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Abstract. Condition numbers of random polynomial systems have been widely studied
in the literature under certain coefficient ensembles of invariant type. In this note we
introduce a method that allows us to study these numbers for a broad family of probability
distributions. Our work also extends to certain perturbed systems.

1. Introduction

1.1. Condition number of random matrices. Let f be a system of n linear forms
f1, . . . , fn in n complex variables x = (x1, . . . , xn) ∈ Cn,

fl(x) = a
(l)
1 x1 + · · ·+ a(l)

n xn, 1 ≤ l ≤ n.

The condition number µ(f) of f is defined as

µ(f) :=
σ1(f)

σn(f)
,

where σ1(f) and σn(f) are the largest and smallest singular values of f .

An important problem with many practical applications is to bound the condition number
of a random matrix. As the largest singular value σ1 is well understood, the main problem
is to study the lower bound of the least singular value σn. This problem was first raised by
Goldstine and von Neumann [7] well back in the 1940s, with connection to their investigation
of the complexity of inverting a matrix.

To answer Goldstine and von Neumman’s question, Edelman [6] computed the distribution

of the least singular value of the random matrix fGau where a
(l)
i , 1 ≤ i, l ≤ n, are iid standard

Gaussian. He showed that for all fixed ε > 0

P(σn(fGau) ≤ εn−1/2) =

∫ ε2

0

1 +
√
x

2
√
x
e−(x/2+

√
x) dx+ o(1) = ε− 1

3
ε3 +O(ε4) + o(1).
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Edelman conjectured that this distribution is universal (i.e., it must hold for other distri-

butions of a
(l)
i , such as Bernoulli.) Note that the same asymptotic continues to hold for any

ε > 0 which can go to 0 with n (see also [21, 22])

P(σn(fGau) ≤ εn−1/2) ≤ ε. (1)

Spielman and Teng, in their recent study of smoothed analysis of the simplex method,
conjectured that a slightly adjusted bound also holds in the Bernoulli case [21]

P(σn(fBer ) ≤ ε) ≤ εn1/2 + cn, (2)

where 0 < c < 1 is a constant. The term cn is needed as fBer can be singular with
exponentially small probability.

Edelman’s conjecture has been proved by Tao and Vu in [25]. This work also confirms
Spielman and Teng’s conjecture for the case ε is fairly large (ε ≥ n−δ for some small

constant δ > 0). For ε ≥ n−3/2, Rudelson [13] obtained a strong bound with an extra
(multiplicative) constant factor. In a consequent paper, Rudelson and Vershynin [14] show

Theorem 1.2. There is a constant C > 0 and 0 < c < 1 such that for any ε > 0,

P(σn(fBer ) ≤ εn−1/2) ≤ Cεn1/2 + cn.

This bound is sharp, up to the constant C. It also gives a new proof of Kahn-Komlós-
Szemerédi bound [8] on the singularity probability of a random Bernoulli matrix. All these
results hold in more general setting, namely that it is enough to assume that the common

distribution of the a
(l)
i is subgaussian (see (3)) of zero mean and unit variance.

In practice, one often works with random matrices of the type c + f where c = (c
(l)
i ) is

deterministic and f has iid entries. For instance, in their works on smoothed analysis,
Spielman and Teng used this to model a large data matrix perturbed by random noise.
They proved in [21] (see also Wschebor [26])

Theorem 1.3. Let c = (c
(l)
i ) be an arbitrary n by n matrix. Then for any ε > 0,

P(σn(c + fGau) ≤ εn−1/2) = O(ε).

One may ask whether there is an analogue of Theorem 1.2 for this model. The answer is,
somewhat surprisingly, negative. However, Tao and Vu managed to prove

Theorem 1.4. Assume that ‖c‖2 ≤ nγ for some γ > 0. Then for any A > 0, there exists
B = B(A, γ) such that

P(σn(c + fBer ) ≤ n−B) ≤ n−A.



ON A CONDITION NUMBER OF GENERAL RANDOM POLYNOMIAL SYSTEMS 3

For more discussion on this model, we refer to [24]. For applications of Theorem 1.4 in
Random Matrix Theory (such as the establishment of the Circular Law) and many related
results, we refer to [11] and the references therein.

1.5. Condition numbers for the study of Newton’s method. Let d = (d1, . . . , dn−1)
be a degree sequence, and f = {f1, . . . , fn−1} be a collection of n− 1 homogeneous polyno-
mials in n variables of degree d1, . . . , dn−1 respectively,

fl(x1, . . . , xn) =
∑

α=(α1,...,αn)
α1+···+αn=dl

(
dl
α

)1/2

a(l)
α xα,

where xα = xα1
1 · · ·xαn

n .

In their seminal works [16, 17, 18, 19, 20], Shub and Smale initiated a systematic study of
Newton’s method for finding common roots of the fi over the unit vectors in Cn.

Define the Weyl-norm of the system f by ‖f‖W :=
√
‖f1‖2W + · · ·+ ‖fn−1‖2W , where ‖fl‖2W :=∑

α |a
(l)
α |2. For each complex unit vector x = (x1, . . . , xn) in Sn−1, we measure the singu-

larity of the system at x by

µ
(1)
complex(f ,x) = ‖f‖W × ‖(Dx|Tx)−1∆‖2,

where Dx|Tx is the Jacobian of the system f restricted to the tangent space at x, and ∆ is
the diagonal matrix of entries (

√
dl, 1 ≤ l ≤ n− 1).

We denote the condition number of the system by

µ
(1)
complex(f) = sup

x∈Sn−1,f1(x)=···=fn−1(x)=0

µ
(1)
complex(f ,x).

To analyze the effectiveness of Newton’s method for finding commons roots of the fi, Shub
and Smale show that, under an invariant probability measure, the condition number of f is
small with high probability.

Theorem 1.6. [17, 9] Assume that the coefficients a
(l)
α are iid standard complex-Gaussian

random variables, then

P(µ
(1)
complex(fGau) > 1/ε) = O(n4N2Dε4).

Here D :=
∏
di is the Bezout number and N :=

∑n−1
i=1

(
n−1+di

di

)
.
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Beside finding common complex roots, another important problem is to find common real
roots. In a recent series [3, 4, 5], Cucker, Krick, Malajovich and Wschebor have studied
this problem in detail. For convenience, Cucker et. al. introduced the following condition
number.

For any x ∈ Rn, we measure the singularity of the system at x by

µ
(2)
real(f ,x) = min

{√
nmax

i
‖fi‖W × ‖(Dx|Tx)−1∆‖2,

maxi ‖fi‖W
maxi |fi(x)|

}
.

The condition number of the system is then defined as

µ
(2)
real(f) := sup

x∈Rn,‖x‖2=1
µ

(2)
real(f ,x).

Notice that the definition of µ(2) is taken over all ‖x‖2 = 1, and thus (with restricted to

Rn) is more general than µ(1). We recite here a key estimate by Cucker, Krick, Malajovich

and Wschebor with respect to µ(2).

Theorem 1.7. [5] Assume that a
(i)
α are iid standard real Gaussian random variables, then

P(µ
(2)
real(f

Gau) > 1/ε) = O
(

max
i
d2
i

√
D
√
Nn5/2√nε

√
log

1

ε
√
n

)
,

provided that ε−1 = Ω(maxi d
2
in

7/2N1/2).

Roughly speaking (see for instance [3] or [2, Section 19]), Cucker, Krick, Malajovich and
Wschebor showed that there exists an iterative algorithm that returns the number of real

zeros of f and their approximations and performs O(log(nDµ
(2)
real(f))) iterations with a total

cost of

O
(

[C(n+ 1)D2(µ
(2)
real)

2]2(n+1)N log(nDµ
(2)
real(f)

)
.

Henceforth, the probabilistic analysis of µ
(2)
real, Theorem 1.7, plays a key role in their study.

The proofs of Theorem 1.6 and Theorem 1.7, on the other hand, heavily rely on the invari-
ance property of (real and complex) Gaussian distributions, and are extremely involved.

Motivated by the results discussed in Subsection 1.1, it is natural and important to study
the condition numbers µ1 and µ2 for polynomial systems under more general distributions
such as Bernoulli. This problem is also closely related to a question raised by P. Burgisser
and F. Cucker in [2, Problem 7].

Roughly speaking, there are two main technical obstacles of our task: first is the absence
of invariance property of distributions and second is the lacking of linear algebra tools
(compared to the condition number problem of matrices discussed in Subsection 1.1). As
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a result, to our best knowledge, even the following simple and natural question is not even
known.

Question 1.8. Assume that a
(l)
α are iid Bernoulli random variables (taking value ±1 with

probability 1/2). Is it true that with probability tending to 1 (as n → ∞), there does not
exist non-zero vector x ∈ Rn (or x ∈ Cn) with f(x) = 0 and rank(Dx|Tx) < n− 1?

1.9. Our result. To simplify our work, we will be focusing only on the Kostlan-Shub-Smale
model where n is sufficiently large and di = d ≥ 2 for all i. (Note that the case di = 1
corresponds to rectangular matrices, the reader is invited to consult for instance [15] for
related results.) For this uniform system, Theorem 1.6 and Theorem 1.7 read as follows.

Theorem 1.10 (Non-degeneration of uniform homogenous polynomial systems). Assume
that cα are iid standard complex Gaussian, then

P(µ(1)(fGau) > 1/ε) = O
(

(n+ d)O(d)(dn/4ε)4
)
.

Moereover, if cα are iid standard real Gaussian random variables, then

P(µ
(2)
real(f

Gau) > 1/ε) = O

(
nO(d)dn/2ε

√
log

1

ε

)
.

Notice that these bounds are effective only when ε is exponentially small, namely ε� d−n/4

in the complex case and ε� d−n/2 in the real case (these are the right scaling as the variance
of a typical coefficient is d). A closer look at Theorem 1.10 reveals the following.

Heuristic 1.11. With high probability, for any x ∈ Sn−1, (‖(Dx|Tx)−1‖2)−1 and ‖fGau(x)‖2
cannot be too small at the same time. In other words, such a random system is not “close”
to having “double roots” with high probability.

Although our method can be extended to the complex case, we will be mainly focusing on
the real roots to simplify the presentation. Furthermore, as µ(2) is more general than µ(1),
we will be limited ourself to a quantity similar to µ(2) only.

Let d ≥ 2 be an integer. Let C = {c(l)
i1...id

, 0 ≤ i1, . . . , id ≤ n, 1 ≤ l ≤ n−1} be a deterministic

system. We consider a random array A = {a(l)
i1...id

, 0 ≤ i1, . . . , id ≤ n, 1 ≤ l ≤ n− 1}, where

a
(l)
i1...id

are iid copies of real random variable ξ with mean zero, variance one, and there exists
T0 > 0 such that

∀t > 0 P(|ξ| ≥ t) = O(exp(−t2/T0)). (3)

Such subgaussian distributions clearly cover Gausssian and Bernoulli random variables as
special cases.
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For x = (x1, . . . , xn) ∈ Sn−1 of Rn, we consider a system f = (f1, . . . , fn−1) of n−1 d-linear
forms

fl(x) :=
∑

1≤i1,...,id≤n
c

(l)
i1...id

xi1 . . . xid +
∑

1≤i1,...,id≤n
a

(l)
i1...id

xi1 . . . xid

:= fl,det(x) + fl,rand(x).

In particular, if ξ is the standard Gaussian and the deterministic system vanishes, then for
any ordered d-tuples α = {i1 ≤ · · · ≤ id}, the coefficient of xα = xi1 . . . xid is a sum of

(
d
α

)
iid copies of ξ, which in turn can be written as

√(
d
α

)
ξα with a standard Gaussian variable

ξα. This is exactly the model considered by Cucker et. al. as above. Recall that for x ∈ Rn,
the Jacobian matrix Dx of f at x is given by

Dx =

(
∂fl(x)

∂xj

)
1≤l≤n−1,1≤j≤n

.

For 1 ≤ l ≤ n− 1, the gradient of fl at x is

D
(1)
l,x =

(
∂fl
∂x1

, . . . ,
∂fl
∂xn

)
while the Hessian is

D
(2)
l,x =

(
∂2fl
∂xi∂xj

)
1≤i,j≤n

.

In general for 0 ≤ k ≤ d, D
(k)
l,x , the k-th order derivative, is the k-multilinear form

D
(k)
l,x =

(
∂kfl

∂xi1 . . . ∂xik

)
1≤i1,...,ik≤n

.

Define similarly D
(k)
l,x,det, D

(k)
l,x,rand for the deterministic and random systems respectively.

To control the smallness of (‖(Dx|Tx)−1‖2)−1 and ‖f(x)‖2 simultaneously, motivated by [5,
p.220], we introduce a function L(x,y) for x ⊥ y as follows

L(x,y) =

√
‖f(x)‖2
(d5n)1/2

+
‖Dx(y)‖22

d5n
.

Let L be the minimum value that L(x,y) can take,
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L := min
x,y∈Sn−1,x⊥y

L(x,y).

Our first main goal is to show that L cannot be too small with high probability.

Theorem 1.12 (Main theorem, homogeneous system). Assume that all the coefficients

a
(l)
i1...id

are iid copies of a random variable ξ satisfying (3). Then there exist positive constants
K0 ≥ 1 and c0 depending only on ξ with 0 < c0 < 1 such that

P(L ≤ ε) ≤ Kn
0 d

5n/2ε+ cn0

for all ε > 0 and all 2 ≤ d ≤ nε0, with ε0 a sufficiently small constant again depending only
on ξ.

We remark that the “error term” cn0 in Theorem 1.12 is not avoidable in general.

Example 1.13. With d = 2 and P(ξ = ±1) = 1/2, it is easy to check that P(f(x0 =
0 ∧Dx0 |Tx0 is singular)) = Ω((3/8)−2n), where x0 = (1, 1, 0, . . . , 0).

As a consequence of Theorem 1.12, one confirms Question 1.8 and Heuristic 1.11 for a wide
range of coefficient distributions.

Corollary 1.14. With the same assumption as in Theorem 1.16, we have

• (Non-existence of “double roots” for random discrete systems)

P
(
∃x,y ∈ Sn−1,x ⊥ y ∧ f(x) = 0 ∧Dx(y) = 0

)
≤ cn0 , (4)

• (Regularity at roots and non-vanishing at critical points )

max
{

P
(
∃x,y ∈ Sn−1,x ⊥ y, f(x) = 0 ∧ ‖Dx(y)‖2 ≤ d5/4√nε

)
,

P
(
∃x,y ∈ Sn−1,x ⊥ y, Dx(y) = 0 ∧ ‖f(x)‖2 ≤ d5/4n1/4ε2

)}
≤ Kn

0 d
5n/2ε+ cn0 , (5)

• (Simultaneous vanishing)

P
(
∃x,y ∈ Sn−1,x ⊥ y, ‖f(x)‖2 ≤ (d5n)1/4ε ∧ ‖f(y)‖2 ≤ (d5n)1/4ε

)
≤ Kn

0 d
5n/2ε1/2 + cn0 , (6)

where in the last estimate we replaced ε2 by ε (together with some very generous estimates
on ‖Dx(y)‖2).

As noted by Example 1.13, (4) is optimal (with respect to exponential decay). Moreover,
the RHS of (6) is comparable to the result of Cucker et. al. from Theorem 1.10 in the
regime that d is sufficiently large and d ≤ nε0 . Our proof shows that the error term cn0 from
Theorem 1.16 is felt at ”sparse” vectors (such as x0 from Example 1.13).

More importantly, our method extends to perturbed systems under appropriate assumptions
upon the deterministic system C.
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Definition 1.15. We say that the deterministic system C is γ-controlled if

max
(

sup
x∈Sn−1

‖fdet(x)‖22, sup
x,y1∈Sn−1

‖D(1)
x,det(y1)‖22, . . . ,

sup
x,y1,...,yd∈Sn−1

‖D(d)
x,det(y1, . . . ,yd)‖22

)
≤ nγ , (7)

where ‖D(1)
x,det(y1)‖2 =

√∑
1≤l≤n−1(D

(1)
l,x,dety

T
1 )2 and so on.

Theorem 1.16 (Main theorem, perturbed systems). Assume that C is a deterministic

system satisfying (7) with γ ≤ 19/18 and that all the coefficients a
(l)
i1...id

are iid copies of a

random variable ξ satisfying (3). Then there exist positive constants K0 and c0 depending
only on ξ and γ with 0 < c0 < 1 such that

P(L ≤ ε) ≤ Kn
0 (d5/2 + nγ/2−1/2)nε+ cn0

for all 2 ≤ d ≤ nε0 with ε0 a sufficiently small absolute constant depending on ξ and γ.

We have not tried to optimize the constant 19/18 on γ, but our method does not seem to
extend to the whole γ = O(1) regime. On the other hand, the result remains valid if we
assume d sufficiently large depending on γ (see Remark 3.6).

We believe that our result will be useful for the study of universality problems for roots
and critical points of general random polynomial systems. The reader is invited to consult
for instance [12, Lemma 6] for a recent application of this type for univariate random
polynomials.

The rest of the note is organized as follows. The main ideas to prove Theorem 1.16 is
introduced in Section 2. Sections 3, 4 and 5 will be devoted to prove the main ingredients
subsequently.

2. Proof of Theorem 1.16: the ideas

Our treatment will be for general γ = O(1). The upper bound of γ will be required at the

end of Section 3. As there is nothing to prove if ε > d−5n/2, we will assume ε ≤ d−5n/2. We
will verify Theorem 1.16 for

n−(γ/2−17/36)n ≤ ε ≤ d−5n/2. (8)

The result for ε ≤ n−(γ/2−17/36)n easily follows as Kn
0 (d5/2 + nγ/2−1/2)nn−(γ/2−17/36)n =

o(cn0 ), provided that ε0 is sufficiently small and n is sufficiently large.

2.1. Growth of function. First of all, we will invoke the following bound.

Theorem 2.2. Assume that ξ has zero mean, unit variance, and satisfies (3). Then there
exists an absolute positive constant C0 independent of d such that the following holds with
probability at least 1− exp(−dn/2)
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max
(

sup
x∈Sn−1

‖frand(x)‖22, sup
x,y1∈Sn−1

‖D(1)
x,rand(y1)‖22, sup

x,y1,y2∈Sn−1

‖D(2)
x,rand(y1,y2)‖22

)
≤ C0d

5n,

(9)

and

max
(

sup
x,y1,y2,y3∈Sn−1

‖D(3)
x,rand(y1,y2,y3)‖22, . . . , sup

x,y1,...,yd∈Sn−1

‖D(d)
x,rand(y1, . . . ,yd)‖22

)
≤ nω(d).

(10)

Notice that (10) is rather straightforward because d ≤ nε0 , and without affecting the prob-

ability much, one can assume that all of the coefficients a
(l)
i1...id

are bounded by nO(1). The

proof of the less trivial estimate, (9), will be presented in Section 4.

Together with condition (7) of ci1...id and by the triangle inequality, we obtain a similar
bound for the perturbed system f = fdet + frand.

Theorem 2.3. With probability at least 1− exp(−dn/2), the following holds

max
(

sup
x∈Sn−1

‖f(x)‖22, sup
x,y1∈Sn−1

‖D(1)
x (y1)‖22, sup

x,y1,y2∈Sn−1

‖D(2)
x (y1,y2)‖22

)
≤ C0d

5n+ nγ

(11)

and

max
(

sup
x,y1,y2,y3∈Sn−1

‖D(3)
x (y1,y2,y3)‖22, . . . , sup

x,y1,...,yd∈Sn−1

‖D(d)
x (y1, . . . ,yd)‖22 ≤ nω(d).

(12)

Next, we translate the assumption of L ≤ ε into slow growth of f .

Claim 2.4 (Growth of function). With probability at least 1 − exp(−dn), the following
holds. Assume that L(x,y) ≤ ε for some x,y ∈ Sn−1 with x ⊥ y, then for any t ∈ R with
|t| ≤ 1 and any z ∈ Rn with ‖z‖2 ≤ 1,

‖f(x + εty + ε2z)‖2 ≤ C ′0(d5/2 + nγ/2−1/2)
√
nε2, (13)

where C ′0 is an absolute constant.

Proof. (of Claim 2.4) We condition on the events considered in Theorem 2.2 and Theorem
2.3. First of all, for each 1 ≤ l ≤ n− 1, by Taylor expansion

fl(x + εty + ε2z) = fl(x) +D
(1)
l,x (εty + ε2z)T +

1

2
(εty + ε2z)D

(2)
l,x (εty + ε2z)T + o(ε2),
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where we used (12) for the remainder, noting that ε ≤ d−5n/2.

By the triangle inequality,

|fl(x + εty + ε2z)| ≤ |fl(x)|+ ε|D(1)
l,xyT |+ ε2|D(1)

l,xzT |+ 1

2
ε2|(ty + εz)D

(2)
l,x (ty + εz)T |+ o(ε2)|

≤ |fl(x)|+ ε|D(1)
l,xyT |+ ε2|D(1)

l,xzT |+ ε2(1 + ε2)|uD(2)
l,xuT |+ o(ε2),

where u := (ty + εz)/
√

2(t2 + ε2) (and hence ‖u‖2 ≤ 1).

By Theorem 2.3,
∑

l |D
(1)
l,xzT |2 and

∑
l |uD

(2)
l,xuT |2 are smaller than 2(C0d

5/2n + nγ). As

such, by Cauchy-Schwarz inequality

∑
l

f2
l (x + εty + ε2z) ≤ 4

∑
l

f2
l (x) + 4ε2

∑
l

(D
(1)
l,xyT )2

+ 4ε4
∑
l

(D
(1)
l,xzT )2 + 4ε4

∑
l

(uD
(2)
l,xuT )2 + o(ε4),

≤ 4d5nε4 + 4d5nε4 + 8(C0d
5n+ nγ)ε4 + 8(C0d

5n+ nγ)ε4 + o(ε4),

where we used the assumption that

∑
l

|fl(x)|2 = ‖f(x)‖22 ≤ d5nL4 ≤ d5nε4

and

∑
l

|D(1)
l,xyT |2 = ‖Dx(y)‖22 ≤ d5nL2 ≤ d5nε2.

Thus
‖f(x + εty + ε2z)‖2 ≤ C ′0(d5/2 + nγ/2−1/2)

√
nε2.

�

Notice that as 〈x,y〉 = 0, the distance from x + εty + ε2z to Sn−1 is at most 2ε2, and so

x + εy + ε2z ∈ Sε2 := Sn−1 +B(0, 2ε2).

With this notation, because the set {x + εty + ε2z, ‖z‖2 ≤ 1, |t| ≤ 1} has volume at least
πn/2

Γ(n/2+1)ε
2(n−1)+1, (13) implies that there existsA ⊂ Sε2 with volume at least πn/2

Γ(n/2+1)ε
2(n−1)+1

such that ‖f(a)‖2 ≤ C ′0(d5/2+nγ/2−1/2)
√
nε2 for all a ∈ A. Thus, in order to prove Theorem

1.16 it suffices to show the following.
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Theorem 2.5. There exist K0, c0 such that the following holds

P
(
∃A ⊂ Sε2 : µ(A) ≥ πn/2

Γ(n/2 + 1)
ε2(n−1)+1 ∧ ‖f(a)‖2 ≤ C ′0(d5/2 + nγ/2−1/2)

√
nε2 ∀a ∈ A

)
≤ Kn

0 (d5/2 + nγ/2−1/2)nε+ cn0 .

2.6. Hypothetical assumption. For x ∈ Sε2 , let Ex be the event that ‖f(x)‖2 ≤ C ′0(d5/2+

nγ/2−1/2)
√
nε2. Assume that the following holds for all x ∈ Sε2

P(Ex) = P
(
‖f(x)‖2 ≤ C ′0(d5/2 + nγ/2−1/2)

√
nε2
)
≤ C ′′0

n
(d5/2 + nγ/2−1/2)nε2(n−1), (14)

for some absolute constant C ′′0 . Then as

Vol(Sε2) =
πn/2

Γ(n/2 + 1)
((1 + 2ε2)n − (1− 2ε2)n) = O(

nπn/2

Γ(n/2 + 1)
ε2),

one would have

∫
x∈Sε2

P(Ex)dµ(x) = O
( nπn/2

Γ(n/2 + 1)
C ′′0

n
(d5/2 + nγ/2−1/2)nε2n

)
.

By using Markov’s bound and Fubini, one thus infers that

P
(
µ{x ∈ Sε2 : Ex} ≥

πn

Γ(n+ 1)
ε2(n−1)+1

)
≤ nC ′′0

n
(d5/2 + nγ/2−1/2)nε2n/ε2(n−1)+1

= nC ′′0
n
(d5/2 + nγ/2−1/2)nε.

One would then be done with proving Theorem 2.5 by setting K0 = 2C ′′0 .

However, the assumption (14) is not always true. Our next goal is to characterize those x

with P(Ex) > C ′′0
n(d5/2 + nγ/2−1/2)nε2(n−1). For short, set

Md := C ′0(d5/2 + nγ/2−1/2). (15)

Recall that Ex is the event ‖f(x)‖2 ≤ C ′0(d5/2 +nγ/2−1/2)
√
nε2 = Md

√
nε2. This is exactly

a concentration event in a small ball. Fortunately, the latter has been studied extensively
in the context of random matrix. In what follows we will introduce some key lemmas, our
approach follows [14].
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2.7. Diophantine Structure. Let y1, . . . , ym be real numbers. Rudelson and Vershynin
[14] defined the essential least common denominator (LCD) of y = (y1, . . . , ym) as follows.
Fix parameters α and γ0, where γ0 ∈ (0, 1), and define

LCDα,γ0(y) := inf
{
D > 0 : dist(Dy,Zm) < min(γ0‖Dy‖2, α)

}
.

Here dist(A,Zm) := infa∈A,z∈Zm ‖a−z‖2. One typically assumes γ0 to be a small constant.
The inequality dist(Dy,Zm) < α then yields that most coordinates of θa are within a small
distance from non-zero integers.

Theorem 2.8. [14][15, Theorem 3.3] Consider a sequence y = (y1, . . . , ym) of real numbers
which satisfies

∑m
i=1 y

2
i ≥ 1. Assume that ai are iid copies of ξ satisfying (3). Then, for

every α > 0 and γ0 ∈ (0, 1), and for

ε ≥ 1

LCDα,γ0(y)
,

we have

sup
y∈C

Pa1,...,am

(
|
∑

1≤i≤m
aiyi − y| ≤ ε

)
≤ C1(

ε

γ0
+ e−2α2

),

where C1 is an absolute constant.

In application we will set m = nd, while yx = (xi1 . . . xid)1≤i1,...,id≤n and a
(l)
i1...id

will play
the role of y and of the ai’s respectively. As x ∈ Sε2 , one has

‖yx‖22 = ‖x‖22 ≥ (1− 2ε2)2 = 1−O(ε2).

We will choose γ0 = 1/2 and

α :=

{
n7d/16−1/4 if 2 ≤ d = o(log n/ log logn),

nd/4 otherwise.
(16)

Observe from Theorem 2.8 that if (LCDα,γ0(yx))−1 ≤Mdε
2 (with Md from (15)) then

Pa1,...,am

(
|
∑

1≤i≤m
aiyi| ≤Mdε

2
)
≤ C1(2Mdε

2 + e−2α2
) ≤ 4C1Mdε

2,

as one can check from (8) that ε ≥ n−(γ−1/3)n ≥ exp(−n5/4/2) ≥ exp(−α2/2).

Thus

P(|fi(x)| ≤Mdε
2) ≤ 4C1Mdε

2.

In fact, Theorem 2.8 also implies that P(|fi(x)| ≤Mdδ
2) ≤ 4C1Mdδ

2 for any δ ≥ ε. Before
proceeding further, we will need the following tenzorization trick.
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Lemma 2.9. [14, Lemma 2.2] Let K, δ0 be given. Assume that P(|fl(x)| < δ) ≤ Kδ2 for
all δ ≥ δ0. Then

P(‖f(x)‖2 < δ
√
n− 1) ≤ (C0Kδ)

n−1

where C0 is an absolute constant.

For the sake of completeness, we will present a short proof of Lemma 2.9 in Appendix A.

By independence and by Lemma 2.9, we have

P(‖f(x)‖2 ≤Mdn
1/2ε2) = P(

√
f2

1 (x) + · · ·+ f2
n−1(x) ≤Mdn

1/2ε2)

≤ (4C0C1)n−1(Mdε
2)n−1

≤ Kn−1
0 (Mdε

2)n−1,

with K0 := 4C0C1. Thus we have shown the following.

Theorem 2.10. If x ∈ S2
ε and (LCDα,1/2(yx))−1 ≥Mdε

2, then

P(Ex) = P(‖f(x)‖2 ≤Mdε
2n1/2) ≤ Kn−1

0 (M2
d ε

2)n−1.

It remains to focus on x with relatively small LCD(yx),

LCDα,1/2(yx) < (Mdε
2)−1 =: ε′−1. (17)

Thus the upper bound Md
√
nε2 in Claim 2.4 becomes

√
nε′. The proof of Theorem 2.5 is

complete if one can show the following.

Theorem 2.11. There exists an absolute constant c0 ∈ (0, 1) such that

P
(
∃x ∈ Sε2 : LCDα,1/2(yx) ≤ ε′−1 ∧ ‖f(x)‖2 ≤

√
nε′
)
≤ cn0 .

Indeed, by Theorem 2.11, with probability at least 1−cn0 , for all a ∈ Sε2 with LCDα,1/2(ya) ≤
ε′−1 one has ‖f(a)‖2 >

√
nε′. Conditioning on this event, all of the elements a of the set A

in Theorem 2.5 must have LCDα,1/2(ya) ≥ ε′−1. But then the conclusion of Theorem 2.5
follows from Theorem 2.10 via an application of Fubini and Makov’s bound.

Before proving Theorem 2.11, it is important to remark that if there exists x0 ∈ Sε2
satisfying LCDα,1/2(yx0) ≤ ε′−1 such that ‖f(x0)‖ ≤

√
nε′, then the normalized vector

x1 = x0/‖x0‖ ∈ Sn−1 satisfies

LCDα,1/2(yx1) ≤ (1 + 2ε2)ε′−1 = (1 + o(1))ε′−1
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and

‖f(x1)‖2 ≤ (1 + 2ε2)d
√
nε′ = (1 + o(1))

√
nε′, (18)

where we used the assumption that ε is sufficiently small (recall from (8) that ε ≤ d−n/4).

Hence it is enough to prove Theorem 2.11 for x ∈ Sn−1 only. We next introduce two
different types of vectors depending on their sparsity.

Definition 2.12. Let δ, ρ ∈ (0, 1) be sufficiently small (depending on d). A vector x ∈
Rn is called sparse if |supp(x)| ≤ δn. A vector x ∈ Sn−1 is called compressible if x is
within Euclidean distance ρ from the set of all sparse vectors. A vector x ∈ Sn−1 is called
incompressible if it is not compressible. The sets of compressible and incompressible vectors
will be denoted by Comp(δ, ρ) and Incomp(δ, ρ) respectively.

In what follows we will choose

δ = ρ = κ0/d
2, (19)

where κ0 is a sufficiently small absolute constant .

Theorem 2.13. There exists a positive constant 0 < c0 < 1 such that the probability that
there exists a compressible vector x ∈ Comp(δ, ρ) with ‖f(x)‖2 ≤ (1 + o(1))ε′

√
n is bounded

by cn0 .

The proof of Theorem 2.13 will be presented in Section 5. Notice that this is where the
error term cn0 arises in Theorem 1.16, which is unavoidable owing to Example 1.13. We
remark further that Theorem 2.13 holds as long as ε′ = o(1).

Our main analysis lies in the treatment for incompressible structural vectors.

Theorem 2.14. Conditioning on the event considered in Theorem 2.2, the probability that
there exists an incompressible x in Sε2 with LCDα,1/2(yx) ≤ (1 + o(1))ε′−1 such that

‖f(x)‖2 ≤ (1 + o(1))ε′
√
n is bounded by O(n−(1/16−o(1))n).

3. Proof of Theorem 2.14

First of all, incompressible vectors spread out thanks to the following observation.

Fact 3.1. [14, Lemma 3.4] Let x ∈ Incomp(δ, ρ). Then there exists a set σ ⊂ {1, . . . , n} of
cardinality |σ| ≥ ρ2δn/2 such that

ρ√
2n
≤ |xk| ≤

1√
δn
,∀k ∈ σ.

With the choice of δ and ρ from (19),



ON A CONDITION NUMBER OF GENERAL RANDOM POLYNOMIAL SYSTEMS 15

κ0

2d2
√
n
≤ |xk| ≤

d

κ0
√
n
. (20)

As such, there are at least σd product terms xi1 . . . xid with |xi1 . . . xid | ≥ ( κ0
2d2

)dn−d/2. By

definition, the LCD of yx is then at least nd/2/(O(d))O(d), where the implied constants
depend on κ0.

We divide [nd/2/(O(d))O(d), ε′−1] into dyadic intervals. For nd/2/(O(d))O(d) ≤ D ≤ ε′−1,
define

SD := {x ∈ Sn−1, D ≤ LCDα,1/2(yx) ≤ 2D}.

It follows from the definition of α from (16) that α � nd/2/(O(d))O(d) ≤ D. Our next
lemma is an upper bound for any fixed incompressible vector.

Lemma 3.2 (Treatment for a single vector). Assume that x ∈ SD. Then for any t > 1/D

P(‖f(x)‖2 < t
√
n) ≤ (4C0C1)n−1t2(n−1).

Proof. (of Lemma 3.2) The claim follows from the definition of LCDα,1/2(yx), Theorem 2.8
and Lemma 2.9. �

3.3. Approximation by structure. Recall that x ∈ SD if D ≤ LCDα,1/2(yx) ≤ 2D.

Observe that yx is a vector in Rnd
with rich multiplicative structure. The main goal of this

section is to translate this piece of diophantine information on yx to x itself.

Lemma 3.4 (Nets of the level sets). There exists a dO(d)α/D-net MD of SD in the Eu-
clidean metric of cardinality

|MD| ≤
(

n

d− 1

)(
1 + dO(d)D/α

)d
×
(

1 + dO(d)D/nd/2
)n−d+1

.

Proof. (of Lemma 3.4) By definition of LCD,

∑
1≤i1,...,id≤n

‖D(x)xi1 . . . xid − pij‖
2
R/Z ≤ α

2

for some D ≤ D(x) ≤ 2D.

As there are |σ| ≥ ρ2δn/2 indices i satisfying (20), by the pigeon-hole principle, there exist
d− 1 indices i1, . . . , id−1 where xij satisfies (20) and such that
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∑
1≤j≤n

‖D(x)xi1 . . . xid−1
xj‖2R/Z ≤ α

2/(ρ2δ/2)dnd−1 = α2d6dκ−3d
0 /2dnd−1

:= f2
0α

2/nd−1. (21)

Without loss of generality, one assumes that i1 = 1, . . . , id−1 = d − 1. Fix x1, . . . , xd−1 for
the moment. Set

D′ := D(x)x1 . . . xd−1.

Then as D ≤ D(x) ≤ 2D and the xi’s satisfy (20),

(
κ0

2d2
)d−1 D

n(d−1)/2
:= f1

D

n(d−1)/2
≤ |D′| ≤ 2(

d

κ0
)d−1 D

n(d−1)/2
:= f2

D

n(d−1)/2
. (22)

By definition and from (21), with x′ := (xd, . . . , xn), there exists p = (pd, . . . , pn) ∈ Zn−d+1

such that

‖D′x′ − p‖2 ≤ f0α/n
(d−1)/2.

So

‖x′ − 1

D′
p‖2 ≤ f0α/|D′|n(d−1)/2 ≤ (f0/f1)α/D, (23)

where we used the lower bound for |D′| from (22).

Notice furthermore that

‖p‖2 ≤ ‖D′x′‖2 + f0α/n
(d−1)/2 ≤ |D′|+ f0α/n

(d−1)/2

≤ f2D/n
(d−1)/2 + f0α/n

(d−1)/2

≤ dO(d)D/n(d−1)/2.

The collection P of such integral vectors p has size at most

|P| ≤
(

1 + (dO(1)D/n(d−1)/2)/
√
n
)n−d+1

≤
(

1 + dO(d)D/nd/2
)n−d+1

.

Next, for the set |z| ≤ n(d−1)/2/(f1D) in R we choose an εd-netNlocal with εd = (f0/f1)n(d−1)/2α/D(f1D+
f0α). Clearly we can choose Nlocal so that



ON A CONDITION NUMBER OF GENERAL RANDOM POLYNOMIAL SYSTEMS 17

|Nlocal| ≤ 1 + 2n(d−1)/2/(εdf1D) = 2(f1/f0)D/α+ 1 ≤ 1 + dO(d)D/α.

Define the following set in Rn−d+1

N1...(d−1) := {bp, b ∈ Nlocal,p ∈ P}.

By definition,

|N1...(d−1)| ≤
(

1 + dO(d)D/α
)
×
(

1 + dO(d)(D + α)/nd/2
)n−d+1

. (24)

Moreover, as |1/D′| ≤ n(d−1)/2/(f1D), there exists b ∈ Nlocal such that |1/D′ − b| ≤ εd. As
such, by (23)

‖x′ − bp‖2 ≤ ‖x′ −
1

D′
p‖2 + ‖( 1

D′
− b)p‖2

≤ (f0/f1)α/D + εd((f1D + f0α)/n(d−1)/2)

≤ 2(f0/f1)α/D.

Thus N1...(d−1) is an 2(f0/f1)α/D-net for x′ = (xd, . . . , xn).

To continue, one approximates (x1, . . . , xd−1) by an arbitrary (f0/f1)α/D-net in |z| ≤ 1
of Rd−1. We therefore obtain a net N ′1...(d−1) that 3(f0/f1)α/D-approximates the vector

(x1, . . . , xn), which has size

|N ′1...(d−1)| ≤ (1 + 2(f1/f0)D/α)d−1 × |N1...(d−1)|

≤
(

1 + dO(d)D/α
)d
×
(

1 + dO(d)D/nd/2
)n−d+1

.

In summary, for each d−1 tuple i1, . . . , id−1, one obtains a netN ′i1,...,id (by fixing xi1 , . . . , xid−1

instead of x1, . . . , xd−1). The union set MD of all N ′i1,...,id−1
will satisfy the conclusion of

our theorem. �

3.5. Passing from MD to SD. Assume that there exists x with D < LCD(yx) ≤ 2D
such that ‖f(x)‖2 ≤ α

√
n/D. Choose x0 ∈MD which is 3(f0/f1)α/D-approximates x. By

conditioning on the event of Theorem 2.2,
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‖f(x)‖2 ≤ ‖f(x0)‖2 + (
√
C0d

1/4√n)3(f0/f1)α/D ≤ α
√
n/D + (

√
C0d

1/4√n)3(f0/f1)α/D

= (1 + 3
√
C0d

1/4f0/f1)α
√
n/D

:= (f3α/D)
√
n.

On the other hand, it follows from Lemma 3.2 and Lemma 3.4 that

P
(
∃x0 ∈MD, ‖f(x0)‖2 ≤ (f3α/D)

√
n
)
≤ (4C0C1)n−1(f3α/D)n−1|MD|

≤ (O(1))n
(

n

d− 1

)
(f3α/D)n−1

(
1 + dO(d)D/α

)d (
1 + dO(d)D/nd/2

)n−d+1

= (O(1))n
(

n

d− 1

)(
dO(d)

)d (
αdO(d)/nd/2 + αdO(d)/nd/2

)n−d−1 (
1 + dO(d)D/nd/2

)2

≤ (O(1))n
(

n

d− 1

)
dO(dn)(n−d/16−1/4)n−d+1(ε′)−2.

Now we use the assumption that γ/2 ≤ 19/36. With this bound, ε ≥ n−(γ/2−17/36)n ≥
n−1/18, and hence ε′ = Mdε

2 > n−n/8. Thus, as long as 2 ≤ d ≤ nε0 for sufficiently small
ε0,

P
(
∃x0 ∈MD, ‖f(x0)‖2, ‖f(x0)‖2 ≤ (f3α/D)

√
n
)
≤ dO(dn)(n−d/16−1/4)n−d+1(ε′)−2

= O(n−n/16). (25)

In summary, we have shown that, conditioning on the the boundedness of the operator
norm from Theorem 2.2,

P
(
∃x : D < LCD(yx) ≤ 2D ∧ ‖f(x)‖2 ≤ α

√
n/D

)
= n−n/16.

Summing over the dyadic range nd/2/(O(d))O(d) ≤ D ≤ ε′−1 for D, one thus obtains

P
(
∃x : LCD(yx) ≤ ε′−1 ∧ ‖f(x)‖2 ≤ n(d−1)/4√nε′−1)

)
≤ O(n log n)× n−n/16,

≤ n−(1/16−o(1)n),

completing the proof of Theorem 2.14.

Remark 3.6. Notice that in the last estimate of (25), if d is sufficiently large compared to γ,

then dO(dn)(n−d/16−1/4)n−d+1(ε′)−2 is clearly at most O(n−Θ(n)) for any ε ≥ n−(γ/2−17/36)n.
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Thus Theorem 1.16 holds for any γ = O(1) provided that d is sufficiently large depending
on γ.

4. Control of the operator norm: proof of (9) of Theorem 2.2

We will first prove a general statement which will be useful for the next section.

Theorem 4.1. Assume that ξ is a sub-gaussian random variable with zero mean and unit
variance satisfying (3). Then there exists an absolute positive constant C0 = C0(K0) inde-
pendent of d such that the following holds

P
(

sup
x,y,...,z∈Sn−1

∑
1≤l≤n−1

(
∑
i1,...,id

a
(l)
i1i2...id

xi1yi2 . . . zid)2 ≥ C0dn
)
≤ exp(−dn).

Assuming this estimate for the moment, we now deduce Theorem 2.2.

Proof. (of Theorem 2.2) The bound on supx∈Sn−1 ‖frand(x)‖22 clearly follows from Theorem
4.1 by choosing y, . . . , z to be x. For the gradient, we have

D
(1)
l,x,rand(y) =

∑
1≤i1,...,id≤n

a
(l)
i1...id

(yi1xi2 . . . xid−1
xid + · · ·+ xi1xi2 . . . xid−1

yid). (26)

Thus by Cauchy-Schwarz inequality

∑
l

(D
(1)
l,x,rand(y))2 ≤ d

[∑
l

(
∑

1≤i1,...,id≤n
a

(l)
i1...id

yi1xi2 . . . xid−1
xid)2 + · · ·+

+
∑
l

(
∑

1≤i1,...,id≤n
a

(l)
i1...id

xi1xi2 . . . xid−1
yid)2

]
.

By Theorem 4.1, each summand is bounded by C0dn with probability at least 1−exp(−dn).
Hence with probability at least 1− d exp(−dn) ≥ 1− exp(−dn/2),

∑
l

(D
(1)
l,x,rand(y))2 ≤ C0d

3n,

completing the bound for supx,y ‖(D
(1)
x,rand(y))‖22.

The treatment for supx,y,z∈Sn−1 ‖D(2)
x,rand(y, z)‖22 is similar where in place of (26), we write

D
(2)
x,rand(y, z) as a sum of O(d2) summands. The upper bound C0d

5n can then be obtained

again by applying Theorem 4.1 and Cauchy-Schwarz inequality. �
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What remains is to establish Theorem 4.1. We first prove it for the case of fixed x,y, . . . , z.

Lemma 4.2. Assume that x,y, . . . , z ∈ Sn−1. Then there exists an absolute positive con-
stant C0 = C0(K0) such that

P
(

sup
x,y,...,z∈Sn−1

∑
1≤l≤n−1

(
∑
i1,...,id

a
(l)
i1i2...id

xi1yi2 . . . zid)2 ≥ C0dn
)
≤ exp(−16dn).

Proof. (of Lemma 4.2) We observe that for any l, (
∑

i1,...,id
a

(l)
i1i2...id

xi1yi2 . . . zid)2 is a sub-
exponential random variable with mean one and bounded variance. Lemma 4.2 then follows
by a standard deviation result. �

We now extend the result above to the case y, . . . , z are fixed.

Lemma 4.3. Assume that y, . . . , z are fixed unit vectors of Sn−1, then

P
(

sup
x∈Sn−1

∑
1≤l≤n−1

(
∑
i1,...,id

a
(l)
i1i2...id

xi1yi2 . . . zid)2 ≥ C0dn
)
≤ exp(−(16d− 6)n).

Proof. (of Lemma 4.3) Consider an 1/2-net N of Sn−1. We first claim that

P
(

sup
x∈Sn−1

∑
1≤l≤n−1

(
∑
i1,...,id

a
(l)
i1i2...id

xi1yi2 . . . zid)2 ≥M2
)

≤ P
(

sup
x∈N

∑
1≤l≤n−1

(
∑
i1,...,id

a
(l)
i1i2...id

xi1yi2 . . . zid)2 ≥ (M/2)2
)
. (27)

For simplicity, consider the matrixAy,...,z := (ali1(y, . . . , z))1≤l≤n−1,1≤i1≤n, where ali1(y, . . . , z) :=∑
i1,...,id

a
(l)
i1i2...id

yi2 . . . zid . It then follows that

∑
1≤l≤n−1

(
∑
i1,...,id

a
(l)
i1i2...id

xi1yi2 . . . zid)2 = ‖Ay,...,zx‖22.

Now assume that supx∈Sn−1 ‖Ay,...,zx‖2 = ‖Ay,...,z‖op is attained at x = (x1, . . . , xn).
Choose x′ ∈ N such that ‖x − x′‖2 ≤ 1/2. By definition, as Ay,...,z is a linear opera-
tor,

‖Ay,...,zx−Ay,...,zx
′‖2 = ‖Ay,...,z(x− x′)‖2 ≤ ‖x− x′‖2‖Ay,...,z‖op ≤

1

2
‖Ay,...,z‖op.

By the triangle inequality, it is implied that
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‖Ay,...,zx
′‖2 ≥

1

2
‖A‖op,

proving our claim.

To conclude the proof, notice that Sn−1 has an 1/2-net N of size at most 2n5n. We then
apply Lemma 4.2 and the union bound

P
(

sup
x∈Sn−1

∑
1≤l≤n−1

(
∑
i1,...,id

a
(l)
i1i2...id

xi1yi2 . . . zid)2 ≥ Cn
)
≤ 2n5n×exp(−16dn) ≤ exp(−(16d−6)n).

�

Observe that one can also extend (27) to the case that x,y vary,

P
(

sup
x,y∈Sn−1

∑
1≤l≤n−1

(
∑
i1,...,id

a
(l)
i1i2...id

xi1yi2 . . . zid)2 ≥M2
)

≤ P
( ∨

y∈N
sup

x∈Sn−1

∑
1≤l≤n−1

|
∑
i1,...,id

a
(l)
i1i2...id

xi1yi2 . . . zid |
2 ≥ (M/2)2

)
. (28)

Thus one obtains the following analog of Lemma 4.3 when x and y are not fixed.

P
(

sup
x,y∈Sn−1

∑
1≤l≤n−1

(
∑
i1,...,id

a
(l)
i1i2...id

xi1yi2 . . . zid)2 ≥ C0dn
)

≤ 2n5n ×P
(

sup
x∈Sn−1

∑
1≤l≤n−1

(
∑
i1,...,id

a
(l)
i1i2...id

xi1yi2 . . . zid)2 ≥ (M/2)2
)

≤ 2n5n exp(−(16d− 6)n) ≤ exp(−(16d− 12)n).

To conclude the proof of Theorem 4.1, one just iterates the argument above d times. Finally,
we remark that Theorem 4.1 yields the following more general looking version.

Theorem 4.4. Assume that 1 ≤ k ≤ n, and that A = {a(l)
i1,...,id

, 1 ≤ i1, . . . , id ≤ k, 1 ≤
l ≤ n − 1} is an array of iid random copies of a subgaussian random variable ξ of zero
mean and unit variance satisfying (3). Then there exists a positive constant C0 such that
the following holds

P
(

sup
x,y,...,z∈Sk−1

∑
1≤l≤n−1

|
∑
i1,...,id

a
(l)
i1i2...id

xi1yi2 . . . zid |
2 ≥ C0dn

)
≤ exp(−dn).
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5. Control of compressible vectors

We will prove a more general estimate as follows.

Theorem 5.1. With sufficiently small constant csparse,

P
(

inf
x∈Comp(δ,ρ)

∑
1≤l≤n−1

|fl(x)|2 ≤ csparsen
)
≤ cn0 .

Recall from (19) that δ = ρ = κ0/d
2 for a sufficiently small absolute constant κ0. In order

to prove Theorem 5.1, we will need to work with rectangular arrays.

Theorem 5.2. Assume that A = {a(l)
i1...id

, 1 ≤ i1, . . . , id ≤ k, 1 ≤ l ≤ n − 1} is an array

of iid random copies of ξ satisfying (3), with k = δn. Then there exist absolute constants
c1, c2 such that the following holds

P
(

inf
x∈Sk

∑
1≤l≤n−1

|fl(x)|2 ≤ c1n
)
≤ exp(−c2n).

Indeed we shall prove a slightly stronger result as below.

Theorem 5.3 (Rectangular case for multilinear forms). With the same assumption as in
Theorem 5.2, there exist positive constants c1, c2 such that the following holds

P
(

inf
x,y,...,z∈Sk

∑
1≤l≤n

(a
(l)
i1...id

xi1yi2 . . . zid)2 ≤ c1n
)
≤ exp(−c2n).

In order to prove Theorem 5.2, we first need the following easy result of non-concentration
(see for instance [14, Lemma 2.6]).

Claim 5.4. There exists µ ∈ (0, 1) such that for for any (a1, . . . , aN ) ∈ SN−1, the random
sum S =

∑
ξiai, where ξ1, . . . , ξN are independent copies of ξ from (3), satisfies

P(|S| ≤ 1/2) ≤ µ.

We recall an analog of the tesorization lemma from Section 3.

Lemma 5.5. Let η1, . . . , ηn be independent non-negative random variable, and let K, δ ≥ 0.

• Assume that for each l, P(ηl < ε) ≤ Kε for all ε ≥ δ. Then

P(
∑

η2
l < ε2n) ≤ (C0Kε)

n

for all ε ≥ δ.
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• Consequently, assume that there exist λ and µ ∈ (0, 1) such that for each l, P(ηl <
λ) ≤ µ. Then there exist λ1 > 0 and µ1 ∈ (0, 1) depending on λ, µ such that

P(
∑

η2
l < λ1n) ≤ µn1 .

As
∑

1≤i1,i2...,id≤n(xi1yi2 . . . zid)2 = 1, it follows from Claim 5.4 and Lemma 5.5 the following
analog of Theorem 5.2.

Lemma 5.6 (Estimate for fixed compressible vectors). With the same assumption as in
Theorem 5.2, and let x,y, . . . , z be fixed. Then there exist constants η, ν ∈ (0, 1) such that

P
( ∑

1≤l≤n−1

(
∑

1≤i1,...,id≤n
a

(l)
i1...id

xi1yi2 . . . zid)2 < ηn
)
≤ νn.

Similarly to our treatment of the operator norm in the previous section, we can improve
the above as follows.

Theorem 5.7. With the same assumption as in Theorem 5.2, and let y, . . . , z ∈ Sk be
fixed. Then there exist constants η, ν ∈ (0, 1) such that

P
(

inf
x∈Sk

∑
1≤l≤n−1

(
∑

1≤i1,...,id≤n
a

(l)
i1...id

xi1yi2 . . . zid)2 < 4ηn
)
≤ ν(1−o(1))n.

For short, we denote
∑

1≤l≤n−1(
∑

1≤i1,...,id≤n a
(l)
i1...id

xi1yi2 . . . zid)2 by ‖Ay,...,z(x)‖22, empha-
sizing that this operator depends on y, . . . , z.

Proof. (of Theorem 5.7) Let αd = α0d
−3/2 with sufficiently small α0 to be chosen. It is

simple to show that (see for instance [10, Lemma 2.6] or [15, Proposition 2.1]) there exists
an αd-net N in Sk of cardinality at most |N | ≤ 2k(1 + 2

αd
)k. Let η, ν be the numbers in

Corollary 5.6, by the union bound,

P
(
∃x ∈ N : ‖Ay,...,z(x)‖22 < ηn

)
= P

(
∃x ∈ N :

∑
1≤l≤n−1

|
∑

1≤i1,...,id≤n
a

(l)
i1...id

xi1yi2 . . . zid |
2 < ηn

)
≤ 2k(1 +

2

αd
)kνn

≤ (κ0n/d
2)(1 + 2d3/2/α0)κ0n/d

2
νn

≤ ν(1−o(1))n,

where we used the fact that κ0 is sufficiently small (compared to α0) and 2 ≤ d = o(n).

Within this event, let x be any unit vector in Sk. Choose a point x′ ∈ N such that
‖x− x′‖2 ≤ αd. By Theorem 4.4, with probability at least 1− exp(−dn) we have
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‖Ay,...,z(x− x′)‖2 < αd
√
C0d

1/2√n = α0

√
C0d

−1√n ≤ √ηn,

where we chose α0 so that α0

√
C0 ≤

√
η. It thus follows that

‖Ay,...,zx
′‖2 ≤

√
ηn+

√
ηn = 2

√
ηn,

completing the proof. �

Proof. (of Theorem 5.3) Iterate the argument above d times by fixing lesser terms at each
step, one arrives at the conclusion of Theorem 5.3, noting that the entropy loss is at most
(taking into account the number of αd-nets for all x,y, . . . , z)

(
(κ0n/d

2)(1 + 2d3/2/α0)κ0n/d
2
)d

= (κ0n/d
2)d(1 + 2d3/2/α0)κ0n/dνn ≤ ν(1−o(1))n,

again provided that κ0 is sufficiently small compared to α0 and 2 ≤ d = o(n). �

We now deduce Theorem 5.1 in the same manner.

Proof. (of Theorem 5.1) By Theorem 4.4, with probability at least 1−exp(−n) we have the
following for any pair x,x′ with ‖x− x′‖2 ≤ ρ,

‖Ax,x,...,xx−Ax′,x′...,x′x
′‖2 ≤ ‖Ax,x,...,xx−Ax,x,...,xx′‖2 + ‖Ax,x,...,xx′ −Ax′,x,...,xx′‖2 + · · ·+

+ ‖Ax′,x′,...,xx′ −Ax′,x′,...,x′x
′‖2

≤ dρ
√
C0d

1/2√n
≤
√
c1n,

where we used the fact that ρ = κ0/d
2 with sufficiently small κ0 compared to c1.

As x′ ranges over vectors of Sn−1 of support at most k = δn, an application of Theorem
5.2 implies that

P( inf
x∈Comp(δ,ρ)

∑
1≤l≤n−1

|fl(x)|2 ≤ 2c3n) ≤
(
n

k

)
exp(−c2n) ≤ cn0 ,

for some 0 < c0 < 1, completing the proof of Theorem 5.1.

�
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Appendix A. proof of Lemma 2.9

We restate the lemma.

Lemma A.1 (Lemma 2.9). Let K, δ0 ≥ 0 be given. Assume that P(|X1| < δ) ≤ Kδ for all
δ ≥ δ0. Then

P(X2
1 + · · ·+X2

n < δn) ≤ (C0Kδ)
n.

Proof. Assume that δ ≥ δ0. By Chebyshev’s inequality

P(X1
2 + · · ·+Xn

2 ≤ δn) ≤ E exp(n−
n∑
i=1

Xi
2/δ) = exp(n)

n∏
i=1

E exp(−Xi
2/δ).

On the other hand,

E exp(−Xi
2/δ) =

∫ 1

0
P(exp(−X2

i /δ) > s)ds =

∫ ∞
0

2u exp(−u2)P(Xi < δu)du.

For 0 ≤ u ≤ 1 we use P(Xi ≤ δu) ≤ P(Xi ≤ δ) ≤ Kδ, while for u ≥ 1 we have
P(Xi ≤ δu) ≤ Kδu. Thus

E exp(−Xi
2/δ) =

∫ 1

0
2u exp(−u2)Kδdu+

∫ ∞
1

2u exp(−u2)Kδudu ≤ C0Kδ.

�
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