
RESEARCH DESCRIPTION

My main research interest lies in the interaction of Combinatorics and Probability. Most of my works
in the past several years focus on a characterization problem that involves arithmetic structures and
on several singularity and universality problems under probabilistic setting. Please see my cv for a
complete list of publications.

1. Anti-concentration of inhomogeneous random walks

Some of my main interests are on the so-called Inverse Littlewood-Offord (ILO) problem. Let xi, i =
1, . . . , n be iid Bernoulli random variables, taking values ±1 with probability 1/2. Given a multiset A
of n real number a1, . . . , an, the (discrete) concentration probability of A is defined to be

ρ(A) := sup
a

P
( n∑
i=1

aixi = a
)
.

Thus ρ(A) is at least the returning probability P(
∑n
i=1 aixi = 0) and this definition is . Motivated

by their study of random polynomials, in the 1940s Littlewood and Offord [43] raised the question of
bounding ρ(A). They showed that if the ai are nonzero then ρ(A) = O(n−1/2 log n). Shortly after the
Littlewood-Offord paper, Erdős [24] gave a combinatorial proof of the refinement ρ(A) ≤

(
n
n/2

)
2−n.

Since the pioneer results of Erdős and Littlewood and Offord, there has been an impressive wave of
reasearch to improve the inequality by imposing new assumptions on the ai’s. These improvements
are reflected in the work of Erdős and Moser [23], Halász [30], Katona[39], Kleitman [40], Sárkőzy and
Szemerédi [68], Stanley [75], and others.

About fifteen years ago, Tao-Vu and Rudelson-Vershynin brought a different view to the problem. We
first discuss the work by Tao and Vu in [80, 81] where they tried to find the underlying reason as
to why ρ(A) is large, say ρ(A) ≥ n−C for some C > 0. This creates a new direction called inverse
Littlewood-Offord problem.

Let us introduce an important concept of additive structures, generalized arithmetic progressions
(GAPs). A subset P of R is a GAP of rank r if it can be expressed as in the form

P =
{
g0 +m1g1 + · · ·+mrgr|Ni ≤ mi ≤ N ′i ,mi ∈ Z

}
.

The numbers gi are the generators of P . The numbers Ni, N
′
i are the dimensions of P . We say that P

is proper if every element of P can be written in such linear combination in a unique way. If −Ni = N ′i
for all i and if g0 = 0, we say that P is symmetric.

Assume that P is a proper symmetric GAP of rank r = O(1) and size nO(1), and assume that all the
elements of A are contained in P . Then, by the additive property |nP | ≤ nr|P | of P , we easily have
ρ(V ) = Ω(n−O(1)). This example shows that if the elements of A belong to a symmetric proper GAP
with a small rank and small cardinality, then ρ(A) is very large. A few years ago, Tao and Vu [80, 81]
proved several results showing that this is essentially the only reason:
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Theorem 1.1. Assume that ρ(A) ≥ n−C for some C > 0, then most of the elements of A belong to a
symmetric proper GAP of bounded rank O(1) and of small size nO(1).

We next introduce the independent work by Rudelson and Vershynin [63, 64] where they studied

the (continuous) small ball probability ρr(A) = supa P
(
|
∑n
i=1 aixi − a| ≤ r

)
in terms of common

diophantine structures of the ai. Fix parameters κ and γ (which may depend on n), where γ ∈ (0, 1),
for any nonzero vector (a1, . . . , an) define the least common denominator to be

LCDκ,γ(A) := inf
{
θ > 0 : dist((θa1, . . . , θan),Zn) < min(γ‖(θa1, . . . , θan)‖2, κ)

}
.

Theorem 1.2. Assume that a2
1 + · · · + a2

n ≥ 1. Then, for every κ > 0 and γ ∈ (0, 1), and for
ε ≥ 1/LCDκ,γ(x) we have

ρε(A) = O
( ε
γ

+ e−Θ(κ2)
)
.

I have been trying to understand this phenomenon throughout the following notes.

1. Almost optimal characterization. In a joint work with Vu [60] we gave a fine characterization
of random walks of large concentration probability with optimal dependences of the parameters; we
also showed that if the small ball probability is large, then most of the entries ai are very close to a
GAP of small cardinality and small rank. This result was used in [12, 19, 51, 52, 53, 58, 59].

2. Multilinear forms. One can view the quantity
∑n
i=1 aixi in the definition of ρ(A) as a linear

form of the random vector x = (x1, . . . , xn). It is natural to generalize the concept to higher degree
polynomial. For simplicity, let us focus on quadratic forms. Given an n×n symmetric matrix A = (aij)
of real entries, we define the quadratic concentration probability of A by

ρq(A) := sup
a∈R

P
(∑
i,j

aijxixj = a
)
.

It was shown in [14, 15], as a nontrivial application of the Erdős and Littlewood-Offord inequality,
that if most of the coefficients aij are nonzero, then ρq(A) ≤ n−1/2+o(1). This bound is almost best
possible, as demonstrated by the quadratic form

∑
ij xixj . In the reverse direction, we would like

to characterize those A which have large quadratic concentration probability. In this setting, there
are two different sources of examples where ρq(A) can be large. The first source comes from additive
structures: assume that all the coefficients aij belong to a GAP of small rank O(1) and small size

nO(1), then similar to the linear case, one has ρq(A) = n−O(1). The second source has an algebraic
nature: if the matrix A has low rank, such as aij = kibj + kjbi with arbitrary bi and with integers ki
so that P(

∑
i kixi = 0) = n−O(1), then the probability P(

∑
i,j aijxixj = 0) has order of n−O(1). In

general, if aij can be decomposed into additive and algebraic structures as above, then ρq(A) is also
large. In [50], I was able to prove that these are essentially the only examples that have large quadratic
concentration probability.

In a joint work with O’Rourke [57] we continued to study the anti-concentration of multilinear forms
of bounded degree, giving a weak characterization. These results were applied in [50, 56, 57].
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3. Non-abelian setting. The concentration probability can be extended to ai ∈ G for general
non-abelian group G,

ρ(a1, . . . , an) := sup
a

P
( n∏
i=1

axii = a
)
,

where xi, i = 1, . . . , n are iid Bernoulli random variables.

Let u1, . . . , ur be elements of G, and let (N1, . . . , Nr) be a vector of positive integers. Then the set of
all products in the ui and their inverses in which each ui and its inverse appear at most Ni times is
called a progression of rank r and size lengths N1, . . . , Nr, and is denoted by P (u1, . . . , ur;N1, . . . , Nr)
(or P for short). A nilprogression of rank r and step s is a progression P (u1, . . . , ur;N1, . . . , Nr) with
the property that every iterated commutator of degree s + 1 in the generators u1, . . . , ur equals the
identity idG. A coset nilprogression of rank r and step s is a set of the form π−1(P ), where P is a
nilprogression of rank r and step s in a quotient group G0/H, where H is a finite normal subgroup of
a subgroup G0 of G and π : G0 → G0/H is the quotient map.

Similarly to the abelian case, elements of a coset nilprogression of small cardinality are examples of
sets of high concentration probability. By adapting the method of [10, 78], I was able to obtain the
converse of the above (in a rather weak sense) that if ρ(a1, . . . , an) ≥ n−O(1) then n1−o(1) consecutive
elements ai belong to a coset nilprogression of cardinality nO(1) with r, s = O(1) (please see [54]).

A common feature of our results is that the random variables xi can be fairly general. For instance
the results in (1) and (2) are valid for any xi of finite (2 + ε)-moment for ε > 0.

2. Singularity and universality in random matrices and random polynomials

For most of the results listed below the related statistics in the Gaussian case are either trivial or well
studied; we show that these statistics are asymptotically universal (at least at the macroscopic level)
with respect to the random inputs. Techniques used to prove these results include anti-concentration
results (Section 1), comparison methods (such as the Lindeberg exchange method), and various tools
from combinatorics (to deal with ±1 randomness) and from basic geometric analysis and linear algebra
(to deal with matrices and with high dimensional objects). The general theme looks quite similar but
each problem requires a different set of ideas.

First allow us to discuss a couple of results on roots of random polynomials.

1. Expected number of real roots of Kac polynomials. Let ξ be a real random variable having
no atom at 0, zero mean and unit variance. Our object of study is the random polynomial Pn(x) :=∑n
i=0 ξix

i, where ξi are iid copies of ξ. This polynomial is often referred to as Kac’s polynomial, and
has been extensively investigated in the literature.

Let Nn be the number of real roots of Pn(x). The issue of estimating Nn was already raised by Waring
as far back as 1782 ([85, page 618], [41]), and has generated a large amount of literature. Extending
earlier results by Bloch and Pólya [6], in a series of breakthrough papers [44, 45, 46, 47] in the early
1940s, Littlewood and Offord proved (for many atom variables ξ such as Gaussian, Bernoulli or uniform

on [−1, 1]) that with probability 1− o(1), logn
log log logn � Nn � log2 n.

Around the same time, Kac [36] developed a general formula for the expectation of number of real
roots

ENn =

∫ ∞
−∞

dt

∫ ∞
−∞
|y|p(t, 0, y)dy,
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where p(t, x, y) is the probability density for Pn(t) = x and P ′n(t) = y. In the Gaussian case, one can
easily evaluate the RHS and get

ENn,N(0,1) =
1

π

∫ ∞
−∞

√
1

(t2 − 1)2
+

(n+ 1)2t2n

(t2n+2 − 1)2
dt = (

2

π
+ o(1)) log n.

For non-Gaussian distributions, however, Kac’s formula is often very hard to evaluate. In a subsequent
paper [37], Kac himself handled the case when ξ is uniformly distributed on the interval [−1, 1] and
Stevens [76] extended it further to cover a large class of ξ having continuous and smooth distributions
with certain regularity properties. For discrete distributions, the integral formula does not appear
useful and it took a while until Erdős and Offord in 1956 [25] found a completely new approach to
handle the Bernoulli case. For this case, they proved that with probability 1− o( 1√

log logn
)

Nn =
2

π
log n+ o(log2/3 n log log n).

In the late 1960s and early 1970s, Ibragimov and Maslova [31, 32, 33, 34] successfully refined Erdős-
Offord’s method to handle any variable ξ with mean 0. They proved that for any ξ with mean zero
which belong to the domain of attraction of the normal law,

ENn =
2

π
log n+ o(log n).

Other developments were made in the late 1980s by Wilkins [87] and in the early 1990s by Edelman and
Kostlan [19], who evaluated the explicit integral formula above very carefully and provided a precise
estimate for the Gaussian case

ENn,N(0,1) =
2

π
log n+ CN(0,1) + o(1).

where CN(0,1) ≈ .625738072.. is an explicit constant (and one can even write o(1) as sum of explicit
functions of n, which gives a complete Taylor expansion.) The remarkable fact about the integral
formula is that the error term ENn,N(0,1) − 2

π log n tends to a limit as n tends to infinity. Numerical

evidence tends to support the conjecture that ENn− 2
π log n do go to a limit, as n to tends to infinity.

However, the situation is delicate as this limit seems to depend on the distribution of the atom variable
ξ and is not universal. In a joint work with O. Nguyen and V. Vu [58] we made a first step by showing
that the error term in question is bounded.

Theorem 2.1. Let ξ be a random variable with mean zero and variance one and bounded (2 + ε)-
moment. Then

|ENn,ξ −
2

π
log n| = Oε,ξ(1).

In a more recent result, with Y. Do and V. Vu [19] we answered this problem for a natural class of
distributions, as an application of a general theorem concerning the repulsion between real roots of
Kac’s polynomials.

For any positive integer N , we say that ξ has uniform distribution with parameter N (or type I) if
P(ξ = i) = 1/(2N) independently, i ∈ {±1,±2, . . . ,±N}. Furthermore, we say that a random variable
ξ of mean zero has type II distribution with parameter (p, ε0) if its has a p-integrable density function
and its (2 + ε0)-moment is bounded.



RESEARCH DESCRIPTION 5

Theorem 2.2. Let ξ be a random variable with either type I or type II with fixed parameters. Then

ENn,ξ =
2

π
log n+ Cξ + o(1),

where Cξ is an absolute constant depending on ξ.

2. Universality for the number of intersections for random eigenfunctions on flat tori. Let
M be a smooth Riemannian manifold. Let F be a real-valued eigenfunction of the Laplacian on M
with eigenvalues λ2,

−∆F = λ2F.

The nodal set NF is defined to be

NF := {x ∈M, F (x) = 0}.

The study of NF is extremely important in analysis and differential geometry. Here we are simply
interested in the case when M is the flat tori Td = Rd/Zd with d ≥ 2; more specifically we will be
focusing on the intersection set of NF with a given reference curve.

Let C ⊂ M be a curve assumed to have unit length with the arc-length parametrization γ : [0, 1]→M.
The nodal intersection between F and C is defined as

Z(F ) := #{x : F (x) = 0} ∩ C.

It is known that all eigenvalues λ2 have the form 4π2m,m ∈ Z+. Let Eλ be the collection of µ =
(µ1, µ2) ∈ Z2 such that

µ2
1 + µ2

2 = m.

Denote N = Nm = #Eλ, that is N = r2(m). The toral eigenfunctions f(x) = e2πi〈µ,x〉, µ ∈ Eλ form an
orthonormal basis in the eigenspace corresponding to λ2. The following determinisitic results due to
Bourgain and Rudnick are gathered from [4, 5, 6].

Theorem 2.3. Let C ⊂ T2 be a real analytic curve with nowhere vanishing curvature, then

λ1−o(1) ≤ Z(F ) ≤ cλ,

where the implied constants depend on γ.

We next introduce a probabilistic setting first studied by Rudnick and Wigman [66]. Consider the
random Gaussian function

F (t) =
1√
N

∑
µ∈Eλ

εµe
2πi〈µ,γ(t)〉,

where εµ are iid complex standard Gaussian with a saving ε−µ = ε̄µ so that F is real valued.

The random function F is called arithmetic random wave [3, 42], whose distribution is invariant under
rotation by the Gaussian property of the coefficients. The following are main results from [66] and
[67].

Theorem 2.4. Let C ⊂ T2 be a smooth curve on the torus, with nowhere vanishing curvature and of
total length one. Then the expected number of nodal intersections is EgZ =

√
2m and the variance is

bounded by Varg(Z) = O(mN ). Furthermore, for a generic m

Varg(Z) =
m

N

∫
C

∫
C

4
( 1

N

〈 µ
|µ|
, γ̇(t1)

〉2〈 µ
|µ|
, γ̇(t2)

〉2

− 1
)
dt1dt2 +O(

m

N3/2
).
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In a subsequent paper, Rudnick, Wigman and Yesha [67] also studied the problem for T3 and obtained
some partial results. Roughly speaking, the proofs of these results are based on Kac-Rice formula, but
because this formula is not valid uniformly, the authors had to chop the curve into many pieces to
remove certain unpleasant singularity.

Motivated by the universality phenomenon in probability, together with M-C. Chang, O. Nguyen and
V. Vu [12] we studied the behavior of Z(F ) for other random eigenfunctions F beside the Gaussian
ones. More specifically, consider the random function

F (t) =
1√
N

∑
µ∈Eλ

εµe
2πi〈µ,γ(t)〉,

where εµ = ε1,µ + iε2,µ and ε1,µ, ε2,µ, µ ∈ Eλ are iid random variables with the saving constraint
ε−µ = ε̄µ. We were able to show that

Theorem 2.5. With generic λ and γ, and for iid random variables εµ of mean zero, variance one and
of bounded (2 + ε)-moment, for any fixed k we have

EεµZk = EgZk +O(λk/N c),

where c = c(k, γ) > 0 is an absolute constant.

This seems to be the first ever universality result (in terms of randomness) for the random wave model.

3. Polynomial systems of many variables. Let d = (d1, . . . , dn−1) be a degree sequence, and
f = {f1, . . . , fn−1} be a collection of n−1 homogeneous polynomials in n variables of degree d1, . . . , dn−1

respectively, where fl(x1, . . . , xn) =
∑

α=(α1,...,αn)
α1+···+αn=dl

(
dl
α

)1/2
aα

(l)xα with xα = xα1
1 · · ·xαnn .

In their seminal works [69, 70, 71, 72, 73], Shub and Smale initiated a systematic study of Newton’s
method for finding common roots of the fi over the unit vectors in Cn.

Define the Weyl-norm of the system f by ‖f‖W :=
√
‖f1‖2W + · · ·+ ‖fn−1‖2W , where ‖fl‖2W :=∑

α |a
(l)
α |2. We denote the condition number of the system by

µ
(1)
complex(f) := sup

x∈Sn−1,f1(x)=···=fn−1(x)=0

‖f‖W × ‖(Dx|Tx)−1∆‖2.

where Dx|Tx is the Jacobian of the system f restricted to the tangent space at x, and ∆ is the diagonal
matrix of entries (

√
dl, 1 ≤ l ≤ n− 1).

To analyze the effectiveness of Newton’s method for finding commons roots of the fi, Shub and Smale
[70], and independently Kostlan [29] show that, under an invariant probability measure (i.e. when the

coefficients a
(l)
α are iid standard Gaussian), the condition number of f is small with high probability.

Theorem 2.6. Assume that the coefficients a
(l)
α are iid standard complex-Gaussian random variables,

then
P(µ

(1)
complex(fGau) > 1/ε) = O(n4N2Dε4).

Here D :=
∏
di is the Bezout number and N :=

∑n−1
i=1

(
n−1+di

di

)
. Roughly speaking, Theorem 2.6

asserts that with high probability all the common roots of the fi are far from being multiple. This is
a crucial ingredient in Shub-Smale’s analysis of Newton’s method.

Beside finding common complex roots, another important problem is to find common real roots. In a
recent series [16, 17, 18], Cucker, Krick, Malajovich and Wschebor have studied this problem in detail.
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For convenience, Cucker et. al. introduced the following more general condition number.

µ
(2)
real(f) := sup

x∈Sn−1

min
{√

nmax
i
‖fi‖W × ‖(Dx|Tx)−1∆‖2,

maxi ‖fi‖W
maxi |fi(x)|

}
.

With respect to this condition number, Cucker, Krick, Malajovich and Wschebor [18] were able to give
an analog of Theorem 2.6, again for Gaussian system. Roughly speaking (see for instance [16] or [11,
Section 19]), Cucker, Krick, Malajovich and Wschebor showed that there exists an iterative algorithm

that returns the number of real zeros of f and their approximations and performs O(log(nDµ
(2)
real(f)))

iterations with a total cost of O([C(n+ 1)D2(µ
(2)
real)

2]2(n+1)N log(nDµ
(2)
real(f)). Henceforth, the proba-

bilistic analysis of µ
(2)
real plays a key role in their study.

The proofs of Shub and Smale regarding µ(1), and of Cucker et. al. regarding µ(2), on the other
hand, heavily rely on the invariance property of (real and complex) Gaussian distributions, and are
extremely involved. Under the universality and the ”smoothed analysis” point of view (see for instance
[74]), it is natural and important to study the condition numbers µ(1) and µ(2) for polynomial systems
under more general distributions such as Bernoulli. This problem is also closely related to a question
raised by P. Burgisser and F. Cucker in [11, Problem 7]. By using the geometric technique developed
by Rudelson and Vershynin [63], I was able to partially analyze the behavior of µ(2) under discrete
distributions (for slightly perturbed systems), we extract here a simplified version.

Theorem 2.7. [52] Assume that a
(l)
α are iid Bernoulli random variables. Then with probability tending

to one, there does not exist non-zero vector x ∈ Rn with f(x) = 0 and rank(Dx|Tx) < n− 1.

We next turn to random matrices.

1. Wegner-type estimate for eigenvalue repulsion. Gaps between consecutive eigenvalues have
a central place in the theory of random matrices. The limiting (global) gap distribution for gaussian
matrices (GUE and GOE) has been known for some time [48]. Recent progresses on the universality
conjecture showed that these limiting distributions are universal with the class of Wigner matrices.
However, at the microscopic level, there are many open problems concerning basic questions.

The first natural question is the limiting distribution of a given gap δi := λi+1 − λi. For GUE, this
was computed very recently by Tao [77]. Within the class of Wigner matrices, again the four moment
theorem by Tao and Vu [82] asserts that this distribution is universal, provided the four matching
moment condition. The matching moment condition was recently removed by Erdős and Yau [22]
using sophisticated techniques from the theory of parabolic PDE to analyze a Dyson Brownian motion,
allowing for a computation of the gap distribution for random matrix ensembles such as the GOE or
Bernoulli ensembles.

Another issue is to understand the size of the minimum gap δmin := min1≤i≤n−1(δi+1 − δi). For the

GUE ensemble, Bourgade and Ben-Arous [7] showed that the minimum gap δmin is of order n−5/6

and computed the limiting distribution. We are not aware of a polynomial lower bound (of any fixed
exponent) for δmin for discrete random matrices, which are of importance in applications in random
graph theory and theoretical computer science. Even proving that δmin > 0 (in other words the random
matrix has simple spectrum) with high probability in the discrete case is already a highly non-trivial
problem, first raised by Babai in the 1980s (motivated by his study of the isomorphism problem [2]).
This latter problem was solved only very recently by Tao and Vu.
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For Wigner matrices, by the semi-circle law [48], most eigenvalues are in the interval [−2
√
n, 2
√
n],

thus the average gap is of order n−1/2. The question is to estimate the probability that a particular
gap is significantly smaller than the average.

We now continue to discuss a few results related to this question. Tao and Vu showed in [82] that
for every constant c0 > 0 there exists c1 > 0 such that for Wigner matrices and for fixed ε > 0 one
has supεn≤i≤(1−ε)n P(δi ≤ n−c0−

1
2 ) � n−c1 . The weakness of this theorem is that c1 is small (much

smaller than 1, regardless the value of c0), and thus one cannot use the union bound to conclude that
δi > 0 simultaneously for all i.

In [20], Erdős et. al. proved for real Wigner matrices 1
n

∑
εn≤i≤(1−ε)n P(δi ≤ δn−1/2) � δ2, for any

constant ε, δ > 0, with a similar result also available at the edge of the spectrum. The quadratic
decay δ2 here comes from an eigenvalue repulsion phenomenon, reflecting the first-order decay of the
two-point correlation function ρ2(x, y) of the GOE ensemble as one approaches the diagonal x = y.
However, this result only give a bound on the average probability, and furthermore δ needs to be a
constant. Under some strong smoothness and decay hypotheses on the entries of a Hermitian Wigner
matrix Xn, it was shown by Erdős, Schlein, and Yau [21] that one has the Wegner estimate

P
(
En1/2 − δn−1/2 ≤ λi ≤ λi+l ≤ En1/2 + δn−1/2 for some i

)
� δ(l+1)2

for any fixed l ≥ 1 and any ε > 0 and any bounded E ∈ R. An analogue of this result for real smooth
ensembles, with the exponent k2 replaced by k(k+1)/2, was established in [9, Appendix B]. In a recent
paper with Tao and Vu we showed following.

Theorem 2.8 ([59]). There is a constant 0 < c < 1 such that the following holds for the gaps
δi := λi+1(Xn)− λi(Xn) of real symmetric Wigner matrices Xn. For any quantities n−c ≤ α ≤ c and
δ ≥ n−c/α, we have

sup
1≤i≤n−1

P(δi ≤ δn−
1
2 ) = O

( δ√
α

)
.

More generally, one can take c1 = 1, c2 = 3, cl ≥ l2+2l
3 for l ≥ 3 so that

sup
1≤i≤n−l

P(|λi+l(Xn)− λi(Xn)| ≤ δn− 1
2 ) = O

(( δ√
α

)cl)
.

Note that in the first statement, taking α = n−c implies that Xn has multiple eigenvalues with
probability at most O(exp(−nc)) for some constant c > 0, this result improves over [84]. The key
feature of our result is that the bound δcl yields the evidence of quadratic repulsion between nearby
eigenvalues.

2. Logarithmic determinant. As determinant is one of the most fundamental matrix functions, it
is a natural problem in the theory of random matrices to study the distribution of its determinant.
Motivated by a result of Goodman [28], and of Girko [27], together with Vu we showed the following

Theorem 2.9 ([61]). Assume that the entries aij , 1 ≤ i, j ≤ n of an n by n matrix are iid Bernoulli
taking values ±1 with probability 1/2, then

sup
x∈R

∣∣∣P( log(|detAn|)− 1
2 log(n− 1)!√

1
2 log n

≤ x
)
−P(N(0, 1) < x)

∣∣∣ ≤ log−1/3+o(1) n.

In fact this theorem holds for much more general distributions of mean zero and variance one. Note
that we can rewrite the statistics under consideration as

∑
i f(λi), with f(x) = log |x| and λi are
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the singular values of An. These (normalized and non-normalized) statistics have been studied quite
extensively in the literature, mostly under various smoothness assumption on f . Unfortunately these
treatments do not extend to our problem due to the singularity of log x.

Roughly speaking, the proof of Theorem 2.9 relies on the fact that the determinant can be written as
product of distances di from the i-th column ci to the subspace generated by columns ci+1, . . . , cn.
For random matrices of iid entries, these quantities can be controlled rather precisely via tools of
concentration of measure. The CLT then follows by the “independence” of these distances di.

The situation for Wigner matrices Wn is more subtle mainly by two reasons. Firstly, as the symmetric
entries are dependent, the subspaces now depends on the columns, and so the task to control the
distances becomes harder. Secondly, the distances di are not “independent” anymore so that one can
apply CLT for martingales. One can overcome the second point by using the co-factor expansion
to write the determinant det(Wn) into product form

∏n
i=1 wi, where each wi can be expressed as a

quadratic form
∑

1≤k,l≤i aklxkxl, with xk being iid and independent from (akl)1≤k,l≤i, the entries of

the inverse matrix W−1
i with Wi being the principle minor of size i of Wn. However, as W−1

i is rather
unstable, this direct method does not seem to work. Nevertheless, Tao and Vu [83] were able to obtain
a CLT-type result for log |det(Wn)| as long as the entries are iid copies of a real random variable ξ
satisfying the matching moment condition up to fourth order.

Theorem 2.10. Assume that aij , 1 ≤ i ≤ j ≤ n are iid copies of a real random variable ξ such that
Eξk = E(N(0, 1)k), 1 ≤ k ≤ 4. Then

log |detWn| − 1
2 log n! + 1

4 log n
√

log n
→ N(0, 1).

The key ingredient of this result of Tao and Vu is their four-moment matching theorem from [82]. This
approach is very useful but it excludes many interesting ensembles such as the Bernoulli case.

3. Normal vectors. Fixed a random variable ξ of mean zero and variance one and consider the
random vector v = (ξ1, . . . , ξn), whose entries are iid copies of ξ. Sample n− 1 iid copies v1, . . . ,vn−1

of v. We would like to study the normal vector of the hyperplane spanned by the vi. In matrix term,
we let A = (aij)1≤i≤n−1,1≤j≤n be a random matrix of size n−1 by n where the entries aij are iid copies
of ξ; the vi are the row vectors of A. Let x = (x1, . . . , xn) ∈ Fn be a unit vector that is orthogonal
to the vi (Here and later F is either R or C, depending on the support of ξ.) First note that recent
studies in the singularity probability of random non-Hermitian matrices (such as [63, 80]) show that
under very general conditions on ξ, with extremely high probability A has rank n− 1. In this case x is
uniquely determined up to the sign ±1 when F = R or by a uniformly chosen rotation exp(iθ) when
F = C.

When the entries of A are iid standard gaussian gF, it is not hard to see that x is distributed as
a random unit vector sampled according to the Haar measure in Sn−1 of Fn. Motivated by the
universality phenomenon, it is natural to ask if these properties are universal, namely that they hold
if ξ is non-gaussian. In [62] we confirms this prediction in a strong sense.

Theorem 2.11. Suppose that aij are iid copies of a normalized sub-gaussian random variable ξ, i.e.
P(|ξ| ≥ t) = O(exp(−ct2))∀t, then the followings hold.

• There are constants C,C1 > 0 such that for any m ≥ C1 log n

P(‖x‖∞ ≥
√
m/n) ≤ Cn2 exp(−m/C).
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• There exists a positive constant c such that the following holds: for any d-tuple (i1, . . . , im), with
d = nc, the joint law of the tuple (

√
nxi1 , . . . ,

√
nxid) is asymptotically independent standard

normal.

This result implies a few other things such as control of entries of the inverse matrix of random iid
matrices. It also helps verify the bound P(σn ≥ tn−1/2) ≤ C1 exp(−C2t) where σn is the least singular
value of a random iid matrix.

4. Lyapunov exponents for random matrices. Let Ai, i ≥ 1 be a sequence of independent
identically distributed random matrices of a given distribution µ in the space of square matrices of size
n of real-valued entries. Let BN be the matrix product

BN = A1 . . . AN .

Assume that E log+(‖Ai‖) < ∞. The Lyapunov exponents γ1, . . . , γn associated to Ai are defined
inductively by γ1 = γ and for k ≥ 2,

k∑
i=1

γi = lim
N→∞

1

N
E log ‖ ∧k BN‖.

Following the two celebrated results of Furstenberg and Oseledec, for some nice distribution µ it is
natural to ask if we can give fine approximation for the Lyapunov’s exponents or a quantification of
the rate of convergence.

These aspects have been widely studied by many researchers, especially for unimodular and/or sym-
plectic matrices of fixed size in connection to the theory of Schrödinger operators. Our main focus is
on a model of random matrices of large dimension which are not necessarily unimodular. Especially,
we will consider those Ai random matrices where the entries are iid copies of a common real random
variable ξ of mean zero and variance 1/n. This ensemble had been considered by Cohen, Isopi and
Newman in the 80s [13, 35, 49] in connection to May’s proposal of a specific quantitative relationship
between complexity and stability within certain ecological models.

Theorem 2.12. [49, Equation (6)] Assume that the entries of Ai are iid copies of 1√
n
N(0, 1). Let

µ1 ≥ · · · ≥ µn be the Lyapunov’s exponents of the matrix product BN . Then

µi =
1

2
(log 2 + Ψ(

n− i+ 1

2
)− log n),

where Ψ(d) = Γ′(d)/Γ(d) is the digamma function.

This result was also generalized in [35] to ξ having bounded density and E((
√
nξ)4) < ∞. These

results address the values of the exponents for various random matrices of smooth type. For speed
of convergence, the only result we found for the iid model is due to Kargin [38, Proposition 3] who
considered the rate of convergence of the top exponents.

Theorem 2.13. Let ε > 0 be given. Assume that the entries of Ai are iid copies of 1√
n
N(0, 1). Then

for all sufficiently small t, and all n ≥ n0(t) and N ≥ 1

P(| 1

N
log ‖BN‖| > t+ ε/N) ≤ 2(1 + 2/ε)n exp(−1

8
Nnt2).

As we have mentioned, all of the results in the literature with respect to the iid model assumed the
common distribution ξ to be sufficiently smooth so that 1

N log ‖BN‖ with N → ∞ is well defined
almost surely. The smoothness assumption is natural, as if Ai were singular with positive probability,
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then our chain BN would become singular with probability one; in this case it is still reasonable to
study the top Lyapunov exponent but not other exponents. However, even when the exponents are not
well defined, can we still say useful things about the growth of the chain BN for some effective range
of N? This question is natural because in many practical problems, it is not known a priori that our
random matrix model is smooth. In addition, to estimate the Lyapunov’s exponents using computer,
one actually computes 1

N log σi(BN ) for some sufficiently large (but not too large) N .

Trying to address these issues, with a universality approach in mind, we considered the matrix models
Ai where the entries of

√
nAi are iid copies of a subgaussian random variable ξ of mean zero, variance

one. One representative example of our matrices is the iid Bernoulli ensemble. In [53] I was able to
show

Theorem 2.14. There exist constants c, C depending on ε, ξ such that the followings hold.

• For any t ≥ 1/n we have

P
(
| 1

N
log ‖BN‖| ≥ t+ ε/N)

)
≤ (1 + 2/ε)n

[
exp(−cmin{t2, t}Nn) +Nn−cn

]
.

• For any t ≥ 1/n we have

P
(
| 1

N
log sup

x1∈Sn−1,x2∈Sn−1

‖BNx1∧BNx2‖| ≥ t+ε/N)
)
≤ (1+2/ε)n

[
exp(−cmin{t2, t}Nn)+Nn−cn

]
.

• We also have

P
(

inf
x∈Sn−1

1

N
log ‖BNx‖ ≤ −(

1

2
+ ε) log n

)
≤ Cn exp(−N/2) +Nn−ω(1).

In short, (1) extends Theorem 2.13 to general matrix ensembles with the extra assumptions that
N � ncn and n0(t) = O(1/t). It shows that although the chain dies out eventually (for discrete ξ),
one can still see the concentration of the very top exponents as long as N is not exceedingly large.

3. Some further study

Regarding our results on “Anti-concentration of inhomogeneous random walks”, I would like to obtain a
more satisfying characterization for multilinear forms. In the non-abelian setting, I propose to seek for
a continuous variant for locally compact groups. Another problem is to find appropriate applications
of this non-abelian setting.

For “Universality for the number of intersections for random eigenfunctions on flat tori”, I suspect that
the variance for general ξ is also as small as in the Gaussian case, but this is a delicate matter (even
for the Gaussian case). There are many things left to be discovered, such as central limit theorem for
fluctuations; length of the nodal lines (such as [42]); extension to other manifolds, etc. Similarly for
“Polynomial systems of many variables”, understanding of basic statistics for other random systems
beside the Gaussian one is completely missing from the picture.

With respect to the note on “Wegner-type estimate for eigenvalue repulsion”, our next goal is to
obtaining the conjectural bound sup1≤i≤n−1 P(δi ≤ δn−

1
2 ) = O(( δ√

α
)2) from Theorem 2.8. A related

problem is to improving Vershynin’s bound P(σn ≤ δn−
1
2 ) = O(δ1/9 + exp(−nc)) from [86] on the

least singular value of random symmetric matrices to O(δ + exp(−nc)).
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About our result on “Logarithmic determinant”, as stated, I would like to obtain a CLT variant for
logarithmic determinant of random symmetric Bernoulli matrices. To the best of my understanding,
this problem is still open even with recently developed tools for proving universality in RMT. Relatedly,
I plan to study a variant of logarithmic law for permanent of iid Gaussian matrices Gn. There are other
open questions for this Gaussian model such as the (weak) anti-concentration conjecture by Aaronson

[1] that |perm(Gn)| ≥
√
n!/nO(1) with high probability, or the conjecture by Fyodorov [26] that the

empirical distribution of roots of the permanental polynomial perm(Gn−xIn) obeys the circular law.

Trying to extend our paper on “Normal vectors”, the same thing (optimal delocalization and gaus-
sianity) should hold for normal vectors of Wigner matrices without the first row (which in turns would
yield optimal control on the entries of inverse random Wigner matrices; I have obtained some slightly
weaker bound along the line in [55]). Ideally, I would like to see if there is a flexible method that
would work for eigenvectors of Wigner matrices (without the use of eigenvector flow method from
[8]), and more generally the extremal vectors of “balanced systems” (such as the random unit vectors
x = (x1, . . . , xn) that maximizes the sum

∑
1≤i≤j≤k aijkxixjxk with aijk being iid copies of a nice

random variable of zero mean.)
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