
Rational Points on Curves, Summer 2021, Problem Set 1
(1) Let f : V → k be a quadratic form on a finite-dimensional vector space V over a field k

of characteristic not equal to 2. Show that there is a basis of V in which f is diagonal
(equivalently, V has an orthogonal basis for the associated bilinear form).

(2) Let f ∈ Z[X0, X1, . . . , Xn] be a homogeneous polynomial. Show that there exists a =

(a0, a1, . . . , an) ∈ Qn+1 \ {0} such that f (a) = 0 if and only if there exists (a0, a1, . . . , an) ∈
Zn+1 \ {0} with gcd(a0, . . . , an) = 1 such that f (a) = 0. Next fix a prime p, and show that
the following (for which it suffices to assume the coefficients of f lie in Zp) are equivalent:
• There is an a ∈ Qn+1

p \ {0} such that f (a) = 0.
• There is an a ∈ Zn+1

p with some coordinate non-zero mod p such that f (a) = 0.
• For all m ≥ 1, there is an a ∈ (Z/pm)n with some coordinate non-zero mod p such that

f (a) ≡ 0 (mod pm).
(3) Prove the refined form of the single-variable Hensel’s Lemma stated in class.
(4) For each prime p, determine the number of roots of unity (elements x such that xn = 1 for

some n ≥ 1) in Qp. (Hint: use Hensel’s Lemma.)
(5) Let f (X0, X1, X2) ∈ Z[X0, X1, X2] be a homomogeneous degree 2 polynomial, defining

the conic C f ⊂ P
2. Show that for all but finitely many primes p, C f (Qp) , ∅. For

f (X0, X1, X2) = X2
0 + X2

1 − 3X2
2 , determine {p : C f (Qp) , ∅}.

(6) Consider the affine curve C ⊂ A2 given by 2x2 + 7y2 = 1. Parametrize C(Q) as {(x(t), y(t)) :
t ∈ Q} for some rational functions x(t), y(t) ∈ Q(t) (analogous to the “Pythagorean triple”
parametrization of the rational points on x2 + y2 = 1).

(7) Prove the two-variable case of the Hasse-Minkowski theorem: a quadratic form f (X0, X1) ∈
Q[X0, X1] represents zero in Q if and only if it represents zero in Qp for all p and represents
zero in R (by “represents zero in a field k” we mean there exists (a0, a1) ∈ k2 \ {0} such that
f (a0, a1) = 0).
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Rational Points on Curves, Summer 2021, Problem Set 2
Throughout this assignment, unless otherwise indicated, k is a field.

(1) Complete the calculation started in class, using Legendre’s proof of the three-variable
Hasse-Minkowski theorem, to compute a rational point on the projective curve given by
f (X0, X1, X2) = X2

0 − 13X2
1 + 17X2

2 .
(2) (Some projective geometry)

(a) Let V ⊂ kn+1 be a vector subspace of dimension r + 1, for some r ≤ n. Show that
the image P(V) ⊂ Pn is the vanishing locus of n − r homogeneous linear polynomials.
(When r = 1, P(W) is a line; when r = n − 1, it is a hyperplane.)

(b) Show that any two distinct lines in P2 intersect in exactly one point.
(c) Let P1, P2, . . . , Pn+2 ∈ P

n(k) be (n + 2) points such that no (n + 1) of them lie on
a hyperplane (we say they are in “general position”). Let Q1, . . . ,Qn+2 ∈ P

n(k) be
another such set of n + 2 points in general position. Show that there is some element
g ∈ GLn+1(k) such that the induced change of coordinates g : Pn → Pn satisfies g(Pi) =

Qi for all i. (If you’re having trouble with this, first do it for n + 1 points in general
position.)

(3) Let k be any field, and let f ∈ k[X0, X1, X2] be a homogeneous polynomial of degree 2.
Assume that the projective conic C f ⊂ P

2 is nonsingular, and that C f (k) is non-empty. Fix
a point P0 ∈ C f (k) and a linear homogeneous polynomial L(X0, X1, X2) ∈ k[X0, X1, X2] such
that the vanishing locus CL ⊂ P

2 does not contain the point P0.
(a) Show that the projection map

π : C f → CL

defined by

π(Q) =

the unique point of intersection L ∩ QP0 if Q , P0;
the unique point of intersection L ∩ TC f ,P0 if Q = P0

is well-defined, and that it gives a bijection C f (K)→ CL(K) for all fields K ⊃ k.
(b) Show that π is in fact an isomorphism of algebraic varieties over k. (This implies (a);

the problems are separate for those who have not necessarily learned what a morphism
of varieties is.)

(c) Show that CL is isomorphic to P1, as algebraic varieties over k. Thus any smooth
projective conic containing a k-rational point is isomorphic to P1.

(4) Let p ≡ 1 (mod 8) be a prime such that 2 is not a 4th power in Fp. Let C0 ⊂ A2 be the affine
curve over Q defined by the polynomial f (w, z) = w2 − 2 + 2pz4. In class we constructed
a nonsingular projective curve C ⊂ P3 and an isomorphism C0 ∼

−→ C \ {[0, 0,±
√
−2p, 1])}.

Show that C(Q2) , ∅.
(5) Assume char(k) , 3. For each t ∈ k̄, ft(X0, X1, X2) = X3

0 + X3
1 + X3

2 − 3tX0X1X2 defines a
projective curve Ct ⊂ P

2 (over the subfield of k̄ generated by t, or just over k̄ if you prefer).
(a) Determine, for all t, the set of singular points of Ct (in particular, determine which Ct

are nonsingular).
(b) Determine C0(Q).
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Rational Points on Curves, Summer 2021, Problem Set 3
(1) Consider the plane curve C = V(y2 − x3 − x) ⊂ A2 over a field k of characteristic not 2.

(a) Show that the projective closure C = V(Y2Z − X3 − XZ2) ⊂ P2 of C is nonsingular (in
particular, C is).

(b) Let P = (0, 0) ∈ C, and let vP be the associated discrete valuation of k(C) (as defined
in Monday’s class). Compute vP(x) and vP(y).

(c) The affine space {Y , 0} ⊂ P2 has coordinate functions u = X/Y and v = Z/Y , i.e., its
coordinate ring is the polynomial ring k[u, v]. Write in terms of u and v the equation
of C′ := C ∩ {Y , 0} ⊂ {Y , 0} � A2. Write down the canonical isomorphism
k(C) � k(C′).

(d) Let Q be the unique point in C\C (you should know from part (a) what Q is). Compute
vQ(x) and vQ(y), identifying x and y as elements of k(C′) as in the last part.

(2) Consider the plane curve C = V(y2 − x3 − x2) ⊂ A2. Show that C is singular at P = (0, 0),
and check that OC,P is not a DVR.

(3) Let v : Q× → Z be a surjective discrete valuation. Show that v = vp for some prime number
p.

(4) Let v : k̄(t)× → Z be a surjective discrete valuation trivial on k̄ (here k̄ is an algebraically
closed field). Show that either there exists a ∈ k̄ such that v = vt−a or v = v∞. (See the class
notes for these examples of valuations.) How would you describe the discrete valuations
on k(t) (trivial on k) when k is not necessarily algebraically closed?

(5) Let X ⊂ An be an affine variety over an algebraically closed field k̄. Exhibit a bijection
between the points of X and the maximal ideals of k̄[X].

(6) The most concrete definition of an elliptic curve over a field k of characteristic not 2 or 3
is the following: it is a nonsingular projective curve C = V(F) ⊂ P2 where

F(X,Y,Z) = Y2Z − X3 − AXZ2 − BZ3

for some A, B ∈ k, along with its evident k-rational point [0, 1, 0]. Show that such an
equation in fact defines a nonsingular curve if and only if ∆(A, B) = −16(4A3 + 27B2) is
non-zero in k. (Of course, the factor of −16 does not affect—in characteristic not 2!—
whether ∆ is zero; this normalization is conventional, and it also reflects the fact that such
a curve is always singular in characteristic 2.)
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Rational Points on Curves, Summer 2021, Problem Set 4
(1) Let k be a field of characteristic not 2, and consider the projective nonsingular curve over

k associated to the affine curve y2 = f (x), where f (x) ∈ k[x] is a cubic polynomial with
distinct roots.
(a) Show that the (rational) differential ω = dx

y ∈ Ωk(C)/k satisfies div(ω) = 0. Deduce
from the Riemann-Roch theorem that g(C) = 1.

(b) Without assuming the Riemann-Roch theorem, show that the dimension of the space
of everywhere regular differentials on C is 1. (Hint: which hω can be everywhere
regular, for h ∈ k(C)?)

(2) Carry out a version of the arguments in Problem 1 to show that the nonsingular projective
curve C ⊂ P3 (an intersection of two quadrics) we studied to produce a counterexample to
the local-global principle for rational points is in fact of genus 1. What is a natural class of
curves that your argument applies to?

(3) (Galois descent of vector spaces) Let L/K be a finite Galois extension, and let V be an
L-vector space equipped with an L-semilinear action of Gal(L/K): that is, Gal(L/K) acts
on the abelian group V , and this action satisfies σ(cv) = σ(c)σ(v) for all σ ∈ Gal(L/K),
c ∈ L, v ∈ V . Let W ⊂ V be the subset of Gal(L/K)-invariant vectors:

W = {v ∈ V : σ(v) = v for all σ ∈ Gal(L/K)}.

(a) Check that W is a K-vector subspace of V .
(b) Show that for all v ∈ V , tr(v) :=

∑
σ∈Gal(L/K) σ(v) lies in W; and show that for v , 0,

tr(cv) , 0 for some c ∈ L.
(c) Show that the natural L-linear map α : W ⊗K L → V is an isomorphism. (Hint: apply

the last part to V/ im(α); how is this quotient space equipped with an L-semilinear
action of Gal(L/K)?) Concretely, W admits a K-basis that is an L-basis of V .

(d) Let K be a separable closure of K. Generalize the result of (c) to the case of a con-
tinuous K-semilinear action of GK := Gal(K/K) on a K-vector space V , where the
continuity condition means that for every v ∈ V , the stabilizer {σ ∈ GK : σ(v) = v} is
Gal(K/L) for some finite extension L/K (i.e., the map σ 7→ σ(v) is continuous for the
discrete topology on V and the Krull topology on GK).

(4) Consider the elliptic curve y2 = x3 − 2 over Q. Let P = (3, 5). Compute [2]P.
(5) Let (E,O) be an elliptic curve over a field of characteristic not 2 or 3 given by a homoge-

neous Weierstrass equation F(X0, X1, X2) = 0.
(a) For P ∈ E, show that [3]P = O if and only if the tangent line to E at P intersects E

only at P.
(b) Next show that [3]P = 0 if and only if the “Hessian” matrix (∂2F/∂Xi∂X j(P))i, j is

singular.
(c) Conclude that #(E[3]) = 9.
(d) Describe E[3] when E is given by a cubic equation F(X0, X1, X2) = X3

0 + X3
1 + X3

2 −

3tX0X1X2 as in PSet 2, Problem 5 (for any t such that this curve is nonsingular), and
the origin O ∈ E is taken to be [1,−1, 0].
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Rational Points on Curves, Summer 2021, Problem Set 5
(1) Let k be a field of characteristic not 2, and let E/k be an elliptic curve. In this exercise, you

will prove that for all non-zero m ∈ Z, [m] : E → E is an isogeny.
(a) Show that (for any k), [m] is a morphism.
(b) Show that [2] is not constant by writing down in terms of a Weierstrass equation for E

a necessary condition for P = (x, y) ∈ E to satisfy [2]P = O. (This should lead you to
a cubic equation in x; if you prefer to simplify the calculations, you may also assume
char(k) , 3, in order to have a Weierstrass equation of the form y2 = x3 + ax + b.)

(c) Continue the analysis of the previous part and check that E[2] strictly contains {O}.
Deduce that for m odd, [m] is non-constant.

(d) Combine the previous two parts to show that [m] is non-constant for all m , 0.
(2) Consider the elliptic curve E/Q given by the Weierstrass equation y2 = x3 + 3.

(a) For what primes p does this Weierstrass equation have good reduction modulo p?
(b) For any prime p such that E has good reduction modulo p, and any m coprime to p,

we have shown that E(Qp)[m] injects (as a group) into Ē(Fp). Use this to show that
the torsion subgroup E(Q)tor is trivial.

(c) Show that E(Q) is infinite.
(3) Let F be a number field, and let E/F be an elliptic curve. Prove, as in the last problem

using our results on elliptic curves over local fields, that the torsion subgroup E(F)tor of
E(F) is finite.

(4) Let K be a finite extension of Qp, and let E/K be an elliptic curve with good reduction. In
our proof that [m] is an automorphism of E1(K), for m coprime to p, we used that a certain
reduction map En(k) → C(k)ns to the non-singular points of the cuspidal cubic C : y2 = x3

over the residue field k of K, was in fact a group homomorphism. Precisely, we wrote
P ∈ En(K) as [$nx0, y0, $

3nz0] with y0 ∈ O
×
K and x0, z0 ∈ OK (with x0 and z0 also units if

P < En+1(K)), and that map was [x, y, z] 7→ [x0, y0, z0] (mod $). Verify the claim that this
is a surjective homomorphism.

(5) Let G be a (discrete) group. Prove that to any short exact sequence

0→ M
α
−→ N

β
−→ P→ 0

of G-modules, there is an associated long exact sequence

0→ MG → NG → PG δ
−→ H1(G,M)→ H1(G,N)→ H1(G, P)

of abelian groups, with δ(p) : G → M given by g 7→ g · n − n for any n ∈ N such that
β(n) = p. Check that your proof also works when G = Gk is the absolute Galois group of a
field k, and M, N, and P are discrete Gk-modules. (If you know what it means, replace Gk

by any profinite group here.)
(6) Let k be a field. One form of Hilbert’s Theorem 90 asserts that H1(Gk, k̄×) = {1} (if k is not

perfect, k̄ here means a separable closure of k). Assuming this, prove that Pn(k̄)Gk = Pn(k).
(The analogous statement for An is obvious; this is not!)

(7) Combine problems 5 and 6 to prove the fundamental isomorphism of Kummer theory: for
any field k and integer n coprime to char(k), there is an isomorphism

k×/(k×)n ∼
−→ H1(Gk, µn(k̄))
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given by the boundary map in the long-exact sequence in Gk-cohomology associated to the
short-exact sequence

1→ µn(k̄)→ k̄×
z7→zn

−−−→ k̄× → 1.
(Here µn(k̄) is the set of nth roots of unity in k̄. In the classical form of Kummer theory, one
assumes k contains all nth roots of 1, so that µn(k̄) is a Gk-module with trivial action, and
k×/(k×)n ∼

−→ Homcts(Gk, µn). One easily translates this isomorphism into a correspondence
between finite abelian exponent n extensions of k (inside k̄) and finite subgroups A of
k×/(k×)n, a subgroup A corresponding to the “Kummer extension” k[A1/n]. Work out the
details of this correspondence as an optional exercise.)
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Rational Points on Curves, Summer 2021, Problem Set 6
(1) Let F be a number field, with |F| its set of places. For each v ∈ |F|, let | · |v be the associated

normalized absolute value as defined in class. Prove the product formula: for all a ∈ F,∏
v∈|F|

|a|v = 1.

(2) Let α be an algebraic integer (that is, α satisfies some monic polynomial with integer
coefficients) such that for every embedding τ : Q[α] → C, |τ(α)| ≤ 1. Prove that α is a
root of unity. (Note this is not true if we only assume α is an algebraic number.) More
generally, if F is a number field and P = [x0, . . . , xn] ∈ Pn(F) with some xi , 0, show that
H(P) = 1 if and only if x j

xi
is either zero or a root of unity for every 0 ≤ j ≤ n.

(3) Suppose that y2 = x3 + Ax + B is a non-singular Weierstrass equation over a field F of
characteristic not 2. Show that the rational map g : P2 → P2 defined by

g([t, u, v]) = [u2 − 4tv, 2u(At + v) + 4Bt2, (v − At)2 − 4Btu]

is a morphism. (Recall that we use this for F = Q in our proof of the Mordell-Weil
theorem.)

(4) Let α1, α2 ∈ Q, and let h denote the absolute logarithmic height on Pn (for n to be under-
stood from the context). Prove the lower bound

h[1, α + β, αβ]) ≥ h([α1, 1]) + h([α2, 1]) − log 4.

(5) Let F be a number field, and let M be a discrete GF-module with |M| finite. Let S be any
finite set of primes of F. In class we proved that

{ϕ ∈ H1(GF ,M) : ϕ is unramified outside S }

is finite, using the Hermite-Minkowski theorem. Give another proof of this fact without
using Hermite-Minkowski, but instead using (a) finiteness of the class group; (b) finite-
generation of the unit group; and (c) Kummer theory.

(6) Fix a number field F and an integer n. Show that there is a uniform bound on rk(E(F))
as E ranges over all elliptic curves over F having good reduction outside a set of most n
primes (we do not fix the set, just its size!). (Remark: it is unknown whether rk(E(F)) is
(un)bounded as E ranges over all elliptic curves over F.)
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