Rational Points on Curves, Summer 2021, Problem Set 1

(1) Let $f: V \rightarrow k$ be a quadratic form on a finite-dimensional vector space V over a field k of characteristic not equal to 2 . Show that there is a basis of V in which f is diagonal (equivalently, V has an orthogonal basis for the associated bilinear form).
(2) Let $f \in \mathbb{Z}\left[X_{0}, X_{1}, \ldots, X_{n}\right]$ be a homogeneous polynomial. Show that there exists $a=$ $\left(a_{0}, a_{1}, \ldots, a_{n}\right) \in \mathbb{Q}^{n+1} \backslash\{0\}$ such that $f(a)=0$ if and only if there exists $\left(a_{0}, a_{1}, \ldots, a_{n}\right) \in$ $\mathbb{Z}^{n+1} \backslash\{0\}$ with $\operatorname{gcd}\left(a_{0}, \ldots, a_{n}\right)=1$ such that $f(a)=0$. Next fix a prime p, and show that the following (for which it suffices to assume the coefficients of f lie in \mathbb{Z}_{p}) are equivalent:

- There is an $a \in \mathbb{Q}_{p}^{n+1} \backslash\{0\}$ such that $f(a)=0$.
- There is an $a \in \mathbb{Z}_{p}^{n+1}$ with some coordinate non-zero $\bmod p$ such that $f(a)=0$.
- For all $m \geq 1$, there is an $a \in\left(\mathbb{Z} / p^{m}\right)^{n}$ with some coordinate non-zero $\bmod p$ such that $f(a) \equiv 0\left(\bmod p^{m}\right)$.
(3) Prove the refined form of the single-variable Hensel's Lemma stated in class.
(4) For each prime p, determine the number of roots of unity (elements x such that $x^{n}=1$ for some $n \geq 1$) in \mathbb{Q}_{p}. (Hint: use Hensel's Lemma.)
(5) Let $f\left(X_{0}, X_{1}, X_{2}\right) \in \mathbb{Z}\left[X_{0}, X_{1}, X_{2}\right]$ be a homomogeneous degree 2 polynomial, defining the conic $C_{f} \subset \mathbb{P}^{2}$. Show that for all but finitely many primes $p, C_{f}\left(\mathbb{Q}_{p}\right) \neq \emptyset$. For $f\left(X_{0}, X_{1}, X_{2}\right)=X_{0}^{2}+X_{1}^{2}-3 X_{2}^{2}$, determine $\left\{p: C_{f}\left(\mathbb{Q}_{p}\right) \neq \emptyset\right\}$.
(6) Consider the affine curve $C \subset \mathbb{A}^{2}$ given by $2 x^{2}+7 y^{2}=1$. Parametrize $C(\mathbb{Q})$ as $\{(x(t), y(t))$: $t \in \mathbb{Q}\}$ for some rational functions $x(t), y(t) \in \mathbb{Q}(t)$ (analogous to the "Pythagorean triple" parametrization of the rational points on $x^{2}+y^{2}=1$).
(7) Prove the two-variable case of the Hasse-Minkowski theorem: a quadratic form $f\left(X_{0}, X_{1}\right) \in$ $\mathbb{Q}\left[X_{0}, X_{1}\right]$ represents zero in \mathbb{Q} if and only if it represents zero in \mathbb{Q}_{p} for all p and represents zero in \mathbb{R} (by "represents zero in a field k " we mean there exists $\left(a_{0}, a_{1}\right) \in k^{2} \backslash\{0\}$ such that $\left.f\left(a_{0}, a_{1}\right)=0\right)$.

Rational Points on Curves, Summer 2021, Problem Set 2

Throughout this assignment, unless otherwise indicated, k is a field.
(1) Complete the calculation started in class, using Legendre's proof of the three-variable Hasse-Minkowski theorem, to compute a rational point on the projective curve given by $f\left(X_{0}, X_{1}, X_{2}\right)=X_{0}^{2}-13 X_{1}^{2}+17 X_{2}^{2}$.
(2) (Some projective geometry)
(a) Let $V \subset k^{n+1}$ be a vector subspace of dimension $r+1$, for some $r \leq n$. Show that the image $\mathbb{P}(V) \subset \mathbb{P}^{n}$ is the vanishing locus of $n-r$ homogeneous linear polynomials. (When $r=1, \mathbb{P}(W)$ is a line; when $r=n-1$, it is a hyperplane.)
(b) Show that any two distinct lines in \mathbb{P}^{2} intersect in exactly one point.
(c) Let $P_{1}, P_{2}, \ldots, P_{n+2} \in \mathbb{P}^{n}(k)$ be $(n+2)$ points such that no $(n+1)$ of them lie on a hyperplane (we say they are in "general position"). Let $Q_{1}, \ldots, Q_{n+2} \in \mathbb{P}^{n}(k)$ be another such set of $n+2$ points in general position. Show that there is some element $g \in \mathrm{GL}_{n+1}(k)$ such that the induced change of coordinates $g: \mathbb{P}^{n} \rightarrow \mathbb{P}^{n}$ satisfies $g\left(P_{i}\right)=$ Q_{i} for all i. (If you're having trouble with this, first do it for $n+1$ points in general position.)
(3) Let k be any field, and let $f \in k\left[X_{0}, X_{1}, X_{2}\right]$ be a homogeneous polynomial of degree 2 . Assume that the projective conic $C_{f} \subset \mathbb{P}^{2}$ is nonsingular, and that $C_{f}(k)$ is non-empty. Fix a point $P_{0} \in C_{f}(k)$ and a linear homogeneous polynomial $L\left(X_{0}, X_{1}, X_{2}\right) \in k\left[X_{0}, X_{1}, X_{2}\right]$ such that the vanishing locus $C_{L} \subset \mathbb{P}^{2}$ does not contain the point P_{0}.
(a) Show that the projection map

$$
\pi: C_{f} \rightarrow C_{L}
$$

defined by

$$
\pi(Q)=\left\{\begin{array}{l}
\text { the unique point of intersection } L \cap \overline{Q P_{0}} \text { if } Q \neq P_{0} \\
\text { the unique point of intersection } L \cap T_{C_{f}, P_{0}} \text { if } Q=P_{0}
\end{array}\right.
$$

is well-defined, and that it gives a bijection $C_{f}(K) \rightarrow C_{L}(K)$ for all fields $K \supset k$.
(b) Show that π is in fact an isomorphism of algebraic varieties over k. (This implies (a); the problems are separate for those who have not necessarily learned what a morphism of varieties is.)
(c) Show that C_{L} is isomorphic to \mathbb{P}^{1}, as algebraic varieties over k. Thus any smooth projective conic containing a k-rational point is isomorphic to \mathbb{P}^{1}.
(4) Let $p \equiv 1(\bmod 8)$ be a prime such that 2 is not a $4^{\text {th }}$ power in \mathbb{F}_{p}. Let $C^{0} \subset \mathbb{A}^{2}$ be the affine curve over \mathbb{Q} defined by the polynomial $f(w, z)=w^{2}-2+2 p z^{4}$. In class we constructed a nonsingular projective curve $C \subset \mathbb{P}^{3}$ and an isomorphism $\left.C^{0} \xrightarrow{\sim} C \backslash\{[0,0, \pm \sqrt{-2 p}, 1])\right\}$. Show that $C\left(\mathbb{Q}_{2}\right) \neq \emptyset$.
(5) Assume $\operatorname{char}(k) \neq 3$. For each $t \in \bar{k}, f_{t}\left(X_{0}, X_{1}, X_{2}\right)=X_{0}^{3}+X_{1}^{3}+X_{2}^{3}-3 t X_{0} X_{1} X_{2}$ defines a projective curve $C_{t} \subset \mathbb{P}^{2}$ (over the subfield of \bar{k} generated by t, or just over \bar{k} if you prefer).
(a) Determine, for all t, the set of singular points of C_{t} (in particular, determine which C_{t} are nonsingular).
(b) Determine $C_{0}(\mathbb{Q})$.

Rational Points on Curves, Summer 2021, Problem Set 3

(1) Consider the plane curve $C=V\left(y^{2}-x^{3}-x\right) \subset \mathbb{A}^{2}$ over a field k of characteristic not 2 .
(a) Show that the projective closure $\bar{C}=V\left(Y^{2} Z-X^{3}-X Z^{2}\right) \subset \mathbb{P}^{2}$ of C is nonsingular (in particular, C is).
(b) Let $P=(0,0) \in C$, and let v_{P} be the associated discrete valuation of $k(C)$ (as defined in Monday's class). Compute $v_{P}(x)$ and $v_{P}(y)$.
(c) The affine space $\{Y \neq 0\} \subset \mathbb{P}^{2}$ has coordinate functions $u=X / Y$ and $v=Z / Y$, i.e., its coordinate ring is the polynomial ring $k[u, v]$. Write in terms of u and v the equation of $C^{\prime}:=\bar{C} \cap\{Y \neq 0\} \subset\{Y \neq 0\} \cong \mathbb{A}^{2}$. Write down the canonical isomorphism $k(C) \cong k\left(C^{\prime}\right)$.
(d) Let Q be the unique point in $\bar{C} \backslash C$ (you should know from part (a) what Q is). Compute $v_{Q}(x)$ and $v_{Q}(y)$, identifying x and y as elements of $k\left(C^{\prime}\right)$ as in the last part.
(2) Consider the plane curve $C=V\left(y^{2}-x^{3}-x^{2}\right) \subset \mathbb{A}^{2}$. Show that C is singular at $P=(0,0)$, and check that $O_{C, P}$ is not a DVR.
(3) Let $v: \mathbb{Q}^{\times} \rightarrow \mathbb{Z}$ be a surjective discrete valuation. Show that $v=v_{p}$ for some prime number p.
(4) Let $v: \bar{k}(t)^{\times} \rightarrow \mathbb{Z}$ be a surjective discrete valuation trivial on \bar{k} (here \bar{k} is an algebraically closed field). Show that either there exists $a \in \bar{k}$ such that $v=v_{t-a}$ or $v=v_{\infty}$. (See the class notes for these examples of valuations.) How would you describe the discrete valuations on $k(t)$ (trivial on k) when k is not necessarily algebraically closed?
(5) Let $X \subset \mathbb{A}^{n}$ be an affine variety over an algebraically closed field \bar{k}. Exhibit a bijection between the points of X and the maximal ideals of $\bar{k}[X]$.
(6) The most concrete definition of an elliptic curve over a field k of characteristic not 2 or 3 is the following: it is a nonsingular projective curve $C=V(F) \subset \mathbb{P}^{2}$ where

$$
F(X, Y, Z)=Y^{2} Z-X^{3}-A X Z^{2}-B Z^{3}
$$

for some $A, B \in k$, along with its evident k-rational point $[0,1,0]$. Show that such an equation in fact defines a nonsingular curve if and only if $\Delta(A, B)=-16\left(4 A^{3}+27 B^{2}\right)$ is non-zero in k. (Of course, the factor of -16 does not affect-in characteristic not 2 !whether Δ is zero; this normalization is conventional, and it also reflects the fact that such a curve is always singular in characteristic 2.)

Rational Points on Curves, Summer 2021, Problem Set 4

(1) Let k be a field of characteristic not 2, and consider the projective nonsingular curve over k associated to the affine curve $y^{2}=f(x)$, where $f(x) \in k[x]$ is a cubic polynomial with distinct roots.
(a) Show that the (rational) differential $\omega=\frac{d x}{y} \in \Omega_{k(C) / k}$ satisfies $\operatorname{div}(\omega)=0$. Deduce from the Riemann-Roch theorem that $g(C)=1$.
(b) Without assuming the Riemann-Roch theorem, show that the dimension of the space of everywhere regular differentials on C is 1 . (Hint: which $h \omega$ can be everywhere regular, for $h \in k(C)$?)
(2) Carry out a version of the arguments in Problem 1 to show that the nonsingular projective curve $C \subset \mathbb{P}^{3}$ (an intersection of two quadrics) we studied to produce a counterexample to the local-global principle for rational points is in fact of genus 1 . What is a natural class of curves that your argument applies to?
(3) (Galois descent of vector spaces) Let L / K be a finite Galois extension, and let V be an L-vector space equipped with an L-semilinear action of $\operatorname{Gal}(L / K)$: that is, $\operatorname{Gal}(L / K)$ acts on the abelian group V, and this action satisfies $\sigma(c v)=\sigma(c) \sigma(v)$ for all $\sigma \in \operatorname{Gal}(L / K)$, $c \in L, v \in V$. Let $W \subset V$ be the subset of $\operatorname{Gal}(L / K)$-invariant vectors:

$$
W=\{v \in V: \sigma(v)=v \text { for all } \sigma \in \operatorname{Gal}(L / K)\} .
$$

(a) Check that W is a K-vector subspace of V.
(b) Show that for all $v \in V, \operatorname{tr}(v):=\sum_{\sigma \in \operatorname{Gal}(L / K)} \sigma(v)$ lies in W; and show that for $v \neq 0$, $\operatorname{tr}(c v) \neq 0$ for some $c \in L$.
(c) Show that the natural L-linear map $\alpha: W \otimes_{K} L \rightarrow V$ is an isomorphism. (Hint: apply the last part to $V / \operatorname{im}(\alpha)$; how is this quotient space equipped with an L-semilinear action of $\operatorname{Gal}(L / K)$?) Concretely, W admits a K-basis that is an L-basis of V.
(d) Let \bar{K} be a separable closure of K. Generalize the result of (c) to the case of a continuous \bar{K}-semilinear action of $G_{K}:=\operatorname{Gal}(\bar{K} / K)$ on a \bar{K}-vector space V, where the continuity condition means that for every $v \in V$, the stabilizer $\left\{\sigma \in G_{K}: \sigma(v)=v\right\}$ is $\operatorname{Gal}(\bar{K} / L)$ for some finite extension L / K (i.e., the map $\sigma \mapsto \sigma(v)$ is continuous for the discrete topology on V and the Krull topology on G_{K}).
(4) Consider the elliptic curve $y^{2}=x^{3}-2$ over \mathbb{Q}. Let $P=(3,5)$. Compute [2] P.
(5) Let (E, O) be an elliptic curve over a field of characteristic not 2 or 3 given by a homogeneous Weierstrass equation $F\left(X_{0}, X_{1}, X_{2}\right)=0$.
(a) For $P \in E$, show that [3] $P=O$ if and only if the tangent line to E at P intersects E only at P.
(b) Next show that [3]P $=0$ if and only if the "Hessian" matrix $\left(\partial^{2} F / \partial X_{i} \partial X_{j}(P)\right)_{i, j}$ is singular.
(c) Conclude that $\#(E[3])=9$.
(d) Describe $E[3]$ when E is given by a cubic equation $F\left(X_{0}, X_{1}, X_{2}\right)=X_{0}^{3}+X_{1}^{3}+X_{2}^{3}-$ $3 t X_{0} X_{1} X_{2}$ as in PSet 2, Problem 5 (for any t such that this curve is nonsingular), and the origin $O \in E$ is taken to be $[1,-1,0]$.

Rational Points on Curves, Summer 2021, Problem Set 5

(1) Let k be a field of characteristic not 2, and let E / k be an elliptic curve. In this exercise, you will prove that for all non-zero $m \in \mathbb{Z},[m]: E \rightarrow E$ is an isogeny.
(a) Show that (for any k), $[m]$ is a morphism.
(b) Show that [2] is not constant by writing down in terms of a Weierstrass equation for E a necessary condition for $P=(x, y) \in E$ to satisfy [2] $P=O$. (This should lead you to a cubic equation in x; if you prefer to simplify the calculations, you may also assume $\operatorname{char}(k) \neq 3$, in order to have a Weierstrass equation of the form $y^{2}=x^{3}+a x+b$.)
(c) Continue the analysis of the previous part and check that $E[2]$ strictly contains $\{O\}$. Deduce that for m odd, $[m]$ is non-constant.
(d) Combine the previous two parts to show that $[m]$ is non-constant for all $m \neq 0$.
(2) Consider the elliptic curve E / \mathbb{Q} given by the Weierstrass equation $y^{2}=x^{3}+3$.
(a) For what primes p does this Weierstrass equation have good reduction modulo p ?
(b) For any prime p such that E has good reduction modulo p, and any m coprime to p, we have shown that $E\left(\mathbb{Q}_{p}\right)[m]$ injects (as a group) into $\bar{E}\left(\mathbb{F}_{p}\right)$. Use this to show that the torsion subgroup $E(\mathbb{Q})_{\text {tor }}$ is trivial.
(c) Show that $E(\mathbb{Q})$ is infinite.
(3) Let F be a number field, and let E / F be an elliptic curve. Prove, as in the last problem using our results on elliptic curves over local fields, that the torsion subgroup $E(F)_{\text {tor }}$ of $E(F)$ is finite.
(4) Let K be a finite extension of \mathbb{Q}_{p}, and let E / K be an elliptic curve with good reduction. In our proof that $[m]$ is an automorphism of $E_{1}(K)$, for m coprime to p, we used that a certain reduction map $E_{n}(k) \rightarrow C(k)_{\mathrm{ns}}$ to the non-singular points of the cuspidal cubic $C: y^{2}=x^{3}$ over the residue field k of K, was in fact a group homomorphism. Precisely, we wrote $P \in E_{n}(K)$ as $\left[\varpi^{n} x_{0}, y_{0}, \varpi^{3 n} z_{0}\right]$ with $y_{0} \in O_{K}^{\times}$and $x_{0}, z_{0} \in O_{K}$ (with x_{0} and z_{0} also units if $\left.P \notin E_{n+1}(K)\right)$, and that map was $[x, y, z] \mapsto\left[x_{0}, y_{0}, z_{0}\right](\bmod \varpi)$. Verify the claim that this is a surjective homomorphism.
(5) Let G be a (discrete) group. Prove that to any short exact sequence

$$
0 \rightarrow M \xrightarrow{\alpha} N \xrightarrow{\beta} P \rightarrow 0
$$

of G-modules, there is an associated long exact sequence

$$
0 \rightarrow M^{G} \rightarrow N^{G} \rightarrow P^{G} \xrightarrow{\delta} H^{1}(G, M) \rightarrow H^{1}(G, N) \rightarrow H^{1}(G, P)
$$

of abelian groups, with $\delta(p): G \rightarrow M$ given by $g \mapsto g \cdot n-n$ for any $n \in N$ such that $\beta(n)=p$. Check that your proof also works when $G=G_{k}$ is the absolute Galois group of a field k, and M, N, and P are discrete G_{k}-modules. (If you know what it means, replace G_{k} by any profinite group here.)
(6) Let k be a field. One form of Hilbert's Theorem 90 asserts that $H^{1}\left(G_{k}, \bar{k}^{\times}\right)=\{1\}$ (if k is not perfect, \bar{k} here means a separable closure of k). Assuming this, prove that $\mathbb{P}^{n}(\bar{k})^{G_{k}}=\mathbb{P}^{n}(k)$. (The analogous statement for \mathbb{A}^{n} is obvious; this is not!)
(7) Combine problems 5 and 6 to prove the fundamental isomorphism of Kummer theory: for any field k and integer n coprime to $\operatorname{char}(k)$, there is an isomorphism

$$
k^{\times} /\left(k^{\times}\right)^{n} \xrightarrow{\sim} H_{5}^{1}\left(G_{k}, \mu_{n}(\bar{k})\right)
$$

given by the boundary map in the long-exact sequence in G_{k}-cohomology associated to the short-exact sequence

$$
1 \rightarrow \mu_{n}(\bar{k}) \rightarrow \bar{k}^{\times} \xrightarrow{z \longmapsto z^{n}} \bar{k}^{\times} \rightarrow 1 .
$$

(Here $\mu_{n}(\bar{k})$ is the set of $n^{t h}$ roots of unity in \bar{k}. In the classical form of Kummer theory, one assumes k contains all $n^{\text {th }}$ roots of 1 , so that $\mu_{n}(\bar{k})$ is a G_{k}-module with trivial action, and $k^{\times} /\left(k^{\times}\right)^{n} \xrightarrow{\sim} \operatorname{Hom}_{\mathrm{cts}}\left(G_{k}, \mu_{n}\right)$. One easily translates this isomorphism into a correspondence between finite abelian exponent n extensions of k (inside \bar{k}) and finite subgroups A of $k^{\times} /\left(k^{\times}\right)^{n}$, a subgroup A corresponding to the "Kummer extension" $k\left[A^{1 / n}\right]$. Work out the details of this correspondence as an optional exercise.)

Rational Points on Curves, Summer 2021, Problem Set 6

(1) Let F be a number field, with $|F|$ its set of places. For each $v \in|F|$, let $|\cdot|_{v}$ be the associated normalized absolute value as defined in class. Prove the product formula: for all $a \in F$,

$$
\prod_{v \in|F|}|a|_{v}=1
$$

(2) Let α be an algebraic integer (that is, α satisfies some monic polynomial with integer coefficients) such that for every embedding $\tau: \mathbb{Q}[\alpha] \rightarrow \mathbb{C},|\tau(\alpha)| \leq 1$. Prove that α is a root of unity. (Note this is not true if we only assume α is an algebraic number.) More generally, if F is a number field and $P=\left[x_{0}, \ldots, x_{n}\right] \in \mathbb{P}^{n}(F)$ with some $x_{i} \neq 0$, show that $H(P)=1$ if and only if $\frac{x_{j}}{x_{i}}$ is either zero or a root of unity for every $0 \leq j \leq n$.
(3) Suppose that $y^{2}=x^{3}+A x+B$ is a non-singular Weierstrass equation over a field F of characteristic not 2 . Show that the rational map $g: \mathbb{P}^{2} \rightarrow \mathbb{P}^{2}$ defined by

$$
g([t, u, v])=\left[u^{2}-4 t v, 2 u(A t+v)+4 B t^{2},(v-A t)^{2}-4 B t u\right]
$$

is a morphism. (Recall that we use this for $F=\overline{\mathbb{Q}}$ in our proof of the Mordell-Weil theorem.)
(4) Let $\alpha_{1}, \alpha_{2} \in \overline{\mathbb{Q}}$, and let h denote the absolute logarithmic height on \mathbb{P}^{n} (for n to be understood from the context). Prove the lower bound

$$
h[1, \alpha+\beta, \alpha \beta]) \geq h\left(\left[\alpha_{1}, 1\right]\right)+h\left(\left[\alpha_{2}, 1\right]\right)-\log 4 .
$$

(5) Let F be a number field, and let M be a discrete G_{F}-module with $|M|$ finite. Let S be any finite set of primes of F. In class we proved that

$$
\left\{\varphi \in H^{1}\left(G_{F}, M\right): \varphi \text { is unramified outside } S\right\}
$$

is finite, using the Hermite-Minkowski theorem. Give another proof of this fact without using Hermite-Minkowski, but instead using (a) finiteness of the class group; (b) finitegeneration of the unit group; and (c) Kummer theory.
(6) Fix a number field F and an integer n. Show that there is a uniform bound on $\operatorname{rk}(E(F))$ as E ranges over all elliptic curves over F having good reduction outside a set of most n primes (we do not fix the set, just its size!). (Remark: it is unknown whether $\operatorname{rk}(E(F))$ is (un)bounded as E ranges over all elliptic curves over F.)

