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Introduction

The cyclic homology H C*(A) of an associative algebra with unit A over a field
k of characteristic zero was introduced by A. Connes [C1], and extended to
arbitrary commutative rings k in [LQ]. It comes equipped with a natural
degree (-2) k-linear map S: HC*(A)~HC*_2(A). We will occasionally write S
as SA to indicate dependence on the ring A; the map SA provides HC*(A) with
a natural k[u] co-module structure (as described below) via the isomorphism
HC*(k)~k[u], deg(u)~2. Throughout, k will be an arbitrary commutative ring
with unit. The principal result of this paper is an Eilenberg-Zilber theorem for
cyclic k-modules (Theorem 3.1) whose main applications are Theorem A and
Theorem B.

Theorem A. i) If A and B are two unital k-algebras with A and H C*(A) k-flat,
then there exists a short exact sequence

which is natural in A and B (where 0 denotes cotensor product).
ii) If kis a field and HC*(B) is a quasi-free comodule (see Definition 2.1),

HC*(B)=k[u](8)V* + W*, then

HC*(A®B)=HC*(A)® W* +HH*(A)® V*, 1

where HH)A) is the Hochschild homology of A*.

As an application one has the following calculation of the -cyclic and
periodic cyclic homology of A[t] and A[t, t-1]:

Theorem B. If k is a field of characteristic zero and A a unital k-algebra, then:

* Partially supported by NSF Grant
This is a sum of k-vector spaces and NOT of k[uJ-comodules, however, HC*(A)0W, is a sub

k[u]-comodule
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i) The cyclic homology of the polynomial algebra A[tJ is given by

HC*(A[tJ)=HC*(A)+Nil+HC*(A), where Nil+HC*(A)
=~(HH*(A))a (Q(={1,2,3, ... )).

aeN

ii) The cyclic homology of the algebra of Laurent polynomials with
coefficients in A, A [t, t - 1J is given by

HC*(A[t, t-1J) =HC*(A)+HC* _1(A)+Nil+HC*(A)+ Nil_HC*(A)

where Nil_HC*(A)= ~ (HH*(A))a'
«ez.: «OlvlN)

iii) As a consequence of i) and ii), one has PHC*(A[tJ)=PHC*(A) and
PHC*(A[t, t-1J)=PHC*(A)+PHC*_1(A), where PHCn(B)= lim HCn+2.(B).

~
Both the above theorem and corollary generalize to the case when A and B

are DG algebras with differential of degree + 1. The nil groups Nil , H C*(A)
have interesting geometric applications even in the ungraded case, although we
do not explore these applications here. It is worth comparing the decom-
position given above for H C*(A[tJ) and H C*(A[t, t-1 J) with the correspond-
ing result in algebraic K-theory:

and
K*(A[tJ) =K*(A) + Nil+ K*(A)

K*(A[t, t-1J) ~ K*(A)+ K* -1 (A) + Nil+ K*(A) + NiL K*(A).

Similar decomposition theorems holds true for L-theory and the K-theory of
spaces.

Theorem B and Theorem A in the particular case of a group ring were first
proven in [BJ2' Theorem A was conjectured by the first author and
M. Karoubi in May of 1984,both of whom subsequently provided proofs through
different arguments (see [KJ). The results of this paper (for k a field of
characteristic zero) were announced by the first author at Oberwolfach in
August of 1984. A somewhat weaker result for the cyclic homology of the
product of two cyclic simplicial abelian groups over arbitrary k was proved by
the second author in [OJ- Ktinneth formulas for the cyclic homology of
algebras have also been proven by Feigin- Tsygan [FTJ, C. Kassel [Kas],
J. Jones and C. Hood. This paper is a combination of [B3J and [OJ, and being
shorter than both of them better suited for publication. As in [B3J, one can
then identify P with the Loday-Quillen product in cyclic homology ([LQJ,
Sect. 3) and <I> with the dual of the Connes product in cyclic cohomology, but
we will not ellaborate on this here.

The paper is organized as follows. In Sect. I, we recall the definition of
algebraic S1-chain complexes as introduced in [B1J, and define the algebraic
S1-action on the tensor product of two such complexes. In Sect. II, we prove
the Ktinneth formula for the tensor product of the two algebraic S1-chain
complexes and in Sect. III, we use "acyclic models" to prove Theorem 3.1. In
Sect. IV we derive Theorems A and B.
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Section I

Let k be a commutative ring with unit. An algebraic S1-chain complex (a chain
complex equipped with an algebraic circle action) C=(C*,d*,f3*) consists of a
chain complex of k-modules (C*,d*), d*: Cn-+Cn_1 satisfying dn+1dn=0, with
the algebraic circle action 13* given by k-linear maps f3n: Cn -+ Cn+ 1 which satisfy
f3n+1f3n= 0, dn+ 1f3n+ f3n-1 dn = 0.

A morphism of algebraic S1-chain complexes f*: (C*,d*,f3*)--7(C~,d~,f3~)
consists of k-linear maps fn: Cn -+ C~ which commute with the d's and f3's.

To an algebraic S1-chain complex (C*,d*,f3*) one can associate the chain
complex (pC*,pd*) with pCn=Cn+Cn_2+ ... , pdn(Xn,Xn_2,.··)=(dxn
+ f3xn_ 2' dxn_ 2+ f3xn_4, ... ) and the following short exact sequence of chain
complexes

Here I is the inclusion I(xn)=(xn,O, ... ,O), l: denotes the suspension l:(C*,d*)
=(B*,d~) with Bn+1=Cn, Bo=O, d~+1=dn' and tt is the projection
n(xn, xn_ 2' ... )= (Xn_ 2' Xn_ 4' ... ).

The homology groups H*(C*,d*), resp. H*(pC*,p_d*) are by definition the
Hochschild resp. cyclic or equivariant homology of C =(C*, d*, 13*). The long
exact homology sequence associated with the short exact sequence (*) becomes,
with the above notation:

- I - S - -----+HH *( C)----+ HC*( C) ----+H C* _ 2(C*)----+ HH * -1 (C) ----+ (**)

and will be called the Gysin-Connes exact sequence. Obviously a morphism of
algebraic S1-chain complexes f: C-+ C' provides a commutative diagram

~ HH*(C)~HC*(C)~HC*_2(C) ~HH*_1(C)~

1 1 1 1 (***)

~HH*(C')~FtC*(C')~HC*_2(C')~HH*_1(C')~

Given two algebraic S1-chain complexes C' and C" one defines the tensor
product C'@ C" as being the chain complex (C~ <8lC~, D*) with

n

(C' <8lC")n = (f) C~@ C~_k' Dn(xk@Yn-k)=d'xk@Yn-k+( -l)kxk<8ld"Yn_k'
k=O

and with the algebraic circle action fJ* given by fJn(Xk<8lYn-k)=f3'xk<8lYn-k+
( -l)kxk<8lf3"Yn_k'

We denote by chains, (resp. S1-chainsk) the category of chain complexes
(resp. algebraic S1-chain complexes) of k-modules by F, T: S1-chainsk vv->chainsk,

the functors which associate with (C*, d*, 13*) the chain complexes (C*, d*) resp.
(pC*, pd*) and by F --4T ---+ l:* T the natural transformations which to each S 1_

chain complex C* associates the short exact sequence (*).
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Section II

Let k be a commutative ring with unit and let k[u] be the graded commutative
algebra generated by u of degree 2. k[u] can also be viewed as a co-com-
mutative coalgebra with commultiplication LI: k[u]->k[u]@k[u] given by

P

LI(uP)= I Ui@Up-i

i= 0
and co-unit given by

. {O6(U') = 1
if i>O
if i=O.

A k[u]-comodule is a graded module M* equipped with the k-linear map LlM:
M*->k[u]@M* which satisfies the expected axioms. These axioms imply that
LlM(m)=m+u@S(m)+u2@S2(m)+ ... , where S is a degree -2 k-linear map of
M*. Conversely any S: M*->M*_2 provides a k[u]-comodule structure on
M*, hence the k[u]-comodule structures on a graded k-module M* are in 1-1
correspondence with the k-linear maps of degree - 2.

Example. 1) Suppose V* is a k-graded module which is k-flat. Then V*@k[u] is
equipped with a canonical k[u]-comodule structure given by S(x@un)=
x@un-1 and S(x) =0. This is called the free k[u]-comodule with base V*.

2) Suppose V* is a k-graded module and S=O. The k[u]-comodule struc-
ture given by this S is called the trivial structure.

Definition 2.1. A k[ u ]-comodule M* is called quasifree if M* is the direct sum
M~+M~ of two k[u]-comodules (SM, =SM~ +SMJ with M~ free (SM~ surjective)
and M~ trivial (SM~' = 0).

Given two k[u]-comodules M * and N* one defines the graded vector space
M*Ok[ujN* and X2Cotork[uj(M*,N*) as the kernel resp. cokernel of the linear
mapD: M*@N*->X2(M*@N*) given by D(m@n)=SM(m)@n-m@SN(n); SM
and SN are the degree (-2) - linear maps which define the k[u]-comodule
structures of M * and N* and X"K* denotes the n-fold suspension of K*. Since
D is a morphism of k[u ]-comodules with the comodule structure on M*@N*
given by SM@id+id@SN' M*Dk[ujN* and X2Cotork[uj(M*,NJ are k[u]-
comodules.

If C*=(C*,d*,fJ*) is an algebraic Sl-chain complex, then HC*(C) has a
k[u]-comodule structure induced by S: HC*(C)->HC*_2(C),

Proposition 2.2. 1) If C~= (C~, d~, fJ~) and C~= (C~, d~, fJ~) are two algebraic
Sl-chain complexes with C~ and HC*(CJ k-flat, then there exists a (natural)
short exact sequence

- - 'P --O->XCotork[ulHC*(C'), HC*(C*))---> HC*(C'@Crr
)

~ H C*( C')Ok[ujH C*( C")->O.

2) If, moreover, k is afield and HC*(C")=V*@k[u]+W* is quasi-free where
V*@k[u] is the free part and W* the trivial part, then

HC*(C'@C")=HC*(C')@ V* +H*(C",d~)@ W*.
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Proof of Proposition 2.2. Note that if (C*,d*,f3*) is an algebraic Sl-chain
complex, then the chain complex (pC*,pd*) is a chain complex of free k[u]-
comodules with pd* being a morphism of k[u]-comodules. If (C~,d~,f3~) and
(C~,d~,f3~) are two algebraic Sl-chain complexes, we have the following short
exact sequence of chain complexes

0---> p( C~ C8lC~) .L; p'C~® p" C~ ~ ~2(p' C*C8lp" C~) ---> O. (*)

The differential [) in pC~®pC~ is given by the tensor product differential, D
is defined by D(x®y)=S'x®y-x®S"y, XEpC~, YEpC~ with S' resp. S" defined
the k[u]-comodule structure of pC~ resp. pC~ and I as follows. We formally
write

x=(Xn,Xn_2,XII_4' ... )Ep'C~ as x= L XII_2kU\
k=O

y=(Yr,Yr-2,Yr-4' ... )Ef3" c, as y= L Yr_2kVk

k=O
and

Z=(ZS,ZS_2'Zs_4' ... )Eti(C~®C~) as z= L Zs_2kUk;
k=O

r

then I is given by I(xm®Ynur)= L (xmul)®(Ynvr-I). The reader can easily
1=0

check the exactness of this sequence. Moreover, if one equippes p' C~C8lp" C"
with the degree - 2 morphism of chain complexes 9' = S®id + id ®S, then
P'C~C8lP',C~ is a chain complex of k[u]-comodules and both I and Dare
morphisms of chain complexes of k[uJ-comodules. Since

and

the long exact sequence for homology induced by (*) is

. - S0id-id0S
---->~3(HC*( C~)®H C*( C~))---->H C*( C~® C~)---->HC*( C~)®H C*( C~) ------>

---->~2(HC*( C~)®H C*( C~))---->... ,

which clearly provides the following short exact sequence

O---->~Coker(HC*( C~), H C*( C~))---->HC*( C~C8lC~)

---->HC*( C~)DkIUIHC*( C~)---->O

or equivalently HC*(C~®C~)=KerD+Coker~D.
Suppose now that k is a field and HC*(C")=k[u]®V*+ W* is quasifree.

1.:.hen D: HC*(C')C8lHC)~")---->HC*(C')®HC*(C") is o, +D2 with »..
H C*( C)®k[u] ® V* ---->H C*( C)®k[u] eV* defined by D 1(x®un®v) = Sx®un®v
-x®un-1®v and D2: HC)C)®W*---->HC*(C')®W* defined by D2(x®w)=Sx
®w. Clearly Coker Dl =0, Ker Dl = HC*(C')C8l V*. The Gysin Connes exact
sequence of C' tensored by W* gives the exact sequence
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~1:-2HC*(C')®W*~ HC*(C')®W* ~HH*(C')®W*~
_ D2 _

~ 1:-1 H C*( C')® W* ~ 1:H C*( C')® W* ~ ....

Section III

We recall that a cyclic set (R-module) see [C] or [BF], (X*,t*) consists of a
simplicial set (R-module) X*=(Xn,d~,s~; O~i~n) and a cyclic structure t*
= (tn: Xn~ Xn) which satisfies t~+1= id, tn_l d~-1 = d~tn' tns~-l = s~tn for 1~i~n.
Let AR resp. AR denote the category of simplicial R-modules resp. cyclic R-
modules (when there is no danger of confusion we will write A, A, chains, S1_
chains instead of AR' AR' chainsj , S1-chainsR)·

As with A, A is equipped with an internal tensor product

With any cyclic R-module (Gn' d~, s~, tn) one associates the S1-algebraic chain
complex

(Gn,dn= ito (_1)id~,f3n=( -1)"(1-( _1)"+1t"+1)S~(1 +( -1)"tn+ ...(_1)"2t~)

denoted by C(C*' t*). The purpose of this section is to prove that Hochschild
resp. cyclic homology of C(G*,t*)®C(G~,t~) and C(G*Q9G~,t*®t~) are na-
turally isomorphic. Precisely if d, ~: A x Avv-.S1-chains are the functors
defined by

~((G*, t*),(G~, t~))= C(G*®G~, t*®t~),

d((G*, t*),(G~, t~))= C(G*, t*)®C(G~, t~)
then we have

Theorem 3.1. There exists the commutative diagram of functors and natural
transformations

with f and T inducing isomorphism for homology.
The proof will require the Theorem of acyclic models [M, p. 128] which we

will review below.
Let C be a category and Ji'EobC a set of objects called models. Given a

covariant functor L: C~ Ab, Ab = the category of abelian groups one can de-
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_fine a new covariant functor L.: C~Ab and a natural transformation n: L.""'>L
by UK) = the free abelian group generated by X(K) = U (Hom(M, K) x L(M))

MEAt
for KEobC,L.(f) (IX,U)=(folX·U) for fEHom(K,K'), IXEHom(M,K) and
uEL(M), with ryK: L.(K)~L(K) given by ryK(IX,U)= IX(U). The functor L is called
representable with respect to A iff IJ admits a right inverse, i.e., a natural
transformation

qF L""'>L. with IJo¢L=id.

Theorem of Acyclic Models [M, p. 128]. 1. Let A,B: C""'>chains, be two co-
variant functors, f = {J;: (A)i~(B)i' 0 ~ i ~ n} a natural transformation of chain
complex functors through dimension n and A a set of models in C. If Ai is
representable for all i, B(M) is acyclic in dimension> n for all MEA and
fn(Imd:+1)cIm(d~+1) then there exists a natural transformationf: A""'>B extend-
ing {J;};~n. Moreover, the extension f is unique up to all higher homotopies.

2. If 1, g are two natural transformations from A to Band s
={Si: (A)i~(B)i+1' i~n-1} a homotopy through dimension n, i.e., di+1Si
+Si-1 d, = J; - gi' Aq is representable for q"?;,n and Hq(B(M)) =0 for q "?;,n,
MEA then there exists a natural chain homotopy s such that sIAi=Si' O~i~n
-l.

This theorem will be applied to C =A x A and to the functors F d and FPJ.

Models. In [M] p. 130, M~ = (M~, d~, s~) is defined to be the free simplicial R-
module generated by the standard p-simplex L1[p] (L1[p]n=Hom.All, p)) and A
={(M~,M~)lp,r"?;,O} obA xA is the set of models used to prove the standard
Eilenberg-Zilber theorem. In analogy let M~ be the free cyclic R-module
generated by the cyclic set A[p]. By A[p] we denote the "free" cyclic set
generated by L1 [p] (see [BF] Definition 1.3). It follows from [BF] Proposi-
tion 1.4 that the geometric realization of the underlying simplicial set A[p] is
homotopy equivalent to s' by an Sl-equivariant map. let AA
= {(M~, M~)lp,q"?;,O}EobA xA.
Representability. The representability for (F d)n = An resp. (F PJ)n= En can be
proven as in [M] Lemma 2.9.1 by using the "free-ness" of our models. Precise-

- ~ly if xnEKn' KEobA it induces a simplicial mapL1[n]--+K and then a cyclic

map A en] ~ K. This induces the homomorphism of cyclic R-modules

M~~K. So if (K,L)EobAxA, ¢1fn: An(K,L)=K/i0Ln~A:(K,L) and
n

¢Bn: En(K,L)= I Kr®Ln_r~li:(K,L)
r= 0

are defined by the formulas

¢An(Xn®Yn) =(xn x Yn' An®An)EHomAxA(M~x M~, K x L) x An(M~, M~),

¢Bn(Xp®xn_p) =(xp x xn_p, Ap®An)EHomAXA(M~x M~-P; K x L) x Bn(M~,M~-P)

with A* the prefered generator of M~. It is straightforward to verify ¢An and
¢Bn are natural transformations inverse to ryAnand ryBn.
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Acyclicity. By definition

and
H *(Td(M~, M~))=HC*(C*(M~)® C(M~))

H)T8i(M~,M~))=HC*(C*(M~®M~)).

Proposition 1.4 [BF] in conjunction with Proposition 2.2 (resp. the remark
that M~®M~ is the free cyclic R-module generated by the cyclic set A[n]
x A[p]) imply that

H*(Td(M~,M~)) resp. H*('WB(M~,M~))

is isomorphic to zero if *~ 2.

Proof of Theorem 3.1. Let Fss", Tss", P8i' etc.... be the graded module valued
functors obtained by forgetting d's, and fY': }; Tse' -'> Tse' resp. f3@: }; T8i' -'> T8i'
be the natural transformation induced by the corresponding Sl-actions. Let *
be the natural self transformation of Td',P8i', ... defined by *n=(-l)nId. We
will construct the natural transformations Pk): };2kpd'-,>P8i', k=0,1,2, ...
which satisfy:

(a)i: (f3@Pi) +Pi) fY') is natural transformation from };2i + 1P d to P8i.
(b)i: f3@f(i)+ j<i)fY' = -df(i+1)- f(i+1)d.

Note that (b)i=>(a)i+ 1; indeed composing with fY' on the right resp. f3ffbon
the left the equality (b), implies f3df(i+1)+f3j<i+1)d=dj<i+1)f3+Pi+1)df3 which
is clearly equivalent to (a)i+ i-

If f(i) are constructed, since Tss" = P d' +};2 P d' +};4 P d' + ... resp. 'WB'
=PBB'+};2P8i'+};4PBB'+ ... we can define Tby the matrix

T=

-r:
o
o

*f(2)
*f(1)
*j<0)

Since dT.9f resp. dT@ are given by the matrix

d f3 0 0
o d f3 0
o 0 d f3

we verify (using (b)J that TdT.9f=dT@Tand we also observe that TI.9f=Iffbf and
(};2 T)n.9f = n@ T, which finish the proof. Suppose f(O) and t= have been con-
structed. Inductively one obtains - r:1) as a homotopy from f3j<i)+ j<i) f3 to
zero which can be only obtained from Theorem of acyclic modules 2) as
extension of fJi+ 1) =0, r:1) =0, fii+ 1) =0.

Construction of f(O). One takes PO) = *f whose f is given by the shuffle map.
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Construction of Pl). We want to obtain - Pl) as a homotopy from [3PO)

+PO)[3 to zero, in other words we want vn=( -ltfP), vn: (L2 F .xI)n--+(FPJ)nto
satisfy [3fo +I" [3= dv + vd. Again by applying the acyclic model theorem, it
suffices to have vn given for n=O, 1,2 hence v2: Ao--+B2. We take v2: Go®Ho
=Ao--+(G®H)2=Bz=Gz®Hz, G.,H.EobAxA defined by

vz(go®ho) = 'C~ s~sg(go)®s°'Cf sg(ho) + s~sg(go)®s~ sg(ho)

where 'C
G and 'CH are the cyclic structures of G. resp. H. (the definition of Vz on

morphisms is obvious).
The resulting transformations induce an isomorphism in homology because

PO) is the shuffle map up to sign.

Section IV

Proof of Theorem A. Given an R-algebra A the Hochschild resp. cyclic ho-
mology of A are calculated by the algebraic Sl-chain complex.

(Tn(A), d~,s~, tn) with Tn(A) = A (8) ... ®A
'-v-"'

n+ 1

if i~n-1
if i=n

s~(ao(8)··· ®an) = ao®'" ®ai(8) l®ai+ 1(8) •.• ®an

t:(ao®···®an) =an®ao®'" ®an_1·

Theorem 3.1 implies that Hochschild resp. cyclic homology of C(T*(A(8)B), t~),
and of C(T*(A), t~)® C(T*(B), t!) are naturally isomorphic. Theorem A follows
then from Proposition 2.2.

Proof of Corollary B. This follows from the calculation of the Hochschild resp.
cyclic homology of k[t] resp. k[t,t-1] given in [LQ] Sect. 2. In both cases the
cyclic homology is a quasifree k[u]-comodule with

w*={~
if *=0

W ={k
if *=0,1

if * =F 0
resp.

* 0 if * =F 0,1'
and

V ={!~/a
if *=0 { EEl -; if *=0

resp. V = aEZ"O
if * =F 0'* 0 if * =F 0 * 0

here ka denotes a copy of k. Q.E.D.
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