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Abstract. It has been shown in [YZ] that the minimum modulus of random trigonometric polyno-
mials with Gaussian coefficients has a limiting exponential distribution. We show this is a universal
phenomenon. Our approach relates the joint distribution of small values of the polynomial at a fixed
number m of points on the circle to the distribution of a certain random walk in a 4m-dimensional
phase space. Under Diophantine approximation conditions on the angles, we obtain strong small
ball estimates and a local central limit theorem for the distribution of the walk.

1. Introduction

Consider a random analytic function of the form

Fn(z) =

n∑
j=0

ξjfj(z) (1.1)

where {ξj , j ≥ 0} is a sequence of independent random variables, and {fj , j ≥ 0} is a sequence of
analytic functions. Perhaps the most natural and well-studied example is the Kac polynomial, with
fj(z) = zj . Including weights fj(z) = aj,nz

j leads to other popular models such as elliptic and
Weyl polynomials; one may also take the functions fj to be an orthonormal sequence in L2(C, µ)
for some measure µ.

The study of the distribution of zeros for such random series – as well as for limiting random
analytic functions – has a long history; we refer for instance to [TV15] and the references therein
for an overview of the vast literature. For the case that the coefficients ξj are real valued, particular
attention has been given to the number of real zeros. Our focus in the present article is in a different
but related direction: for a given simple closed smooth curve γ in the plane where Fn does not have
a zero with high probability, how small can the restriction of Fn to γ be, and what can be said
about the limiting distribution of the minimum modulus m(Fn) := infz∈γ |Fn(z)|?

The distribution of the maximum value over a curve for various random analytic functions has
been studied extensively; see for instances the books [AT07, AW09] and the references therein.
In recent years there has been particular focus on characteristic polynomials of random unitary
matrices, with γ the unit circle [ABB17, PZ17, CMN18, CZ20], and the Riemann zeta function on
a randomly shifted unit interval on the critical axis [ABB+19, Naj18, Har, ABR]. Such questions
are closely tied to a fine understanding of large deviations and concentration of measure for values
of the function at given points.

The minimum modulus has received comparatively less attention. As we explain below, its
behavior is governed by central limit theorems and anti-concentration for the distribution at given
points. (Another well-known instance of the dichotomy of concentration/anti-concentration for
large/small values is in the study of singular values of random matrices.)

In this article we focus our attention on random trigonometric series, such as the Kac polynomial

Fn(z) =
n∑
j=0

ξjz
j , (1.2)
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restricted to the unit circle, as well as random trigonometric series on [−π, π]. Many of our tech-
niques are robust and may be extended to more general models of the form (1.1).

To the best of our knowledge, the question of the size of the minimum modulus of Kac polynomi-
als was first raised by Littlewood[Lit66], who considered the case of Rademacher signs ξj = ±1.1 In
particular, Littlewood asked whether m(Fn) = o(1).2 This question was answered in the affirmative
by Kashin [Kas87]; a significant improvement was later obtained by Konyagin [Kon94], who showed

P
(
m(Fn) ≥ n−1/2+ε

)
→ 0 (1.3)

as n→∞, for any ε > 0. Subsequently, Konyagin and Schlag [KS99] showed that for any ε > 0,

P
(
m(Fn) ≤ εn−1/2

)
≤ Cε (1.4)

for all n sufficiently large and a universal constant C <∞. From the above two estimates, it is thus
natural to ask whether n1/2m(Fn) converges in law, and to identify the limiting distribution.

These questions were recently addressed for the case of Gaussian coefficients by a beautiful result
of Yakir and Zeitouni [YZ], which we now recall. As we consider the restriction of Fn over the unit
circle we parametrize z = e(x), where here and throughout we abbreviate e(t) := exp(

√
−1t). The

work [YZ] considers the normalized trigonometric series

Pn(x) =
1√

2n+ 1

n∑
j=−n

ξje(jx), x ∈ R, (1.5)

where ξj are iid copies of a real or complex, centered random variable ξ of unit variance. Note that
Pn has been scaled to have typical values of order one. One also notes that Pn(x) is equal to the
evaluation of the random Laurent series 1√

2n+1

∑n
j=−n ξjz

j at z = e(x).3 We denote

mn := min
x∈[−π,π]

|Pn(x)|. (1.6)

With our normalization and from (1.3) and (1.4) we expect that mn is typically of order n−1.
For the case of Gaussian coefficients, in [YZ] the limiting distribution of n ·mn was shown to be
exponential:

Theorem 1.1 ([YZ]). Assume that ξ is a standard real or complex Gaussian. Then for any τ > 0,

lim
n→∞

P
(
mn >

τ

n

)
= e−λτ (1.7)

where λ = 2
√
π/3.

As shown in [YZ, Section 5], their argument in fact extends to allow some distributions with a
small Gaussian component – specifically, ξ of the form

ξ′ + δX (1.8)

with δ at least of order n−1 log n, where ξ′ and X are independent, X ∼ NR(0, 1), and ξ′ is an
arbitrary random variable satisfying Cramér’s condition. While Cramér’s condition is weaker than
assuming a bounded density, it does not allow ξ′ to be discrete.

In the present work we show that the limiting exponential law for mn is universal. Here and
in the sequel, PNR(0,1) denotes a probability measure under which the real variables ξ or ξ′, ξ′′ are
standard Gaussian.

1We also refer the readers to [BBM+20] for a recent striking result answering another question of Littlewood.
2Here and throughout the article asymptotic notation is with respect to the limit n → ∞; see Section 1.3 for our

notational conventions.
3By multiplying by a phase e(nx), which does not affect the modulus, one sees that the minimum modulus of Pn

is equal to that of a normalized Kac polynomial of even degree.
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Theorem 1.2 (Main result). Assume ξ is a centered sub-Gaussian variable of unit variance, which
is either real-valued, or takes the form 1√

2
(ξ′ +

√
−1ξ′′) for iid real variables ξ′, ξ′′. Then for any

τ > 0,

P
(
mn >

τ

n

)
−PNR(0,1)

(
mn >

τ

n

)
−→ 0 (1.9)

as n→∞.

Remark 1.3. Our argument applies with trivial modifications to the normalized minimum modulus
n1/2m(Fn) of the Kac polynomial (1.2) over the unit circle. In the proof we treat the case (1.5) with
real-valued ξ – the complex case is slightly simpler. The necessary modifications for these small
extensions, as well as an extension to another model of random trigonometric series, are given in
Section 10.

Remark 1.4. The sub-Gaussianity assumption is only for convenience, and one can check that for
our arguments it suffices to assume ξ has a finite moment of sufficiently large order.

As an immediate consequence we extend Theorem 1.1 to general sub-Gaussian coefficients:

Corollary 1.5. The limit (1.7) holds when ξ is any sub-Gaussian random variable of mean zero
and unit variance.

In particular, (1.7) holds for Rademacher polynomials, which were the focus of the aforemen-
tioned works of Littlewood and others. In fact, the Rademacher case in some sense captures the
main challenges for our proof. We comment on some of these challenges below. See Figure 1 for a
numerical illustration of the universality phenomenon.
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Figure 1. Histogram of the minimum modulus over 104 points equally spaced points
on the unit circle, for 104 samples of a random degree 20 polynomial Pn(x) of (1.5)
with Rademacher (left) and Gaussian (right) coefficients.
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We remark that proving universality for roots of classical random ensembles has become an
active direction of research in recent years, see for instance [BD04, DNV15, DNV18, IKM16, KZ14,
NNV16, NV17, TV15] and the references therein. Our main result stands out from the above works
in two ways: that our focus is not on the statistics of roots, and our method is totally different.
Corollary 1.5 can be seen as a polynomial analogue of the result [TV10a] by Tao an Vu where they
showed that the least singular value statistics of random iid matrices is universal, although there is
no real connection between the random matrix model and our random polynomials. It is remarked
that the study of both the minimum modulus of Kac polynomials and of the least singular values
of random matrices have important implications to the study of the condition number of matrices,
see for instance [BG05] and [TV10b].

1.1. Some comments on the proof. We briefly sketch some highlights of the proof of Theo-
rem 1.2. Consider the parametrized random curve {Pn(x) : x ∈ [−π, π]} as the trajectory of a
particle in the complex plane. Following [KS99] we approximate the time the particle is closest
to the origin by a point in a discrete mesh X = {xα}Nα=1 ⊂ [−π, π]. Since the velocity P ′n(x) is
typically of order n, in order to capture this moment we must take N much larger than n. However,
this means that each approach within distance O(1/n) of the origin will carry several points Pn(x),
x ∈ X near the origin, so that a union bound over events that Pn(xα) = O(1/n) is too wasteful to
isolate the distribution of mn. Following [YZ], we isolate a single time xα ∈ X for each approach,
so that |Pn(xα)| is approximately a local minimum, by considering both Pn(xα) and P ′n(xα) – the
precise criterion is given in Section 2.1. The result is a collection of events Aα, α ∈ [N ], that xα is
an approximate local minimizer, with each event determined by the positions and velocities of the
particle on the discrete set X . In this way we obtain a point process Mn on R+ of approximate
local minima n|Pn(xα)|, rescaled so that the global minimum is of order one.

For the Gaussian case, it was shown in [YZ] that Mn is approximately a Poisson point process

of intensity 2
√
π/3, from which the result clearly follows. In Section 2.2 we provide a sketch of their

key argument using an invariance principle of Liggett. For universality, our approach is to establish
universality for the joint distribution of

Sn = Sn(α1, . . . , αm) := (Pn(xαi), P
′
n(xαi))i∈[m] ∈ C2m

giving the positions and velocities of the particle at any fixed collection of times xα1 , . . . , xαm ; this
allows us to deduce universality for the global minimum by comparison of moments.

The event that the real and imaginary parts of the positions and velocities lie in given ranges, and
moreover that Aαi holds for each i ∈ [m], is the event that the vector Sn lies in a certain compact
domain Un in 4m-(real-)dimensional phase space. While Un has piecewise smooth boundary, its
regularity depends strongly on n, so that estimating its measure under the law of Sn requires
precise estimates of the measure of boxes at polynomially-small scales.

Recalling that Pn is a trigonometric polynomial, we see that Sn is a random walk of the form∑n
j=−n ξjwj , withwj ∈ R4m giving the real and imaginary parts of e(jx) and its derivative je(jx) at

the times xα1 , . . . , xαm . In particular, when the coefficients ξj are Gaussian, Sn is a Gaussian vector,
and so the main problem is to obtain a quantitative central limit theorem for Sn when the coefficients
are general sub-Gaussian variables. This, as well as a small ball estimate, hinge on a strong decay
estimate on the characteristic function of Sn (Theorem 3.1), which is the main technical component
of the proof. (In fact our argument yields more than a CLT, giving a quantitative Edgeworth
expansion for the distribution of Sn, though for our purposes we only need that each term of the
expansion is smooth.)

In our general setting and in particular when the coefficients have discrete distribution, the
distribution of the polynomial and its derivative at given points xα1 , . . . , xαm depends strongly on
arithmetic properties of the xαi (compared to the complex Gaussian case of Theorem 1.1 where the
distribution is stationary under rotations.) In particular, the desired control on the characteristic
function does not hold for all choices of the xαi – basically when two of the points are too close
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together or nearly antipodal, or when e(xαi) is close to a root of unity of order no(1) for some i ∈ [m].
We handle such “bad” m-tuples with relatively crude arguments (following [KS99]), and establish
the decay estimate on the characteristic function for “nice” tuples.

The latter is the most technically challenging part of the proof. A similar estimate for the case
m = 2 was obtained in [DNN19], but the generalization to higher dimensions, together with the
complexity of the case when ξ is real-valued, pose significant challenges. For this, roughly speaking,
we must show that it is not possible to simultaneously dilate the steps wj of the walk by a factor K,

for any K = nO(1), so that their projections ψj in some common direction all approximately lie in the
integer lattice. We argue by contradiction, showing that if there is such a projection and dilation,
then the sequence ψj can be locally approximated by polynomial progressions of controlled degree.
Here we crucially use the trigonometric properties of the steps wj . Combining this information with
some judicious differencing manipulations, we can isolate an angle xi that is well-approximated by
a rational of small denominator, contradicting the smoothness assumption.

To summarize, some highlights of our note include:

(1) A nearly sharp characterization, in terms of arithmetic properties, of the collection of arcs
of the circle over which the Kac polynomial is strongly approximated by a Gaussian Kac
polynomial (in the sense of joint distributions at any fixed number of points);

(2) Sharp small ball estimates under microscopic scaling for random walks in Rm of the form∑
j ξj(g( jt1n ), . . . , g( jtmn )) for various smooth functions g : S1 → C, such as e(x), or x sinx;

(3) Local limit theorems for such high-dimensional random walks;
(4) A sub-polynomial decay estimate on the associated characteristic function, which greatly

improves on estimates from [KS99].

All of these results seem to be new and of independent interest.

1.2. Organization. In Section 2 we will discuss the proof of [YZ] and reduce our task to establishing
Proposition 2.7, establishing universality for the joint distribution of low-lying near-local minima
over a discrete subset of the torus. Along the way we recall some lemmas from [YZ], and identify
two important arithmetic properties for collections of points in the torus that will be crucial for
subsequent analysis. Section 3 reformulates Proposition 2.7 in terms of a vector-valued random
walk, and proves it using a small-ball estimate (Theorem 3.4) and local central limit theorem
(Theorem 3.2), which are consequences of a strong decay estimate for the characteristic function
(Theorem 3.1). The deduction of the main result from Proposition 2.7 is given in Sections 5 and
6. Theorem 3.4 and Theorem 3.2 are deduced from Theorem 3.1 in Sections 7 and 8, respectively,
and Theorem 3.1 is proved in Section 9. Finally, in Section 10 we describe how our result can be
extended to other models of random trigonometric polynomials.

1.3. Notation. We write C,C ′, C0, c etc. to denote positive absolute constants, which may change
from line to line, while C(τ) etc. denotes a constant that depends only on the parameter (or set
of parameters) τ . We use the standard asymptotic notation f = O(g), f � g and g � f to
mean |f | ≤ Cg for some absolute constant C > 0, and f = Oτ (g), f �τ g and g �τ f to
mean |f | ≤ C(τ)g. For positive sequences {fn}, {gn} we say that gn = o(fn) and fn = ω(gn) if
lim fn/gn → ∞ with n. We allow implied constants to depend on the sub-Gaussian constant of ξ
without explicitly indicating this.

For a real number x, ‖x‖R/Z denotes the distance from x to the nearest integer, and m =

mLeb(·) denotes the Lebesgue measure on Rd for any d. For a compact interval J ⊂ R we write
|J | := mLeb(J) for its length. {t} = t− btc denotes the fractional part of t ∈ R. We write en(θ) for
e(θ/n). The singular values of a matrix M are ordered σ1(M) ≥ σ2(M) ≥ · · · .

Sequences (ξj)j are understood to be sequences of iid copies of the variable ξ from Theorem 1.2.
We write PNR(0,1) for a probability measure under which the coefficients ξj in (1.5) are standard
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real Gaussians, and write ENR(0,1) for the associated expectation. (This notation is only used for
comparisons of random variables in law – we do not consider couplings.)

1.4. Acknowledgements. We thank Pavel Bleher, Yen Do, Oanh Nguyen, Oren Yakir and Ofer
Zeitouni for helpful discussions and comments, and to Yakir and Zeitouni for showing us an early
draft of their work [YZ] on the Gaussian case. This project was initiated at the American Institute
of Mathematics meeting “Zeros of random polynomials” in August 2019, where Bleher and Zeitouni
were also participants. In particular, the idea used here and in [YZ] to study local linearizations
emerged from those discussions. We thank the workshop organizers and the Institute for providing
a stimulating research environment.

2. Preliminary reductions

Our main objective in this section is to reduce our task to proving Proposition 2.7 below, which
gives a comparison principle for the joint distribution of low-lying values for a discretized process
over the circle. Along the way we recall elements of the proof from [YZ] that we will need. For
completeness we also include a brief description of their argument for the Gaussian case.

2.1. Passage to local linearizations. We begin by recalling the approach from [YZ] for selecting
near-local-minimizers of |Pn(x)| on a discrete set; we refer to Section 1.1 for the high-level motivation
of this approach. The criterion for xα to be such a representative point is in terms of the local
linearization Fα of Pn at xα – the intuition is that for the mesh point xα that is closest to a local
minimizer of |Pn(x)|, it will also be close to the minimizer of |Fα(x)|. A key take-away from this
approximation is that all information on near-minimizers of |Pn(x)| is encoded in the values of Pn
and its derivative at the mesh points.

We collect some notation and lemmas from [YZ], with some minor modifications. Let K0 > 4
be a sufficiently large constant and set

N :=

⌊
n2

logK0 n

⌋
. (2.1)

We divide [−π, π] into N intervals: letting

xα =
2πα

N
, α = 1, . . . , N,

we decompose

[−π, π] =

N⋃
α=1

Iα, where Iα =
[
xα −

π

N
, xα +

π

N

]
.

Note that for the case of real coefficients it suffices to consider xα ∈ [0, π].
Define

Yα := −Re(Pn(xα)P ′n(xα))

|P ′n(xα)|2
, Zα := n

Im(Pn(xα)P ′n(xα))

|P ′n(xα)|
. (2.2)

We denote the local linearizations of Pn given by

Fα(x) := Pn(xα) + (x− xα)P ′n(xα). (2.3)

As shown in [YZ, Section 1.3], |Fα(x)| is minimized at x = xα+Yα, where it takes the value |Zα|/n;
thus

|Fα(xα + Yα)| = |Zα|/n = min
x∈R
|Fα(x)|. (2.4)

(The sign is kept on Zα only for convenience – we mention that the sign encodes whether the origin
is to the left or right of the curve {Pn(x) : x ∈ [−π, π]} as x increases through xα, but this fact will
not be used.)
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We denote the 2πn-periodic trigonometric polynomial

P̃n(s) = Pn(s/n), s ∈ R. (2.5)

This scaling will often be convenient since all of its derivatives are typically of order 1.
We consider the collection {Zα}α∈[N ] as a point process on R. The scaling by n means we

focus on (signed) low-lying values of |Pn|. Now we give the criterion by which “representative”
near-minimizers are selected. Let Aα := A′α ∩ A′′α where

A′α := {|Yα| ≤ π/N, |Zα| ≤ log n}
and

A′′α : = {|Pn(xα)| ≤ n−1/2, |P ′n(xα)| ∈ [n log−K0/2 n,C0n
√

log n]} ,
and define the point process

Mn =

N∑
α=1

δXα , Xα := Zα1Aα +∞1Acα . (2.6)

The event A′α is the condition on the local linearization that was described above, while A′′α enforces
some regularity of Pn on Iα.

The following control on the second derivative will be used to show that the local linearizations
Fα are good approximations to Pn at the scale of the intervals Iα.

Lemma 2.1 (Derivative bounds). For K > 1 and integer k ≥ 0 let Gk(K) be the event that

sup
s∈R
|P̃ (k)
n (s)| = 1

nk
sup

x∈[−π,π]
|P (k)
n (x)| ≤ logK n.

There exists c = c(k) > 0 depending only on k and the sub-Gaussian moment of ξ such that

P(Gk(K)c) ≤ exp(−c log2K n).

Proof. Fix K and k. It suffices to show the claimed bound for R := ReP̃
(k)
n . By Bernstein’s

inequality,
sup

t∈[−nπ,nπ]
|R′(t)| � sup

t∈[−nπ,nπ]
|R(t)| ,

so if we assume that supt |R(t)| is attained at t0, then for all |t − t0| ≤ c0 for a sufficiently small
constant c > 0, we have

|R(t)| ≥ |R(t0)| − |t− t0| sup
t∈[−nπ,nπ]

|R′(t)| > |R(t0)|/2.

It follows that if we divide [−nπ, nπ] into O(n) intervals Ji of sufficiently small length and with
midpoints ti, then we have supi |R(ti)| > 1

2 supt∈[−nπ,nπ] |R(t)|. Hence

P( sup
t∈[−nπ,nπ]

|R(t)| ≥ (log n)K) ≤
∑
i

P(|R(ti)| ≥ (log n)K/2)

� n exp(−c′(log n)2K) ≤ exp(−c(log n)2K) ,

where we used a sub-Gaussian tail estimate for the upper bound for each ti. �

The next proposition shows that near-minimizers are typically well separated. The proof is a
straightforward modification of the proof of [YZ, Lemma 2.11] and is deferred to Appendix A.
There is the minor issue that a local minimizer for Pn may cause a low value for two neighboring
linearizations simultaneously, as accounted for in part (i). This will (unfortunately) present some
issues of a purely technical nature in the proof of Proposition 2.5 below.

Lemma 2.2. On the event G2(K0/2) we have
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(i) If Aα and Aα+1 hold, then

Yα ∈ [
π

N
− π

N logK0/4 n
,
π

N
].

(ii) Furthermore, Aα and Aα′ cannot hold simultaneously as long as

2 ≤ |α′ − α| ≤ n

log3K0 n
.

2.2. The Yakir–Zeitouni invariance argument. Now we discuss briefly the key remaining ideas
of [YZ] for the Gaussian case (or the case with small Gaussian component as in (1.8)), which employs
a strategy used by Biskup and Louidor in their work on extreme values of the planar discrete
Gaussian free field [BL16] . The approach combines the following ingredients:

(1) A Gaussian computation showing that for any interval [a, b] ⊂ R we have limn→∞E(Mn([a, b])) =√
π
3 (b− a).

(2) A consequence of a general result of Liggett [Lig78]: that if the law of a point process is
invariant under adding an independent Gaussian perturbation to each point, then it is a
Poisson point process of constant intensity.

(3) A consequence of the Gaussianity of the field {Pn(x)}x∈[−π,π]: that if Qn is an independent

copy of Pn, then P̂n(x) =
√

1− 1
n2Pn(x) + 1

nQn(x) is identically distributed to Pn(x).

(4) The fact that near-minimizers of |Pn| are well separated (from a strengthening of Lemma 2.2).

Roughly speaking, from (3) one can view P̂n as a perturbation of Pn by an independent Gaussian
field 1

nQn of typical size 1/n, which is the scale of the minimum modulus. Thus, the point process

M̂n is obtained from Mn by (a slight rescaling and) a perturbation of each point by a standard
Gaussian. Now from (4), the low values of |Pn(x)| occur at points x that are sufficiently separated
that (as one can show) the values of Qn(x) at these near-minimizers are nearly uncorrelated. Hence,

the point process M̂n is approximately a point process obtained from Mn by perturbing each Xα

by an independent Gaussian. From (2) we get that M̂n, and hence,Mn, is a Poisson point process

of constant intensity, and from (1) it follows that the intensity is
√
π/3. (To apply (2) one cannot

actually argue at finite n as just described, but instead one needs to pass to subsequential limiting
point processes, obtained from the tightness implied by (1); in the end one finds a limiting Poisson
point process of the same intensity regardless of the subsequence.)

Morally speaking, the exponential law is then a straightforward consequence of the minimum
being approximately the smallest (absolute) value of a Poisson point process on R. The formal
argument requires some considerable work to justify all of the approximations, and the above sketch
glides over many important points; we invite the reader to see [YZ] for further details.

2.3. Towards universality: matching moments over smooth points. It should be evident
that the beautiful argument of [YZ] just described relies heavily and in several different ways
on properties of the Gaussian distribution. Towards establishingTheorem 1.2, our approach is to
establish universality for the joint distribution of Xα at any fixed number of indices α ∈ [N ] (in
particular this yields universality for the joint intensity functions of the point process Mn). From
this one can deduce universality of moments E(Mn([−τ, τ ])m) of all order, leading to universality
for the distribution function P(mn ≤ τ/n).

For general ξ, the main difficulty for studying the joint distribution of Pn(xi) and its derivative
at m different points xi, or even at a single point x, is that the distribution is highly dependent
on arithmetic properties of the points. Consider the case of Rademacher coefficients. At x = 0
we have Pn(0) = 1√

2n+1

∑n
j=−n ξj – while from the Central Limit Theorem this approaches the

NR(0, 1) distribution, it does so at the slowest possible rate, and the distribution is only smooth
(i.e. comparable to Lebesgue measure on balls of radius δ) at scales δ much larger than 1/

√
n. At

x = π/2 we have that Pn(π/2) splits into independent real and imaginary sums, each tending to the
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NR(0, 1/2) distribution at the slowest possible rate. The situation is slightly improved at x = π/4,
for which one can obtain a meaningful small ball estimate at scale δ ∼ 1/n with some effort. As we
shrink the scale δ at which we desire Pn(x) to have an effectively smooth distribution, the collection
of “structured” angles that we must avoid increases.

Thus we see that Diophantine approximation will play a crucial role in our arguments. Indeed,
such considerations played a strong role in the argument of Konyagin and Schlag for the upper
bound (1.4). That work only dealt with the field at single points, however; to compare the joint
distribution of Pn and its derivative at an arbitrary fixed number of points we need finer control.

We quantify the level of approximability of points x by rationals as follows:

Definition 2.3 (Smooth points). For K > 0, we say a point t ∈ R is K-smooth if∥∥∥p0t
πn

∥∥∥
R/Z

>
K

n
∀ p0 ∈ Z ∩ [−K − 1,K + 1], p0 6= 0.

We say a tuple (t1, . . . , tm) is K-smooth if tr is K-smooth for each 1 ≤ r ≤ m.

Thus in the special case that K < 1 then t ∈ R is K-smooth if ‖ t
πn‖R/Z >

K
n . Observe also that

if n−1+κ ≤ ‖ t
πn‖R/Z ≤ n

−2κ then t is nκ-smooth.
The following lets us focus on potential minimizers that are smooth.

Lemma 2.4 (Ruling out bad arcs). For κ > 0 let Ebad(κ) be the set of points x ∈ R such that nx
is not nκ-smooth. There exist absolute constants κ0, c0 > 0 such that

P
(
∃x ∈ Ebad(κ0) : |Pn(x)| ≤ n−1+c0

)
= o(1).

Proof. This follows from the argument for [KS99, Lemma 3.3]; one only needs two modifications:

(1) Whereas they considered A-smooth points for A fixed, their bounds in fact allow A to grow
as fast as nκ0 for κ0 sufficiently small. (One also notes that their parameter ε may grow as

fast as O(n3/4).)
(2) Whereas their model takes the sum in (1.5) to run over [0, n] rather than [−n, n], they only

need that the covariance matrix for (RePn(x), ImPn(x)) has eigenvalues bounded below by
� n2 min(1, |x|, |π − x|)2 for min(|x|, |π − x|)� n−1−c for a small absolute constant c > 0,
which for the present model follows from display (2.21) in [YZ]. (One may alternatively
apply the proof of [KS99, Lemma 3.3] but condition on the variables (ξj)−n≤j<0 before
applying the Berry–Esseen theorem.)

�

With κ0 as in Lemma 2.4 we now consider the thinned point process

M]
n :=

∑
α:xα /∈Ebad(κ0)

δXα . (2.7)

Theorem 1.2 will be deduced from the following comparison of moments. The proof is deferred to
Section 5.

Proposition 2.5 (Moment matching). For any fixed τ > 0 and integer m ≥ 1 we have

lim
n→∞

E
(
M]

n

(
[−τ, τ ]

)m)
= lim

n→∞
ENR(0,1)

(
M]

n

(
[−τ, τ ]

)m)
, (2.8)

where we recall that ENR(0,1) stands for expectation under the Gaussian model from Theorem 1.1.

2.4. Joint distribution over spread points. Expanding the moments in (2.8) leads to consid-
eration of joint events that Xαi is small at m different points xαi , 1 ≤ i ≤ m. In addition to the

smoothness already imposed in the definition ofM]
n, we will require all of the points to be separated

from one another, in the following sense:
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Definition 2.6 (Spread tuples). For m ≥ 2 and λ > 0, we say t = (t1, . . . , tm) ∈ Rm is λ-spread if∥∥∥ tr ± tr′
2πn

∥∥∥
R/Z
≥ λ

n
∀ 1 ≤ r < r′ ≤ m (and all choices of the signs ±).

For m = 1, we say that t = t ∈ R is λ-spread if∥∥∥ t

2πn

∥∥∥
R/Z
≥ λ

n
.

It is remarked that in the definition above we prevent tr from being close to tr′ and −tr′ at the
same time, and this condition is necessary to hope for asymptotically independence between Pn(tr)
and Pn(tr′), especially in the case that ξ is real-valued.

In what follows we denote
sα := nxα, α ∈ [N ]. (2.9)

Recalling the scaled polynomial P̃ from (2.5), we have

Yα = − 1

n

Re(P̃n(sα)P̃ ′n(sα))

|P̃ ′n(sα)|2
Zα = n

Im(P̃n(sα)P̃ ′n(sα))

|P̃ ′n(sα)|
. (2.10)

The main step towards the proof of Proposition 2.5 is the following:

Proposition 2.7. Fix an m-tuple of indices (α1, . . . , αm) ∈ [N ]m. Assume for some κ > 0 that
sα1 , . . . , sαm are nκ-smooth and that s = (sα1 , . . . , sαm) is 1-spread. Then for any τ > 0,∣∣∣∣P( ∧

i∈[m]

|Xαi | ≤ τ
)
−PNR(0,1)

( ∧
i∈[m]

|Xαi | ≤ τ
) ∣∣∣∣ = o(N−m),

where the rate of convergence depends on m, τ, κ, and K0.

We prove Proposition 2.7 in Section 3 below, where we convert the task to a problem involving
a random walk in R4m. Before proceeding we collect the following useful property of a smooth
m-tuples, which basically says that we can simultaneously dilate the points tr to be well separated
on the torus. This result will be useful for the proof of Lemma 3.6 below for showing that the
distribution of an associated random walk is genuinely full-dimensional, and also for Section 9 when

we bound
∏m−1
r=1 ‖

L(tm±tr)
2πn ‖R/Z from below for some L.

Lemma 2.8. Assume (t1, . . . , tm) ∈ Rm is λ-spread for some λ > 0, and let λ ≤ K = o(n). There
exists an integer L � n/K such that∥∥∥L · (tr ± tr′)

2πn

∥∥∥
R/Z
�m λ/K ∀1 ≤ r < r′ ≤ m (2.11)

(and all choices of the signs). In particular, if (t1, . . . , tm) is ω(1)-spread then there exists L ≤ n
such that ∥∥∥L · (tr ± tr′)

2πn

∥∥∥
R/Z
�m 1 ∀1 ≤ r < r′ ≤ m. (2.12)

In case m = 1 then there exists an integer L � n/K such that ‖ L·t2πn‖R/Z �m λ/K.

Proof. The case m = 1 is clear, so we just need to focus on m ≥ 2. Assume towards a contradiction
that there exists ε = ε(m) > 0 such that for every j ∈ [n/2K,n/K] there exists a pair of distinct
indices r, r′ ∈ [2m] such that

min

{∥∥∥∥j(tr − tr′)2πn

∥∥∥∥
R/Z

,

∥∥∥∥j(tr + tr′)

2πn

∥∥∥∥
R/Z

}
≤ ελ/K (2.13)

By pigeonholing, there is a pair of distinct indices r, r′ ∈ [m] and subset J ⊂ [n/2K,n/K] of size
� n/Km2 such that either the first quantity in the minimum in (2.13) is bounded by ελ/K for all
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j ∈ J , or the second is bounded by ελ/K for all j ∈ J . We focus on the former case; the latter is
handled by a similar argument.

As |J | is of the same order as its diameter, there exists C = Om(1) so that CJ −CJ contains a
homogeneous arithmetic progression of length � n/K (see for instance [Tao10, Lemma B.3]).

Claim 2.9. Assume that z = eiθ, |θ| ≤ π/8 such that for all 1 ≤ ` ≤M we have |1− z`| ≤ 1/32 for
a sufficiently large M . Then |θ| = O(1/M).

Proof. By assumption, |θ| ≤ π/8 and ‖2kθ‖R/Z ≤ π/8 for all 1 ≤ k ≤ logM , and so we can
repeatedly estimate |θ| to obtain |θ| = O(1/M). �

By the triangle inequality, for ε sufficiently small depending on C, by Claim 2.9 this would imply
there exists Cr,r′ = Om(1) such that∥∥∥∥Cr,r′(tr − tr′)2πn

∥∥∥∥
R/Z
�m

ελ/K

n/K
�m ελ/n. (2.14)

Let N1 be the collection of all pairs (r, r′) such that (2.14) holds, taking Cr,r′ to be the smallest
such positive integer. We have shown that N1 is nonempty. By the assumption that t is λ-spread
we have that Cr,r′ > 1 for all (r, r′) ∈ N1.

Claim 2.10. Assume that for some x ∈ R, δ > 0 and positive integer M we have ‖x‖R/Z > δ and
‖Mx‖R/Z ≤ δ. Then

‖x‖R/Z > 1/2M.

Proof. Assuming otherwise, we have ‖Mx‖R/Z = M‖x‖R/Z > Mδ, a contradiction. �

From the above claim, (2.14), and the assumption t is λ-spread, it follows that if ε is sufficiently
small, then ∥∥∥∥ tr − tr′2πn

∥∥∥∥
R/Z
≥ 1/2Cr,r′

for each (r, r′) ∈ N1. Set D1 =
∏

(r,r′)∈N1
Cr,r′ = Om(1), and let I1 be intersection of the progression

{1 + `D1}`∈Z with [n/2K,n/K]. Applying the triangle inequality, if L = 1 + lD1 ∈ I1 then for all
(r, r′) ∈ N1,∥∥∥∥L(tr − tr′)

πn

∥∥∥∥
R/Z

=

∥∥∥∥(1 + lD1)(tr − tr′)
2πn

∥∥∥∥
R/Z
≥
∥∥∥∥ tr − tr′2πn

∥∥∥∥
R/Z
−
∥∥∥∥ l D1

Cr,r′
Cr,r′(tr − tr′)

2πn

∥∥∥∥
R/Z

≥ 1/2Cr,r′ − (n/K)Om(ελ/n) ≥ ελ/K

provided that ε is sufficiently small. Now if no L ∈ I1 satisfies the conclusion of our lemma, then
for each L ∈ I1 there is a pair (r, r′) /∈ N1 that violates the condition, and then we repeat the above
process, with N2 being the collection of such pairs. Set D2 =

∏
(r,r′)∈N2

Cr,r′ (and so D2 = Om(1))

and let I2 be intersection of the progression {1 + `D1D2}`∈Z with [n/2K,n/K], we then continue
the process as above. As each time we get rid of at least one pair (tr, tr′), the process for differences
terminates after

(
m
2

)
steps with Θ(n/K) indices left to choose. Finally, we can start the process for

tr + tr′ with j (appearing in (2.14)) chosen from these indices; the remaining iterations are identical
as above. �

3. Random walk in phase space

The key ingredients for the proof of Proposition 2.7 are local small ball estimates and a compar-
ison principle for an associated random walk in R4m, which we now define.
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For a fixed tuple t = (t1, . . . , tm) ∈ Rm and j ∈ Z we denote the vectors

aj = aj(t) :=
(

sin(jt1/n), . . . , sin(jtm/n)
)
∈ Rm

bj = bj(t) :=
(

cos(jt1/n), . . . , cos(jtm/n)
)
∈ Rm

and

wj = wj(t) =
(
aj , (j/n)bj , bj , −(j/n)aj

)
∈ R4m . (3.1)

For a finite set J ⊂ Z we let WJ = WJ(t) be the |J | ×m matrix with rows wj , j ∈ J . Note that

wj gives the values of the functions sin( jn ·), cos( jn ·) and their derivatives at the points t1, . . . , tm.
We consider the random walk

Sn(t) :=
n∑

j=−n
ξjwj(t) = WT

[−n,n]ξ ∈ R4m (3.2)

with ξ = (ξj)j∈[−n,n] a vector of iid copies of a real-valued ξ.

3.1. Control on the characteristic function. The following is the key technical ingredient for
controlling the distribution of the random walks Sn(t).

Theorem 3.1 (Decay of the characteristic function). Let t = (t1, . . . , tm) ∈ Rm be nκ-smooth and

λ-spread for some κ ∈ (0, 1) and ω(n−1/8m) ≤ λ < 1. Then for any fixed K∗ <∞ and any x ∈ R4m

with n−1/8 ≤ ‖x‖2 ≤ nK∗,
|Ee(〈Sn(t),x〉)| ≤ exp(− log2 n)

for all n sufficiently large depending on K∗,m, κ, and the sub-Gaussian constant for ξ.

We note that here the sub-Gaussianity hypothesis enters only to have a uniform anti-concentration
bound for ξ and could be replaced by a bound on the Lévy concentration function.

We defer the proof of this theorem to Section 9. Now we state the two main consequences
of Theorem 3.1 towards the proof of Theorem 1.2. By combining Theorem 3.1 with an Edgworth
expansion, we will obtain the following quantitative comparison with the Gaussian model. In the fol-
lowing we write Γ = Γn(t) ∈ R4m for a Gaussian vector with covariance matrix 1

2n+1W
T
[−n,n]W[−n,n].

Note that this is the distribution of 1√
2n+1

Sn(t) with iid standard real Gaussians in place of ξj .

Theorem 3.2 (Local CLT). Let t = (t1, . . . , tm) be nκ-smooth and 1-spread for some κ > 0. Fix
arbitrary 0 < K2 < K1 < ∞, let δi ∈ [n−K1 , n−K2 ] for 1 ≤ i ≤ 4, and let Bm(δ) denote the box∏4
i=1[−δi, δi]m ⊂ R4m. Then for any w ∈ R4m,∣∣∣∣P( 1√

2n+ 1
Sn(t) ∈ w +Bm(δ)

)
−P

(
Γn(t) ∈ w +Bm(δ)

)∣∣∣∣� n−1/2
4∏
i=1

δmi

where the implied constant depends only on m,κ,K1,K2, and the sub-Gaussian constant for ξ (and
in particular holds uniformly over w ∈ R4m).

Remark 3.3. The proof shows that in place of the sub-Gaussianity assumption we only need that
ξ has O(m) finite moments.

We defer the proof of Theorem 3.2 to Section 8.
By standard arguments, the control on the characteristic function of Sn(t) provided by Theo-

rem 3.1 yields an optimal small ball estimate at arbitrary polynomial scales:

Theorem 3.4 (Small ball estimate). With t = (t1, . . . , tm) as in Theorem 3.1, for any K <∞ and
any δ ≥ n−K ,

sup
w∈R4m

P

(
1√

2n+ 1
Sn(t) ∈ B(w, δ)

)
= Om,κ,K(λ−3mδ4m).
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The proof of Theorem 3.4 is deferred to Section 7. We note the following consequence, giving
anti-concentration for the polynomial Pn.

Corollary 3.5 (Small ball estimate for polynomials). Assume that t is nκ-smooth. Then for any
K > 0 and δ ∈ [n−K , 1],

P(|Pn(t/n)| ≤ δ) = Oκ,K(δ2) and P(|P ′n(t/n)| ≤ δ) = Oκ,K(δ2).

3.2. Non-degeneracy of the covariance matrix. As a first step towards controlling the distri-
bution of Sn(t) we need to show that the random walk is genuinely 4m-dimensional, which amounts
to showing the covariance matrix WT

[−n,n]W[−n,n] has smallest singular value of order n. This is

accomplished by the following lemma, under the (necessary) assumption that the points t1, . . . , tm
are spread.

Lemma 3.6. Let J ⊂ [n] be an interval with |J | � n. If t = (t1, . . . , tm) ∈ Rm is λ-spread for
some λ > 0, then

‖WJ(t)u‖22 �m min(λ, 1)6m−3n

uniformly over unit vectors u ∈ S4m−1.

Remark 3.7. We note that for the case ξj ∼ NR(0, 1), the above control on the covariance matrix
is enough to deduce an optimal small ball estimate at all scales. For general distributions we need
Theorem 3.1, the proof of which amounts to showing that for v of size nO(1), the vector WJ(t)v
avoid the lattice Zn, rather than just the origin as above. In particular, the following proof parallels
the more technical proof of Theorem 3.1 in some aspects.

Proof. Without loss of generality we may assume λ ∈ (0, 1). Fix a vector u = (u1, u2, u3, u4) ∈
S4m−1. The jth entry of Wt,Ju is

〈wj , u〉 =
m∑
r=1

u1r sin(jtr/n) + u2r(j/n) cos(jtr/n) + u3r cos(jtr/n)− u4r(j/n) sin(jtr/n).

Substituting cos(jtr/n) = 1
2(en(jtr) + en(−jtr)) and sin(jtr/n) = −

√
−1
2 (en(jtr) − en(−jtr)), the

above becomes

1

2

m∑
r=1

(u3r −
√
−1u1r)en(jtr) + (u3r +

√
−1u1r)en(−jtr)

+ (u2r +
√
−1u4r)(j/n)en(jtr) + (u2r −

√
−1u4r)(j/n)en(−jtr)

=
〈(
ej , ēj , (j/n)ej , (j/n)ēj

)
, Au

〉
where

ej := (en(jt1), . . . , en(jtm))

and

A =
1

2


−
√
−1Im 0 Im 0√
−1Im 0 Im 0

0 Im 0
√
−1Im

0 Im 0 −
√
−1Im


where Im is the m ×m identity matrix and 0 is the square matrix of 0s. Since ‖A−1‖ = O(1), it
suffices to show

‖Mv‖22 �m λ6m−3n

uniformly for v in the complex sphere S4m−1
C , where M ∈ Cn×4m is the matrix with rows

(ej , ēj ,
√
−1(j/n)ej ,

√
−1(j/n)ēj).
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From Lemma 2.8 there exists an integer L with n�m L < n/100m such that∥∥∥L · (tr ± tr′)
2πn

∥∥∥
R/Z
�m λ ∀1 ≤ r < r′ ≤ m.

For notational convenience we will consider M with rows of the general form

(en(jt1), . . . , en(jtd),
√
−1(j/n)en(jt1), . . . ,

√
−1(j/n)en(td))

satisfying ∥∥∥L · (tr − tr′)
2πn

∥∥∥
R/Z
≥ λ0 ∀1 ≤ r < r′ ≤ d (3.3)

for some λ0 ∈ (0, 1) and n�d L < n/50d, and aim to show

inf
v∈S2d−1

C

‖Mv‖22 �d λ
3d−3
0 n. (3.4)

One passes back to the previous case by taking d = 2m and (t1, . . . , t2m) = (t1, . . . , tm,−t1, . . . ,−tm),
and substituting any c(m)λ for λ0.

Let P denote the intersection of the interval J with the progression {iL : i ∈ Z}, and let MP

denote the submatrix of M with rows indexed by P . Note that |P | �d 1. We will first show

inf
v∈S2d−1

C

‖MP v‖22 �d λ
2d−2
0 . (3.5)

To do this we consider the twisted second-order differencing operators of the form

(Dt0f)(j) :=

2∑
a=0

(
a

2

)
(−1)ae(−aLt0)f(j + aL) (3.6)

acting on sequences f : P → C, for various choices of the parameter t0 ∈ R. Let us denote

ft(j) = en(jt), gt(j) =
√
−1(j/n)en(jt) = ∂tft(j).

For t, t0 ∈ R and any j ∈ P with j + 2L ∈ P , we have

(Dt0ft)(j) = en(jt)
2∑

a=0

(
a

2

)
(−1)ae(aL(t− t0)) =

[
1− en(L(t− t0))

]2
ft(j) (3.7)

and

(Dt0gt)(j) =
2∑

a=0

(
a

2

)
(−1)ae(aL(t− t0))

√
−1

j + aL

n
en((j + aL)t)

=
√
−1(j/n)(Dt0ft)(j) + en(jt)

[
− 2
√
−1

L

n
en(L(t− t0)) + 2

√
−1

L

n
en(2L(t− t0))

]
=
[
1− en(L(t− t0))

]2
gt(j)− 2

√
−1

L

n
en(L(t− t0))

[
1− en(L(t− t0))

]
ft(j)

=
[
1− en(L(t− t0))

]2[
gt(j) + βL(t− t0)ft(j)

]
(3.8)

where we write βL(s) := −2
√
−1Lnen(Ls)/

[
1− en(Ls)

]
. In particular, we have

(Dt0ft0)(j) = (Dt0gt0)(j) = 0 ∀j. (3.9)

The key point about the factors 1− en(L ·) and βL(·) is that they are independent of j and hence
pass through the difference operators Dt0 .

For the lower bound (3.5) we partition the sphere into d pieces

Sr = {v ∈ S2d−1
C : |vr|2 + |vr+d|2 ≥ 1/d} 1 ≤ r ≤ d
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and prove the bound separately on each piece. By symmetry it suffices to treat Sd. We abbreviate

G :=

d−1∏
r=1

[
1− en(L(td − tr))

]2
, H :=

d−1∑
r=1

βL(td − tr).

Iterating the identities (3.7)–(3.9), we obtain that for any j ∈ P such that j + 2dL ∈ P ,(
Dt1 ◦ · · · ◦Dtd−1

ftr
)
(j) = 0 1 ≤ r ≤ d− 1

and otherwise (
Dt1 ◦ · · · ◦Dtd−1

ftd
)
(j) = G · ftd(j).

Similarly, (
Dt1 ◦ · · · ◦Dtd−1

gtr
)
(j) = 0 1 ≤ r ≤ d− 1

and otherwise (
Dt1 ◦ · · · ◦Dtd−1

gtd
)
(j) = G ·

(
gtd(j) +H · ftd(j)

)
.

Fix an arbitrary v ∈ Sd. Recognizing the sequences (ftr(j))j∈P , (gtr(j))j∈P as the 2d columns of
MP , we have

(MP v)j =

d∑
r=1

vrftr(j) + vr+dgtr(j).

Letting D be the matrix associated to the linear operator Dt1 ◦ · · · ◦Dtd−1
on CP , we have

(DMP v)j = vdGftd(j) + v2dG(gtd(j) +Hftd(j))

= G · en(jtd)
[
vd +

(√
−1(j/n) +H

)
v2d
]

for each j ∈ P such that j + 2dL ∈ P . Taking the modulus of each side and square-summing we
obtain ∑

j∈P :j+2dL∈P
|(DMP v)j |2 = |G|2

∑
j∈P :j+2dL∈P

∣∣vd +
(√
−1(j/n) +H

)
v2d
∣∣2.

From (3.3) we have

G ≥ (cλ0)
2d−2, H = O(d/λ0).

In particular, since vd, v2d and H are independent of j, and |vd|2 + |v2d|2 ≥ 1/d, the sum on the
right hand side of the previous display is at least � |P |/d2 �d 1, so∑

j∈P :j+2dL∈P
|(DMP v)j |2 �d λ

2d−2
0 .

On the other hand, since the matrix D has `2(P )→ `2(P ) operator norm O(d), the left hand side
is bounded above by �d ‖MP v‖22, and we obtain (3.5) as desired.

It only remains to prove (3.4). Consider the submatrices MP ,M1+P , . . . ,Mn0+P composed of
rows indexed by the shifted progressions P, 1 + P, . . . , n0 + P , respectively. If n0 < L then these
submatrices are all disjoint. Moreover, letting F denote the 2d-dimensional diagonal matrix with
diagonal entries en(t1), . . . , en(td), en(t1), . . . , en(td), we note that Mk+P and MPF

k differ by a
matrix of norm Od(k/n) (as they only differing in the dilations by

√
−1j/n in the last d columns).

Since F is unitary we have σ2d(MPF
k) = σ2d(MP )�d λ

d−1
0 , and taking n0 = c(d)λd−10 n for c(d) > 0

sufficiently small depending on d, from the triangle inequality we obtain that σ2d(Mk+P )�d λ
d−1
0

for all 1 ≤ k ≤ n0. Since 1 + P, . . . , n0 + P are disjoint, we conclude that for any fixed v ∈ S2d−1
C ,

‖Mv‖22 ≥
n0∑
k=1

‖Mk+P v‖22 �d n0λ
2d−2
0 �d λ

3d−3
0 n

giving (3.4) as desired. �
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4. Proof of Proposition 2.7

In this section we combine Theorems 3.2 and 3.4 to prove Proposition 2.7. In fact we will need the
following more general result, which in particular establishes universality for the joint distribution
of the recentered near-local minimizers Yαi and corresponding near-local minima Xαi .

Proposition 4.1. Fix an m-tuple of indices (α1, . . . , αm) ∈ [N ]m, and assume s = (sα1 , . . . , sαm)
is nκ-smooth and 1-spread for some κ > 0. Let J1, . . . , Jm ⊂ R, J ′1, . . . , J

′
m ⊆ [−π, π] be arbitrary

compact intervals with lengths in the range [n−L0 , nL0 ] for some L0 > 0, and denote the event

E =
∧
i∈[m]

{
Xαi ∈ Ji, NYαi ∈ J ′i

}
. (4.1)

We have ∣∣P(E)−PNR(0,1)(E)
∣∣�m,κ,L0

logO(m) n

n1/2Nm

m∏
i=1

|Ji||J ′i |. (4.2)

Moreover, if s is nκ-smooth and λ-spread for some ω(n−1/8m) ≤ λ ≤ 1, then we have the upper
bounds

P(E)�m,κ,L0

logO(m) n

λ3mNm

m∏
i=1

|Ji||J ′i | , (4.3)

and

PNR(0,1)(E)�m,κ,L0

1

λO(m2)Nm

m∏
i=1

|Ji||J ′i | . (4.4)

For the above bounds, the point is that the trivial bound on PNR(0,1)(E), obtained by controlling

the Gaussian measure by Lebesgue measure, is of order N−m
∏m
i=1 |Ji||J ′i | (this will be shown in the

proof, but can also be understood on the heuristic level). For the error in (4.2) we save � n−1/2+ε

on this bound, while in (4.3) we obtain the same order upper bound for P(E) up to a tolerable loss

of a factor λ−3m logO(m) n.
We commence with the proof of Proposition 4.1. Let K∗ > 0 to be chosen sufficiently large and

set δ = n−K∗ . We first describe the event E as a domain in R4m. Let D denote the annulus

D := B(0, C0

√
log n) \B(0, log−K0/2 n) ⊂ R2.

For b = (b, b′) ∈ R2 we write b⊥ := (b′,−b), and define the rectangles

Ti(b) =

{
a ∈ R2 :

a · b⊥

‖b‖2
∈ 1

n
· Ji , −

a · b
‖b‖22

∈ n

N
· J ′i
}
, 1 ≤ i ≤ m, (4.5)

which have sides of length n‖b‖2|J ′i |/N and |Ji|/n in the direction of b and b⊥, respectively. (Here
we write C · Ji for the dilation of Ji by a factor C.) Let

Ui =
{

(a, a′, b, b′) = (a,b) ∈ R4 : b ∈ D, a ∈ Ti(b)
}
, U =

m∏
i=1

Ui . (4.6)

Abbreviating henceforth

S̃ :=
1√

2n+ 1
Sn(t), (4.7)

one sees that the left hand sides of (4.2) and (4.3) can be expressed as |P(S̃ ∈ U)−P(Γ ∈ U)| and

P(S̃ ∈ U), respectively.
From the dimensions of the rectangles Ti(b) we have from Fubini’s theorem that

mLeb(Ui) =

∫
D
mLeb(Ti(b))db =

∆

N
|Ji||J ′i | (4.8)
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where we denote

∆ :=

∫
D
‖b‖db ∼ 2πC0

3
log3/2 n. (4.9)

Thus,

mLeb(U) = (∆/N)m
m∏
i=1

|Ji||J ′i | =
logO(m) n

Nm

m∏
i=1

|Ji||J ′i |. (4.10)

For the measure of U under the law of Γ, recall from Lemma 3.6 that the norm of the inverse of the co-

variance matrix of Γ has operator norm of size O(λ−3m), and hence determinant of size O(λ−O(m2)).
By controlling the conditional density of Γ in directions (a1, . . . ,am) for fixed (b1, . . . ,bm) by the
Lebesgue measure, and then integrating over Dm under the marginal Gaussian measure, we get

P(Γ ∈ U)�m,κ,L0

1

λO(m2)Nm

m∏
i=1

|Ji||J ′i |, (4.11)

giving (4.4) as desired.

We next note that the corners of the rectangles Ti(b) are nO(L0+1)-Lipschitz functions of b ∈ D.
From this it follows that if K∗ is sufficiently large depending on L0 and m, we can find sets U− ⊂
U ⊂ U+ such that U− and U+ \U− are unions of cubes in R4m of side length δ with disjoint interiors,
and such that mLeb(U+ \ U−) ≤ n−100mLeb(U) (say).

The bound (4.3) now follows by covering each cube in U+ with balls of bounded overlap and
applying the union bound, Theorem 3.4, and (4.10).

For (4.2), we bound

|P(S̃ ∈ U)−P(Γ ∈ U)| ≤ P(S̃ ∈ U+ \ U−) + P(Γ ∈ U+ \ U−) +
∑
Q

|P(S̃ ∈ Q)−P(Γ ∈ Q)|

where the sum runs over the cubes comprising U−. Using the union bound and Theorem 3.4 as we
did for U+, the first two terms above are of size

� mLeb(U+ \ U−)� n−100mLeb(U).

For the sum over Q, use Theorem 3.2 to bound each term by �m,κ,K∗ n
−1/2mLeb(Q). Altogether

we have

|P(S̃ ∈ U)−P(Γ ∈ U)| �m,κ,K∗ n
−1/2mLeb(U)

and the claim now follows from (4.10). This concludes the proof of Proposition 4.1. �

5. Proof of Proposition 2.5 for the real-valued case (moment comparison)

We condition on G2(K0/2) throughout the proof. As remarked before, in the real-valued case it
suffices to work with xα ∈ [0, π] because Pn(−x) = Pn(x). We allow implied constants to depend

on m and τ without indication. Recall also that κ0 in the definition (2.7) of M]
n is an absolute

constant. For α = (α1, . . . , αm) ∈ [N ]m we denote events

E(α) :=

{ ∧
i∈[m]

|Xαi | ≤ τ
}
.

We have

E
(
M]

n

(
[−τ, τ ]

)m)
=
∑
α∈E

P(E(α)) =
∑
α∈E′

P(E(α)) +
∑

α∈E\E′
P(E(α)) (5.1)
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where

E :=
{
α = (α1, . . . , αm) ∈ [N/2]m : xα1 , . . . , xαm /∈ Ebad(κ0)

}
,

E′ :=
{
α ∈ E : |xαi − xαj | > 4π/n ∀1 ≤ i < j ≤ m

}
.

Note that if x, x′ ∈ [0, π] such that |x−x′2π | ≥
λ
n then we also have λ

n ≤
x+x′

2π ≤ 1− λ
n . Hence within

E′ the angles are 1-spread and by Proposition 2.7∣∣∣∣ ∑
α∈E′

P
(
E(α)

)
−
∑
α∈E′

PNR(0,1)

(
E(α)

)∣∣∣∣ ≤ Nmo(N−m) = o(1).

It only remains to bound the sum over α ∈ E \ E′.
By Lemma 2.2, under G2(K0/2), it suffices to consider m-tuples of the form

(α1, . . . , αm−k, α1 + 1, α2 + 1, . . . , αk + 1) (5.2)

consisting of k pairs of points (αl, αl + 1) that are immediate neighbors, for some 0 ≤ k ≤ m/2,
while the m− k points xα1 , . . . , xαm−k are separated by at least 4π/(n log3K0 n) in [0, π]. Note also

that by the remark above we also have
xαi+xαj

2π ≥ 1/(n log3K0 n).
We divide this class of such α into two sets E1, E2, where E1 is the set of α ∈ E \E′ of the form

(5.2) (possibly with k = 0) such that |xαi − xαj | ≤ 4π/n for some 1 ≤ i < j ≤ m− k, and E2 is the
set of α ∈ E \ E′ of the form (5.2) with k ≥ 1 and |xαi − xαj | > 4π/n for all 1 ≤ i < j ≤ m− k.

For the sum over E1, we have |E1| = O(Nm−k/n) since there are O(N/n) options for the
close point with all others fixed. As the points xα1 , . . . , . . . , xαm−k are separated by at least

4π/(n log3K0 n), from the upper bound (4.3) in Proposition 4.1 with Ji ≡ [−τ, τ ] and J ′i ≡ [−π, π],
we have ∑

α∈E1

P
(
E(α)

)
� (Nm−k/n)×N−mτm logO(K0m) n� 1

n
logO(m) n = o(1).

For the sum over E2, by Lemma 2.2, under G2(K0/2) we have the containment of events{
|Xαi | ≤ τ , |Xαi+1| ≤ τ

}
⊂
{
|Xαi | ≤ τ , Yαi ∈

[ π
N
− π

N logK0/4 n
,
π

N

]}
,

so for each such α we can bound

P
(
E(α)

)
≤ P

(
Yα1 ∈

[ π
N
− π

N logK0/4 n
,
π

N

]
,
∧

i∈[m−k]

|Xαi | ≤ τ
)
.

Applying (4.2) with m − k in place of m, λ = 1/2 (say), Ji ≡ [−τ, τ ], J ′1 = [π(1 − log−K0/4 n), π],
and J ′i = [−π, π] for 2 ≤ i ≤ m− k, the right hand side above is bounded by

PNR(0,1)

(
Yα1 ∈

[ π
N
− π

N logK0/4 n
,
π

N

]
,
∧

i∈[m−k]

|Xαi | ≤ τ
)

+ o(N−(m−k)).

Finally, we apply (4.4) to bound the first term above by o(N−(m−k)). Combining the preceding
displays and summing over α ∈ E2 gives∑

α∈E2

P
(
E(α)

)
= o(1).

We have thus shown that the sum over α ∈ E \ E′ in (5.1) is o(1), which completes the proof of
Proposition 2.5. �
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6. Proof of Theorem 1.2 (main result)

We fix κ = κ0 as in Lemma 2.4, and let τ > 0 be arbitrary. As in the previous section we allow
implied constants to depend on m and τ . It follows from Proposition 2.5 that

lim
n→∞

∣∣∣P(M]
NR(0,1)

([−τ, τ ]) = 0
)
−P

(
M]([−τ, τ ]) = 0

)∣∣∣ = 0.

On the other hand, by Theorem 1.1 and Lemma 2.4,

lim
n→∞

∣∣∣∣PNR(0,1)

(
mn >

τ

n

)
−PNR(0,1)

(
M]([−τ, τ ]) = 0

)∣∣∣∣ = 0

and hence it suffices to show

lim
n→∞

∣∣∣∣P(mn >
τ

n

)
−P

(
M]([−τ, τ ]) = 0

)∣∣∣∣ = 0.

To this end, recall that on the event G2(K0),

|P (x)− Fα(x)| ≤ N−2 sup
x∈[−π,π]

|P ′′(x)| ≤ log3K0 n

n2
(6.1)

for all x ∈ Iα. By Lemma 2.4 we have∣∣∣∣P(mn >
τ

n

)
−P

(
M]([−τ, τ ]) = 0

)∣∣∣∣
≤ P

(
mn >

τ

n
, M]([−τ, τ ]) ≥ 1

)
+ P

(
mn ≤

τ

n
, M]([−τ, τ ]) = 0

)
≤

∑
α∈[N ]:xα /∈Ebad(κ)

P
(
G2(K0) ∧ |Xα| < τ ∧ min

x∈Iα
|P (x)| ≥ τ/n

)
+

∑
α∈[N ]:xα /∈Ebad(κ)

P
(
G2(K0) ∧ |Xα| ≥ τ ∧ min

x∈Iα
|P (x)| < τ/n

)
+ o(1)

≤
∑

α∈[N ]:xα /∈Ebad(κ)

P

(
|Xα| ∈

[
τ − log3K0 n

n
, τ +

log3K0 n

n

])
+ o(1),

where we used the definition of Xα and (6.1) in the last estimate.
Applying the bound (4.3) of Proposition 4.1 with m = 1, J1 = [τ−n−1 log3K0 n, τ+n−1 log3K0 n],

J ′1 = [−π, π], and λ = 1, say (with a single point xα being trivially λ-spread), we have

P

(
Xα ∈

[
τ − log3K0 n

n
, τ +

log3K0 n

n

])
� log3K0 n

nN

for each α with xα /∈ Ebad(κ), as well as the same bound for the event with Xα replaced by −Xα.
From the union bound and summing over α we conclude∣∣∣∣P(mn >

τ

n

)
−P

(
M]([−τ, τ ]) = 0

)∣∣∣∣� log3K0 n

n
+ o(1) = o(1)

as desired.

7. Proof of Theorem 3.4

Fix t as in the theorem statement. Recall the notation Sn = Sn(t) (we henceforth suppress t)
and wj from (3.2) and (3.1). Let t0 = δ−1 and let φj denote the characteristic function of ξjwj . By
a standard procedure (see for instance [AP17, Eq. 5.4]) we can bound the small ball probability by

P(
1√

2n+ 1
Sn ∈ B(w, δ)) ≤ Cm(

n

t20
)4m/2

∫
R4m

n∏
j=−n

φj(u)e
−n‖u‖

2
2

2t20 du =: J1 + J2 + J3,
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where in J1, J2, J3 the integral is restricted to the ranges ‖u‖2 ≤ r0 = O(1), r0 ≤ ‖u‖2 ≤ R = nK∗ ,
and ‖u‖2 > R, respectively for K∗ > 0 to be chosen sufficiently large.

For J1, from (9.1) and (9.2) below we can bound∣∣∣∣ n∏
j=−n

φj(u)

∣∣∣∣ ≤ exp

(
− c inf

a1≤|a|≤a2

∑
j

‖a〈wj , u/2π〉‖2R/Z
)
.

Thus, if r0 is sufficiently small, then we have ‖a〈wj , u/2π〉‖R/Z = |a|‖〈wj , u/2π〉‖2, and so from
Lemma 3.6 we have ∑

j

‖a〈wj , u/2π〉‖2R/Z ≥ c
′n‖u‖22 min(λ, 1)6m−3.

Hence

J1 = Cm(
n

t20
)2m

∫
‖u‖2≤r0

∏
j

φj(u)e
−n‖u‖

2
2

2t20 du

≤ Cm(
n

t20
)2m

∫
‖u‖2≤r0

e
−n‖u‖

2
2

2t20
−c′n‖u‖22λ6m−3

du

= Om(
1

λ3m(t20 + 1)2m
) = Om(λ−3mδ4m).

For J2, recall by Theorem 3.1 that for r0 ≤ ‖u‖2 ≤ R = nK∗ we have

|
n∏

j=−n
φj(u)| = O(e− log2 n).

Thus

J2 = Cm(
n

t20
)2m

∫
r0≤‖u‖2≤R

n∏
j=−n

φj(u)e
−n‖u‖

2
2

2t20 du

≤ Cm(
n

t20
)2m

∫
r0≤‖u‖2≤R

e− log2 ne
−n‖u‖

2
2

2t20 du

�m nOm,K∗ (1)e− log2 n �m,K e−
1
2
log2 n.

For J3, we have

J3 = Cm(
n

t20
)4m/2

∫
‖u‖2≥nK∗

n∏
j=−n

φj(u)e
−n‖u‖

2
2

2t20 du = Om(e−n)

for K∗ sufficiently large.

8. Proof of Theorem 3.2

For the proof we make use of a quantitative Edgeworth expansion for the distribution of Sn =
Sn(t) (we will suppress the dependence of Sn on t in much of what follows). Our treatment is
similar to [DNN19]. Let

Vn :=
1

2n+ 1

n∑
j=−n

wjw
T
j . (8.1)

be the covariance matrix of Sn/
√

2n+ 1. Let Q̃n denote the distribution of Sn/
√

2n+ 1, and let

Q̃n(x) denote the cumulative distribution function for this distribution. The theorem below shows
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that Q̃n is asymptotically Q̃n,∞, where

Q̃n,` :=
`−2∑
r=0

n−r/2Tr(−Φ0,Vn , {χν}), ` ≥ 2, (8.2)

for densities Tr(−Φ0,Vn , {χν}) to be defined below. For convenience, the density of Q̃n,` is denoted

by Qn,` while the density of Q̃n is denoted by Qn.

Let W be the standard Gaussian vector in R4m. For any covariance matrix V , V 1/2W is the
Gaussian random vector in R4m with mean zero and covariance V . Let φ0,V denote the density of
its distribution and let Φ0,V denote the cumulative distribution function. If V is the identity matrix
then we simply write φ and Φ, respectively. Recall that the cumulants of a random vector X in
R4m are the coefficients in the following (multiple) power series expansion

log E[ez·X ] =
∑
ν∈Nd

χνz
ν

|ν|!
, z ∈ C4m. (8.3)

From the independence of the random coefficients ξj , it follows that the cumulants of Sn are the sum
of the corresponding cumulants of ξjwj , which in turn are polynomials in the moments of ξ and the
entries ofwj . Let χν := χν(Sn)/(2n+1), which is the average of cumulants of ξjwj , 0 ≤ −n ≤ j ≤ n.

Note that cumulants of V
1/2
n W match the cumulants of Sn/

√
2n+ 1 for any |ν| ≤ 2, while the

higher order cumulants of the Gaussian vector V
1/2
n W vanish. Therefore,

log E[ez·(Sn/
√
2n+1)] = log E[ez·(V

1/2
n W )] +

∑
ν∈Nd:|ν|≥3

(nχν)
zν

ν!
n−|ν|/2

= log E[ez·V
1/2
n W ] +

∑
`≥1

(
∑

ν∈Nd:|ν|=`+2

χν
zν

ν!
)n−`/2.

Letting χ`(z) = `!
∑

ν∈N4m:|ν|=` χνz
ν for all z ∈ C4m, we obtain

E[ez·(Sn/
√
2n+1)]/E[ez·V

1/2
n W ] = exp[

∑
`≥1

χ`+2(z)

(`+ 2)!
n−`/2]

=
∑
m≥0

1

m!

(∑
`≥1

χ`+2(z)

(`+ 2)!
n−`/2

)m
=

∑
`≥0

T̃`n
−`/2,

where T̃` is obtained by grouping terms of the same order n−`/2. It is clear that T̃` depends only

on z and the average cumulants χν , |ν| ≤ `+ 2. We will write T̃`(z, {χν}) to stress this dependence.
Replacing z by iz, we obtain the following expansion for the characteristic function of Sn/

√
2n+ 1:

E[eiz·(Sn/
√
2n+1)] = E[eiz·V

1/2
n W ]

∑
`≥0

T̃`(iz, {χν})n−`/2.

Next, let D = (D1, . . . , D4m) be the partial derivative operator and let T̃`(−D, {χν}) be the differ-

ential operator obtained by formally replacing all occurences of iz by −D inside T̃`(iz, {χν}). We
define the signed measures T`(−Φ0,Vn , {χν}) in (8.2) to have the following density with respect to
the Lebesgue measure:

T`(−φ0,Vn , {χν})(x) :=
(
T̃`(−D, {χν})φ0,Vn

)
(x).
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The following result gives a quantitative comparison between Q̃n and Q̃n,`; cf. also [DNN19,
Theorem 4.1]. For convenience of notation, for each ` > 0, let

ρ` :=
1

n

∑
−n≤j≤n

‖wj‖`2 ·E|ξ|`.

Thus ρ` = O`,m(E|ξ|`) = O`,m(1) if ξ is sub-Gaussian. To stay slightly more general, here we only
assume that ξ has bounded moments up to some sufficiently large order. For a given measurable
function f : R4m → R, define

M`(f) := sup
x∈R4m

|f(x)|
1 + ‖x‖`2

.

Theorem 8.1 (Edgeworth expansion). Assume E|ξ|`+4m+1 <∞ for some ` ≥ 4. Let f : R4m → R
be a measurable function such that M`(f) < ∞. Suppose that t = (t1, . . . , tm) is nκ-smooth and
1-spread for some κ > 0. Then for any fixed K∗ > 0 and any n−K∗ ≤ ε ≤ 1,

|
∫
f(x)dQ̃n(x)−

∫
f(x)dQ̃n,`(x)|

≤ CM`(f)(n−(`−1)/2 + e− log2 n) + ωf (2ε :

`+4m−2∑
r=0

n−r/2Tr(−φ0,Vn : {χν})

where for a density φ,

ωf (ε : φ) =

∫
( sup
y∈B(x,ε)

f(y)− inf
y∈B(x,ε)

f(y))dφ(x),

for some C = C({ρk, k ≤ `}, κ,K∗) > 0.

Proof of Theorem 8.1. This follows from [DNN19, Section 4] (which in turns follows the approach
of [BR10] with some important modifications, see also [BCP19]). For completeness we sketch the
proof below. For convenience, we assume that ε = n−K∗ and denote

H̃n = Q̃n − Q̃n,`,

and let Hn be its density. As usual the characteristic function of Hn is Ĥn(η) =
∫
Rd e

it·ηH̃n(dt).

Let K̃ be a probability measure supported inside the unit ball B(0, 1) = {x ∈ Rd : ‖x‖ ≤ 1}
(whose density is denoted by K) such that its characteristic function K̂(η) satisfies

|DαK̂(η)| = O(e−‖η‖
1/2
2 ), |α| ≤ `+ d+ 1. (8.4)

Such a measure could be constructed using elementary arguments, see for instance [BR10, Section

10]. We then let K̃ε be the ε-dilation of K, namely K̃ε(A) = K̃(ε−1A) and ε−1A := {x/ε : x ∈ A}
for all measurable A. Some simple computation yields∫

f(y)dH̃n(y) ≤ C`M`(f)

∫
(1 + ‖t‖2)`|Hn ∗Kε|(t)dt+ ω̄f (2ε : |Q̃n,`|)

= O
(

max{
∫
|Dα(Ĥn)(η)Dβ(K̂ε)(η)|dη : |α|+ |β| ≤ `+ d+ 1}

)
.

Following [BR10] (see [DNN19, Section 4] for a different proof) we can show that for some c1 > 0
sufficiently small we have∫

‖η‖2≤c1
√
n
|DαĤn(η)DβK̂ε(η)|dη = O

(∫
‖η‖2≤c1

√
n
|DαĤn(η)|dη

)
= O(n−(`+d−1)/2).
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It thus remains to consider the range ‖η‖2 ≥ c1
√
n. We use triangle inequality to estimate (where

Qn is the density of Q̃n)∫
‖η‖2≥c1

√
n
|DαĤn(t)DβK̂ε|dη ≤

∫
‖η‖2≥c1

√
n
|DαQ̂n(t)DβK̂ε|dη

+

∫
‖η‖2≥c1

√
n
|Dα(

`−2+d∑
r=0

n−r/2Pr(iη : {χν,n})) exp(−1/2〈η,Bnη〉)|dη.

The second term can be controlled by O(e−cn) thanks to the Gaussian decay of exp(−1/2〈η,Bnη〉).
Let φi(η) = Eeiη·wi . Then for |α| ≤ `+ d+ 1 we have Dα

η (φi(η/
√
n)) = n−|α|/2O(E‖Xn,i‖|α|2 ) =

O(1). Thus,

|DαQ̂n(η)| = |Dα(
n∏
i=1

φi(
η√
n

))| = O(
∑

γ1+···+γn=α
|

n∏
i=1,γi=0

φi(
η√
n

)|),

while we also have |DβK̂ε(η)| = O(ε|β|e−(ε‖η‖2)
1/2

) = O(e−(ε‖η‖2)
1/2

). Thus, it remains to control,
for each (γ1, . . . , γn) with |γ1|+ · · ·+ |γn| ≤ `+ d+ 1 and each r > 0 independent of n:

Jγ(n, ε) =

∫
‖η‖2≥r

√
n
|

n∏
i=1,γi=0

φi(
η√
n

)|e−(ε‖η‖2)1/2dη

= nd/2
∫
‖η‖2≥r

|
n∏

i=1,γi=0

φi(η)|e−(n−K∗+1/2‖η‖2)1/2dη.

Clearly it suffices to consider r ≤ ‖η‖2 ≤ nK∗−1/2+τ because the integral for ‖η‖2 ≥ nK∗−1/2+τ

is extremely small. Again, because α is fixed, by throwing away from the set {wi} a fixed number
of elements, let us assume that α = 0 for simplicity 4. To this end, by Theorem 3.1 for sufficiently
large n we have

|
∏
i

φi(η)| ≤ e− log2 n.

Thus we just shown that, with ε = n−K∗ we have Jγ(n, ε) = O(e− log2 n), completing the proof. �

We turn now to the proof of Theorem 3.2. We follow [DNN19, Section 5] with some slight
modifications. Let η, ε > 0 to be chosen later, and towards an application of Theorem 8.1 we fix
some K∗ > K1,K2. In the sequel we abbreviate δ := n−K1 ≤ n−K2 =: δ′. We let

g :=
1

16δ1δ2δ3δ4
1w+Bm(δ)

be the L1-normalized indicator for the box w+Bm(δ) ⊂ R4m. For 1 ≤ i ≤ 4 let ϕi,η : R→ [0, 1] be
a C∞(R) function with support inside [−δi, δi] such that

(i) ϕi,η(x) = δ−1i for |x| ≤ δi(1− η), and

(ii) |ϕ(k)
i,η (x)| = O(δ

−(k+1)
i η−k) for any k ≥ 0,

and set

f(x) =
m∏
r=1

4∏
i=1

ϕi,η(w
i
r + xir)

where we write w = (w1, . . . , w4),x = (x1, . . . , x4) ∈ R4m. We have

‖∇f(x)‖2 �m
2

δ4m+1η

4In the general case α 6= 0 we apply Theorem 10.2 instead of Theorem 3.1.
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uniformly in x. Recall that ω̄f (ε : φ) =
∫

(supy∈B(x,ε) f(y) − infy∈B(x,ε) f(y))φ(x)dx, and φ is the

density of a Gaussian vector. Consequently, for any polynomial p(x) with bounded degree and
bounded coefficients we have

ω̄f (ε : p(x)φ0,Vn(x)) = O(η−1δ−4m−1ε),

where the implied constant depends on the eigenvalues of Vn, and on the degree and coefficients of
p. In particular, the final error term in Theorem 8.1 can be expressed as

`+4m−2∑
r=0

n−r/2Tr(−φ0,Vn : {χν}) = p(x)φ0,Vn(x)

for some polynomial p with degree at most 4m + ` and coefficients bounded by the first 4m + `
moments of ξ. Therefore

ω̄f (2ε :
`+4m−2∑
r=0

n−r/2Tr(−φ0,Vn : {χν})) = O(η−1δ−4m−1ε), (8.5)

where the implied constant depends on the eigenvalues of Vn and the moments up to order O(m)
of ξ.

Recall the shorthand notation S̃ := Sn(t)/
√

2n+ 1 from (4.7), and that Γ has the distribution

of S̃ with standard real Gaussians in place of the variables ξj . From Theorem 3.4 and Corollary
3.5,

∣∣Ef(S̃)−Eg(S̃)
∣∣ ≤ (

C

δ
)4m

m∑
r=1

P(||RePn(sr)| − δ1| ≤ ηδ1) + P(|ReP ′n(sr)| − δ2| ≤ ηδ2)

+ P(||ImPn(sr)| − δ3| ≤ ηδ3) + P(|ImP ′n(sr)| − δ4| ≤ ηδ4)
)

�m (
C

δ
)4mηδ′.

By Theorem 8.1 and (8.5) (with ` = 8mK1 + 3), after keeping the first term of the expansion, and
by the triangle inequality we have

∣∣∣Ef(S̃)−Ef(Γ)
∣∣∣ ≤ ∣∣∣ ∫ f(x)

`−2∑
r=1

n−r/2Tr(−φ0,Vn(x), {χν})
∣∣∣

+M`(f)O
(
n−4mK1−1 + e− log2 n + e−cn

)
+ ω̄f (2ε :

4m+1∑
r=0

n−r/2Tr(−φ0,Vn : {χν}))

= O(n−1/2) + (C/δ)4mO(n−4mK1−1 + e− log2 n) +O((C/δ)4m+1η−1ε),

where we used the fact that |
∫
f(x)Tr(−φ0,Vn(x), {χν})| = O(1) with the implied constant depend-

ing on the moments of ξ up to order r and on the implicit constant from (ii) of ϕ. In particular,
the above is also true for the Gaussian case. Consequently, again by the triangle inequality

|Eg(S̃)−Eg(Γ)| ≤ |Eg(S̃)−Ef(S̃)|+ |Ef(Γ)−Eg(Γ)|+ |Ef(S̃)−Ef(Γ)|

≤ O
(
n−1/2 + (

C

δ
)4m+1(n−4mK1−1 + e− log2 n + η−1ε+ ηδ′)

)
= O(n−1/2),

where we took η = ε1/2 and ε = n−K∗ with K∗ sufficiently large compared to K1,K2.
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9. Proof of Theorem 3.1

We assume throughout this section that n is sufficiently large depending on m,κ,K∗ and the
sub-Gaussian constant for ξ. We first recall a definition and fact from [TV08]. For a real number
w and a random variable ξ, define the ξ-norm of w as

‖w‖ξ := (E‖w(ξ − ξ′)‖2R/Z)1/2,

where ξ′ is an iid copy of ξ. For instance, if ξ has the Rademacher distribution P(ξ = ±1) = 1/2,
then ‖w‖2ξ = ‖2w‖2R/Z/2. For any real number w we have

|Ee(wξ)| ≤ exp(−c‖w/2π‖2ξ)
for an absolute constant c > 0.

Now with φj : R4m → C the characteristic function of ξjwj , we have∣∣∣Ee(〈Sn(t),x〉
)∣∣∣ = |

∏
j

φj(x)| =
∏
j

|Ee(ξj〈wj ,x〉)| ≤ exp(−c
∑
j

‖〈wj ,x/2π〉‖2ξ). (9.1)

Furthermore, as ξ is sub-Gaussian and of unit variance, there exist constants a1, a2, c > 0 depending
only on the sub-Gaussian moment of ξ such that P(a1 < |ξ − ξ′| < a2) ≥ c, and so∑

j

‖〈wj ,x/2π〉‖2ξ = E
∑
j

‖〈wj ,x/2π〉(ξ − ξ′)‖2R/Z ≥ c inf
a1≤|a|≤a2

∑
j

‖a〈wj ,x/2π〉‖2R/Z. (9.2)

It hence suffices to show that
∑

j ‖a〈wj ,x/2π〉‖2R/Z � log3 n uniformly for |a| ∈ [a1, a2]. Re-

calling (3.1), since wj + w−j = 2(0, 0, bj ,−(j/n)aj) and wj − w−j = 2(aj , (j/n)bj , 0, 0), for
x = (x1,x2,x3,x4) ∈ R4m and each 0 ≤ j ≤ n, we have from the triangle inequality that

‖〈wj ,x〉‖2R/Z + ‖〈w−j ,x〉‖2R/Z ≥
1

2
max

{
‖〈wj +w−j ,x〉‖2R/Z , ‖〈wj −w−j ,x〉‖2R/Z

}
= 2 max

{
‖〈bj ,x3〉 − (j/n)〈aj ,x4〉‖2R/Z , ‖〈aj ,x

1〉+ (j/n)〈bj ,x2〉‖2R/Z
}
.

Recalling our assumption ‖x‖2 ≥ n−1/8, we will assume ‖x3‖22+‖x4‖22 ≥ 1
2n
−1/4; the complementary

case that ‖x1‖22 + ‖x2‖22 ≥ 1
2n
−1/4 can be handled by the same argument. Fix now a vector

(y,y′) ∈ R2m satisfying

n−1/8 ≤ ‖(y,y′)‖2 ≤ nK∗

and denote

ψ(j) = ψ(j; t) := 〈bj ,y〉 − (j/n)〈aj ,y′〉 =

m∑
r=1

yr cos(jtr/n)− y′r(j/n) sin(jtr/n) . (9.3)

Then since a1 � 1, to establish Theorem 3.1 it suffices to prove the following:

Proposition 9.1. Let t = (t1, . . . , tr) ∈ Rm be nκ-smooth and λ-spread for some κ ∈ (0, 1) and

ω(n−1/8m) ≤ λ < 1. Then
n∑
j=0

‖ψ(j)‖2R/Z > log4 n.

Turning to prove the proposition, we henceforth denote

T := log4 n.

In the remainder of this section we suppose towards a contradiction that
n∑
j=0

‖ψ(j)‖2R/Z ≤ T . (9.4)
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From (9.4) and Markov’s inequality we have

|{j ∈ [0, n] ∩ Z : ‖ψ(j)‖R/Z > 1/T}| ≤ 2T 3

and it follows that there is an interval J ⊂ [n] of length at least n/T 6 such that

‖ψ(j)‖R/Z ≤ 1/T ∀ j ∈ J. (9.5)

We henceforth fix such an interval J = [n1, n2].
Next we claim we can find q0 ∈ Z ∩ [1, nκ] and s1, . . . , sm ∈ R such that

q0tr/2πn− sr ∈ Z (9.6)

and
m∑
r=1

s2r ≤ mn−2κm. (9.7)

Indeed, considering the sequence of points ({qt1/2πn}, . . . , {qtm/2πn}) ∈ [0, 1]m for 1 ≤ q ≤ nκ, it
follows from Dirichlet’s principle that

m∑
r=1

|{q1(tr/2πn)} − {q2(tr/2πn)}|2 ≤ mn−2κm

for some 1 ≤ q1, q2 ≤ nκ. Then we have

|(q1 − q2)tr/2πn− pr|2 ≤ mn−2κm

for some p1, . . . , pm ∈ Z. Now (9.6) and (9.7) follow by taking q0 = q1−q2 and sr = (q1−qr)tr/2πn−
pr.

Fixing such q0, s1, . . . , sr, we have

|en(q0tr)− 1| = |e(2πsr)− 1| ≤ 2πm1/2n−κ/m ∀ 1 ≤ r ≤ m. (9.8)

We next combine (9.5) and (9.8) to deduce some smoothness of the sequence ψ(j) over j ∈ J ,
via Lemma 9.2 below. For g : [n] → C and positive integers k, q we define the discrete differential
of order k and step q as

∆k
qg : [n]→ C , (∆k

qg)(j) :=
k∑
i=0

(
k

i

)
(−1)ig(j + iq).

For any integer q and t ∈ R,

k∑
i=0

(
k

i

)
(−1)ien((j + iq)t) = (1− en(qt))ken(jt).

Taking real parts on both sides, we obtain

k∑
i=0

(
k

i

)
(−1)i cos((j + iq)t/n) = Re

[
(1− en(qt))ken(jt)

]
,

and differentiating in t yields

k∑
i=0

(
k

i

)
(−1)i

j + iq

n
sin((j + iq)t/n) = Re

[
∂t
[
(1− en(qt))ken(jt)

]]
.

Combining the previous two identities over t = tr, r ∈ [m] we obtain the identity

(∆k
qψ)(j) = Re

[ m∑
r=1

yr(1− en(qtr))
ken(jtr)− y′r∂t

[
(1− en(qtr))

ken(jtr)
]]
. (9.9)
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Denoting henceforth

ft,`(j) := (1− en(`q0t))
ken(jt), (9.10)

substituting q = `q0 in the above identity yields

(∆k
`q0ψ)(j) = Re

[ m∑
r=1

yrfj,`(tr) + y′r∂trftr,`(j)

]
(9.11)

Lemma 9.2. There exists k = OK∗,κ,m(1) such that for any ` ≥ 1 and any j ∈ J such that
[j, j + k`q0] ⊂ J ,

(∆k
`q0ψ)(j)�K∗,κ,m

k∑
i=0

‖ψ(j + i`q0)‖R/Z.

Proof. Fix k ≥ 1 to be chosen sufficiently large depending on K∗, κ,m. From (9.8), for ` = 1 we
have

|ftr,1(j)| ≤ (2πm1/2n−κ/m)k < n−kκ/2m

and

|f ′tr,1(j)| ≤ kq0(2πm
1/2n−κ/m)k−1 + (2πm1/2n−κ/m)k < n−kκ/2m

and hence

|(∆k
q0ψ)(j)| ≤ n−κk/2m

m∑
r=1

|yr|+ |y′r| < mnK∗−κk/2m.

Let p(j) denote the closest integer to ψ(j). From the triangle inequality and (9.5) it follows that

|(∆k
q0p)(j)| < mnK∗−κk/2m +

2k

T

as long as {j, j + q0, . . . , j + kq0} ⊂ J . Taking k = b4mK∗/κc + 1, the right hand side is smaller
than 1. Since the numbers (∆k

q0p)(j) are integers, it follows that

(∆k
q0p)(j) = 0

for all j such that {j, j + q0, . . . , j + kq0} ⊂ J . By repeated application of the above for j running
over progressions j0, j0+q0, j0+2q0, . . . with j0 ∈ J , we deduce that for any j such that [j, j+kq0] ⊂
J = [n1, n2] there exists a polynomial Qj of degree at most k − 1 such that

p(j + iq0) = Qj(i) ∀ 0 ≤ i ≤ (n2 − j)/q0.

Thus we have (∆k
`q0
p)(j) = 0 for all ` ≥ 1 and j such that [j, j + k`q0] ⊂ J . Hence, for such j we

conclude by the triangle inequality that

|(∆k
`q0ψ)(j)| = |(∆k

`q0ψ)(j)− (∆k
`q0p)(j)| ≤ 2k

k∑
i=0

‖ψ(j + i`q0)‖R/Z

as desired. �

Note that ‖y‖2 + ‖y′‖2 � n−1/8. Thus either (1) there exists i such that |y′i| � n−1/16 (with

room to spare) or (2) |y′i| ≤ n−1/16 for all i and there exists i such that |yi| �m n−1/8. In what
follows we will mainly working with the first case (which is significantly harder as one needs to deal
with differentials of order two). We will comment in Remark 9.4 below how to handle the second
case. For the rest of the section, without loss of generality we will assume

|y′1| �m n−1/16 (9.12)

On the other hand, by applying Lemma 9.2 to linear combinations of shifts of ∆k
`q0
ψ we can

show the following:
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Lemma 9.3. For any positive integers j, L, L′ and ` such that [j, j + k`q0 + 4(m− 1)L+ 3L′] ⊂ J ,
we have

L′

n

∣∣∣∣∣y′1(1− en(2L′t1)
)2(

1− en(`q0t1)
)k m∏

r=2

(
1− en(L(t1 − tr))

)2(
1− en(L(t1 + tr))

)2∣∣∣∣∣
�K∗,κ,m

k∑
i=1

4(m−1)∑
a=0

3∑
b=0

‖ψ(j + i`q0 + aL+ bL′)‖R/Z. (9.13)

We defer the proof of Lemma 9.3 for now and conclude the proof of Proposition 9.1.
Recall from (9.5) that J = [n1, n2] ⊂ [n] has length |J | ≥ n/T 6. Consider any ` ≥ 1 such that

k`q0 ≤ |J |/2. From Lemma 2.8 we can choose L � n/T 7 = o(|J |) such that∥∥∥∥L · (tr ± tr′)2πn

∥∥∥∥
R/Z
�m

λ

T 7

for all distinct r, r′ ∈ [m] and all choices of the signs.
Furthermore, because t1 is smooth, we can choose L′ ≥ n/T 8 such that

|1− en(2L′t1)| > λ2 = ω(n−1/4m).

From these choices of `, L and L′, together with (9.12), we have that the left hand side in (9.13) is
at least

�m n−1/16λ2T−16(λ/T 7)4(m−1)|1− en(`q0t1)|k.
On the other hand, from (9.4) and the Cauchy–Schwarz inequality we have

n∑
j=0

‖ψ(j)‖R/Z ≤
√
nT , (9.14)

and it follows that that we can choose j so that the right hand side in Equation (9.13) isOK∗,κ,m(T 1/2n−1/2).
Thus,

|1− en(`q0t1)| ≤ n−1/3k (9.15)

and this holds for any integer ` ≥ 1 such that `kq0 ≤ |J |/2. Applying Claim 2.9, we conclude

‖q0t1/2πn‖R/Z = n−1 logO(1) n.

But since we chose q0 ≤ nκ this contradicts the assumption that t1 is nκ-smooth. This concludes
the proof of Proposition 9.1 and hence of Theorem 3.1. �

Proof of Lemma 9.3. We begin by recording some identities. Recall the definition of ft,`(j) from
(9.10). To lighten notation we will suppress the subscript ` as it is fixed throughout the proof. First
note that

gt(j) := ∂tft(j) =
√
−1

[
j

n
− k`q0

n

(
1− en(`q0t)

)−1]
ft(j). (9.16)

In particular, we have

ft(j) = f−t(j) , gt(j) = −g−t(j)
and from (9.11) we can express

1

2
(∆k

`q0ψ)(j) =
m∑
r=1

yrftr(j) + yrf−tr(j) + y′rgtr(j)− y′rg−tr(j). (9.17)
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As in the proof of Lemma 3.6 we will eliminate terms in the above sum by repeated application of
the twisted second-order differencing operators defined in (3.6). For a positive integer L and t0 ∈ R
we have

Dt0ft(j) =

2∑
a=0

(
2

a

)
(−1)aen(−aLt0)ft(j + aL)

= ft(j)
2∑

a=0

(
2

a

)
(−1)aen(aL(t− t0))

=
[
1− en(L(t− t0))

]2
ft(j).

Note that the sequences ft(j) from that proof differ from the present definition by a factor (1 −
en(`q0t))

k. This is a key point: whereas there our aim was to lower bound
∑

j |ψ(j)|2, here we

have the more difficult task of lower bounding
∑

j ‖ψ(j)‖2R/Z (which we are doing by contradiction,

starting from the assumption (9.4)). We are now in a similar position as in the proof of Lemma 3.6
thanks to Lemma 9.2 and the application of the differencing operators ∆k

`q0
, which is responsible

for the extra factor (1− en(`q0t))
k.

Differentiating the above expression for Dt0ft(j) yields

Dt0gt(j) =
[
1− en(L(t− t0))

]2
∂tft(j) +

√
−1

L

n
ft(j)

2∑
a=0

(
2

a

)
(−1)aa · en(aL(t− t0))

=
[
1− en(L(t− t0))

]2
∂tft(j)− 2

√
−1

L

n

[
1− en(L(t− t0))

]
en(L(t− t0))ft(j)

=
[
1− en(L(t− t0))

]2[
gt(j) + βL(t− t0)ft(j)

]
(9.18)

with βL(s) := −2
√
−1Lnen(Ls)/[1− en(Ls)], as in (3.8). In particular,

Dt0ft0(j) = Dt0gt0(j) = 0. (9.19)

Now for general t ∈ R, two applications with t0 and −t0 yield

Dt0 ◦D−t0ft(j) =
[
1− en(L(t− t0))

]2[
1− en(L(t+ t0))

]2
ft(j) (9.20)

and

Dt0 ◦D−t0gt(j) = ∂t

[[
1− en(L(t− t0))

]2[
1− en(L(t+ t0))

]2
ft(j)

]
. (9.21)

For compactness, we write

δL(s) := 1− en(Ls)

for the remainder of the proof. Applying the above identities with t0 = tm and t running over tr,
r ∈ [m− 1], we obtain

1

2

(
Dtm ◦D−tm ◦∆k

`q0 ψ
)

(j)

=
m−1∑
r=1

(
yr + y′r∂tr

) [
δL(tr − tm)2δL(tr + tm)2ftr(j) + δL(−tr − tm)2δL(−tr + tm)2f−tr(j)

]
.
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Iteratively applying Dtr ◦D−tr for r = m− 1,m− 2, . . . , 2, we get

1

2

(
Dt2 ◦D−t2 ◦ · · · ◦Dtm ◦D−tm ◦∆k

`q0 ψ
)

(j)

= y1ft1(j)

m∏
r=2

δL(t1 − tr)2δL(t1 + tr)
2 + y1f−t1(j)

m∏
r=2

δL(−t1 − tr)2δL(−t1 + tr)
2

+ y′1∂t

[
ft(j)

m∏
r=2

δL(t− tr)2δL(t+ tr)
2

]
t=t1

+ y′1∂t

[
f−t(j)

m∏
r=2

δL(−t− tr)2δL(−t+ tr)
2

]
t=t1

,

and we have passed from a sum of 4m terms (see (9.17)) to a sum of 4. Now we will reduce from
four terms to one. Let L′ be a positive integer and define D′t0 as in (3.6) with L′ in place of L. For
any univariate function G we have

D′t0ft0(j)G(t0) = G(t0)D
′
t0ft0(j) = 0 ,

D′t0∂t
[
ft(j)G(t)

]
t=t0

= G(t0)D
′
t0gt0(j) +G′(t0)D

′
t0ft0(j) = 0

(using (9.19)). Set

G(t) :=
m∏
r=2

δL(t− tr)2δL(t+ tr)
2

for which we have G(t) = G(−t). Application of D′−t1 to the previous expression for 1
2(Dt2 ◦D−t2 ◦

· · · ◦Dtm ◦D−tm ◦∆k
`q0
ψ)(j) eliminates the second and fourth terms on the right hand side, leaving

1

2

(
D′−t1 ◦Dt2 ◦D−t2 ◦ · · · ◦Dtm ◦D−tm ◦∆k

`q0 ψ
)

(j)

= y1ft1(j)δL′(2t1)
2G(t1) + y′1D

′
−t1∂t

[
ft(j)G(t)

]
t=t1

= y1ft1(j)δL′(2t1)
2G(t1) + y′1gt1(j)δL′(2t1)

2G(t1) + y′1ft1(j)δL′(2t1)
2G′(t1)

= ft1(j)

[
y1δL′(2t1)

2G(t1) + y′1
√
−1

j

n
δL′(2t1)

2G(t1)

− y′1
√
−1

k`q0
n

(
1− en(`q0t1)

)−1
δL′(2t1)

2G(t1) + y′1δL′(2t1)
2G′(t1)

]
,

where in the final line we substituted (9.16). Now since ft1(j+L′) = en(L′t1)ft1(j), we can eliminate
all but the second term inside the brackets by multiplying both sides by en(L′t1) and subtracting
the result from the equation with j replaced with j + L′. We thus obtain

1

2

(
D′−t1 ◦Dt2 ◦D−t2 ◦ · · · ◦Dtm ◦D−tm ◦∆k

`q0 ψ
)

(j + L′)

− en(L′t1)×
1

2

(
D′−t1 ◦Dt2 ◦D−t2 ◦ · · · ◦Dtm ◦D−tm ◦∆k

`q0 ψ
)

(j)

= y′1
√
−1

L′

n
δL′(2t1)

2G(t1)ft1(j).

Recalling our definitions of δL′(2t1), G(t1), and ft1(j), the claimed bound now follows from taking
the modulus of both sides, applying the triangle inequality to the left hand side, and applying
Lemma 9.2 applied at various shifts of ψ. �

Remark 9.4. For the case that |y′i| ≤ n−1/16 and |y1| �m n−1/8 in place of (9.12), we can show the
following simpler analogue of Lemma 9.3 (see also [DNN19, Lemma 10.5] for a bivariate variant).

Lemma 9.5. For any positive integers j, L, L′ and ` such that [j, j + k`q0 + 4(m− 1)L+ 3L′] ⊂ J ,
we have
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L′

n

∣∣∣∣∣y1(1− en(`q0t1)
)k m∏

r=2

(
1− en(L(t1 − tr))

)2(
1− en(L(t1 + tr))

)2∣∣∣∣∣
�K∗,κ,m

k∑
i=1

4(m−1)∑
a=0

3∑
b=0

‖ψ(j + i`q0 + aL+ bL′)‖R/Z +O(2kn−1/16). (9.22)

Here the additional bound 2kn−1/16 on the RHS is caused by applying triangle inequalities basing
on (9.9) (where we use |y′i| � n−1/16 for all i to bound all the terms involving ∂t by O(n−1/6) and
move to the right hand side during the differential process). The proof of Lemma 9.5 can be carried
out exactly the same way we proved Lemma 9.3, and in fact it is simpler because we don’t have
to take care any of the terms involving ∂t because we started with the variant of (9.9) without the

∂t term. From Lemma 9.5, by using the assumption that |y1| ≥ n−1/8 we can deduce (9.15), and
hence conclude Proposition 9.1 the same way.

Before concluding this section, as our approach to prove Proposition 9.1 starts with (9.5), by
passing to subintervals of J when needed (where we note that at least one of such subintervals still
has length Ω(n/T 6)), we obtain the following analogue of Theorem of Theorem 3.1 (where we recall
φj(x) from (9.1)).

Theorem 9.6 (Decay of the truncated characteristic function). Let t = (t1, . . . , tm) ∈ Rm be nκ-

smooth and λ-spread for some κ ∈ (0, 1) and ω(n−1/8m) ≤ λ < 1. Then for any index set I ⊂ [n]

with |I| = O(1), and for any fixed K∗ <∞ and any v ∈ R4m with n−1/8 ≤ ‖v‖2 ≤ nK∗ the following
holds for sufficiently large n ∏

j /∈I

|φj(x)| ≤ exp(− log2 n).

10. Complex coefficients and extensions

10.1. Theorem 1.2 when ξ is complex-valued. In the case that the random coefficients are
complex-valued, our polynomial can be written as

Pn(x) =
n∑

k=−n
(ξk +

√
−1ξ′k)(cos(kx) +

√
−1 sin(kx))

= ξ0 +
√
−1ξ′0 +

n∑
k=1

(ξk + ξ−k) cos(kx)− (ξ′k − ξ′−k) sin(kx)

+
√
−1

n∑
k=1

(ξ′k + ξ′−k) cos(kx) + (ξk − ξ−k) sin(kx)

where ξk, ξ
′
k are iid copies ξ. By limiting to only the imaginary part, the corresponding random

walk of interest is

Tn(t) :=
n∑
j=1

ξ
(1)
j uj + ξ

(2)
j vj

where ξ
(1)
j , ξ

(2)
j are independent sub-Gaussian of mean zero and variance one with the property that

ξ
(1)
j − ξ

′(1)
j , ξ

(2)
j − ξ

′(2)
j have the same distribution (here ξ

′(1)
j and ξ

′(2)
j are independent copies of ξ

(1)
j
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and ξ
(2)
j respectively), and where for a fixed tuple t = (t1, . . . , tm) ∈ Rm and j ∈ Z we denote the

vectors (see also (3.1))

uj = uj(t) :=
(
aj , (j/n)bj

)
, vj = vj(t) :=

(
bj , −(j/n)aj

)
. (10.1)

Because this random walk is only on R2m with the steps uj ,vj compensating each other, we can
establish all of our previous results under the following weakly spreading condition.

Definition 10.1. For m ≥ 2 and λ > 0, we say t = (t1, . . . , tm) ∈ Rm is weakly λ-spread if∥∥∥ tr − tr′
2πn

∥∥∥
R/Z
≥ λ

n
∀ 1 ≤ r < r′ ≤ m.

Under this condition we have the following analog of Theorem 3.1.

Theorem 10.2 (Decay of the characteristic function). Let t = (t1, . . . , tm) ∈ Rm be nκ-smooth and

weakly λ-spread for some κ ∈ (0, 1) and ω(n−1/8m) ≤ λ < 1. Then for any fixed K∗ < ∞ and any

x ∈ R2m with n−1/8 ≤ ‖x‖2 ≤ nK∗,

|Ee(〈Tn(t),x〉)| ≤ exp(− log2 n)

for all n sufficiently large depending on K∗,m, κ, and the sub-Gaussian constants.

We next sketch the main idea to prove this result. Fix a vector n−1/8 ≤ ‖(y,y′)‖2 ≤ nK∗ ,
recalling (9.3), we further denote

ψ′(j) := ψ′(j; t) = 〈bj ,y〉 − (j/n)〈aj ,y′〉 =
m∑
r=1

yr sin(jtr/n) + y′r(j/n) cos(jtr/n) . (10.2)

The main proposition is the following analog of Proposition 9.1.

Proposition 10.3. Let t = (t1, . . . , tr) ∈ Rm be nκ-smooth and assume that t is weakly λ-spread

for some κ ∈ (0, 1) and ω(n−1/8m) ≤ λ < 1. Then

n∑
j=0

‖ψ(j)‖2R/Z +
n∑
j=0

‖ψ′(j)‖2R/Z > log4 n.

We next sketch the proof, omitting most details. We follow the proof of Proposition 9.1 with
some simplifications, that instead of focusing on (∆k

`q0
ψ)(j) as the real part of

∑m
r=1 yrfj,`(tr) +

y′r∂trftr,`(j) in (9.11) we can study the sum directly. This would allow use to shorten the differential
process significantly, namely in the proof of Lemma 9.3 we will only need to consider D′t1 ◦ Dt2 ◦
· · · ◦ Dtm (without negative perturbations), leading to a simpler multiplicative factor

∏m
r=2

(
1 −

en(L(t1 − tr))
)2

(without (1− en(L(t1 + tr)))
2), hence justifying the weakly spreadness condition.

Finally, one can similarly prove Lemma 3.6, Theorem 3.2, and Theorem 3.4 for the random walk
Tn(t) above under the weakly spreadness condition on t. Using these results, we can now conclude
the proof of Proposition 2.5 for the complex-valued case as in Section 5 where we can now allow
the xαi to vary entirely over [−π, π].

10.2. Other extensions. As noted in Remark 1.3, with minor modifications our arguments extend
Theorem 1.2 to Pn of the general form Pn(x) = |Jn|−1/2

∑
j∈Jn ξje(jx) for any sequence of finite

intervals Jn ⊂ Z with |Jn| → ∞. By multiplying by the phase e(−n0x), which does not change the
minimum modulus, where J = [n0, n1], one sees it suffices to consider the form

Pn(x) =
1√
n+ 1

n∑
j=0

ξje(jx). (10.3)
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Our arguments also extend to another well-studied class of trigonometric polynomials, of the form

Pn(x) =
1√
n+ a

[√
aξ0 +

n∑
j=1

ξj cos(jx) + ηj sin(jx)

]
, (10.4)

where the variables ξj , ηj are iid copies of a random variable ξ, and a > 0 is a fixed parameter. We
note that for this model it is natural to focus only on the complex ξ case as otherwise Pn is likely
to have roots.

Theorem 10.4. Theorem 1.2 extends to hold for Pn of the forms (10.3) and (10.4).

For the model (10.4), by combining with Theorem 1.1 we obtain the following:

Corollary 10.5. The limit (1.7) holds also for the model (10.4) with ξ a complex variable as in
Theorem 1.2, and a = 1/2.

Proof. From Theorem 10.4 it suffices to verify that (1.7) holds under PNR(0,1). Note that under this
measure, ξj , j ≥ 0 and ηj , j ≥ 1 are iid standard complex Gaussians. Set ζ0 = ξ0 and for 1 ≤ j ≤ n
set ζj := 1√

2
(ξj + ηj), ζ−j := 1√

2
(ξj − ηj). From the rotational invariance of the complex Gaussian

law it follows that ζj ,−n ≤ j ≤ n are iid standard complex Gaussians. Then one verifies that with
the change of variables, (10.4) becomes

Pn(x) =
1√

2n+ 2a

n∑
j=−n

ζje(jx).

The claim now follows from the complex Gaussian case of Theorem 1.1 and the choice a = 1/2. �

We comment on the minor modifications of the proof of Theorem 1.2 that are needed to obtain
Theorem 10.4. The probabilistic Lemmas 2.1 and 2.4 follow from straightforward modifications.
Lemma 2.2 is deterministic and does not depend on the specific form of Pn after conditioning on
the good event. The remainder of the argument only depends on the specific model through the
the matrix W in the definition (3.2) of the random walks Sn(t), and the only proofs that need
modification are those of Lemma 3.6 and Theorem 3.1. For the model (10.4), we may condition on
ξ0 and ηj , j ≥ 1. As the trigonometric series is now real, we only need to consider a 2m-dimensional
walk of the form

n∑
j=1

ξjvj

with notation as in (10.1). The n×m matrix V with rows vj is a submatrix of W[−n,n] as defined in
(3.1) one checks that the argument for Lemma 3.6 yields the same bound on the smallest singular
value of V . Moreover, the proof of Theorem 3.1 began by reduction of the problem to the submatrix
V (see (9.3)), so the result also holds in this case.

Appendix A. Separation of near-minimizers

In this appendix we prove Lemma 2.2, restated below, along similar lines to the proof of [YZ,
Lemma 2.11].

Lemma A.1. On the event G2(K0/2) we have

(i) If Aα and Aα+1 hold, then

Yα ∈ [
π

N
− π

N logK0/4 n
,
π

N
].

(ii) Furthermore, Aα and Aα′ cannot hold simultaneously as long as

2 ≤ |α′ − α| ≤ n

log3K0 n
.
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Proof. We first show (i). Assume that Aα holds and Yα ∈ [0, πN −
π

N logK0/4 n
). Then

|Fα(xα + π/N)| = |Zα/n+ (π/N − Yα)P ′(xα)| ≥ |(π/N − Yα)P ′(xα)| − |Zα|/n

� 1

N logK0/4 n
× n

logK0/2 n
− log n

n

� logK0/4 n

n
− log n

n
� logK0/4 n

n
.

Now for x ∈ Iα+1 and under G2(K0/2)

|Fα+1(x)− Fα(x)| ≤ |Fα+1(x)− P (x)|+ |Fα(x)− P (x)|
� N−2 sup

x∈[−π,π]
|P ′′(x)|

� log3K0 n

n2
.

So if x ∈ Iα+1 then

|Fα+1(x)| ≥ |Fα(x)| − |Fα+1(x)− Fα(x)|
≥ |Fα(xα + π/N)| − |Fα+1(x)− Fα(x)|

� logK0/4 n

n
,

where |Fα(x)| ≥ |Fα(xα + π/N)| because xα + π/N is closer than x to the minimizer xα + Yα. The
above implies that |Zα+1| = n|Fα+1(Yα+1 + xα+1)| > log n and hence that Aα+1 does not hold.

We turn to prove (ii). For x ∈ Iα′ we have

|Fα(x)− Fα′(x)| ≤ |Fα(x)− P (x)|+ |Fα′(x)− P (x)|
� (xα − xα′)2 sup

x∈[−π,π]
|P ′′(nx)|

≤ (xα − xα′)2n2 logK0/2 n.

On the other hand, on Aα, for all x ∈ Iα′

|Fα(x)| ≥ |Fα(xα′ − π/N)| ≥ |Fα(xα′ − π/N)− Fα(Ya)| − |Fα(Ya)|
≥ |(xα′ − π/N − Yα)P ′(xα)| − |Zα|/n

� n|xα′−1 − xα| log−K0/2 n− log n

n

� n|xα′−1 − xα| log−K0/2 n.

Thus for all x ∈ Iα′ ,

|Fα′(x)| ≥ |Fα(x)| − (xα − xα′)2n2 logK0/2 n

� |xα′−1 − xα|n log−K0/2 n− (xα − xα′)2n2 logK0/2 n

� n|xα′−1 − xα|(log−K0/2 n− 4|xα′−1 − xα|n logK0/2 n)

� n|xα′−1 − xα|(log−K0/2 n− 4n−1 log3K0/2 n)

� |xα′−1 − xα|n log−K0/2 n� logK0/2 n

n
,

implying |Zα′ | > log n and hence that Aα′ does not hold. �
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