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Abstract. Let Zp be the finite field of prime order p and A be a
subset of Zp. We prove several sharp results about the following two
basic questions:

(1) When can one represent zero as a sum of distinct elements of A ?
(2) When can one represent every element of Zp as a sum of distinct

elements of A ?

1. Introduction

Let A be an additive group and A be a subset of A. We denote by
∑

(A)

the collection of subset sums of A:

∑
(A) = {

∑
x∈B

x|B ⊂ A, |B| < ∞}.

The following two questions are among the most popular questions in ad-

ditive combinatorics

Question 1.1. When 0 ∈ ∑
(A) ?

Question 1.2. When
∑

(A) = G ?

If
∑

(A) does not contain the zero element, we say that A is zero-sum-free.

If
∑

(A) = G (
∑

(A) 6= G), then we say that A is complete (incomplete).

In this paper, we focus on the case G = Zp, the cyclic group of order p,

where p is a large prime. The asymptotic notation will be used under the
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assumption that p → ∞. For x ∈ Zp, ‖x‖ (the norm of x) is the distance

from x to 0. (For example, the norm of p − 1 is 1.) All logarithms have

natural base and [a, b] denotes the set of integers between a and b.

1.3. A sharp bound on the maximum cardinality of a zero-sum-

free set. How big can a zero-sum-free set be ? This question was raised

by Erdős and Heilbronn [4] in 1964. In [8], Szemerédi proved the following.

Theorem 1.4. There is a positive constant c such that the following holds.

If A ⊂ Zp and |A| ≥ cp1/2, then 0 ∈ ∑
(A).

A result of Olson [6] implies that one can set c = 2. More than a quarter

of century later, Hamindoune and Zémor [7] showed that one can set c =√
2 + o(1), which is asymptotically tight.

Theorem 1.5. If A ⊂ Zp and |A| ≥ (2p)1/2 + 5 log p, then 0 ∈ ∑
(A).

Our first result removes the logarithmic term in Theorem 1.5, giving the

best possible bound (for all sufficiently large p). Let n(p) denote the largest

integer such that
∑n−1

i=1 i < p.

Theorem 1.6. There is a constant C such that the following holds for all

prime p ≥ C.

• If p 6= n(p)(n(p)+1)
2

− 1, and A is a subset of Zp with n(p) elements,

then 0 ∈ ∑
(A).

• If p = n(p)(n(p)+1)
2

−1, and A is a subset of Zp with n(p)+1 elements,

then 0 ∈ ∑
(A). Furthermore, up to a dilation, the only 0-sum-free

set with n(p) elements is {−2, 1, 3, 4, . . . , n(p)}.

To see that the bound in the first case is sharp, consider A = {1, 2, . . . , n(p)−
1}.

1.7. The structure of zero-sum-free sets with cardinality closed to

maximum. Theorem 1.6 does not provide information about zero-sum-free



SUBSET SUMS MODULO A PRIME 3

sets of size slightly smaller than n(p). The archetypical example for a zero-

sum-free set is a set whose sum of elements (as positive integers between 1

and p−1) is less than p. The general phenomenon we would like to support

here is that a zero-sum-free set with sufficiently large cardinality should be

close to such a set. In [1], Deshouillers showed the following.

Theorem 1.8. Let A be a zero-sum-free subset of Zp of size at least p1/2.

Then there is some non-zero element b ∈ Zp such that
∑

a∈bA,a<p/2

‖a‖ ≤ p + O(p3/4 log p)

and ∑

a∈bA,a>p/2

‖a‖ = O(p3/4 log p).

The main issue here is the magnitude of the error term. In the same paper,

there is a construction of a zero-sum-free set with cp1/2 elements (c > 1)

where

∑

a∈bA,a<p/2

‖a‖ = p + Ω(p1/2)

and ∑

a∈bA,a>p/2

‖a‖ = Ω(p1/2).

It is conjectured [1] that p1/2 is the right order of magnitude of the error

term. Here we confirm this conjecture, assuming that |A| is sufficiently close

to the upper bound.

Theorem 1.9. Let A be a zero-sum-free subset of Zp of size at least .99n(p).

Then there is some non-zero element b ∈ Zp such that
∑

a∈bA,a<p/2

‖a‖ ≤ p + O(p1/2)

and ∑

a∈bA,a>p/2

‖a‖ = O(p1/2).
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The constant .99 is adhoc and can be improved. However, we do not

elaborate on this point.

1.10. Complete sets. All questions concerning zero-sum-free sets are also

natural for incomplete sets. Here is a well-known result of Olson [6].

Theorem 1.11. Let A be a subset of Zp of more than (4p− 3)1/2 elements,

then A is complete.

Olson’s bound is essentially sharp. To see this, observe that if the sum of

the norms of the elements of A is less than p, then A is incomplete. Let

m(p) be the largest cardinality of a small set. One can easily verify that

m(p) = 2p1/2 + O(1). We now want to study the structure of incomplete

sets of size close to 2p1/2. Deshouillers and Freiman [3] proved the following.

Theorem 1.12. Let A be an incomplete subset of Zp of size at least (2p)1/2.

Then there is some non-zero element b ∈ Zp such that

∑

a∈bA

‖a‖ ≤ p + O(p3/4 log p).

Similarly to the situation with Theorem 1.8, it is conjectured that the right

error term has order p1/2 (see [2] for a construction that matches this bound

from below). We establish this conjecture for sufficiently large A.

Theorem 1.13. Let A be an incomplete subset of Zp of size at least 1.99p1/2.

Then there is some non-zero element b ∈ Zp such that

∑

a∈bA

‖a‖ ≤ p + O(p1/2).

Added in proof. While this paper was written, Deshouillers informed us

that he and Prakash have obtained a result similar to Theorem 1.6.
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2. Main lemmas

The main tools in our proofs are the following results from [9].

Theorem 2.1. Let A be a zero-free-sum subset of Zp. Then we can partition

A into two disjoint sets A′ and A
′′

where

• A′ has negligible cardinality: |A′| = O(p1/2/ log2 p).

• The sum of the elements of (a dilate of) A
′′

is small: There is a

non-zero element b ∈ Zp such that the elements of bA
′′

belong to the

interval [1, (p− 1)/2] and their sum is less than p.

Theorem 2.2. Let A be an incomplete subset of Zp. Then we can partition

A into two disjoint sets A′ and A
′′

where

• A′ has negligible cardinality: |A′| = O(p1/2/ log2 p).

• The norm sum of the elements of (a dilate of) A
′′

is small: There

is a non-zero element b ∈ Zp such that the sum of the norms of the

elements of bA
′′

is less than p.

The above two theorems were proved (without being formally stated) in [?].

A stronger version of these theorems will appear in a forth coming paper

[5]. We also need the following simple lemmas.

Lemma 2.3. Let T ′ ⊂ T be sets of integers with the following property.

There are integers a ≤ b such that [a, b] ⊂ ∑
(T ′) and the non-negative

(non-positive) elements of T\T ′ are less than b − a (greater than a − b).

Then

[a, b +
∑

x∈T\T ′,x≥0

x] ⊂
∑

(T ).

([a +
∑

x∈T\T ′,x≤0

x, b] ⊂
∑

(T ).)

The (almost trivial) proof is left as an exercise.
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Lemma 2.4. Let K = {k1, . . . , kl} be a subset of Zp, where the ki are

positive integers and
∑l

i=1 ki ≤ p. Then |∑(K)| ≥ l(l + 1)/2.

To verify this lemma, notice that the numbers

k1, . . . , kl, k1+kl, k2+kl, . . . , kl−1+kl, k1+kl−1+kl, . . . , kl−2+kl−1+kl, . . . , k1+· · ·+kl

are different and all belong to
∑

(K).

3. Proof of Theorem 1.6

Let A be a zero-free-sum subset of Zp with size n(p). In fact, as there is

no danger for misunderstanding, we will write n instead of n(p). We start

with few simple observations.

Consider the partition A = A′ ∪ A
′′

provided by Theorem 2.1. Without

loss of generality, we can assume that the element b equals one. Thus

A
′′ ⊂ [1, (p− 1)/2] and the sum of its elements is less than p. We first show

that most of the elements of A
′′

belong to the set of the first n positive

integers [1, n].

Lemma 3.1. |A′′ ∩ [1, n]| ≥ n−O(n/ log n).

Proof By the definition of n and the property of A
′′

n∑
i=1

i ≥ p >
∑

a∈A′′
a.

Assume that A
′′

has l elements in [1, n] and k elements outside. Then

∑

a∈A′′
a ≥

l∑
i=1

i +
k∑

j=1

(n + j).
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It follows that

n∑
i=1

i >

l∑
i=1

i +
k∑

j=1

(n + j),

which, after a routine simplification, yields

(l + n + 1)(n− l) > (2n + k)k.

On the other hand, n ≥ k + l = |A′′| ≥ n − O(n/ log2 n), thus n − l =

k + O(n/ log2 n) and n + l + 1 ≤ 2n− k + 1. So there is a constant c such

that

(2n− k + 1)(k + cn/ log2 n) > (2n + k)k,

or equivalently

cn

k log2 n
>

k + 1

2n− k + 1
.

Since 2n − k + 1 ≤ 2n + 1, a routine consideration shows that k2 log2 n =

O(n2) and thus k = O(n/ log n), completing the proof.

The above lemma shows that most of the elements of A
′′

(and A) belong

to [1, n]. Let A1 = A ∩ [1, n]. It is trivial that

|A1| ≥ |A′′ ∩ [1, n]| = n−O(n/ log n).

Let A2 = A\A1. We have

t := |[1, n]\A1| = |A2| = |A| − |A1| = O(n/ log n).
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Next we show that
∑

(A1) contains a very long interval. Set I := [2t +

3, (n + 1)(bn/2c − t − 1)]. The length of I is (1 − o(1))p; thus I almost

covers Zp.

Lemma 3.2. I ⊂ ∑
(A1).

Proof We need to show that every element x of in this interval can be

written as a sum of distinct elements of A1. There are two cases:

Case 1. 2t+3 ≤ x ≤ n. In this case A1 contains at least x−1−t ≥ (x+1)/2

elements in the interval [1, x−1]. This guarantees that there are two distinct

elements of A1 adding up to x.

Case 2. x = k(n+1)+r for some 1 ≤ k ≤ bn/2c− t−2 and 0 ≤ r ≤ n+1.

First, notice that since |A1| is very close to n (in fact it is enough to have

|A1| slightly larger than 2n/3 here), one can find three distinct elements

a, b, c ∈ A1 such that a+b+c = n+1+r. Consider the set A′
1 = A1\{a, b, c}.

We will represent x−(n+1+r) = (k−1)(n+1) as a sum of distinct elements

of A′
1. Notice that there are exactly bn/2c ways to write n + 1 as a sum of

two different positive integers. We discard a pair if (at least) one of its two

elements is not in A′
1. Since |A′

1| = n− t− 3, we discard at most t+3 pairs.

So there are at least bn/2c − t − 3 different pairs (ai, bi) where ai, bi ∈ A′
1

and ai + bi = (n + 1). Thus, (k − 1)(n + 1) can be written as a sum of

distinct pairs. Finally, x can be written as a sum of a, b, c with these pairs.

Now we investigate the set A2 = A\A1. This is the collection of elements

of A outside the interval [1, n]. Since A is zero sum free, 0 /∈ A2 + I thanks

to Lemma 3.2. It follows that

A2 ⊂ Zp\([1, n] ∪ (−I) ∪ {0}) ⊂ J1 ∪ J2,

where J1 := [−2t − 2,−1] and J2 = [(n + 1), p − (n + 1)(bn/2c − t)] =

[(n + 1), q]. We set B := A2 ∩ J1 and C := A2 ∩ J2.

Lemma 3.3.
∑

(B) ⊂ J1.
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Proof Assume otherwise. Then there is a subset B′ of B such that∑
a∈B′ a ≤ −2t − 3 (here the elements of B are viewed as negative inte-

gers between −1 and −2t − 3). Among such B′, take one where
∑

a∈B′ a

has the smallest absolute value. For this B′, −4t− 4 ≤ ∑
a∈B′ a ≤ −2t− 3.

On the other hand, by Lemma 3.2, the interval [2t + 3, 4t + 4] belongs to∑
(A1). This implies that 0 ∈ ∑

(A1) +
∑

(B′) ⊂ ∑
(A), a contradiction.

Lemma 3.3 implies that
∑

a∈B |a| ≤ 2t + 2, which yields

|B| ≤ 2(t + 1)1/2. (1)

Set s := |C|. We have s ≥ t−2(t+1)1/2. Let c1 < · · · < cs be the elements

of C and g1 < · · · < gt be the elements of [1, n]\A1.

By the definition of n,
∑n

i=1 i > p >
∑n−1

i=1 i. Thus, there is an (unique)

h ∈ [1, n] such that

p = 1 + · · ·+ (h− 1) + (h + 1) + · · ·+ n. (2)

A quantity which plays an important role in what follows is

d :=
s∑

i=1

ci −
t∑

j=1

gj.

Notice that if we replace the gj by the ci in (2), we represent p+d as a sum

of distinct elements of A

p + d =
∑

a∈X,X⊂A

a. (3)

The leading idea now is to try to cancel d by throwing a few elements from

the right hand side or adding a few negative elements (of A) or both. If this
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was always possible, then we would have a representation of p as a sum of

distinct elements in A (in other words 0 ∈ ∑
(A)), a contradiction. To con-

clude the proof of Theorem 1.6, we are going to show that the only case when

it is not possible is when p = n(n + 1)/2 − 1 and A = {−2, 1, 3, 4, . . . , n}.
We consider two cases:

Case 1. h ∈ A1. Set A′
1 = A1\{h} and apply Lemma 3.2 to A′

1, we

conclude that
∑

(A′
1) contains the interval I ′ = [2(t+1)+3, (n+1)(bn/2c−

t− 2)].

Lemma 3.4. d < 2(t + 1) + 3.

Proof Assume d ≥ 2(t+1)+3. Notice that the largest element in J2 (and

thus in C) is less than the length of I ′. So by removing the ci one by one

from d, one can obtain a sum d′ =
∑s′

i=1 ci −
∑t

j=1 gj which belongs to I ′,
for some s′ ≤ s. This implies

s′∑
i=1

ci =
t∑

j=1

gj +
∑
a∈X

a

for some subset X of A′
1. Since h /∈ A′

1, the right hand side is a subsum of

the right hand side of (2). Let Y be the collection of the missing elements

(from the right hand side of (2)). Then Y ⊂ A1 and
∑s′

i=1 ci +
∑

a∈Y a = p.

On the other hand, the left hand side belongs to
∑

(A1) +
∑

(A2) ⊂
∑

(A).

It follows that 0 ∈ ∑
(A), a contradiction.

Now we take a close look at the inequality d < 2(t + 1) + 3. First, observe

that since A is zero-sum-free, −∑
(B) ⊂ {g1, . . . , gt}. By Lemma 3.3,∑

a∈B |a| ≤ 2t + 2 < p. As B has t − s elements, by Lemma 2.4,
∑

(B)

has at least (t− s)(t− s + 1)/2 elements, thus {g1, . . . , gt} contains at least

(t− s)(t− s + 1)/2 elements in [1, 2t + 2]. It follows that
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t∑
i=1

gi ≤ (2t + 2)(t− s)(t− s + 1)/2 +

t−(t−s)(t−s+1)/2−1∑
j=0

(n− j).

On the other hand, as all elements of C are larger than n

s∑
i=1

cs ≥
s∑

i=1

(n + i).

It follows that d is at least

s∑
i=1

(n + i)− (2t + 2)(t− s)(t− s + 1)/2−
t−(t−s)(t−s+1)/2−1∑

j=0

(n− j).

If t− s ≥ 2 then s > t− (t− s)(t− s + 1)/2, we have

d ≥ n(s− (t− (t− s)(t− s + 1)/2))− (2t + 2)(t− s)(t− s + 1)/2.

Which yields that

d ≥ (t− s)(t− s− 1)(n− 3(2t + 2))/2.

So the last formula has order Ω(n) À t, thus d À 2(t + 1) + 3, a contra-

diction. Therefore, t− s is either 0 or 1.

If t− s = 0, then d =
∑t

i=1 ci −
∑t

i=1 gi ≥ t2. This is larger than 2t + 5 if

t ≥ 4. Thus, we have t = 0, 1, 2, 3.

• t = 0. In this case A = [1, n] and 0 ∈ ∑
(A).

• t = 1. In this case A = [1, n]\{g1} ∪ c1. If c1 − g1 6= h, then we

could substitute c1 for g1 +(c1−g1) in (2) and have 0 ∈ ∑
(A). This
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means that h = c1− g1. Furthermore, h < 2t+5 = 7 so both c1 and

g1 are close to n. If h ≥ 3,

p =
h−1∑
i=1

i +
n∑

j=h+1

j =
h−2∑
i=2

i +
∑

h+1≤j≤n,j 6=g1

j + c1.

Similarly, if h = 1 or 2 then we have

p =
h∑

i=1

i +
∑

h+2≤j≤n,j 6=g1

j + c1.

• t > 1. Since d < 2t+5, g1, . . . , gt are all larger than n− 2t− 4. As p

is sufficiently large, we can assume n ≥ 4t + 10, which implies that

[1, 2t + 5] ⊂ A1. If h 6= 1, then it is easy to see that [3, 2t + 5] ⊂∑
(A1\{h}). As t > 1, d ≥ t2 ≥ 4 and can be represented as a

sum of elements in A1\{h}. Omitting these elements from (3), we

obtain a representation of p as a sum of elements of A. The only

case left is h = 1 and d = 4. But d can equal 4 if and only if t = 2,

c1 = n + 1, c2 = n + 2, g1 = n− 1, g2 = n. In this case, we have

p =
n∑

i=2

i = 2 + 3 +
n+2∑
i=5

i.

Now we turn to the case t− s = 1. In this case B has exactly one element

in the interval [−2t − 2,−1] (modulo p) and d is at least s2 − (2t + 2) =

(t− 1)2− (2t+2). Since d < 2t+5, we conclude that t is at most 6. Let −b

be the element in B (where b is a positive integer). We have b ≤ 2t+2 ≤ 14.

A1 misses exactly t elements from [1, n]; one of them is b and all other are

close to n (at least n− (2t + 4)). Using this information, we can reduce the

bound on b further. Notice that the whole interval [1, b− 1] belongs to A1.

So if b ≥ 3, then there are two elements x, y of A1 such that x+y = b. Then

x + y + (−b) = 0, meaning 0 ∈ ∑
(A). It thus remain to consider b = 1 or

2. Now we consider a few cases depending on the value of d. Notice that

d ≥ s2 − b ≥ −2. In fact, if s ≥ 2 then d ≥ 2. Furthermore, if s = 0, then

t = 1 and d = −g1 = −b.
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• d ≥ 5. Since A1 misses at most one element in [1, d] (the possible

missing element is b), there are two elements of A1 adding up to d.

Omitting these elements from (3), we obtain a representation of p

as a sum of distinct elements of A.

• d = 4. If b = 1, write p =
∑

a∈X,a 6=2 a + (−b). If b = 2, then

p =
∑

a∈X,a 6=1,3 a. (Here and later X is the set in (3).)

• d = 3. Write p =
∑

a∈X,a 6=3−b a + (−b).

• d = 2. If b = 1, then p =
∑

a∈X,a 6=2 a. If b = 2, then p =
∑

a∈X a +

(−2).

• d = 1. If b = 1, then p =
∑

a∈X a + (−1). If b = 2, then p =∑
a∈X,a6=1 a.

• d = 0. In this case (3) already provides a representation of p.

• d = −1. In this case s < 2. But since h 6= b, s cannot be 0.

If s = 1 then b = 2 and c1 = n + 1, g1 = n. By (2), we have

p =
∑h−1

i=1 i +
∑n

j=h+1 j and so

p + (h− 1) =
∑

1≤i≤n+1,i/∈{2,n}
i

where the right hand side consists of elements of A only. If h−1 ∈ A

then we simply omit it from the sum. If h− 1 /∈ A, then h− 1 = 2

and h = 3. In this case, we can write

p =
∑

1≤i≤n+1,i/∈{2,n}
i + (−2).

• d = −2. This could only occur if s = 0 and b = 2. In this case

A = {−2, 1, 3, . . . , n}. If h = 1, then p =
∑n

i=2 = n(n+1)/2−1 and

we end up with the only exceptional set. If h ≥ 3, then p+(h−2) =∑
1≤i≤n,i 6=2 i. If h 6= 4, then we can omit h− 2 from the right hand

side to obtain a representation of p. If h = 4, then we can write

p =
∑

1≤i≤n,i6=2

i + (−2).

Case 2. h /∈ A. In this case we can consider A1 instead of A′
1. The

consideration is similar and actually simpler. Since h /∈ A, we only need to
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consider d :=
∑s

i=1 ci −
∑

1≤j≤t,gj 6=h gj. Furthermore, as h /∈ A, if s = 0 we

should have h = b and this forbid us to have any exceptional structure in

the case d = −2. The detail is left as an exercise.

4. Proof of Theorem 1.9

We follow the same terminology used in the previous section. Assume that

A is zero-sum-free and |A| = λn = λ(2p)1/2 with some 1 ≥ λ ≥ .99.

Furthermore, assume that the element b in Theorem 2.1 is one. We will

use the notation of the previous proof. Let the core of A be the collection

of a ∈ A such that n + 1 − a ∈ A. Theorem 1.9 follows directly from the

following two lemmas.

Lemma 4.1. The core of A has size at least .6n.

Lemma 4.2. Let A be a zero-sum-free set whose core has size at least

(1/2 + ε)n (for some positive constant ε). Then

∑

a∈A,a<p/2

a ≤ p +
1

ε
(n + 1)

and

∑

a∈A,a>p/2

‖a‖ ≤ (
1

ε
+ 1)n.

Proof (Proof of Lemma 4.1.) Following the proof of Lemma 3.1, with

l = |A′′ ∩ [1, n]| and k = |A′′ \ [1, n]|, we have

(l + n + 1)(n− l) > (2n + k)k.

On the other hand, n ≥ k + l = |A′′| = |A| − O(n/ log2 n), thus n − l =

k + n− |A|+ O(n/ log2 n) = (1− λ + o(1))n + k and n + l ≤ (1 + λ)n− k.

Putting all these together with the fact that λ is quite close to 1, we can
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conclude that that k < .1n. It follows (rather generously) that l = λn −
k −O(n/ log2 n) > .8n.

The above shows that most of the elements of A belong to [1, n], as

|A1| = |A ∩ [1, n]| ≥ |A′′ ∩ [1, n]| > .8n.

Split A1 into two sets, A′
1 and A′′

1 := A1\A′
1, where A′

1 contains all elements

a of A1 such that n + 1− a also belongs to A1. Recall that A1 has at least

bn/2c − t pairs (ai, bi) satisfying ai + bi = n + 1. This guarantees that

|A′
1| ≥ 2(bn/2c − t) ≥ .6n. On the other hand, A′

1 is a subset of the core of

A. The proof is complete.

Proof (Proof of Lemma 4.2) Abusing the notation slightly, we use A′
1 to

denote the core of A. We have |A′
1| ≥ (1/2 + ε)n.

Lemma 4.3. Any l ∈ [n(1/ε + 1), n(1/ε + 1) + n] can be written as a sum

of 2(1/ε + 1) distinct elements of A′
1.

Proof First notice that for any m belongs to Iε = [(1− ε)n, (1 + ε)n], the

number of pairs (a, b) ∈ A′
1
2 satisfying a < b and a + b = m is at least

εn/2. Next, observe that any k, k ∈ [0, n], is a sum of 1/ε + 1 integers (not

necessarily distinct) from [0, εn]. Consider l from [n(1/ε+1), n(1/ε+1)+n];

we can represent l − n(1/ε + 1) as a sum a1 + · · · + a1/ε+1 where 0 ≤
a1, . . . , a1/ε+1 ≤ εn. Thus l can be written as a sum of 1/ε + 1 elements

(not necessarily distinct) of Iε, as l = (n + a1) + · · ·+ (n + a1/ε+1). Now we

represent each summand in the above representation of l by two elements

of A′
1. By the first observation, the numbers of pairs are much larger than

the number of summands, we can manage so that all elements of pairs are

different.

Recall that A′
1 consists of pairs (a′i, b

′
i) where a′i + b′i = n + 1, so
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∑

a′∈A′1

a′ = (n + 1)|A′
1|/2.

Lemma 4.4. I ′ := [n(1/ε + 1),
∑

a′∈A′1
a′ − (n + 1)/ε] ⊂ ∑

(A′
1).

Proof Lemma 4.3 implies that for each x ∈ [n(1/ε+1), n(1/ε+1)+n] there

exist distinct elements a′1, . . . , a
′
2(1/ε+1) ∈ A′

1 such that x =
∑2(1/ε+1)

i=1 a′i.
We discard all a′i and (n + 1) − a′i from A′

1. Thus there remain exactly

|A′
1|/2 − 2(1/ε + 1) different pairs (a′′i , b

′′
i ) where a′′i + b′′i = n + 1. The

sums of these pairs represent all numbers of the form k(n + 1) for any

0 ≤ k ≤ |A′
1|/2−2(1/ε+1). We thus obtained a representation of x+k(n+1)

as a sum of different elements of A′
1, in other word x+k(n+1) ∈ ∑

(A′
1). As

x varies in [n(1/ε+1), n(1/ε+1)+n] and k varies in [0, |A′
1|/2−2(1/ε+1)],

the proof is completed.

Let A2 = A \A1 and set A′
2 := A2 ∩ [0, (p− 1)/2] and A′′

2 = A2\A′
2. We are

going to view A′′
2 as a subset of [−(p− 1)/2,−1].

We will now invoke Lemma 2.3 several times to conclude Lemma 4.2. First,

it is trivial that the length of I ′ is much larger than n, whilst elements of

A1 are positive integers bounded by n. Thus, Lemma 2.3 implies that

I ′′ := [n(1/ε + 1),
∑
a∈A1

a− (n + 1)/ε] ⊂
∑

(A1).

Note that the length of I ′′ is greater than (p − 1)/2. Indeed n ≈ (2p)1/2

and

|I ′′| =
∑
a∈A1

a− (n + 1)/ε− n(1/ε + 1) ≥
∑

a∈A′1

a−O(n)

≥ (1/2 + ε)n(n + 1)/2−O(n) > (p− 1)/2.

Again, Lemma 2.3 (applied to I ′′) yields that
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[n(1/ε + 1),
∑

a∈A1∪A′2

a− (n + 1)/ε] ⊂
∑

(A1 ∪ A′
2)

and

[
∑

a∈A′′2

a + n(1/ε + 1),
∑
a∈A1

a− (n + 1)/ε] ⊂
∑

(A1 ∪ A′′
2).

The union of these two long intervals belongs to
∑

(A)

[
∑

a∈A′′2

a + n(1/ε + 1),
∑

a∈A1∪A′2

a− (n + 1)/ε] ⊂
∑

(A).

On the other hand, 0 /∈ ∑
(A) implies

∑

a∈A′′2

a + n(1/ε + 1) > 0

and

∑

a∈A1∪A′2

a− (n + 1)/ε < p.

The proof of Lemma 4.2 is completed.

5. Sketch of the proof of Theorem 1.13

Assume that A is incomplete and |A| = λp1/2 with some 2 ≥ λ ≥ 1.99.

Furthermore, assume that the element b in Theorem 2.2 is one. We are

going to view Zp as [−(p− 1)/2, (p− 1)/2].

To make the proof simple, we made some new invention: n = bp1/2c, A1 :=

A ∩ [−n, n], A′
1 := A ∩ [0, n], A′′

1 := A ∩ [−n,−1], A′
2 := A ∩ [n + 1, (p −
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1)/2], A′′
2 := A ∩ [−(p − 1)/2,−(n + 1)], t′1 := |A′

1|, t′′1 := |A′′
1|, t1 := |A1| =

t′1 + t′′1.

Notice that |A′′| (in Theorem 2.2) is sufficiently close to the upper bound.

The following holds.

Lemma 5.1. Most of the elements of A′′ belong to [−n, n];

• both t′1 and t′′1 are larger than (1/2 + ε)n,

• t1 is larger than (21/2 + ε)n

with some positive constant ε.

As a consequent, both
∑

(A ∩ [−n,−1]) and
∑

(A ∩ [1, n]) contain long

intervals thanks to the following Lemma, which is a direct application of

Lemma 4.3 and argument provided in Lemma 3.2.

Lemma 5.2. If X is a subset of [1, n] with size at least (1/2 + ε)n. Then

[(n + 1)(1/ε + 1), (n + 1)(n/2− t− cε)] ⊂
∑

(X)

where t = n− |X| and cε depends only on ε.

Now we can invoke Lemma 2.3 several times to conclude Theorem 1.13.

Lemma 5.2 implies

I ′ := [(n + 1)(1/ε + 1), (n + 1)(n/2− t′1 − cε)] ⊂
∑

(A′
1).

and

I ′′ := [−(n + 1)(n/2− t′′1 − cε),−(n + 1)(1/ε + 1)] ⊂
∑

(A′′
1).

Lemma 2.3 (applied to I ′ and A′′
1; I ′′ and A′

1 respectively) yields
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[
∑

a′′1∈A′′1

a′′1 + (n + 1)(1/ε + 1), (n + 1)(n/2− t′1 − cε)] ⊂
∑

(A1)

and

[−(n + 1)(n/2− t′′1 − cε),
∑

a′1∈A′1

a′1 − (n + 1)(1/ε + 1)] ⊂
∑

(A1).

which gives

I := [
∑

a′′1∈A′′1

a′′1 + (n + 1)(1/ε + 1),
∑

a′1∈A′1

a′1 − (n + 1)(1/ε + 1)] ⊂
∑

(A1).

Note that the length of I is greater than (p − 1)/2. Again, Lemma 2.3

(applied to I and A′
2, I and A′′

2 respectively) implies

[
∑

a′′∈A′′1∪A′′2

a′′ + (n + 1)(1/ε + 1),
∑

a′1∈A′1

a′1 − (n + 1)(1/ε + 1)] ⊂
∑

(A)

and

[
∑

a′′1∈A′′1

a′′1 + (n + 1)(1/ε + 1),
∑

a′∈A′1∪A′2

a′ − (n + 1)(1/ε + 1)] ⊂
∑

(A).

The union of these two intervals belongs to
∑

(A),

[
∑

a′′∈A′′1∪A′′2

a′′ + (n + 1)(1/ε + 1),
∑

a′∈A′1∪A′2

a′ − (n + 1)(1/ε + 1)] ⊂
∑

(A).

On the other hand,
∑

(A) 6= Zp implies
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∑

a′∈A′1∪A′2

a′ −
∑

a′′∈A′′1∪A′′2

a′′ − 2(n + 1)(1/ε + 1) < p.

In other words

∑
a∈A

‖a‖ ≤ p + O(p1/2).
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