Saturated fusion systems with parabolic families

Silvia Onofrei
The Ohio State University

AMS Fall Central Sectional Meeting, Saint Louis, Missouri, 19-21 October 2013
Basics on Fusion Systems

A fusion system \mathcal{F} over a finite p-group S is a category whose:

- objects are the subgroups of S,
- morphisms are such that $\text{Hom}_S(P, Q) \subseteq \text{Hom}_\mathcal{F}(P, Q) \subseteq \text{Inj}(P, Q)$,
 every \mathcal{F}-morphism factors as an \mathcal{F}-isomorphism followed by an inclusion.

Let \mathcal{F} be a fusion system over a finite p-group S. A subgroup P of S is

- fully \mathcal{F}-normalized if $|N_S(P)| \geq |N_S(\varphi(P))|$, for all $\varphi \in \text{Hom}_\mathcal{F}(P, S)$;
- \mathcal{F}-centric if $C_S(\varphi(P)) = Z(\varphi(P))$ for all $\varphi \in \text{Hom}_\mathcal{F}(P, S)$;
- \mathcal{F}-essential if Q is \mathcal{F}-centric and $S_p(\text{Out}_\mathcal{F}(P)) = S_p(\text{Aut}_\mathcal{F}(P)/\text{Aut}_P(P))$ is disconnected.

The fusion system \mathcal{F} over a finite p-group S is saturated if the following hold:

- Sylow Axiom
- Extension Axiom

The normalizer of P in \mathcal{F} is the fusion system $N_\mathcal{F}(P)$ on $N_S(P)$

$$\varphi \in \text{Hom}_{N_\mathcal{F}}(Q, R) \text{ if } \exists \hat{\varphi} \in \text{Hom}_\mathcal{F}(PQ, PR) \text{ with } \hat{\varphi}(P) = P \text{ and } \hat{\varphi}|_Q = \varphi.$$

The fusion system \mathcal{F} is constrained if $\mathcal{F} = N_\mathcal{F}(Q)$ for some \mathcal{F}-centric subgroup $Q \neq 1$ of S.

The group G has (finite) Sylow p-subgroup S if S is a finite p-subgroup of G

and if every finite p-subgroup of G is conjugate to a subgroup of S.

$\mathcal{F}_S(G)$ is the fusion system on S with $\text{Hom}_\mathcal{F}(P, Q) = \text{Hom}_G(P, Q)$, for $P, Q \leq S$.

...
A **chamber system** over a set I is a nonempty set C whose elements are called **chambers** together with a family of equivalence relations $(\sim_i; i \in I)$ on C indexed by I.

The i-**panels** are the equivalence classes with respect to \sim_i.

Two distinct chambers c and d are called **i-adjacent** if they are contained in the same i-panel:

$$c \sim_i d$$

A **gallery** of length n connecting two chambers c_0 and c_n is a sequence of chambers

$$c_0 \sim_{i_1} c_1 \sim_{i_2} \ldots \sim_{i_{n-1}} c_{n-1} \sim_{i_n} c_n$$

The chamber system C is **connected** if any two chambers can be joined by a gallery.

The **rank** of the chamber system is the cardinality of the set I.

A **morphism** $\varphi : C \to D$ between two chamber systems over I is a map on chambers that preserves i-adjacency: if $c, d \in C$ and $c \sim_i d$ then $\varphi(c) \sim_i \varphi(d)$ in D.

$\text{Aut}(C)$ is the group of all automorphisms of C (automorphism has the obvious meaning).

If G is a group of automorphisms of C then **orbit chamber system** C/G is a chamber system over I.
Fusion Systems with Parabolic Families

A fusion system \mathcal{F} over a finite p-group S has a family $\{\mathcal{F}_i; i \in I\}$ of parabolic subsystems if:

1. (F0) $\forall i \in I$, \mathcal{F}_i is saturated, constrained, of \mathcal{F}_i-essential rank one;
2. (F1) $B := N_{\mathcal{F}}(S)$ is a proper subsystem of \mathcal{F}_i for all $i \in I$;
3. (F2) $\mathcal{F} = \langle \mathcal{F}_i; i \in I \rangle$ and no proper subset $\{\mathcal{F}_j; j \in J \subset I\}$ generates \mathcal{F};
4. (F3) $\mathcal{F}_i \cap \mathcal{F}_j = B$ for any pair of distinct elements \mathcal{F}_i and \mathcal{F}_j;
5. (F4) $\mathcal{F}_{ij} := \langle \mathcal{F}_i, \mathcal{F}_j \rangle$ is saturated constrained subsystem of \mathcal{F} for all $i, j \in I$.

Proposition (Onofrei, 2011)

If \mathcal{F} contains a family of parabolic subsystems then there are:

- p'-reduced p-constrained finite groups B, G_i, G_{ij} with $B = F_S(B)$, $\mathcal{F}_i = F_S(G_i)$, $\mathcal{F}_{ij} = F_S(G_{ij})$, $\forall i, j \in I$;
- injective homomorphisms $\psi_i : B \to G_i$, $\psi_{ij} : G_i \to G_{ij}$ such that $\psi_{ij} \circ \psi_j = \psi_{ij} \circ \psi_i$, $\forall i, j \in I$.

In other words, $\mathcal{A} = \{(B, G_i, G_{ij}), (\psi_i, \psi_{ij}); i, j \in I\}$ is a diagram of groups.

The proof is based on:

- [BCGLO, 2005]: Every saturated constrained fusion system \mathcal{F} over S is the fusion system $F_S(G)$ of a finite group G that is p'-reduced $O_{p'}(G) = 1$ and p-constrained $C_G(O_p(G)) \leq O_p(G)$, and if we set $U := O_p(\mathcal{F})$ then $1 \longrightarrow Z(U) \longrightarrow G \longrightarrow \text{Aut}_\mathcal{F}(U) \longrightarrow 1$.
- [Aschbacher, 2008]: If G_1 and G_2 are such that $\mathcal{F} = F_S(G_1) = F_S(G_2)$ then there is an isomorphism $\varphi : G_1 \to G_2$ with $\varphi|_S = \text{Id}_S$.
Lemma (Onofrei, 2011)

If G is a faithful completion of the diagram of groups \mathcal{A} then:

(P1) $G := \langle G_i, i \in I \rangle \neq \langle G_j, j \in J \not\subseteq I \rangle$

(P2) $G_i \cap G_j = B$ for all $i \neq j$ in I;

(P3) $B \neq G_i$ for all $i \in I$;

(P4) $\cap_{g \in G} B^g = 1$.

Hence $(G; B, G_i, i \in I)$ is a parabolic system of rank $n = |I|$.

The chamber system $C = C(G; B, G_i, i \in I)$ is defined as follows:

- the chambers are cosets gB for $g \in G$;
- two chambers gB and hB are i-adjacent if $gG_i = hG_i$ where $g, h \in G$.

G acts chamber transitively, faithfully on C by left multiplication.

Definition (Onofrei, 2011)

A fusion - chamber system pair (\mathcal{F}, C) consists of:

- a fusion system \mathcal{F} with a family of parabolic subsystems $\{\mathcal{F}_i; i \in I\}$;
- a chamber system $C = C(G; B, G_i, i \in I)$ with G a faithful completion of \mathcal{A}.
Main Theorem on Fusion - Chamber System Pairs

Theorem (Onofrei, 2011)

Let (\mathcal{F}, C) be a fusion-chamber system pair. Assume the following hold.

(i) C^P is connected for all p-subgroups P of G.

(ii) If P is \mathcal{F}-centric and if R is a p-subgroup of $\text{Aut}_G(P)$, then $(C^P/C_G(P))^R$ is connected.

Then $\mathcal{F} = \mathcal{F}_S(G)$ is a saturated fusion system over S.

Sketch of the Argument

Step 1: S is a Sylow p-subgroup of G.

- Since C^P is connected, $C^P \neq \emptyset$ and $\exists g \in G$ such that $gB \in C^P$, thus $P \leq gBg^{-1}$ and since $gSg^{-1} \in \text{Syl}_p(gBg^{-1})$, $\exists h \in G$ such that $hPh^{-1} \leq S$.

Step 2: \mathcal{F} is the fusion system given by conjugation in G, this means $\mathcal{F} = \mathcal{F}_S(G)$.

- Clearly $\mathcal{F} \subseteq \mathcal{F}_S(G)$.

- $\mathcal{F}_S(G) \subseteq \mathcal{F}$ follows from the fact that every morphism in $\mathcal{F}_S(G)$ is a composite of morphisms $\varphi_1, \ldots, \varphi_n$ with $\varphi_i \in \mathcal{F}_S(G_{j_i})$, $j_i \in I$.
Main Theorem: Sketch of the Argument

Step 3: Every morphism in \mathcal{F} is a composition of restrictions of morphisms between \mathcal{F}-centric subgroups.

- Recall \mathcal{F}_i is saturated, constrained and of essential rank one.
- If E_i is \mathcal{F}_i-essential then E_i is \mathcal{F}-centric.
- **Alperin-Goldschmidt Theorem:** Each morphism $\varphi_i \in \mathcal{F}_i$ can be written as a composition of restrictions of \mathcal{F}_i-automorphisms of S and of automorphisms of fully \mathcal{F}_i-normalized \mathcal{F}_i-essential subgroups of S.

Hence we may use:

- **[BCGLO, 2005]:** It suffices to verify the saturation axioms for the collection of \mathcal{F}-centric subgroups only.

Step 4: **The Sylow Axiom:** For all \mathcal{F}-centric P that are fully \mathcal{F}-normalized, $\text{Aut}_S(P) \in \text{Syl}_p(\text{Aut}_\mathcal{F}(P))$.

- **Proposition [Stancu, 2004]:** Assume that
 - $\text{Aut}_S(S)$ is a Sylow p-subgroup of $\text{Aut}_\mathcal{F}(S)$;
 - The Extension Axiom holds for all \mathcal{F}-centric subgroups P.
 Then if Q is \mathcal{F}-centric and fully \mathcal{F}-normalized then $\text{Aut}_S(Q)$ is a Sylow p-subgroup of $\text{Aut}_\mathcal{F}(Q)$.
Main Theorem: Sketch of the Argument

Step 5: *The Extension Axiom*: Let P be \mathcal{F}-centric.

For any $\varphi \in \text{Hom}_\mathcal{F}(P, S)$ there is a morphism $\hat{\varphi} \in \text{Hom}_\mathcal{F}(N_\varphi, S)$ such that $\hat{\varphi}|_P = \varphi$.

$$PC_S(P) \leq N_\varphi \leq N_S(P)$$

For $P \leq S$ we introduce a new chamber system $\text{Rep}(P, C)$ as follows:

- The chambers are the elements of $\text{Rep}(P, B) := \text{Inn}(B) \setminus \text{Inj}(P, B)$;

 $[\alpha] \in \text{Rep}(P, B)$ denotes the class of $\alpha \in \text{Inj}(P, B)$

- The i-panels are represented by the elements of

 $\text{Rep}(P, B, G_i) := \{ [\gamma] \in \text{Rep}(P, G_i) : \gamma \in \text{Inj}(P, G_i) \text{ with } \gamma(P) \leq B \}$.

- Let τ^K_H denote the inclusion map of the group H into the group K.

- Two chambers $[\alpha]$ and $[\beta]$ are i-adjacent if $\left[\tau^G_B \circ \alpha \right] = \left[\tau^G_B \circ \beta \right]$ in $\text{Rep}(P, G_i)$.

- $N_G(P)$ acts on $\text{Rep}(P, C)$ via $g \cdot [\alpha] = [\alpha \circ g^{-1}]$ for $g \in N_G(P)$.
Main Theorem: Sketch of the Argument

There is an $N_G(P)$-equivariant chamber system isomorphism

$$f_P : C^P \longrightarrow \text{Rep}(P, C)_0$$

given by

$$f_P(gB) = [c_{g^{-1}}]$$

that induces an isomorphism on the orbit chamber systems

$$C^P / C_G(P) \longrightarrow \text{Rep}(P, C)_0$$

where $\text{Rep}(P, C)_0$ is the connected component of $\text{Rep}(P, C)$ that contains $[\tau^B_P]$, affords the action of $\text{Aut}_G(P) = N_G(P)/C_G(P)$.

For $\varphi \in \text{Hom}_F(P, S)$ let $K = N_\varphi / Z(P) = \text{Aut}_{N_\varphi}(P)$.

The map

$$\Gamma : \text{Rep}(N_\varphi, C)_0 \longrightarrow \text{Rep}(P, C)_0^K \simeq (C^P / C_G(P))^K$$

is onto.

- that is induced by the restriction $N_\varphi \rightarrow P$
- between the connected component of $\text{Rep}(N_\varphi, C)$ that contains $[\tau^B_{N_\varphi}]$ and the fixed point set of K acting on $\text{Rep}(P, C)_0$
Main Theorem: Sketch of the Argument

- There is an $N_G(P)$-equivariant chamber system isomorphism

$$f_P : C^P \longrightarrow \text{Rep}(P, C)_0$$

given by

$$f_P(gB) = [c_{g^{-1}}]$$

that induces an isomorphism on the orbit chamber systems

$$C^P / C_G(P) \longrightarrow \text{Rep}(P, C)_0$$

where $\text{Rep}(P, C)_0$ is the connected component of $\text{Rep}(P, C)$ that contains $[\tau^B_P]$, affords the action of $\text{Aut}_G(P) = N_G(P)/C_G(P)$.

- For $\varphi \in \text{Hom}_F(P, S)$ let $K = N_\varphi/Z(P) = \text{Aut}_{N_\varphi}(P)$.

The map

$$\Gamma : \text{Rep}(N_\varphi, C)_0 \longrightarrow \text{Rep}(P, C)^K_0 \simeq (C^P / C_G(P))^K$$

is onto.

- that is induced by the restriction $N_\varphi \rightarrow P$

- between the connected component of $\text{Rep}(N_\varphi, C)$ that contains $[\tau^B_{N_\varphi}]$ and the fixed point set of K acting on $\text{Rep}(P, C)_0$
Assume \mathcal{F} contains a family of parabolic systems. Set $U_i = O_p(\mathcal{F}_i)$ and $U_{ij} = O_p(\mathcal{F}_{ij})$.

We say \mathcal{F} contains a classical family of parabolic systems with diagram \mathcal{M} if:

- For each $i \in I$, $\text{Out}_{\mathcal{F}_i}(U_i)$ is a rank one finite group of Lie type in characteristic p.
- For each pair $i, j \in I$, $\text{Out}_{\mathcal{F}_{ij}}(U_{ij})$ is either a rank two finite group of Lie type in characteristic p or it is a (central) product of two rank one finite groups of Lie type in characteristic p.

The diagram \mathcal{M} is a graph whose vertices are labeled by the elements of I,

- $\text{Out}_{\mathcal{F}_{ij}}(U_{ij})$ is a product of two rank one Lie groups then the nodes i and j are not connected,
- $\text{Out}_{\mathcal{F}_{ij}}(U_{ij})$ is a rank two Lie group the nodes i and j are connected by a bond of strength $m_{ij} - 2$, where m_{ij} denotes the integer that defines the Weyl group.

Proposition

Let (\mathcal{F}, C) be a fusion-chamber system pair with $|I| \geq 3$. Assume that:

(i). \mathcal{F} contains a classical family of parabolic systems with diagram \mathcal{M};

(ii). \mathcal{M} is a spherical diagram.

Then \mathcal{F} is the fusion system of a finite simple group of Lie type in characteristic p extended by diagonal and field automorphisms.
Thank You

The End