3.4. The following holds with probability 1− o(1) for G(n, p). Each eigenvector has exactly two
strong nodal domains, which partition the set of vertices.

3.3. Numerical Analysis. Our results can also be used to guarantee polynomial running time for certain
algorithms. Let us consider an example. A basic problem in numerical analysis is to compute the leading
eigenvector and eigenvalue of a large matrix. A well-known power iteration method, designed for this purpose,
works as follows. Given F , a large symmetric matrix as input, let u0 := u be an arbitrary unit vector and
consider

uk+1 :=
Fuk
‖Fuk‖2

.

For simplicity, assume that F is positive semi-definite and let 0 ≤ λ1 ≤ · · · ≤ λn be the eigenvalues of F
(with, say, corresponding eigenvectors v1, . . . , vn). If λn is strictly larger than λn−1, then uk converges to vn
and ‖Fuk‖2 converges to λn.

The heart of the matter is, of course, the rate of convergence, which is geometric with base λn−1

λn
. This means

that to obtain an ε error term, we need to iterate Θ( λn
λn−λn−1

log 1
ε ) steps (see for instance [14, Chapter 8].)

For simplicity, assume that λn = ‖F‖2 = nO(1). The algorithm is efficient (run in polynomial time) if
λn − λn−1 is polynomially large. However, if λn − λn−1 is exponentially small in n, then the algorithm take
exponentially many steps.
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One can use our result to avoid this difficulty. The idea is to artificially perturb F by a random matrix Xn.
Theorem 2.6 shows that with high probability, the gap λn(F +Xn)− λn−1(F +Xn) is polynomially large,
which in turn guarantees a polynomial running time. On the other hand, adding Xn (or a properly scaled
version of it) will not change λn and vn significantly. For instance, one can immediately apply Weyl’s bound
here, but better results are available in more specific cases.

This argument is closely related to the notion of smoothed analysis introduced by Spielman and Teng [23].
We will discuss similar applications in a separate note.

4. Proof strategy

We first consider Theorem 2.1. In what follows, all eigenvectors have unit length. Assume that the entries
ξij are iid copies of a random variable ξ. Consider a fixed vector x = (x1, . . . , xn), we introduce the small
ball probability

ρδ(x) := sup
a∈R

P(|ξ1x1 + · · ·+ ξnxn − a| ≤ δ).

where ξ1, . . . , ξn are iid copies of ξ. Let Xn−1 be an (n − 1) × (n − 1) minor of Xn. In this section we will
to reduce Theorem 2.1 to the following

Theorem 4.1. There exist positive constants c and α0 such that the following holds with probability 1 −
O(exp(−α0n)): for all n−c < α < c and every unit eigenvector v of Xn−1 and for all δ ≥ n−c/α,

ρδ(v) = O

(
δ√
α

)
.

We will discuss how to establish this result later in this section, and give the formal details of proof in later
sections. Assuming this theorem for the moment, we now finish the proof of Theorem 2.1. To start, let B
be the event that the spectrum of Xn belongs to a controlled interval,

B = {ω : λ1(Xn), . . . , λn(Xn) ⊂ [−10
√
n, 10

√
n]}. (3)

Standard results in random matrix theory (such as [1],[24]) shows that B holds with probability 1 −
exp(−Θ(n)).

Now let 1 ≤ i ≤ n− 1, and consider the event Ei that Xn satisfies λi+1−λi ≤ δn−
1
2 . For each 1 ≤ j ≤ n, let

Gi,j be the event Ei and that the eigenvector w = (w1, . . . , wn)T with eigenvalue λi(Mn) satisfies |wj | � T ,
where T is to be chosen later. The following delocalization result helps us to choose T properly.

Theorem 4.2. Let Xn be a Wigner matrix as in Theorem 2.1. There are constants c1c2, c3 > 0 such that the
following holds. With probability at least 1− exp(−c1n), every eigenvector of Xn has at least c2n coordinates
with absolute value at least c3n

−1/2. The same statement holds for the adjacency matrix An(p), where p is
a constant. (The constants c1, c2, c3 may depend on the distribution of the entries of Xn and on p in the
An(p) case.)
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We prove this theorem in Appendix A.

Write

Xn =

(
Xn−1 X
X∗ xnn

)
(4)

where X is a column vector. From the Cauchy interlacing law, we observe that λi(Xn) ≤ λi(Xn−1) ≤
λi+1(Xn). Let u be the (unit) eigenvector of λi(Xn); we write u = (w, b), where w is a vector of length n− 1
and b is a scalar. We have

(
Xn−1 X
X∗ xnn

)(
w
b

)
= λi(Xn)

(
w
b

)
.

Extracting the top n− 1 components of this equation we obtain

(Xn−1 − λi(Xn))w + bX = 0.

Let v be the unit eigenvector of Xn−1 corresponding to λi(Xn−1). By multiplying with vT , we obtain

|bvTX| = |vT (Xn−1 − λi(Xn))w| = |λi(Xn−1)− λi(Xn)||vTw|.

We conclude that, if Ei holds, then |bvTX| ≤ δn−1/2. If we assume that Gi,n also holds, then we therefore
have

|vTX| ≤ δ n
−1/2

T
.

If one can choose T = Ω(n−1/2), the RHS is O(δ), and thus we reduce the problem to bounding the probability
that Xn−1 has an eigenvector v such that |vTX| = O(δ), for which we can apply Theorem 4.1.

Of course we cannot assume that the last coordinate b of the eigenvector of λi(Xn) to be large. Apparently,
this eigenvector has a coordinate of order n−1/2, but a trivial union bound argument would cost us a factor
n. We can avoid this factor by using Theorem 4.2.

Notice that there is no specific reason to look at the last coordinate. Thus, if we instead look at a random
coordinate (uniformly between 1 and n and split Xn accordingly), then we have

P(Ei) ≤
n

N
P

(
|vTX| ≤ δ n

−1/2

T

)
+ P(nT < N),

where nT is the number of coordinates with absolute values at least T ; and v,X are the corresponding
eigenvector and column vector.

Now choose T = c3n
−1/2 and N = c2n. By Theorem 4.2, P(nT < N) ≤ exp(−c1n). Thus, we have
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P(Ei) ≤ c−1
2 P

(
|vTX| ≤ c−1

3 δ
)

+ exp(−c1n). (5)

To bound the RHS, we recall the definition of small probability at the beginning of the section. After a
proper rescaling of δ by a factor c−1

3 , for any ε > 0

P(|vTX| ≤ δ) ≤ P(|vTX| ≤ δ|ρδ(v) < ε) + P(ρδ(v) ≥ ε) ≤ ε+ P(ρδ(v) ≥ ε).

Set ε := C δ
α for a sufficiently large constant C, Theorem 4.1 then implies that

P(|vTX| ≤ δ) ≤ C δ√
α

+ exp(−Ω(n)). (6)

This completes the proof of Theorem 2.1 assuming Theorem 4.1. To prove Theorem 2.4, we will follow the
same strategy, but the analysis is more delicate. We refer the reader to Section 6 for more detail.

For treating the general model Mn := Fn +Xn, instead of Theorem 4.1, a similar argument reduces one to
the task of proving the following analogue of Theorem 4.1.

Theorem 4.3. For any A, γ > 0, there exist α0, B > 0 depending on A and γ such that the following holds
with probability 1 − O(exp(−α0n)): every unit eigenvector v of Mn−1 = Xn−1 + Fn−1 with eigenvalue λ of
order nO(1) obeys the anti-concentration estimate

ρn−B (v) = O(n−A).

Let us now discuss the proof of Theorem 4.1 and Theorem 4.3. This proof relies on the general theory of
small ball probability. Recent results from inverse Littlewood-Offord theory developed by the second and
third author (see e.g. [26], [17]) and by Rudelson and Vershynin (see e.g. [21]) show that if the vector x does
not have rich additive structure, then the small ball probability ρδ(x) is close to δ. Thus, the key ingredient
for proving Theorem 4.1 and Theorem 4.3 is to quantify the following

Heuristic 4.4. With very high probability the eigenvectors of Mn−1 do not have additive structures.

4.1. Notation. Throughout this paper, we regard n as an asymptotic parameter going to infinity (in par-
ticular, we will implicitly assume that n is larger than any fixed constant, as our claims are all trivial for
fixed n), and allow all mathematical objects in the paper to implicitly depend on n unless they are explicitly
declared to be “fixed” or “constant”. We write X = O(Y ), X � Y , or Y � X to denote the claim that
|X| ≤ CY for some fixed C; this fixed quantity C is allowed to depend on other fixed quantities such as
the (2 + ε0)-moment (or the sub-gaussian parameters) of ξ unless explicitly declared otherwise. We also use
o(Y ) to denote any quantity bounded in magnitude by c(n)Y for some c(n) that goes to zero as n → ∞.
Again, the function c(.) is permitted to depend on fixed quantities.

For a square matrix Mn and a number λ, for short we will write Mn−λ instead of Mn−λIn. All the norms
in this note, if not specified, will be the usual `2-norm.
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The rest of this paper is organized as follows. We first give a full proof of Theorem 2.1 and Theorem 2.4 in
Section 5 and Section 6. We then prove Theorem 2.6 in Section 7, and sharpen the estimates for Erdős-Rényi
graphs in Section 8. The note is concluded by an application in Section 9.

5. Consecutive gaps for Wigner matrices: proof of Theorem 4.1

In this section we prove Theorem 4.1, which as discussed previously implies Theorem 2.1. Our treatment in
this section is based on the work by Vershynin in [35]. First of all, we recall the definition of compressible
and incompressible vectors.

Definition 5.1. Let c0, c1 ∈ (0, 1) be two numbers (chosen depending on the sub-gaussian moment of ξ.)
A vector x ∈ Rn is called sparse if |supp(x)| ≤ c0n. A vector x ∈ Sn−1 is called compressible if x is within
Euclidean distance c1 from the set of all sparse vectors. A vector x ∈ Sn−1 is called incompressible if it is
not compressible.

The sets of compressible and incompressible vectors in Sn−1 will be denoted by Comp(c0, c1) and Incomp(c0, c1)
respectively.

5.1. The compressible case. Regarding the behavior of Xnx for compressible vectors, the following was
proved in [35].

Lemma 5.2. [35, Proposition 4.2] There exist positive constants c0, c1 and α0 such that the following holds
for any λ0 of order O(

√
n). For any fixed u ∈ Rn one has

P( inf
x∈Comp(c0,c1)

‖(Xn − λ0)x− u‖ �
√
n) = O(exp(−α0n)).

We also refer the reader to Subsection 7.1 for a detailed proof of a similar statement. As a corollary, we
deduce that eigenvectors are not compressible with extremely high probability.

Lemma 5.3. There exist positive constants c0, c1 and α0 such that

P (∃ a unit eigenvector v ∈ Comp(c0, c1)) = O(exp(−α0n)).

Proof of Lemma 5.3. Assuming (3), we can find λ0 as a multiple of n−2 inside [−10
√
n, 10

√
n] such that

|λ− λ0| ≤ n−2. Hence

‖(Xn − λ0)v‖ = ‖(λ− λ0)v‖ ≤ n−2.

On the other hand, for each fixed λ0, by Lemma 5.2,

P(∃v ∈ Comp(c0, c1) : ‖(Xn − λ0)v‖ ≤ n−2) = O(exp(−α0n)).

The claim follows by a union bound with respect to λ0. �
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5.2. The incompressible case. Our next focus is on incompressible vectors. This is the treatment where
the inverse Littlewood-Offord ideas come into play.

We first introduce the notion of least common denominator by Rudelson and Versynin (see [21]). Fix
parameters κ and γ (which may depend on n), where γ ∈ (0, 1). For any nonzero vector x define

LCDκ,γ(x) := inf
{
θ > 0 : dist(θx,Zn) < min(γ‖θx‖, κ)

}
.

Remark 5.4. In application, we will choose κ = nκ0 for some sufficiently small κ0. Regarding the parameter
γ, it suffices to set it to be 1/2 for this section; but we will choose it to be proportional to α (from Theorem
2.1) in the next section, hence γ can decrease to zero together with n. The requirement that the distance
is smaller than γ‖θx‖ forces us to consider only non-trivial integer points as approximations of θx. The
inequality dist(θx,Zn) < κ then yields that most coordinates of θx are within a small distance from non-zero
integers.

Theorem 5.5 (Small ball probability via LCD). [21] Let ξ be a sub-gaussian random variable of mean zero
and variance one, and let ξ1, . . . , ξn be iid copies of ξ. Consider a vector x ∈ Rn which satisfies ‖x‖ ≥ 1.
Then, for every κ > 0 and γ ∈ (0, 1), and for

ε ≥ 1

LCDκ,γ(x)
,

we have

ρε(x) = O

(
ε

γ
+ e−Θ(κ2)

)
,

where the implied constants depend on ξ.

To deal with symmetric or Hermitian matrices, it is more convenient to work with the so-called regularized
least common denominator. Let x = (x1, . . . , xn) ∈ Sn−1 . Let c0, c1 ∈ (0, 1) be given constants, and assume
x ∈ Incomp(c0, c1). It is not hard to see that there are at least c0c

2
1n/2 coordinates xk of x satisfy

c1√
2n
≤ |xk| ≤

1
√
c0n

. (7)

Thus for every x ∈ Incomp(c0, c1) we can assign a subset spread(x) ⊂ [n] such that (7) holds for all
k ∈ spread(x) and

|spread(x)| = dc′ne,

where we set

c′ := c0c
2
1/4. (8)

Definition 5.6 (Regularized LCD, see also [35]). Let α ∈ (0, c′/4). We define the regularized LCD of a
vector x ∈ Incomp(c0, c1) as

L̂CDκ,γ(x, α) = max
{

LCDκ,γ

(
xI/‖xI‖

)
: I ⊆ spread(x), |I| = dαne

}
.
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Roughly speaking, the reason we choose to work with L̂CD is that we want to detect structure of x in
sufficiently small segments. From the definition, it is clear that if LCD(x) is small (i.e. when x has strong

structure), then so is L̂CD(x, α).

Lemma 5.7. For any x ∈ Sn−1 and any 0 < γ < c1
√
α/2, we have

L̂CDκ,γ(c1
√
α/2)−1(x, α) ≤ 1

c0

√
αLCDκ,γ(x).

Consequently, for any 0 < γ < 1

L̂CDκ,γ(x, α) ≤ 1

c0

√
αLCDκ,γ(c1

√
α/2)(x).

Proof of Lemma 5.7. Note that for any I ⊂ spread(x) with |I| = dαne,

c1
2

√
|I|/n < ‖xI‖ ≤

1
√
c0

√
|I|/n.

Assume that dist(tx,Zn) < min(γ‖tx‖2, κ) for some t ≈ LCDκ,γ(x). Define

tI := t‖xI‖.

One then has

c1
2

√
αt < tI ≤

1
√
c0

√
|I|/nt.

Furthermore,

dist(tIxI/‖xI‖,ZI) ≤ dist(tx,Zn)

< min(γ‖tx‖, κ)

≤ min(γ(
c1
2

√
α)−1‖tI(xI/‖xI‖)‖, κ).

Thus

LCDκ,γ(c1
√
α/2)−1(xI/‖xI‖) ≤ tI ≤

1
√
c0

√
|I|/nt ≤ 1

c0

√
αLCDκ,γ(x).

�

We now introduce a result connecting the small ball probability with the regularized LCD.
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Lemma 5.8. Assume that

ε ≥ 1

c0

√
α(L̂CDκ,γ(x, α))−1.

Then we have

ρε(x) = O

(
ε

γc1
√
α

+ e−Θ(κ2)

)
.

Proof of Lemma 5.8. First apply Theorem 5.5 to xI/‖xI‖ where the L̂CD is achieved: for any δ ≥ (LCDκ,γ(xI/‖xI‖))−1

ρδ

(
1

‖xI‖
SI

)
= O

(
δ

γ
+ e−Θ(κ2)

)
,

where SI =
∑
i∈I ξixi.

Recall that c1
2

√
α < ‖xI‖ ≤ 1

c0

√
α. Also notice that if I ⊂ J ⊂ [n], then

ρδ(SJ) ≤ ρδ(SI).

Thus for any ε ≥ 1
c0

√
α(LCDκ,γ(xI/‖xI‖))−1, one has ε/‖xI‖ ≥ (LCDκ,γ(xI/‖xI‖))−1, and so

ρε(x) ≤ ρε(SI) = ρε/‖xI‖(SI/‖xI‖)�
ε

γ‖xI‖
+ e−Θ(κ2) � ε

γc1
√
α

+ e−Θ(κ2).

�

For given D,κ, γ and α, we denote the set of unit vectors with bounded regularized LCD by

TD,κ,γ,α := {x ∈ Incomp(c0, c1) : L̂CDκ,γ(x, α) ≤ D}.

The following is an analog of [35, Lemma 7.9].

Lemma 5.9. There exist c > 0, α0 > 0 depending on c0, c1 from Lemma 5.3 such that the following holds
with κ = n2c and γ = 1/2. Let n−c ≤ α ≤ c′/4, and 1 ≤ D ≤ nc/α. Then for any fixed u ∈ Rn and any real
number λ0 of order O(

√
n),

P
(
∃x ∈ TD,κ,γ,α : ‖(Xn − λ0)x− u‖ = o(β

√
n)
)

= O(exp(−α0n)),

where
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β :=
κ√
αD

.

We will give a proof of Lemma 5.9 in Appendix B by following [35]. Assuming it for now, we will obtain the
following key lemma.

Lemma 5.10. With the same assumption as in Lemma 5.9, we have

P
(
∃ a unit eigenvector v ∈ Incomp(c0, c1) : L̂CDκ,γ(v, α) ≤ nc/α

)
= O(exp(−α0n)).

Proof of Lemma 5.10. Set D = nc/α and β = κ√
αD

. Assuming (3), we first approximate λ by a multiple of

β, called λ0, from the interval [−10
√
n, 10

√
n].

As Xnv = λv, we have

‖(Xn − λ0)v‖ = ‖(λ− λ0)v‖ = O(β) = o(β
√
n). (9)

On the other hand, by Lemma 5.9, (9) holds with probability O(exp(−α0n)) for any fixed λ0. Taking a
union bound over the O(β−1

√
n) choices of λ0, one obtains

P
(
∃v ∈ TD,κ,γ,α,∃λ0 ∈ βZ ∩ [−10

√
n, 10

√
n] : ‖(Xn − λ0)v‖ = o(β

√
n)
)

� exp(−α0n)× β−1
√
n

� exp(−α0n/2).

�

Putting Lemma 5.3 and Lemma 5.10 together, we obtain a realization of Heuristic 4.4 as follows.

Theorem 5.11. There exists a positive constants c and α0 depending on c0, c1 from Lemma 5.3 such that
for κ = n2c, γ = 1/2 and for n−c ≤ α ≤ c′/4,

P
(

All unit eigenvectors v belong to Incomp(c0, c1) and L̂CDκ,γ(v, α)� nc/α
)

= 1−O(exp(−α0n/2)).

We can now complete the proof of Theorem 4.1. By the theorem above, it is safe to assume L̂CDκ,γ(v, α)�
nc/α for all eigenvectors of Xn−1. As such, by Lemma 5.8, for any δ �

√
α/nc/α we have

ρδ(S)� δ√
α

+ e−Θ(κ2) � δ√
α
, (10)

where we recall that κ = n2c.
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Theorem 2.1 then follows from (5) and Theorem 4.1, where we note that the condition δ ≥ n−c/α automat-
ically implies δ �

√
αn−c/α.

Remark 5.12. We could have proved Theorem 2.1 by directly applying the results from [35], where LCD

and L̂CD were defined slightly differently. However, the current forms of LCD and L̂CD are easy to extend
to higher dimensions, which will be useful for our proof of Theorem 2.4 next.

6. Proof of Theorem 2.4

Let us first give a full treatment for the case l = 2. Here cl = 3 and we are considering λi+2 − λi. The case
of general l case will be deduced with some minor modifications.

6.1. Treatment for l = 2. First of all, we will introduce the extension of LCD to higher dimension, following
Rudelson and Vershynin (see [22]). Consider two unit vectors x1 = (x11, . . . , x1n), x2 = (x21, . . . , x2n) ∈ Rn.
Although the following definition can be extended to more general x1, x2, let us assume them to be orthogonal.
Let Hx1,x2 ⊂ Rn be the subspace generated by x1, x2. Then for κ > 0 and γ ∈ (0, 1) we define,

LCDκ,γ(x1, x2) := inf
x∈Hx1,x2 ,‖x‖=1

LCDκ,γ(x).

Similarly to Theorem 5.5, the following result gives a bound on the small ball probability for the R2-random
sum S =

∑n
i=1 ξi(xi1, xi2) in terms of the joint structure of x1 and x2.

Theorem 6.1. [22] Let ξ be a sub-gaussian random variable of mean zero and variance one, and let ξ1, . . . , ξn
be iid copies of ξ. Then, for every κ > 0 and γ ∈ (0, 1), and for

ε ≥ 1

LCDκ,γ(x1, x2)
,

we have

ρε(S)�
(
ε

γ

)2

+ e−Θ(κ2),

where the implied constants depend on ξ.

This theorem plays a crucial role in our task of obtaining the repulsion.

We are now ready to present the main idea of the proof of Theorem 2.4. Let 1 ≤ i ≤ n− 2, and consider the
event Ei that Xn has three eigenvalues λi(Xn) ≤ λi+1(Xn) ≤ λi+2(Xn) with λi+2 − λi ≤ δ/n1/2 for some δ.
For short, we set

t := δ/n1/2.

Write

Xn =

(
Xn−1 X
X∗ mnn

)
(11)
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for an (n− 1)× (n− 1) minor Xn−1 and a column vector X.

From the Cauchy interlacing law, we observe that

λi(Xn) ≤ λi(Xn−1) ≤ λi+1(Xn) ≤ λi+1(Xn−1) ≤ λi+2(Xn).

By definition, for some eigenvector (w, b) with |b| � n−1/2

(
Xn−1 X
X∗ mnn

)(
w
b

)
= λi(Xn)

(
w
b

)
.

Extracting the top n− 1 components of this equation we obtain

(Xn−1 − λi(Xn))w + bX = 0.

If we choose unit eigenvectors v = (v1, . . . , vn−1)T ofXn−1 with eigenvalue λi(Xn−1), and v′ = (v′1, . . . , v
′
n−1)T

of Xn−1 with eigenvalue λi+1(Xn−1) respectively, then

|bvTX| = |vT (Xn−1 − λi(Xn))w| = |λi(Xn−1)− λi(Xn)||vTw| ≤ t;

and similarly

|bv′TX| = |v′T (Xn−1 − λi(Xn))w| = |λi+1(Mn−1)− λi(Xn)||v′Tw| ≤ t.

In summary, we have

|vTX| = O(δ) ∧ |v′TX| = O(δ). (12)

Let Fi denote this event. By Theorem 6.1, if we can show LCDκ,γ(v, v′) large, then the P(Fi) can
be estimated quite efficiently. In what follows we will focus on infu∈Hv,v′ LCDκ,γ(u) by first studying

infu∈Hv,v′ L̂CDκ,γ(u, α), and then using Lemma 5.7 to pass back to LCD.

We start with a simple fact first.

Fact 6.2. For any unit vector u from Hv,v′ , we have

‖(Xn−1 − λi(Xn−1))2u‖ ≤ t2.

In particular, by the Cauchy-Schwarz inequality
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‖(Xn−1 − λi(Xn−1))u‖ ≤ t. (13)

Proof of Fact 6.2. Assume that u = av + a′v′ with a2 + a′
2

= 1, then

‖(Xn−1 − λi(Xn−1))2u‖ = ‖(Xn−1 − λi(Xn−1))(Xn−1 − λi(Xn−1))u‖
= ‖(Xn−1 − λi(Xn−1))(Xn−1 − λi(Xn−1))v′‖
= |a′(λi+1(Xn−1)− λi(Xn−1))2|
≤ t2.

�

Next, from Lemma 5.3 and Lemma 5.9, and by (13) from Fact 6.2, we infer the following.

Theorem 6.3. There exist positive constants c, α0 such that for κ = n2c, γ = 1/2, and for any n−c ≤ α ≤
c′/4 the following holds for any t ≥ n−c/ακ/

√
α

P
(
Xn−1 has two eigenvectors v, v′ with eigenvalues |λ−λ′| ≤ t and there exists u ∈ Hv,v′ ∩ Incomp(c0, c1)

such that L̂CDκ,γ(u, α) ≤ t−1κ/
√
α
)

= O(exp(−α0n/2)).

Proof of Theorem 6.3. Let

D := t−1κ/
√
α and β := t.

It is clear that with the given range of t one has 1 ≤ D ≤ nc/α. By approximating λi(Xn−1) by λ0, a
multiple of β−1, and also by (13) and by the triangle inequality

‖(Xn−1 − λ0)u‖ ≤ ‖(Xn−1 − λi(Xn−1))u‖+ |λi(Xn−1)− λ0| = O(β).

To complete the proof, we just apply Lemma 5.9 for these choices of D and β, and then take the union
bound over all O(

√
nβ−1) choices of λ0. �

Let Ei be the event that Xn−1 has eigenvectors v, v′ with eigenvalues |λi+1(Xn−1) − λi(Xn−1)| ≤ t, and

Ei ∧ Hi be the event Ei coupled with infu∈Hv,v′ L̂CDκ,γ(u, α) � t−1κ/α. We have learned from Theorem
6.3 that
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P(Ei ∧Hi) = P(Ei)−O(exp(−α0n/2)).

On the other hand, our main result of the previous section, (10), implies that P(Ei) = O
(

δ√
α

)
. Thus

P(Ei ∧Hi)�
δ√
α
. (14)

Now, condition on Ei ∧ Hi, for every u ∈ Hv,v′ we have L̂CDκ,γ(u, α) ≥ t−1κ/
√
α. It then follows from

Lemma 5.7 that

L̂CDκ,γ(u, α)�
√
αLCDκ,c1γ

√
α/2(u).

We have thus obtained the key estimate

LCDκ,c1γ
√
α/2(v, v′) = inf

u∈Hv,v′
LCDκ,c1γ

√
α/2(u)� t−1κ/α. (15)

Now we estimate P(Fi|Ei ∧ Hi) (where we recall Fi from (12)). As δ = tn1/2 � (t−1κ/α)−1, and as c1, γ
are all fixed constants, by Theorem 6.1,

P(Fi|Ei ∧Hi)�
(

δ√
α

+ e−Θ(κ2)

)2

�
(

δ√
α

)2

. (16)

Combining (16) with (14), we obtain that

P(Fi ∧ Ei)�
(

δ√
α

)3

+ exp(−Θ(n))�
(

δ√
α

)3

. (17)

Together with (5), this completes the proof of the case l = 2 in Theorem 2.4, where the condition δ ≥ n1−c/α

automatically implies the requirement t ≥ n−c/ακ/
√
α of Theorem 6.3, as long as c is sufficiently small.

6.2. Proof sketch for general l. By the definition of d, we have 2d ≤ l < 2d+1, and that

λi(Xn) ≤ λi(Xn−1) ≤ · · · ≤ λi+l−1(Xn−1) ≤ λi+l(Xn).

Let v1, . . . , vl be the eigenvectors of Xn−1 corresponding to λi(Xn−1), . . . , λi+l−1(Xn−1). Then similarly to
(12), with X being the last column of Xn in (11), we have the conjunction

(|vT1 X| = O(δ)) ∧ · · · ∧ (|vT2dX| = O(δ)).
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Also, as an analog of Fact 6.2, for any u ∈ Hv1,...,v2d
and for t = δ/n1/2 we have

‖(Xn−1 − λi(Xn−1))2du‖ ≤ t2
d

.

So by Cauchy-Schwarz,

‖(Xn−1 − λi(Xn−1))u‖ ≤ t. (18)

Additionally, arguing similarly to the proof of Theorem 6.3, if we let E ′i be the event that Xn−1 has eigen-
vectors v1, . . . , vl with eigenvalues |λi+l−1(Xn−1)− λi(Xn−1)| ≤ t, and E ′i ∧H′i be the event E ′i coupled with

infu∈Hv1,...,v2d
L̂CDκ,γ(u, α)� t−1κ/α, then

P(E ′i ∧H′i) = P(E ′i)−O(exp(−α0n/2)).

To this end, conditioning on E ′i ∧ H′i, it follows from (18), together with the small probability bound from
Theorem 6.1 (applied to 2d vectors), that

PX

(
|vT1 X| = O(δ)) ∧ · · · ∧ (|vT2dX| = O(δ))|Ei ∧Hi

)
� (

δ√
α

)2d .

By iterating this conditional process up to Xn−l and proceed similarly to (17), we obtain the following lower
bound for the exponent of δ

d−1∑
k=0

4k + (l − 2d + 1)2d =
(3l + 3− 2d+1)2d − 1

3
,

where we used the fact that the contribution to the exponent for the running index l′ from 2d to l is
(l − 2d + 1)2d, and for l′ varying from 2k to 2k+1 − 1 (with 0 ≤ k ≤ d− 1) is (2k)(2k) = 4k.

6.3. Remark. We finish this section with a short discussion on how to obtain a version of Theorem 2.1 for
complex Wigner matrices with a probability bound of O((δ/α)2).

First of all, let Xn be a random Hermitian matrix where the real and complex components of the off-diagonal
terms are iid copies of a sub-gaussian random variable of mean zero and variance 1/2.

An identical proof of Theorem 5.11 then implies that with probability 1− exp(−Θ(n)), for any unit complex
eigenvector v of Xn (including all complex phases eiθ, 0 ≤ θ ≤ 2π), the S2n−1 vector (<(v),=(v)) belongs to
Incomp(c0, c1) and

L̂CDκ,γ(<(v),=(v), α)� nc/α. (19)
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Next, by (5), P(Ei) is controlled by P(|vTX| = O(δ)), where v is any unit eigenvector associated to λi. For
short, write w = (<(v),=(v)), w′ = (=(v),−<(v)) and Y = (<(X),=(X)), we then have

P(|vTX| = O(δ)) = P
(
|wTY

∣∣ = O(δ) ∧ |(w′TY )| = O(δ)
)
. (20)

Thus we are in the position to apply Theorem 6.1. For this, we need to verify that the subspace Hw,w′ does

not contain any unit vector with small L̂CD. However, this is exactly what we have obtained in (19) (see
also the proof of Theorem 6.3).

In conclusion, with δ ≥ n−c/α, the bound of Theorem 6.1 then implies

P(Ei)� (
δ√
α

)2.

For the more general Theorem 2.4, it looks plausible that we can double the value of cl, using a similar, but
more tedious argument. We skip the details.

7. Consecutive gaps for perturbed matrices: proof of Theorem 2.6

In the perturbed case Mn = Fn +Xn, the approach used in Section 5 and Section 6 does not seem to work.
This is mainly because the norm of Mn now blows up, and also because ξ is assumed to have bounded
(2 + ξ0)-moment only. To handle this case, we will rely instead on the inverse Littlewood-Offord results
developed by the second and third author.

It suffices to justify Theorem 4.3. As we have seen, it is technically convenient to replace the concentration
probability ρδ(v) with a segmental variant ρδ,α(v), and to work with two related scales δ rather than a single
scale δ.

More precisely, for any δ > 0, 0 < α ≤ 1 and any v ∈ Rn, let ρδ,α(v) denote the quantity

ρδ,α(v) := inf
I⊂{1,...,n}:|I|=bαnc

ρδ(v �I)

where v �I= (vi1 , . . . , vim) is the restriction of v to I = {i1, . . . , im} with i1 < · · · < im.

We observe the easy inequality
ρδ(v) ≤ ρδ,α(v). (21)

We will assume that the matrix Mn has operator norm bounded by nγ
′
, for some γ′ ≥ max{γ, 1/2}, with

probability at least 1 − O(n−A). Thus for instance if ξ has subgaussian distribution, then one can take
γ′ = max{γ, 1/2}. (One can also see that γ′ ≤ A/2 + γ + 4 in any case.)

For the rest of the treatment of Theorem 4.3, we will choose

α :=
1

nε
(22)
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for some sufficiently small constant ε depending on A and γ′.

We now reduce Theorem 4.3 to

Theorem 7.1. With probability at least 1−O(exp(−α0n)) for some positive constant α0 independent of n,

there is no unit eigenvector v of Mn with an eigenvalue λ of order O(nγ
′
) with the following property: there

is a radius δ with n−B ≤ δ ≤ n−B/2 such that

n−A ≤ ρnγ′δ,α(v) ≤ n0.49ρδ,α(v).

To deduce Theorem 4.3, we assume otherwise that ρn−B (v) ≥ n−A. Define the sequence (δi)
J
i=0 with

J := dA/0.49e, δ0 := n−B , and

δj+1 := nγ
′
δj

for 0 ≤ j < J . By assumption, ρδ0,α(v) ≥ n−A, and if we choose B so that

B ≥ 2Jγ′, (23)

then because the ρ’s are bounded by one, there exists j < J (and so n−B ≤ δj+1 ≤ n−B/2) such that

ρδj+1,α(v) ≤ n.49ρδj ,α(v).

It remains to establish Theorem 7.1, this is the objective of the rest of this section.

7.1. The compressible case. Let us first consider the easy case in which there exists n−B ≤ δ ≤ n−B/2

such that ρδ,α(v) ≥ (αn)−1/2+ε, this case is similar to our treatment of Subsection 5.1. Our main tool will
be the following Erdős-type inverse Littlewood-Offord theorem:

Theorem 7.2. [9] Let ε > 0 be fixed, let δ > 0, and let v ∈ Rm be a unit vector with

ρδ(v) ≥ m− 1
2 +ε.

Then all but at most εm of the coefficients of v have magnitude at most δ.

Now as q = ρδ,α(v) > (αn)−1/2+ε, by Theorem 7.2, we see that for every I ⊂ {1, . . . , n} with |I| = bαnc, all
but at most O(ε|I|) of the coefficients of v �I have magnitude at most δ, where the implied constant does
not depend on ε. By a simple covering argument, we conclude that |vi| ≤ δ for all i outside of an exceptional
set S ⊂ {1, . . . , n} of cardinality |S| = O(εαn) = O(n1−ε).

If we let ES denote the event that the above situation holds for a given value of S, the probability that the
conclusion of Theorem 7.1 fails may thus be bounded via the union bound by∑

S⊂{1,...,n}:|S|=O(αn)

P(ES) +O(exp(−Θ(n))).

By Stirling’s formula, the number of possible exceptional sets S is at most nO(εn1−ε). Thus it suffices to
show that
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P(ES)� exp(−α0n) (24)

uniformly in S and some fixed α0 > 0 independent of ε.

By symmetry we may take
S = {n′ + 1, . . . , n}

for some n′ = (1−O(α))n.

Now suppose that the event ES holds, and let v, λ be as above. We split

Mn =

(
Mn′ D
D∗ Mn−n′

)
where Mn′ , Mn−n′ are the top left n′ × n′ and bottom right (n− n′)× (n− n′) minors of Mn respectively,
and D is a n′ × (n − n′) matrix whose entries are independent copies of ξ (modulo the deterministic part

from Fn), and also independent of Mn′ ,Mn−n′ . We also split vT = (v′, v′′)T , with v′ ∈ Rn′ and v′′ ∈ Rn−n′ .

By hypothesis, all entries of v′ have magnitude at most δ = O(n−B/2), and so provided that B > 1,

‖v′‖ ≤ δn1/2 � 1

10
(25)

and thus (since v is a unit vector)

1

2
≤ ‖v′′‖ ≤ 1. (26)

From the eigenvector equation (
Mn′ D
D∗ Mn−n′

)(
v′

v′′

)
= λ

(
v′

v′′

)
we have

(Mn′ − λ)v′ +Dv′′ = 0. (27)

Hence,

‖Dv′′‖ = O(nγ
′
δn

1
2 ) = O(n−

B
2 + 1

2 +γ′). (28)

On the other hand, by a standard epsilon-net argument (noting that n − n′ = O(n1−ε)), with probability
1−O(exp(−α0n)) for some fixed α0 > 0 independent of ε, we have

inf
w∈Rn−n′ :‖w‖=1

‖Dw‖ � n−
1
2 . (29)
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We hence obtain (24) provided that

B > 2γ′ + 2. (30)

7.2. The incompressible case. Now we assume that there exists a radius δ with n−B ≤ δ ≤ n−B/2 such
that

n−A ≤ ρnγ′δ,α(v) ≤ n.49ρδ,α(v); and ρδ,α ≤ (αn)−1/2+ε.

In this case, Theorem 7.2 is insufficient to control the ”rich” vector v. Instead, we will rely on the more
general inverse Littlewood-Offord theorem from [18] (see also [27, 28]). Define a generalised arithmetic
progression (or GAP) to be a finite subset Q of the real line R of the form

Q = {a1w1 + · · ·+ arwr : ai ∈ Z, |ai| ≤ Ni for all i = 1, . . . , r}

where r ≥ 0 is a natural number (the rank of the GAP), N1, . . . , Nr > 0 are positive integers (the dimensions
of the GAP), and w1, . . . , wr ∈ R are real numbers (the generators of the GAP). We refer to the quantity∏r
i=1(2Ni + 1) as the volume vol(Q) of Q; this is an upper bound for the cardinality |Q| of Q. We then have

Theorem 7.3 (Continuous inverse Littlewood-Offord theorem). Let ε > 0 be fixed, let δ > 0, and let v ∈ Rn
be a unit vector whose small ball probability ρ := ρδ(v) obeys the lower bound

ρ� n−O(1).

Then there exists a generalized arithmetic progression Q of volume

vol(Q) ≤ max

(
O

(
1

ρ
√
n

)
, 1

)
such that all but at most εn of the coefficients v1, . . . , vn of v lie within δ of Q. Furthermore, if r denotes
the rank of Q, then r = O(1), and all the generators w1, . . . , wr of Q have magnitude O(1).

We now begin the proof of Theorem 7.1 with the setting

q := ρδ,α(v) < (αn)−1/2+ε.

As ρnγ′δ,α(v) ≤ n.49q, there must exist a subset I of {1, . . . , n} of cardinality |I| = bαnc with

ρnγ′δ(v �I) ≤ n.49q. (31)

For each I, let E ′I be the event that the above situation occurs, thus the conclusion of Theorem 7.1 holds
with probability at most ∑

I⊂{1,...,n}:|I|=bαnc

P(E ′I) +O(exp(−Θ(n))).

We crudely bound the number of possible I by 2n. The key estimate is stated below.
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Lemma 7.4. We have

P(E ′I)� n−0.1n+O(εn).

This will establish Theorem 7.1 in the incompressible case if ε is chosen small enough.

Our approach to prove Lemma 7.4 is somewhat similar to [32]. First, by symmetry we may assume that
I = {1, . . . , k}, where k := bαnc. Similarly to the previous section, we split

Mn =

(
Mk D
D∗ Mn−k

)

where Mk, Mn−k are the top left k × k and bottom right (n− k)× (n− k) minors of Mn respectively, and
D is a k × (n− k) matrix whose entries are (modulo the deterministic part from Fn) independent copies of
ξ, and also independent of Mk,Mn−k. We also split vT = (v′, v′′)T with v′ ∈ Rk and v′′ ∈ Rn−k.

Now suppose that Mn is such that the event E ′I holds, the heart of our analysis is to approximate (v, λ) by
low-entropy structures.

Lemma 7.5. There exists a subset N of Rn×Rk×R of size O(n−n/2+O(αn)q−n) such that for any eigenvector-

eigenvalue pair (v, λ) satisfying E ′I , there exists (ṽ, w′, λ̃) ∈ N which well-approximates (v, λ) in the following
sense

• (general approximation of eigenvector) |vj − ṽj | ≤ δ, for 1 ≤ j ≤ n;

• (finer approximation over segment) |v′j − w′j | ≤ n−γ
′−1δ, for 1 ≤ j ≤ k;

• (approximation of eigenvalue) |λ− λ̃| ≤ n−γ′−1δ.

We also refer the reader to Lemma B.1 in Appendix B for similarities.

Proof of Lemma 7.5. We cover {1, . . . , n} by sets I1, . . . , Im of of length differing by at most one, with

m ≤
⌊

1

α

⌋
+ 1 = O(nε).

Because ρδ(v) = q, for each i = 1, . . . ,m we have

ρδ(v �Ii) ≥ q.

Applying Theorem 7.3 and the incompressibility hypothesis q < (αn)−1/2+ε, we may thus find, for each
i = 1 . . . ,m, a GAP Qi such that

vol(Qi)� (αn)−1/2+ε/q (32)
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and rank ri = O(1) such that all but at most O(ε2n) of the coefficients of v �Ii lie within a distance O(δ) of
Qi. Thus we have

dist(vj ,

m⋃
i=1

Qi)� δ

for all j = 1, . . . , n outside of an exceptional set S ⊂ {1, . . . , n} of cardinality |S| � εn.

Furthermore, all the generators wi,1, . . . , wi,ri of Qi have magnitude O(1). From (32) we have the crude
bound for the dimensions of Qi

Ni,1, . . . , Ni,ri � (αn)−1/2+ε/q.

From this, we may round each generator wi,l to the integer nearest multiple of qδ (say) without loss of

generality, since this only moves the elements of Qi by O((αn)−1/2+εδ) = O(δ) at most. In particular, all
elements of

⋃m
i=1Qi are now integer multiples of qδ.

Thanks to this information, one can create a coarse “discretized approximation” ṽ = (ṽ1, . . . , ṽn) to v, by
setting ṽj for j = 1, . . . , n to be the nearest element of

⋃m
i=1Qi to vj if vj lies within O(δ) of this set, or the

nearest multiple of qδ to vj otherwise. Then ṽj consists entirely of multiples of qδ, one has

|vj − ṽj | ≤ δ (33)

for all j = 1, . . . , n, and all but at most O(αn) of the coefficients of ṽ lie in
⋃m
i=1Qi.

We will also need a finer approximation w′ = (w1, . . . , wk)T to the component v′ = (v1, . . . , vk)T of v, by

choosing wj to be the nearest integer multiple of n−γ
′
δ to vj , thus for all j = 1, . . . , k.

|v′j − w′j | ≤ n−γ
′
δ. (34)

Similarly, one approximates the eigenvector λ by the nearest multiple λ̃ of n−γ
′−1δ, thus

|λ− λ̃| ≤ n−γ
′−1δ. (35)

We now claim that the data ṽ, w′, λ̃ have low entropy, in the sense that they take a relatively small number
of values. Indeed, the number of possible ranks r1, . . . , rm of the Qi is (O(1))m = (O(1))1/α. Once the ranks
are chosen, the number of ways we can choose the generators wi,l of the Qi (which are all multiples of qδ of
magnitude O(1)) are

O
(
(1/qδ)

∑m
i=1 ri

)
= O(nO(1/α)) = O(nO(nε))
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since q, δ ≥ n−O(1) by hypothesis.

The number of sets S may be crudely bounded by 2n. For each j ∈ S, the number of choices for ṽj is

O(1/qδ), leading to O((1/qδ)|S|) = O((1/qδ)O(αn)) ways to choose this portion of ṽ. For j 6∈ S, ṽj lies in⋃m
i=1Qi, which has cardinality O(m vol(Q)) = O( 1

αn
−1/2+α/q). Finally, for the k = bαnc coefficients of w′

there are at most O(nγ
′+1/δ) choices, and there are similarly O(nγ

′+1/δ) choices for λ̃.

Thus the total possible number of quadruples1 (ṽ, w′, λ̃) is at most

(O(1))1/α×O(nO(1/α))×2n×O
(
(1/qδ)O(αn)

)
×O

(
(

1

α
n−1/2+α/q)n

)
×O

(
(nγ

′+1/q)bαnc
)
×O(n100/q)2, (36)

which simplifies to

O(n−n/2+O(αn)q−n).

Note that many of the factors in the previous expression (36) can be absorbed into the O(nO(αn)) error as
ε is chosen sufficiently small.

�

Now we assume that (v, λ) is an eigenvector-eigenvalue pair satisfying E ′I , which can be approximated by

tuple (ṽ, w′, λ̃) ∈ N as in Lemma 7.5. The lower n − k-dimensional component of the eigenvector equation
Mnv = λv then reads as

D∗v′ + (Mn−k − λ)v′′ = 0.

From (34) and (35) we certainly have

‖(λ̃− λ)v′′‖ � δ and ‖D∗(v′ − w′)‖ � δ.

By (33), we have

‖v′′ − ṽ′′‖ ≤ n 1
2 δ

where ṽ′′ is the lower n− k entries of ṽ.

Since λ has order O(nγ
′
), we have λ̃ = O(nγ

′
), and so

1One could also expand this set of data by also adding in the GAPs Q1, . . . , Qm and the set S, but we will have no need of
this additional data in the rest of the argument.
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‖λ̃(v′′ − ṽ′′)‖ ≤ nγ
′+ 1

2 δ.

Hence, with u = (Mn−k − λ̃)ṽ′′ independent of D,

‖D∗w′ − u‖ = ‖D∗w′ − (Mn−k − λ̃)ṽ′′‖

= ‖D∗(w′ − v′) +D∗v′ + (Mn−k − λ)v′′ + (Mn−k − λ)(ṽ′′ − v′′) + (λ− λ̃)ṽ′′‖

≤ nγ
′+ 1

2 δ. (37)

Let us now condition Mn−k to be fixed, so that u is deterministic. Let x1, . . . , xn−k ∈ Rk denote the rows of
D; then the x1, . . . , xn−k are independent vectors, each of whose elements (up to a deterministic part from
Fn) is an independent copy of ξ. The bound (37) then can be rewritten as

n−k∑
i=1

|xTi w′ − ui|2 ≤ n2γ′+1δ2 (38)

where u1, . . . , un−k ∈ R are the coefficients of u.

In summary, if we let Eṽ,w′,λ̃ be the event that the above situation holds for a given choice of ṽ, w′, λ̃, it

will suffice by the union bound (taking into account the cardinality of N from Lemma 7.5) to establish the
following upper bound

Lemma 7.6. For any (ṽ, w′, λ̃) ∈ N ,

P(Eṽ,w′,λ̃) = O((n.49+O(α)q)n). (39)

To justify (39), we first recall from (31) that ρnγ′δ(v
′) ≤ n.49q. From (34), the random walks (with the xi)

associated to v′ and w′ differ by at most O(n−γ
′+ 1

2 δ), and so

ρnγ′δ/2(w′) ≤ n.49q.

We now invoke the following tensorization trick (which is not strictly necessary here, but will be useful later).

Lemma 7.7. [21, Lemma 2.2] Let ζ1, . . . , ζn be independent non-negative radom variables, and let K, t0 > 0.
If one has

P(ζk < t) ≤ Kt
for all k = 1, . . . , n and all t ≥ t0, then one has

P(

n∑
k=1

ζ2
k < t2n) ≤ O((Kt)n)

for all t ≥ t0.

By setting t = nγ
′
δ/2, it follows crudely from Lemma 7.7 that

P
( n−k∑
i=1

|xTi w′ − vi|2 = O(n2γ′+1δ2)
)
< P

( n−k∑
i=1

|xTi w′ − vi|2 = o(nt2)
)

= O
(
(n.49q)n−k

)
,
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where as before we are conditioning on Mn−k being fixed.

Undoing the conditioning, we conclude that (38), and hence (37), occurs with probability O((n.49q)n−k) =
O((n.49+O(α)q)n), and thus (39) follows. This concludes the proof of Theorem 7.1 in the incompressible case.

Finally, the conditions for B from (23) and (30) can be secured by choosing

B > 5Aγ′ + 2γ′ + 2. (40)

8. Consecutive gaps for Erdős-Rényi graphs: proof of Theorem 2.7

By modifying the treatment of Section 7 and using (5), we will show the following.

Theorem 8.1 (Most eigenvectors poor). Let A > 0 and σ > 0 be fixed. Then, with probability at least
1−O(exp(−α0n)) for some positive constant α0 > 0 (which may depend on A, σ), every unit eigenvector v
of An with eigenvalue λ in the interval [−10

√
n, 10

√
n] obeys the concentration estimate

ρδ(v) ≤ nσδ
for all δ > n−A.

In fact, we shall reduce Theorem 8.1 to

Theorem 8.2. Let σ > 0 be fixed, and let δ ≥ n−A and q ≥ nσδ. Let α > 0 be a sufficiently small fixed
quantity. Then with probability at least 1 − O(exp(−α0n)) for some positive constant α0 > 0, every unit
eigenvector v of An with an eigenvalue λ in the interval [−10

√
n, 10

√
n], one either has

ρδ,α(v) ≤ q
or

ρn1/2+αδ,α(v) > n1/2−
√
αq. (41)

We remark that, unlike in Section 7, α is a (sufficiently small) constant here. It is not hard to see that
Theorem 8.2 implies Theorem 8.1. Indeed, let An, A, σ be as in Theorem 8.1. We may assume δ ≤ 1, as the
claim is trivial for δ > 1. By rounding δ up to the nearest power of n−σ/2, and using the union bound, it
suffices to show that for each given such choice of n−A < δ ≤ 1, with probability 1−O(exp(−α0n)) all unit
eigenvectors v of An with eigenvalue in the interval [−10

√
n, 10

√
n] satisfy the bound

ρδ(v) ≤ nσ/2δ. (42)

Let α > 0 be a sufficiently small fixed quantity, and set J := b2Ac. For each j = 0, . . . , J + 1, we define the
quantities

δj := n(1/2+α)jδ; and Kj := nσ/2−(
√
α−α)j .

Now suppose that (42) fails. We conclude that
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ρδ0,α(v) ≥ ρδ0(v) > K0δ0.

On the other hand, if α is sufficiently small depending on σ,A,

ρδJ ,α(v) ≤ 1 ≤ δJ ≤ KJδJ .

Thus there exists 0 ≤ j < J such that

ρδj ,α(v) > Kjδj ; and ρδj+1,α(v) ≤ Kj+1δj+1.

Consequently,

ρn1/2+αδj ,α(v) ≤ n1/2−
√
αKjδj .

But by Theorem 8.2 (with σ replaced by σ/4, say, and δ and q replaced by δj and Kjδj) and by the union
bound over the J different choices of j, this event can only occur with probability O(exp(−α0n)) for some
positive constant α0, and Theorem 8.1 follows.

In what follows we will establish Theorem 8.2. Again, similarly to the proof of Theorem 7.1, we divide into
two cases.

8.1. The compressible case. Assume that q ≥ n−1/2+α and ρδ,α(v) > q. By a simple covering argument,
we have

ρδn−1/2+α/q,α(v) ≥ n−1/2+α.

Set δ′ := δn−1/2+α/q. Proceed similarly to Subsection 7.1, we just need to show

P(ES) = O(exp(−α0n)), (43)

uniformly in S ⊂ [n] with |S| = bαnc and some fixed α0 > 0 independent of α. Here ES is the event
ρδ′(v � S) ≥ n−1/2+α.

By symmetry we may take S = {n′ + 1, . . . , n} for some n′ = (1−O(α))n. Now suppose that the event ES
holds, and let v, λ be as above. We split

An =

(
An′ D
D∗ An−n′

)
and v =

(
v′

v′′

)
,
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where An′ , An−n′ are the top left n′ × n′ and bottom right (n − n′) × (n − n′) minors of An respectively,

and v′ ∈ Rn′ and v′′ ∈ Rn−n′ , and the entries of v′ are bounded by δ′ by applying Theorem 7.2. Again, as
in Subsection 7.1, we have 1

2 ≤ ‖v
′′‖ ≤ 1, and the eigenvector equation Anv = λv implies that

‖D̃v′′ − a1n′‖ = O(nδ′) = O(n1/2+αδ/q) = O(n1/2+α−σ) = o(n1/2) (44)

for some scalar a ∈ R, where D̃ = D− p1n′1Tn−n′ is the mean zero normalization of D, and we note that by
(3) and by the bound on λ,

‖An′ − λ− p1n′1Tn′‖ = O(
√
n).

However, with probability 1−O(exp(−α0n)) for some positive constant α0 independent of α, we easily have

inf
w∈Rn−n′ :‖w‖=1

inf
a∈R
‖D̃w − a1n′‖ �

√
n. (45)

In fact, without the a1 term, as noted at the end of Subsection 7.1, the left-hand side becomes the least
singular value of D̃, and the result follows from [15, Theorem 3.1]. The epsilon net arguments used there
can be easily modified to handle the additional a1n′ term. Alternatively, we can argue as follows. We group

the n′ rows of D̃ into bn
′

2 c pairs, possibly plus a remainder row which we simply discard. For each such pair

of rows, we subtract the first row in the pair from the second, and let D′ be the bn
′

2 c×n−n
′ matrix formed

by these differences. From the triangle inequality we see that ‖D′w‖ ≤ 2‖D̃w − a1‖ for all w ∈ Rn−n′ and
a ∈ R. From [15, Theorem 3.1] we have

inf
w∈Rn−n′ :‖w‖=1

‖D′w‖ �
√
n

with probability 1−O(exp(−α0n)), and the claim (45) follows.

Comparing (45) with (44) (after rescaleing v′′ to be of unit length) and with (42), we obtain a contradiction
with probability 1−O(exp(−α0n)), and hence (43) follows.

8.2. The incompressible case. In this case there is a unit eigenvector v = (v1, . . . , vn)T of An with
eigenvalue λ ∈ [−10

√
n, 10

√
n] so that

ρδ,α(v) > q; and ρn1/2+αδ,α(v) ≤ n1/2−
√
αq. (46)

From the second inequality, there must exist a subset I of {1, . . . , n} of cardinality |I| = bαnc with

ρn1/2+αδ(v �I) ≤ n1/2−
√
αq. (47)

For each I, let E ′I be the event that the above situation occurs, thus the conclusion of Theorem 8.2 holds
with probability at most
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∑
I⊂{1,...,n}:|I|=bαnc

P(E ′I) +O(exp(−Θ(n))).

It suffices to justify the following improvement of Lemma 7.4 for E ′I .

Lemma 8.3. We have
P(E ′I)� n−

√
αn+O(αn)

where the implied constant in the O(.) notation is independent of α.

By symmetry we may assume that I = {1, . . . , k}, where k := bαnc. Again, we split

An =

(
Ak D
D∗ An−k

)
where Ak, An−k are the top left k× k and bottom right (n− k)× (n− k) minors of An respectively. We also
split vT = (v′, v′′)T with v′ ∈ Rk and v′′ ∈ Rn−k.

Now suppose that An is such that E ′I holds. Then by invoking Theorem 7.3, we obtain the following variant
of Lemma 7.5 (where γ is replaced by, say 100).

Lemma 8.4. There exists a subset N of Rn×Rk×R of size O(n−n/2+O(αn)q−n) such that for any eigenvector-

eigenvalue pair (v, λ) satisfying E′I , there exists (ṽ, w′, λ̃) ∈ N which approximates (v, λ) as follows

• |vj − ṽj | ≤ δ for 1 ≤ j ≤ n;

• |v′j − w′j | ≤ n−100δ for 1 ≤ j ≤ k;

• |λ− λ̃| ≤ n−100δ.

Proof of Lemma 8.3. Let us now assume that (v, λ) can be approximated by tuple (ṽ, w′, λ̃) ∈ N as in
Lemma 8.4. The partial eigenvector equation D∗v′ + (An−k − λ)v′′ = 0 would then imply that (assuming
(3))

‖D∗w′ − u‖ = O(nδ) (48)

where u ∈ Rn−k is the vector (An−k − λ̃)ṽ′′.

We condition An−k to be fixed, so that u is deterministic. Let x1, . . . , xn−k ∈ Rk denote the rows of D. The
bound (48) then can be rewritten as

n−k∑
i=1

|xTi w′ − ui|2 = O(n2δ2) (49)

where u1, . . . , un−k ∈ R are the coefficients of u.

Now, by (47), ρn1/2+αδ(v
′) ≤ n1/2−

√
αq; combine this with the approximation from Lemma 8.4, we obtain
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ρn1/2+αδ/2(w′) ≤ n1/2−
√
αq.

Thus, by a simple covering argument, for every δ′′ ≥ n1/2+αδ/2 one has

P(|xTi w′ − vi| ≤ δ′′) = O
(
n−
√
α−αδ′′q/δ

)
,∀i = 1, . . . , n− k. (50)

It follows from (50) and from Lemma 7.7 that for every δ′′ ≥ n1/2+αδ/2

P
( n−k∑
i=1

|xTi w′ − vi|2 ≤ δ′′
2
(n− k)

)
= O

(
(n−

√
α−αδ′′q/δ)n−k

)

In particular, with δ′′ := n1/2+αδ/2, and by discarding a factor of nα,

P
( n−k∑
i=1

|xTi w′ − vi|2 = O(n2δ2)
)

= O
(

(n1/2−
√
αq)n−k

)
,

where we are conditioning on An−k being fixed. Undoing the conditioning, we conclude that (49) and

hence (48) occurs with probability O((n1/2−
√
αq)n−k) = O((n1/2−

√
α+O(α)q)n). This concludes the proof of

Theorem 8.2 in the incompressible case by the union bound over all tuples (ṽ, w′, λ̃) from N .

�

9. Application: non-degeneration of eigenvectors

Using the repulsion between eigenvalues, we can show that the entries of eigenvectors are rarely very close
to zero.

First of all, Theorem 2.6 easily implies the following weak stability result.

Lemma 9.1. For any A > 0, there exists B > 0 depending on A and γ such that the following holds with
probability at least 1−O(n−A): if there exist λ ∈ R and v ∈ Sn−1 such that ‖(Mn − λ)v‖ ≤ n−B, then Mn

has an eigenvalue λi0 with a unit eigenvector ui0 such that

|λi0 − λ| � n−B/4 and ‖v − ui0‖ � n−B/4.

Proof of Lemma 9.1. First, by Theorem 2.6, we can assume that

|λi − λj | ≥ n−B/2,∀i 6= j. (51)

Assume that v =
∑

1≤i≤n ciui, where
∑
i c

2
i = 1 and u1, . . . , un are the unit eigenvectors of Mn. Then
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‖(Mn − λ)v‖ = (
∑
i

c2i (λi − λ)2)1/2 ≤ n−B . (52)

Let i0 be an index with ci0 ≥ 1/
√
n, then ‖(Mn − λ)v‖ ≤ n−B implies that |λ− λi0 | ≤ n−B+1/2, and so by

(51), |λ− λi| ≥ n−B/2/2 for all i 6= i0. Incorporating with (52) we obtain

|ci| = O(n−B/2),∀i 6= i0.

Thus

‖v − ui0‖ � n−B/4.

�

We next apply Theorem 4.3 and Lemma 9.1 to prove Theorem 3.3.

Proof of Theorem 3.3. It suffices to prove for i = 1. The eigenvalue equation Mnv = λv for with |v1| ≤ n−B
can be separated as

(Mn−1 − λ)v′ = −v1X; and v′TX = v1m11,

where X is the first column vector of Mn, and hence independent of Mn−1. As B is sufficiently large
compared to A and γ, and by adding a small amount of order O(n−B) to the first component of v′ so as to
‖v′‖ = 1, we can reduce the problem to

P
(
∃λ ∈ R, v′ ∈ Sn−2 : ‖(Mn−1 − λ)v′‖ ≤ n−B/2; and |v′TX| ≤ n−B/2

)
= O(n−A).

To this end, by Lemma 9.1, if ‖(Mn−1−λ)v′‖ ≤ n−B/2 then Mn−1 has a unit eigenvector u′ with ‖u′−v′‖ �
n−B/8. So |v′TX| ≤ n−B/2 would imply that

|u′TX| � n−B/16. (53)

However, by Theorem 4.3, (53) holds with probability O(n−A). This concludes our proof. �

Appendix A. Proof of Theorem 4.2

Lemma A.1. There are positive constants γ1, γ2, γ3 (depending on the sub-gaussian moments) with γ2 < 1
such that the following holds with probability at least 1 − exp(−γ1n) with respect to the symmetric Wigner
matrix Xn as in Theorem 2.1. For any unit eigenvector u = (u1, . . . , un) of Xn and any subset S ⊂ {1, . . . , n}
of size γ2n,
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∑
i∈S

u2
i ≤ γ3.

The same statement holds for An(p).

Theorem 4.2 follows easily from this lemma. Indeed, consider a unit eigenvector u of Xn. Let S be the set
of coordinates with absolute value at least (1− γ3)n−1/2. Then

∑
i∈S

u2
i ≥ 1− n× (1− γ3)2n−1 ≥ γ3.

By Lemma A.1, any set S with this property should have size at least γ2n, with probability at least 1 −
exp(−γ1n). We obtain Theorem 4.2 by setting c1 = γ1, c2 = γ2 and c3 = (1− γ3).

Lemma A.1 was proved for An(p) in [8, Theorem 3.1] in a different, but equivalent form. The proof extends
with no difficulty to Wigner matrices. We also refer the reader to [20] for related results of this type.

Appendix B. Proof of Theorem 5.9

The treatment here is based on [35]. For short, we will write TD instead of TD,κ,γ,α. The key ingredient is
finding a fine net for TD.

Lemma B.1. Let n−c ≤ α ≤ c′/4. For every D ≥ 1, the level set TD accepts a O( κ√
αD

)-net N of size

|N | ≤ (CD)n

(
√
αn)

c′n/2
D2/α,

where C is an absolute constant.

Roughly speaking, the principle is similar to the proof of Lemma 7.5 and Lemma 8.4. We will break x ∈ TD
into disjoint subvectors of size roughly m, where m = dαne, and find appropriate nets for each. In what
follows we will be working with Sm−1 first.

Definition B.2 (Level sets). Let D0 ≥ c
√
m. Define SD0 ⊂ Sm−1 to be the level set

SD0 := {x ∈ Sm−1 : D0 ≤ LCDκ,γ(x) ≤ 2D0}.

Notice that κ = o(
√
m) because κ = n2c and m ≥ n1−c. We will invokde the following result from [22].

Lemma B.3. [22, Lemma 4.7] There exists a (2κ/D0)-net of SD0
of cardinality at most (C0D0/

√
m)m,

where C0 is an absolute constant.



EIGENVALUES GAP 35

As the proof of this result is short and uses important notion of LCD, we include it here for the reader’s
convenience.

Proof of Lemma B.3. For x ∈ SD0
, denote

D(x) := LCDκ,γ(x).

By definition, D0 ≤ D(x) ≤ 2D0 and there exists p ∈ Zm with

∥∥∥∥x− p

D(x)

∥∥∥∥ ≤ κ

D(x)
= O

(
n2c

n1−c

)
= o(1).

As ‖x‖ = 1, this implies that ‖p‖ ≈ D(x), more precisely

1− κ

D(x)
≤
∥∥∥∥ p

D(x)

∥∥∥∥ ≤ 1 +
κ

D(x)
. (54)

This implies that

‖p‖ ≤ (1 + o(1))D(x) < 3D0. (55)

It also follows from (54) that

∥∥∥∥x− p

‖p‖

∥∥∥∥ ≤ ∥∥∥∥x− p

D(x)

∥∥∥∥+

∥∥∥∥ p

‖p‖
(
‖p‖
D(x)

− 1)

∥∥∥∥ ≤ 2
κ

D(x)
≤ 2κ

D0
. (56)

Now set

N0 :=

{
p

‖p‖
, p ∈ Zm ∩B(0, 3D0)

}
.

By (55) and (56), N0 is a 2κ
D0

-net for SD0
. On the other hand, it is known that the size of N0 is bounded by

(C0
D0√
m

)m for some absolute constant C0. �

In fact we can slightly improve the approximations in Lemma B.3 as follows.

Lemma B.4. Let c
√
m ≤ D0 ≤ D. Then the set SD0

has a (2κ/D)-net of cardinality at most (C0D/
√
m)m

for some absolute constant C0 (probably different from that of Lemma B.3).
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Proof. (of Lemma B.4) First, by Lemma B.3 one can cover SD0
by (C0D0/

√
m)m balls of radius 2κ/D0. We

then cover these balls by smaller balls of radius 2κ/D, the number of such small balls is at most (O(D/D0))m.
Thus there are at most (O(D/

√
m))m balls in total. �

Taking the union of these nets as D0 ranges over powers of two, we thus obtain the following.

Lemma B.5. Let D ≥ c
√
m. Then the set {x ∈ Sm−1 : c

√
m ≤ LCDκ,γ(x) ≤ D} has a (2κ/D)-net of

cardinality at most

(C0D/
√
m)m log2D,

for some absolute constant C0 (probably different from that of Lemma B.3 and Lemma B.4).

We can also update the net above for x without normalization.

Lemma B.6. Let D ≥ c
√
m. Then the set {x ∈ Rm, ‖x‖ ≤ 1, c

√
m ≤ LCDκ,γ(x/‖x‖) ≤ D} has a

(2κ/D)-net of cardinality at most (C0D/
√
m)mD2 for some absolute constant C0.

Proof of Lemma B.6. Starting from the net obtained from Lemma B.5, we just need to 2κ/D-approximate
the fiber of span(x/‖x‖) in Bm2 . �

We now justify our main lemma.

Proof of Lemma B.1. We first write x = xI0 ∪ spread(x), where spread(x) = I1 ∪ · · · ∪ Ik0 ∪ J such that
|Ik| = dαne and |J | ≤ αn. Notice that we trivially have

|spread(x)| ≥ |I1 ∪ · · · ∪ Ik0 | = k0dαne ≥ |spread(x)| − αn ≥ c′n/2.

Thus we have

c′

2α
≤ k0 ≤

2c′

α
.

In the next step, we will construct nets for each xIj . For xI0 , we construct trivially a (1/D)-net N0 of size

|N0| ≤ (3D)|I0|.

For each Ik, as

LCDκ,γ(xIk/‖xIk‖) ≤ L̂CDκ,γ(x) ≤ D,
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by Lemma B.6 (where the condition LCDκ,γ(xIk/‖xIk‖) �
√
|Ik| follows from, say Theorem 7.2, because

the entries of xIk/‖xIk are all of order
√
αn while κ = o(

√
αn)), one obtains a (2κ/D)-net Nk of size

|Nk| ≤

(
C0D√
|Ik|

)|Ik|
D2.

Combining the nets together, as x = (xI0 , xI1 , . . . , xIk0 , xJ) can be approximated by y = (yI0 , yI1 , . . . , yIk0 , yJ)

with ‖xIj − yIj‖ ≤ 2κ
D , we have

‖x− y‖ ≤
√
k0 + 1

2κ

D
� κ√

αD
.

As such, we have obtain a β-net N , where β = O( κ√
αD

), of size

|N | ≤ 2n|N0||N1| . . . |Nk0 | ≤ 2n(3D)|I0|
k0∏
k=1

(
CD√
|Ik|

)|Ik|
D2.

This can be simplified to

|N | ≤ (CD)n

√
αn

c′n/2
DO(1/α).

�

Before completing the proof of Lemma 5.9, we cite another important consequence of Lemma 5.8 (on the
small ball estimate) and Lemma 7.7 (on the tensorization trick).

Lemma B.7. Let x ∈ Incomp(c0, c1) and α ∈ (0, c′). Then for any β ≥ 1
c0

√
α(L̂CDκ,γ(x, α))−1 one has

ρβ
√
n((Xn − λ0)x) ≤

(
O(β)√
α

+ e−Θ(κ2)

)n−αn
.

Proof of Lemma 5.9. It suffices to show the result for the level set {x ∈ TD\TD/2}. With β = κ√
αD

, the

condition on β of Lemma B.7 is clearly guaranteed,

κ√
αD
�
√
α

D
.

This lemma then implies
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P
(
∃x ∈ TD\TD/2 : ‖(Xn − λ0)x− u‖ = o(β

√
n)
)
≤
(
O(β)√
α

+ e−Θ(κ2)

)n−αn
× (CD)n

(
√
αn)c′n/2

DO(1/α)

≤
(
O(κ)

αD
+ e−Θ(κ2)

)n−αn
× (CD)n

(
√
αn)c′n/2

DO(1/α)

≤ n−c
′n/8,

provided that κ = n2c with sufficiently small c compared to c′, and that D ≤ nc/α. �
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eigenvalues, Communications in Mathematical Physics, 314 (2012), no. 3, 587-640.

[12] L. Erdős, B. Schlein, H.-T. Yau, Wegner estimate and level repulsion for Wigner random matrices, International Mathe-

matics Research Notices, 2010, no. 3, 436-479.
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