The complex of p-centric and p-radical subgroups
and
its reduced Lefschetz module

John Maginnis and Silvia Onofrei*
Kansas State University and The Ohio State University

AMS Fall Central Sectional Meeting, University of Akron, Ohio, 20-21 October 2012
Subgroup Complexes in a Finite Group G

Subgroup complex $\Delta = \Delta(C)$

- 0-simplices: $C = \{Q : Q \leq G\}$ is a collection of subgroups of the group G, closed under G-conjugation and partially ordered by inclusion
- n-simplices: $\sigma = (Q_0 < Q_1 < \ldots < Q_n), Q_i \in C$

The group G acts by conjugation on the subgroup complex Δ:

- isotropy group of σ: $G_\sigma = \cap_{i=0}^n N_G(Q_i)$
- fixed point set of Q: $\Delta^Q = \Delta(C^Q)$ with $C^Q = \{P \in C | Q \leq N_G(P)\}$
The reduced Lefschetz virtual module with coefficients in a field k of characteristic p

- alternating sum of chain groups:
 $$\Lef_{G}(\Delta; k) := \sum_{i=-1}^{\left|\Delta\right|} (-1)^i C_i(\Delta; k)$$

- element of Green ring of kG:
 $$\Lef_{G}(\Delta; k) = \sum_{\sigma \in \Delta/G} (-1)^{|\sigma|} \text{Ind}_{G_{\sigma}}^{G} k - k$$
The reduced Lefschetz virtual module with coefficients in a field k of characteristic p

- alternating sum of chain groups:
 \[\tilde{L}_G(\Delta; k) := \sum_{i=-1}^{\vert \Delta \vert} (-1)^i C_i(\Delta; k) \]

- element of Green ring of kG:
 \[\tilde{L}_G(\Delta; k) = \sum_{\sigma \in \Delta/G} (-1)^{\vert \sigma \vert} \text{Ind}^G_{G_{\sigma}} k - k \]

Theorem (Robinson, 1988)

*Let G be a finite group, k a field of characteristic p and Δ a subgroup complex in G. The number of indecomposable summands of $\tilde{L}_G(\Delta; k)$ with vertex Q equals the number of indecomposable summands of $\tilde{L}_{N_G(Q)}(\Delta^Q; k)$ with vertex Q.***
A nontrivial p-subgroup Q of G is p-radical if $Q = O_p(N_G(Q))$

is p-centric if $Z(Q) \in \text{Syl}_p(C_G(Q))$
The Complex of p-Centric and p-Radical Subgroups

- A nontrivial p-subgroup Q of G is p-radical if $Q = O_p(N_G(Q))$
 is p-centric if $Z(Q) \in \text{Syl}_p(C_G(Q))$

$D_p(G)$ complex
- collection of p-centric p-radical subgroups of G
- best candidate for a p-local geometry
- used in cohomology decompositions

$\widetilde{L}_G(D_p(G); k)$
- not indecomposable, not projective
- vertices are subgroups of non-centric p-radicals

Dwyer(1997)
Smith, Yoshiara(1997)
Dwyer(1998), Grodal(2001)
Benson, Smith(2008)
Sawabe(2005)
The Complex of p-Centric and p-Radical Subgroups

- A nontrivial p-subgroup Q of G is p-radical if $Q = O_p(N_G(Q))$
 is p-centric if $Z(Q) \in \text{Syl}_p(C_G(Q))$

$\mathcal{D}_p(G)$ complex
- collection of p-centric p-radical subgroups of G
- best candidate for a p-local geometry
- used in cohomology decompositions

$\tilde{L}_G(\mathcal{D}_p(G); k)$
- not indecomposable, not projective
- vertices are subgroups of non-centric p-radicals

- If G is a finite simple group of Lie type then $\tilde{L}_G(\mathcal{D}_p(G); k) \simeq \text{St}_G$
 the irreducible and projective Steinberg module.
Terminology and Notation: Groups

- G is a finite group and p a prime divisor of its order
- a p-local subgroup is the normalizer of a finite p-subgroup of G
- a p-central element is an element in the center of a Sylow p-subgroup of G
- kG is the group algebra with k a field of characteristic p
Terminology and Notation: Groups

- G is a finite group and p a prime divisor of its order
- A p-local subgroup is the normalizer of a finite p-subgroup of G
- A p-central element is an element in the center of a Sylow p-subgroup of G
- kG is the group algebra with k a field of characteristic p

1. G has characteristic p if $C_G(O_p(G)) \leq O_p(G)$
2. G has local characteristic p if all p-local subgroups of G have characteristic p
3. G has parabolic characteristic p if all p-local subgroups which contain a Sylow p-subgroup of G have characteristic p
Proposition (Maginnis, Onofrei, 2009)

Assume G is a finite group of parabolic characteristic p. Suppose that t is an element of order p in G such that $O_p(C_G(t))$ contains p-central elements. Then no vertex of the reduced Lefschetz module $\tilde{L}_G(D_p(G); k)$ contains a conjugate of t.

Sketch of proof:
Set $T := \langle t \rangle$. If $O_p(C_G(T))$ contains p-central elements then $D_p(G) \cap T$ is $N_G(T)$-contractible. Thus $D(G) \cap T$ is mod-p acyclic. And P.A. Smith theory: $D(G) \cap Q$ is mod-p acyclic for any p-subgroup $Q > T$. It follows $eL_N(G)(Q)(D(G) \cap Q; k) = 0$. An application of Robinson's theorem gives the result.
No Vertex of $\tilde{L}_G(\mathcal{D}_p(G); k)$ Contains p-Central Elements

Proposition (Maginnis, Onofrei, 2009)

Assume G is a finite group of parabolic characteristic p. Suppose that t is an element of order p in G such that $O_p(C_G(t))$ contains p-central elements. Then no vertex of the reduced Lefschetz module $\tilde{L}_G(\mathcal{D}_p(G); k)$ contains a conjugate of t.

Sketch of proof:

- Set $T := \langle t \rangle$.
No Vertex of $\tilde{L}_G(\mathcal{D}_p(G); k)$ Contains p-Central Elements

Proposition (Maginnis, Onofrei, 2009)

Assume G is a finite group of parabolic characteristic p. Suppose that t is an element of order p in G such that $O_p(C_G(t))$ contains p-central elements. Then no vertex of the reduced Lefschetz module $\tilde{L}_G(\mathcal{D}_p(G); k)$ contains a conjugate of t.

Sketch of proof:

- Set $T := \langle t \rangle$.
- If $O_p(C_G(T))$ contains p-central elements then $\mathcal{D}_p(G)^T$ is $N_G(T)$-contractible.
No Vertex of $\tilde{L}_G(\mathcal{D}_p(G); k)$ Contains p-Central Elements

Proposition (Maginnis, Onofrei, 2009)

Assume G is a finite group of parabolic characteristic p. Suppose that t is an element of order p in G such that $O_p(C_G(t))$ contains p-central elements. Then no vertex of the reduced Lefschetz module $\tilde{L}_G(\mathcal{D}_p(G); k)$ contains a conjugate of t.

Sketch of proof:

- Set $T := \langle t \rangle$.
- If $O_p(C_G(T))$ contains p-central elements then $\mathcal{D}_p(G)^T$ is $N_G(T)$-contractible.
- Thus $\mathcal{D}(G)^T$ is mod-p acyclic.
No Vertex of $\tilde{L}_G(\mathcal{D}_p(G); k)$ Contains p-Central Elements

Proposition (Maginnis, Onofrei, 2009)

Assume G is a finite group of parabolic characteristic p. Suppose that t is an element of order p in G such that $O_p(C_G(t))$ contains p-central elements. Then no vertex of the reduced Lefschetz module $\tilde{L}_G(\mathcal{D}_p(G); k)$ contains a conjugate of t.

Sketch of proof:

- Set $T := \langle t \rangle$.
- If $O_p(C_G(T))$ contains p-central elements then $\mathcal{D}_p(G)^T$ is $N_G(T)$-contractible.
- Thus $\mathcal{D}(G)^T$ is mod-p acyclic.
- And P.A. Smith theory: $\mathcal{D}(G)^Q$ is mod-p acyclic for any p-subgroup $Q > T$.
No Vertex of $\tilde{L}_G(D_p(G); k)$ Contains p-Central Elements

Proposition (Maginnis, Onofrei, 2009)

Assume G is a finite group of parabolic characteristic p. Suppose that t is an element of order p in G such that $O_p(C_G(t))$ contains p-central elements. Then no vertex of the reduced Lefschetz module $\tilde{L}_G(D_p(G); k)$ contains a conjugate of t.

Sketch of proof:

- Set $T := \langle t \rangle$.
- If $O_p(C_G(T))$ contains p-central elements then $D_p(G)^T$ is $N_G(T)$-contractible.
- Thus $D(G)^T$ is mod-p acyclic.
- And P.A. Smith theory: $D(G)^Q$ is mod-p acyclic for any p-subgroup $Q > T$.
- It follows $\tilde{L}_{N_G(Q)}(D(G)^Q; k) = 0$.

An application of Robinson's theorem gives the result.
No Vertex of $\widetilde{L}_G(\mathcal{D}_p(G); k)$ Contains p-Central Elements

Proposition (Maginnis, Onofrei, 2009)

Assume G is a finite group of parabolic characteristic p. Suppose that t is an element of order p in G such that $O_p(C_G(t))$ contains p-central elements. Then no vertex of the reduced Lefschetz module $\widetilde{L}_G(\mathcal{D}_p(G); k)$ contains a conjugate of t.

Sketch of proof:

- Set $T := \langle t \rangle$.
- If $O_p(C_G(T))$ contains p-central elements then $\mathcal{D}_p(G)^T$ is $N_G(T)$-contractible.
- Thus $\mathcal{D}(G)^T$ is mod-p acyclic.
- And P.A. Smith theory: $\mathcal{D}(G)^Q$ is mod-p acyclic for any p-subgroup $Q > T$.
- It follows $\widetilde{L}_{N_G(Q)}(\mathcal{D}(G)^Q; k) = 0$.
- An application of Robinson’s theorem gives the result.
No Vertex of \(\tilde{L}_G(\mathcal{D}_p(G); k) \) Contains \(p \)-Central Elements

Proposition (Maginnis, Onofrei, 2009)

Assume \(G \) is a finite group of parabolic characteristic \(p \). Suppose that \(t \) is an element of order \(p \) in \(G \) such that \(O_p(C_G(t)) \) contains \(p \)-central elements. Then no vertex of the reduced Lefschetz module \(\tilde{L}_G(\mathcal{D}_p(G); k) \) contains a conjugate of \(t \).

Sketch of proof:

- Set \(T := \langle t \rangle \).
- If \(O_p(C_G(T)) \) contains \(p \)-central elements then \(\mathcal{D}_p(G)^T \) is \(N_G(T) \)-contractible.
- Thus \(\mathcal{D}(G)^T \) is mod-\(p \) acyclic.
- And P.A. Smith theory: \(\mathcal{D}(G)^Q \) is mod-\(p \) acyclic for any \(p \)-subgroup \(Q > T \).
- It follows \(\tilde{L}_{N_G(Q)}(\mathcal{D}(G)^Q; k) = 0 \).
- An application of Robinson’s theorem gives the result.
No Vertex of $\widetilde{L}_G(\mathcal{D}_p(G); k)$ Contains p-Central Elements

Proposition (Maginnis, Onofrei, 2009)

Assume G is a finite group of parabolic characteristic p. Suppose that t is an element of order p in G such that $O_p(C_G(t))$ contains p-central elements. Then no vertex of the reduced Lefschetz module $\widetilde{L}_G(\mathcal{D}_p(G); k)$ contains a conjugate of t.

Sketch of proof:

- Set $T := \langle t \rangle$.
- If $O_p(C_G(T))$ contains p-central elements then $\mathcal{D}_p(G)^T$ is $N_G(T)$-contractible.
- Thus $\mathcal{D}(G)^T$ is mod-p acyclic.
- And P.A. Smith theory: $\mathcal{D}(G)^Q$ is mod-p acyclic for any p-subgroup $Q \supset T$.
- It follows $\widetilde{L}_{N_G(Q)}(\mathcal{D}(G)^Q; k) = 0$.
- An application of Robinson’s theorem gives the result.
Let G be a finite group of parabolic characteristic p and let T be a p-subgroup of G. Assume the following hold:

(N1) The group $O_C := O_p(TC_G(T))$ is purely noncentral in G.

(N2) $C := TC_G(T) = O_C.H.K$ where H has parabolic characteristic p and $L := O_C.H$ is normal in $N_G(T)$.

(N3) A Sylow p-subgroup of L contains p-central elements of G.

Then there is an $N_G(T)$-equivariant homotopy equivalence between $D_p(G)^T$ and $D_p(H)$.
Main Theorem on Vertices of $\widetilde{L}_G(D_p(G); k)$

Theorem (Maginnis, Onofrei, 2012)

Let G be a finite group of parabolic characteristic p and let T be a p-subgroup of G. Assume that the following conditions hold:

1. \(C := TC_G(T) = O_C.H.K \) where \(O_C = O_p(C) \)
 and \(L := O_C.H \) is the generalized Fitting subgroup of C.

2. The group $H = L/O_C$ is a finite simple group of Lie type in characteristic p.

Then T is a vertex of an indecomposable summand of $\widetilde{L}_G(D_p(G); k)$ if and only if:

1. $T = O_C$ is purely noncentral.
2. $K = C/L$ is a p'-group.
3. $|N_G(T)/C|$ is relatively prime to p.

Under these conditions, there will exist a unique indecomposable summand of $\widetilde{L}_G(D_p(G); k)$ with vertex T, which will lie in a block of kG with defect group T.
Main Theorem: Sketch of the Argument

- T is a vertex of $\tilde{L}_G(\mathcal{D}_p(G); k)$ if and only if T is a vertex of $\tilde{L}_{N_G(T)}(\mathcal{D}_p(G)^T; k)$
Main Theorem: Sketch of the Argument

- T is a vertex of $\tilde{L}_G(\mathcal{D}_p(G); k)$ if and only if T is a vertex of $\tilde{L}_{N_G(T)}(\mathcal{D}_p(G)^T; k)$
- $O_C = O_p(C) = O_C(TC_G(T))$ is noncentral
Main Theorem: Sketch of the Argument

- T is a vertex of $\tilde{L}_G(\mathcal{D}_p(G); k)$ if and only if T is a vertex of $\tilde{L}_{N_G(T)}(\mathcal{D}_p(G)^T; k)$
- $O_C = O_p(C) = O_C(TC_G(T))$ is noncentral
- $N_G(T) = O_C.H.K'$ with $K' = N_G(T)/L$ and $L = O_C.H$
Main Theorem: Sketch of the Argument

- T is a vertex of $\widetilde{L}_G(\mathcal{D}_p(G); k)$ if and only if T is a vertex of $\widetilde{L}_{N_G(T)}(\mathcal{D}_p(G)^T; k)$
- $O_C = O_p(C) = O_C(TC_G(T))$ is noncentral
- $N_G(T) = O_C.H.K'$ with $K' = N_G(T)/L$ and $L = O_C.H$
- $\mathcal{D}_p(G)^T$ is $N_G(T)$-equivariantly homotopy equivalent to $\mathcal{D}_p(H)$
Main Theorem: Sketch of the Argument

- T is a vertex of $\tilde{L}_G(\mathcal{D}_p(G); k)$ if and only if T is a vertex of $\tilde{L}_{N_G(T)}(\mathcal{D}_p(G)^T; k)$
- $O_C = O_p(C) = O_C(TC_G(T))$ is noncentral
- $N_G(T) = O_C.H.K'$ with $K' = N_G(T)/L$ and $L = O_C.H$
- $\mathcal{D}_p(G)^T$ is $N_G(T)$-equivariantly homotopy equivalent to $\mathcal{D}_p(H)$
- $\mathcal{D}_p(H)$ is $N_G(T)$-equivariantly homotopy equivalent to the Tits building Δ of H
Main Theorem: Sketch of the Argument

- T is a vertex of $\widetilde{L}_G(\mathcal{D}_p(G); k)$ if and only if T is a vertex of $\widetilde{L}_{N_G(T)}(\mathcal{D}_p(G)^T; k)$
- $O_C = O_p(C) = O_C(T C_G(T))$ is noncentral
- $N_G(T) = O_C.H.K'$ with $K' = N_G(T)/L$ and $L = O_C.H$
- $\mathcal{D}_p(G)^T$ is $N_G(T)$-equivariantly homotopy equivalent to $\mathcal{D}_p(H)$
- $\mathcal{D}_p(H)$ is $N_G(T)$-equivariantly homotopy equivalent to the Tits building Δ of H
- $\widetilde{L}_{N_G(T)}(\mathcal{D}_p(G)^T; k) = M$ is an irreducible $kN_G(T)$-module, it is the inflation to $N_G(T)$ of the extended Steinberg module for $H.K'$

\[O_C = O_p(C) = O_C(T C_G(T))\]
\[N_G(T) = O_C.H.K' \text{ with } K' = N_G(T)/L \text{ and } L = O_C.H\]
\[\mathcal{D}_p(G)^T \text{ is } N_G(T)\text{-equivariantly homotopy equivalent to } \mathcal{D}_p(H)\]
\[\mathcal{D}_p(H) \text{ is } N_G(T)\text{-equivariantly homotopy equivalent to the Tits building } \Delta \text{ of } H\]
\[\widetilde{L}_{N_G(T)}(\mathcal{D}_p(G)^T; k) = M \text{ is an irreducible } kN_G(T)\text{-module, it is the inflation to } N_G(T) \text{ of the extended Steinberg module for } H.K'\]
Main Theorem: Sketch of the Argument

- T is a vertex of $\widetilde{L}_G(\mathcal{D}_p(G); k)$ if and only if T is a vertex of $\widetilde{L}_{N_G(T)}(\mathcal{D}_p(G)^T; k)$
- $O_C = O_p(C) = O_C(TC_G(T))$ is noncentral
- $N_G(T) = O_C.H.K'$ with $K' = N_G(T)/L$ and $L = O_C.H$
- $\mathcal{D}_p(G)^T$ is $N_G(T)$-equivariantly homotopy equivalent to $\mathcal{D}_p(H)$
- $\mathcal{D}_p(H)$ is $N_G(T)$-equivariantly homotopy equivalent to the Tits building Δ of H
- $\widetilde{L}_{N_G(T)}(\mathcal{D}_p(G)^T; k) = M$ is an irreducible $kN_G(T)$-module, it is the inflation to $N_G(T)$ of the extended Steinberg module for $H.K'$
- using that kH has two blocks, the principal block and a block of defect zero, and that $L = F^*(C)$, the generalized Fitting subgroup of C, we deduce that M lies in a nonprincipal block of $kN_G(T)$ with defect group $O_C.S' \simeq \nu x(M)$ and with S' a Sylow p-subgroup of K'
Main Theorem: Sketch of the Argument

- T is a vertex of $\tilde{L}_G(D_p(G); k)$ if and only if T is a vertex of $\tilde{L}_{N_G(T)}(D_p(G)^T; k)$
- $O_C = O_p(C) = O_C(TC_G(T))$ is noncentral
- $N_G(T) = O_C.H.K'$ with $K' = N_G(T)/L$ and $L = O_C.H$
- $D_p(G)^T$ is $N_G(T)$-equivariantly homotopy equivalent to $D_p(H)$
- $D_p(H)$ is $N_G(T)$-equivariantly homotopy equivalent to the Tits building Δ of H
- $\tilde{L}_{N_G(T)}(D_p(G)^T; k) = M$ is an irreducible $kN_G(T)$-module, it is the inflation to $N_G(T)$ of the extended Steinberg module for $H.K'$
- using that kH has two blocks, the principal block and a block of defect zero, and that $L = F^*(C)$, the generalized Fitting subgroup of C, we deduce that M lies in a nonprincipal block of $kN_G(T)$ with defect group $O_C.S' \cong \nu x(M)$ and with S' a Sylow p-subgroup of K'
- since $T \leq O_C$, we have $T \cong \nu x(M)$ if and only if $T = O_C$ and $S' = 1$
Examples Involving Sporadic Simple Groups in Characteristic 3

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fall Central Sectional Meeting, University of Akron, 20-21 October 2012
Examples Involving Sporadic Simple Groups in Characteristic 3

<table>
<thead>
<tr>
<th>G</th>
<th>$C_G(t) = O_3(C_G(t)).H_t.K_t$</th>
<th>H_t</th>
<th>$D_3(G)^t$</th>
<th>T</th>
<th>$TC_G(T)$</th>
<th>$N_G(T)$</th>
<th>$D_3(G)^T$</th>
</tr>
</thead>
</table>
| Fi'_{24} | $C(3A) = 3 \times O_8^+(3) : 3$
$C(3C) = 3^7.2.U_4(3)$
$C(3D) = 3^{2+4+6}(A_4 \times 2A_4)$
$C(3E) = 3^2 \times G_2(3)$ | $O_8^+(3)$
$G_2(3)$ | D_4
point
point
point | G_2
G_2
3^2
$3^2 \times G_2(3)$ | $(3^2 : 2 \times G_2(3)).2$
G_2 |
Examples Involving Sporadic Simple Groups in Characteristic 3

<table>
<thead>
<tr>
<th>G</th>
<th>$C_G(t) = O_3(C_G(t)).H_t.K_t$</th>
<th>H_t</th>
<th>$D_3(G)^t$</th>
<th>T</th>
<th>$TC_G(T)$</th>
<th>$N_G(T)$</th>
<th>$D_3(G)^T$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fi'_24</td>
<td>$C(3A) = 3 \times O_8^+(3) : 3$</td>
<td>$O_8^+(3)$</td>
<td>D_4</td>
<td>3^2</td>
<td>$3^2 \times G_2(3)$</td>
<td>$(3^2 : 2 \times G_2(3)).2$</td>
<td>G_2</td>
</tr>
<tr>
<td></td>
<td>$C(3C) = 3^7.2.U_4(3)$</td>
<td></td>
<td>$G_2(3)$</td>
<td></td>
<td>$3^2 \times G_2(3)$</td>
<td>$(3^2 : 2 \times G_2(3)).2$</td>
<td>G_2</td>
</tr>
<tr>
<td></td>
<td>$C(3D) = 3^{2+4+6}.(A_4 \times 2A_4)$</td>
<td></td>
<td>G_2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$C(3E) = 3^2 \times G_2(3)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

G2

Fall Central Sectional Meeting, University of Akron, 20-21 October 2012
Examples Involving Sporadic Simple Groups in Characteristic 3

<table>
<thead>
<tr>
<th>G</th>
<th>$C_G(t) = O_3(C_G(t)).H_t.K_t$</th>
<th>H_t</th>
<th>$D_3(G)^t$</th>
<th>T</th>
<th>$TC_G(T)$</th>
<th>$N_G(T)$</th>
<th>$D_3(G)^T$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fi'_24</td>
<td>$C(3A) = 3 \times O_8^+(3) : 3$</td>
<td>$G_2(3)$</td>
<td>D_4 point</td>
<td>3^2</td>
<td>$3^2 \times G_2(3)$</td>
<td>$(3^2 : 2 \times G_2(3)).2$</td>
<td>G_2</td>
</tr>
<tr>
<td></td>
<td>$C(3C) = 3^7.2.\bar{U}_4(3)$</td>
<td>$G_2(3)$</td>
<td>G_2 point</td>
<td>3^2</td>
<td>$3^2 \times G_2(3)$</td>
<td>$(3^2 : 2 \times G_2(3)).2$</td>
<td>G_2</td>
</tr>
<tr>
<td></td>
<td>$C(3D) = 3^2+4+6.(A_4 \times 2A_4)$</td>
<td>$G_2(3)$</td>
<td>$3^2 \times G_2(3)$</td>
<td>$3^2 \times G_2(3)$</td>
<td>$(3^2 : 2 \times G_2(3)).2$</td>
<td>$(3^2 : 2 \times G_2(3)).2$</td>
<td>G_2</td>
</tr>
<tr>
<td></td>
<td>$C(3E) = 3^2 \times G_2(3)$</td>
<td>$G_2(3)$</td>
<td>G_2 point</td>
<td>3</td>
<td>$3 \times G_2(3)$</td>
<td>$(3 \times G_2(3)) : 2$</td>
<td>G_2</td>
</tr>
<tr>
<td>Th</td>
<td>$C(3A) = 3 \times G_2(3)$</td>
<td>$G_2(3)$</td>
<td>$3 \times G_2(3)$</td>
<td>$3 \times G_2(3)$</td>
<td>$(3 \times G_2(3)) : 2$</td>
<td>G_2</td>
<td>G_2</td>
</tr>
</tbody>
</table>
Examples Involving Sporadic Simple Groups in Characteristic 3

<table>
<thead>
<tr>
<th>G</th>
<th>$C_G(t) = O_3(C_G(t)).H_t.K_t$</th>
<th>H_t</th>
<th>$D_3(G)^t$</th>
<th>T</th>
<th>$T C_G(T)$</th>
<th>$N_G(T)$</th>
<th>$D_3(G)^T$</th>
</tr>
</thead>
</table>
| Fi_24' | $C(3A) = 3 \times O_8^+(3) : 3$
$C(3C) = 3^{7.2}.U_4(3)$
$C(3D) = 3^{2+4+6}.(A_4 \times 2A_4)$
$C(3E) = 3^2 \times G_2(3)$ | $O_8^+(3)$
$G_2(3)$
$G_2(3)$
G_2 | D_4 point point G_2
3^2
3^2
$3^2 G_2(3)$
$(3^2 : 2 \times G_2(3)).2$
| G_2 | |
| Th | $C(3A) = 3 \times G_2(3)$
$C(3C) = 3 \times 3^4 : 2A_6$ | $G_2(3)$
G_2
| G_2
| $3 \times G_2(3)$
$(3 \times G_2(3)) : 2$
| G_2 |

<table>
<thead>
<tr>
<th>G</th>
<th>$C_G(t) = O_3(C_G(t)).H_t.K_t$</th>
<th>H_t</th>
<th>$D_3(G)^t$</th>
<th>T</th>
<th>$T C_G(T)$</th>
<th>$N_G(T)$</th>
<th>$D_3(G)^T$</th>
</tr>
</thead>
</table>
| M | $C(3A) = 3 \cdot Fi_24'$
$C(3C) = 3 \times Th$ | Fi_24'
Th
$D_3(Fi_24')$
$D_3(Th)$ | 3^{1+2}
3^2
| $3^{1+2} \times G_2(3)$
$3^2 \times G_2(3)$
| $(3^{1+2} : 2^2 \times G_2(3)).2$
$(3^{1+2} : 2 \times G_2(3)).2$
| G_2
| G_2 |
Thank You
Thank You

The End